xref: /openbmc/linux/fs/ext4/dir.c (revision d2299590)
1 /*
2  *  linux/fs/ext4/dir.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/dir.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 directory handling functions
16  *
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *
20  * Hash Tree Directory indexing (c) 2001  Daniel Phillips
21  *
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/buffer_head.h>
26 #include <linux/slab.h>
27 #include "ext4.h"
28 #include "xattr.h"
29 
30 static int ext4_dx_readdir(struct file *, struct dir_context *);
31 
32 /**
33  * Check if the given dir-inode refers to an htree-indexed directory
34  * (or a directory which could potentially get converted to use htree
35  * indexing).
36  *
37  * Return 1 if it is a dx dir, 0 if not
38  */
39 static int is_dx_dir(struct inode *inode)
40 {
41 	struct super_block *sb = inode->i_sb;
42 
43 	if (EXT4_HAS_COMPAT_FEATURE(inode->i_sb,
44 		     EXT4_FEATURE_COMPAT_DIR_INDEX) &&
45 	    ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
46 	     ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
47 	     ext4_has_inline_data(inode)))
48 		return 1;
49 
50 	return 0;
51 }
52 
53 /*
54  * Return 0 if the directory entry is OK, and 1 if there is a problem
55  *
56  * Note: this is the opposite of what ext2 and ext3 historically returned...
57  *
58  * bh passed here can be an inode block or a dir data block, depending
59  * on the inode inline data flag.
60  */
61 int __ext4_check_dir_entry(const char *function, unsigned int line,
62 			   struct inode *dir, struct file *filp,
63 			   struct ext4_dir_entry_2 *de,
64 			   struct buffer_head *bh, char *buf, int size,
65 			   unsigned int offset)
66 {
67 	const char *error_msg = NULL;
68 	const int rlen = ext4_rec_len_from_disk(de->rec_len,
69 						dir->i_sb->s_blocksize);
70 
71 	if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
72 		error_msg = "rec_len is smaller than minimal";
73 	else if (unlikely(rlen % 4 != 0))
74 		error_msg = "rec_len % 4 != 0";
75 	else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
76 		error_msg = "rec_len is too small for name_len";
77 	else if (unlikely(((char *) de - buf) + rlen > size))
78 		error_msg = "directory entry across range";
79 	else if (unlikely(le32_to_cpu(de->inode) >
80 			le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
81 		error_msg = "inode out of bounds";
82 	else
83 		return 0;
84 
85 	if (filp)
86 		ext4_error_file(filp, function, line, bh->b_blocknr,
87 				"bad entry in directory: %s - offset=%u(%u), "
88 				"inode=%u, rec_len=%d, name_len=%d",
89 				error_msg, (unsigned) (offset % size),
90 				offset, le32_to_cpu(de->inode),
91 				rlen, de->name_len);
92 	else
93 		ext4_error_inode(dir, function, line, bh->b_blocknr,
94 				"bad entry in directory: %s - offset=%u(%u), "
95 				"inode=%u, rec_len=%d, name_len=%d",
96 				error_msg, (unsigned) (offset % size),
97 				offset, le32_to_cpu(de->inode),
98 				rlen, de->name_len);
99 
100 	return 1;
101 }
102 
103 static int ext4_readdir(struct file *file, struct dir_context *ctx)
104 {
105 	unsigned int offset;
106 	int i;
107 	struct ext4_dir_entry_2 *de;
108 	int err;
109 	struct inode *inode = file_inode(file);
110 	struct super_block *sb = inode->i_sb;
111 	struct buffer_head *bh = NULL;
112 	int dir_has_error = 0;
113 	struct ext4_fname_crypto_ctx *enc_ctx = NULL;
114 	struct ext4_str fname_crypto_str = {.name = NULL, .len = 0};
115 
116 	if (is_dx_dir(inode)) {
117 		err = ext4_dx_readdir(file, ctx);
118 		if (err != ERR_BAD_DX_DIR) {
119 			return err;
120 		}
121 		/*
122 		 * We don't set the inode dirty flag since it's not
123 		 * critical that it get flushed back to the disk.
124 		 */
125 		ext4_clear_inode_flag(file_inode(file),
126 				      EXT4_INODE_INDEX);
127 	}
128 
129 	if (ext4_has_inline_data(inode)) {
130 		int has_inline_data = 1;
131 		err = ext4_read_inline_dir(file, ctx,
132 					   &has_inline_data);
133 		if (has_inline_data)
134 			return err;
135 	}
136 
137 	enc_ctx = ext4_get_fname_crypto_ctx(inode, EXT4_NAME_LEN);
138 	if (IS_ERR(enc_ctx))
139 		return PTR_ERR(enc_ctx);
140 	if (enc_ctx) {
141 		err = ext4_fname_crypto_alloc_buffer(enc_ctx, EXT4_NAME_LEN,
142 						     &fname_crypto_str);
143 		if (err < 0) {
144 			ext4_put_fname_crypto_ctx(&enc_ctx);
145 			return err;
146 		}
147 	}
148 
149 	offset = ctx->pos & (sb->s_blocksize - 1);
150 
151 	while (ctx->pos < inode->i_size) {
152 		struct ext4_map_blocks map;
153 
154 		map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
155 		map.m_len = 1;
156 		err = ext4_map_blocks(NULL, inode, &map, 0);
157 		if (err > 0) {
158 			pgoff_t index = map.m_pblk >>
159 					(PAGE_CACHE_SHIFT - inode->i_blkbits);
160 			if (!ra_has_index(&file->f_ra, index))
161 				page_cache_sync_readahead(
162 					sb->s_bdev->bd_inode->i_mapping,
163 					&file->f_ra, file,
164 					index, 1);
165 			file->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
166 			bh = ext4_bread(NULL, inode, map.m_lblk, 0);
167 			if (IS_ERR(bh))
168 				return PTR_ERR(bh);
169 		}
170 
171 		if (!bh) {
172 			if (!dir_has_error) {
173 				EXT4_ERROR_FILE(file, 0,
174 						"directory contains a "
175 						"hole at offset %llu",
176 					   (unsigned long long) ctx->pos);
177 				dir_has_error = 1;
178 			}
179 			/* corrupt size?  Maybe no more blocks to read */
180 			if (ctx->pos > inode->i_blocks << 9)
181 				break;
182 			ctx->pos += sb->s_blocksize - offset;
183 			continue;
184 		}
185 
186 		/* Check the checksum */
187 		if (!buffer_verified(bh) &&
188 		    !ext4_dirent_csum_verify(inode,
189 				(struct ext4_dir_entry *)bh->b_data)) {
190 			EXT4_ERROR_FILE(file, 0, "directory fails checksum "
191 					"at offset %llu",
192 					(unsigned long long)ctx->pos);
193 			ctx->pos += sb->s_blocksize - offset;
194 			brelse(bh);
195 			bh = NULL;
196 			continue;
197 		}
198 		set_buffer_verified(bh);
199 
200 		/* If the dir block has changed since the last call to
201 		 * readdir(2), then we might be pointing to an invalid
202 		 * dirent right now.  Scan from the start of the block
203 		 * to make sure. */
204 		if (file->f_version != inode->i_version) {
205 			for (i = 0; i < sb->s_blocksize && i < offset; ) {
206 				de = (struct ext4_dir_entry_2 *)
207 					(bh->b_data + i);
208 				/* It's too expensive to do a full
209 				 * dirent test each time round this
210 				 * loop, but we do have to test at
211 				 * least that it is non-zero.  A
212 				 * failure will be detected in the
213 				 * dirent test below. */
214 				if (ext4_rec_len_from_disk(de->rec_len,
215 					sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
216 					break;
217 				i += ext4_rec_len_from_disk(de->rec_len,
218 							    sb->s_blocksize);
219 			}
220 			offset = i;
221 			ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
222 				| offset;
223 			file->f_version = inode->i_version;
224 		}
225 
226 		while (ctx->pos < inode->i_size
227 		       && offset < sb->s_blocksize) {
228 			de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
229 			if (ext4_check_dir_entry(inode, file, de, bh,
230 						 bh->b_data, bh->b_size,
231 						 offset)) {
232 				/*
233 				 * On error, skip to the next block
234 				 */
235 				ctx->pos = (ctx->pos |
236 						(sb->s_blocksize - 1)) + 1;
237 				break;
238 			}
239 			offset += ext4_rec_len_from_disk(de->rec_len,
240 					sb->s_blocksize);
241 			if (le32_to_cpu(de->inode)) {
242 				if (enc_ctx == NULL) {
243 					/* Directory is not encrypted */
244 					if (!dir_emit(ctx, de->name,
245 					    de->name_len,
246 					    le32_to_cpu(de->inode),
247 					    get_dtype(sb, de->file_type)))
248 						goto done;
249 				} else {
250 					int save_len = fname_crypto_str.len;
251 
252 					/* Directory is encrypted */
253 					err = ext4_fname_disk_to_usr(enc_ctx,
254 						NULL, de, &fname_crypto_str);
255 					fname_crypto_str.len = save_len;
256 					if (err < 0)
257 						goto errout;
258 					if (!dir_emit(ctx,
259 					    fname_crypto_str.name, err,
260 					    le32_to_cpu(de->inode),
261 					    get_dtype(sb, de->file_type)))
262 						goto done;
263 				}
264 			}
265 			ctx->pos += ext4_rec_len_from_disk(de->rec_len,
266 						sb->s_blocksize);
267 		}
268 		if ((ctx->pos < inode->i_size) && !dir_relax(inode))
269 			goto done;
270 		brelse(bh);
271 		bh = NULL;
272 		offset = 0;
273 	}
274 done:
275 	err = 0;
276 errout:
277 #ifdef CONFIG_EXT4_FS_ENCRYPTION
278 	ext4_put_fname_crypto_ctx(&enc_ctx);
279 	ext4_fname_crypto_free_buffer(&fname_crypto_str);
280 #endif
281 	brelse(bh);
282 	return err;
283 }
284 
285 static inline int is_32bit_api(void)
286 {
287 #ifdef CONFIG_COMPAT
288 	return is_compat_task();
289 #else
290 	return (BITS_PER_LONG == 32);
291 #endif
292 }
293 
294 /*
295  * These functions convert from the major/minor hash to an f_pos
296  * value for dx directories
297  *
298  * Upper layer (for example NFS) should specify FMODE_32BITHASH or
299  * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
300  * directly on both 32-bit and 64-bit nodes, under such case, neither
301  * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
302  */
303 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
304 {
305 	if ((filp->f_mode & FMODE_32BITHASH) ||
306 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
307 		return major >> 1;
308 	else
309 		return ((__u64)(major >> 1) << 32) | (__u64)minor;
310 }
311 
312 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
313 {
314 	if ((filp->f_mode & FMODE_32BITHASH) ||
315 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
316 		return (pos << 1) & 0xffffffff;
317 	else
318 		return ((pos >> 32) << 1) & 0xffffffff;
319 }
320 
321 static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
322 {
323 	if ((filp->f_mode & FMODE_32BITHASH) ||
324 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
325 		return 0;
326 	else
327 		return pos & 0xffffffff;
328 }
329 
330 /*
331  * Return 32- or 64-bit end-of-file for dx directories
332  */
333 static inline loff_t ext4_get_htree_eof(struct file *filp)
334 {
335 	if ((filp->f_mode & FMODE_32BITHASH) ||
336 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
337 		return EXT4_HTREE_EOF_32BIT;
338 	else
339 		return EXT4_HTREE_EOF_64BIT;
340 }
341 
342 
343 /*
344  * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
345  * directories, where the "offset" is in terms of the filename hash
346  * value instead of the byte offset.
347  *
348  * Because we may return a 64-bit hash that is well beyond offset limits,
349  * we need to pass the max hash as the maximum allowable offset in
350  * the htree directory case.
351  *
352  * For non-htree, ext4_llseek already chooses the proper max offset.
353  */
354 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
355 {
356 	struct inode *inode = file->f_mapping->host;
357 	int dx_dir = is_dx_dir(inode);
358 	loff_t htree_max = ext4_get_htree_eof(file);
359 
360 	if (likely(dx_dir))
361 		return generic_file_llseek_size(file, offset, whence,
362 						    htree_max, htree_max);
363 	else
364 		return ext4_llseek(file, offset, whence);
365 }
366 
367 /*
368  * This structure holds the nodes of the red-black tree used to store
369  * the directory entry in hash order.
370  */
371 struct fname {
372 	__u32		hash;
373 	__u32		minor_hash;
374 	struct rb_node	rb_hash;
375 	struct fname	*next;
376 	__u32		inode;
377 	__u8		name_len;
378 	__u8		file_type;
379 	char		name[0];
380 };
381 
382 /*
383  * This functoin implements a non-recursive way of freeing all of the
384  * nodes in the red-black tree.
385  */
386 static void free_rb_tree_fname(struct rb_root *root)
387 {
388 	struct fname *fname, *next;
389 
390 	rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
391 		while (fname) {
392 			struct fname *old = fname;
393 			fname = fname->next;
394 			kfree(old);
395 		}
396 
397 	*root = RB_ROOT;
398 }
399 
400 
401 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
402 							   loff_t pos)
403 {
404 	struct dir_private_info *p;
405 
406 	p = kzalloc(sizeof(struct dir_private_info), GFP_KERNEL);
407 	if (!p)
408 		return NULL;
409 	p->curr_hash = pos2maj_hash(filp, pos);
410 	p->curr_minor_hash = pos2min_hash(filp, pos);
411 	return p;
412 }
413 
414 void ext4_htree_free_dir_info(struct dir_private_info *p)
415 {
416 	free_rb_tree_fname(&p->root);
417 	kfree(p);
418 }
419 
420 /*
421  * Given a directory entry, enter it into the fname rb tree.
422  *
423  * When filename encryption is enabled, the dirent will hold the
424  * encrypted filename, while the htree will hold decrypted filename.
425  * The decrypted filename is passed in via ent_name.  parameter.
426  */
427 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
428 			     __u32 minor_hash,
429 			    struct ext4_dir_entry_2 *dirent,
430 			    struct ext4_str *ent_name)
431 {
432 	struct rb_node **p, *parent = NULL;
433 	struct fname *fname, *new_fn;
434 	struct dir_private_info *info;
435 	int len;
436 
437 	info = dir_file->private_data;
438 	p = &info->root.rb_node;
439 
440 	/* Create and allocate the fname structure */
441 	len = sizeof(struct fname) + ent_name->len + 1;
442 	new_fn = kzalloc(len, GFP_KERNEL);
443 	if (!new_fn)
444 		return -ENOMEM;
445 	new_fn->hash = hash;
446 	new_fn->minor_hash = minor_hash;
447 	new_fn->inode = le32_to_cpu(dirent->inode);
448 	new_fn->name_len = ent_name->len;
449 	new_fn->file_type = dirent->file_type;
450 	memcpy(new_fn->name, ent_name->name, ent_name->len);
451 	new_fn->name[ent_name->len] = 0;
452 
453 	while (*p) {
454 		parent = *p;
455 		fname = rb_entry(parent, struct fname, rb_hash);
456 
457 		/*
458 		 * If the hash and minor hash match up, then we put
459 		 * them on a linked list.  This rarely happens...
460 		 */
461 		if ((new_fn->hash == fname->hash) &&
462 		    (new_fn->minor_hash == fname->minor_hash)) {
463 			new_fn->next = fname->next;
464 			fname->next = new_fn;
465 			return 0;
466 		}
467 
468 		if (new_fn->hash < fname->hash)
469 			p = &(*p)->rb_left;
470 		else if (new_fn->hash > fname->hash)
471 			p = &(*p)->rb_right;
472 		else if (new_fn->minor_hash < fname->minor_hash)
473 			p = &(*p)->rb_left;
474 		else /* if (new_fn->minor_hash > fname->minor_hash) */
475 			p = &(*p)->rb_right;
476 	}
477 
478 	rb_link_node(&new_fn->rb_hash, parent, p);
479 	rb_insert_color(&new_fn->rb_hash, &info->root);
480 	return 0;
481 }
482 
483 
484 
485 /*
486  * This is a helper function for ext4_dx_readdir.  It calls filldir
487  * for all entres on the fname linked list.  (Normally there is only
488  * one entry on the linked list, unless there are 62 bit hash collisions.)
489  */
490 static int call_filldir(struct file *file, struct dir_context *ctx,
491 			struct fname *fname)
492 {
493 	struct dir_private_info *info = file->private_data;
494 	struct inode *inode = file_inode(file);
495 	struct super_block *sb = inode->i_sb;
496 
497 	if (!fname) {
498 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
499 			 "called with null fname?!?", __func__, __LINE__,
500 			 inode->i_ino, current->comm);
501 		return 0;
502 	}
503 	ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
504 	while (fname) {
505 		if (!dir_emit(ctx, fname->name,
506 				fname->name_len,
507 				fname->inode,
508 				get_dtype(sb, fname->file_type))) {
509 			info->extra_fname = fname;
510 			return 1;
511 		}
512 		fname = fname->next;
513 	}
514 	return 0;
515 }
516 
517 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
518 {
519 	struct dir_private_info *info = file->private_data;
520 	struct inode *inode = file_inode(file);
521 	struct fname *fname;
522 	int	ret;
523 
524 	if (!info) {
525 		info = ext4_htree_create_dir_info(file, ctx->pos);
526 		if (!info)
527 			return -ENOMEM;
528 		file->private_data = info;
529 	}
530 
531 	if (ctx->pos == ext4_get_htree_eof(file))
532 		return 0;	/* EOF */
533 
534 	/* Some one has messed with f_pos; reset the world */
535 	if (info->last_pos != ctx->pos) {
536 		free_rb_tree_fname(&info->root);
537 		info->curr_node = NULL;
538 		info->extra_fname = NULL;
539 		info->curr_hash = pos2maj_hash(file, ctx->pos);
540 		info->curr_minor_hash = pos2min_hash(file, ctx->pos);
541 	}
542 
543 	/*
544 	 * If there are any leftover names on the hash collision
545 	 * chain, return them first.
546 	 */
547 	if (info->extra_fname) {
548 		if (call_filldir(file, ctx, info->extra_fname))
549 			goto finished;
550 		info->extra_fname = NULL;
551 		goto next_node;
552 	} else if (!info->curr_node)
553 		info->curr_node = rb_first(&info->root);
554 
555 	while (1) {
556 		/*
557 		 * Fill the rbtree if we have no more entries,
558 		 * or the inode has changed since we last read in the
559 		 * cached entries.
560 		 */
561 		if ((!info->curr_node) ||
562 		    (file->f_version != inode->i_version)) {
563 			info->curr_node = NULL;
564 			free_rb_tree_fname(&info->root);
565 			file->f_version = inode->i_version;
566 			ret = ext4_htree_fill_tree(file, info->curr_hash,
567 						   info->curr_minor_hash,
568 						   &info->next_hash);
569 			if (ret < 0)
570 				return ret;
571 			if (ret == 0) {
572 				ctx->pos = ext4_get_htree_eof(file);
573 				break;
574 			}
575 			info->curr_node = rb_first(&info->root);
576 		}
577 
578 		fname = rb_entry(info->curr_node, struct fname, rb_hash);
579 		info->curr_hash = fname->hash;
580 		info->curr_minor_hash = fname->minor_hash;
581 		if (call_filldir(file, ctx, fname))
582 			break;
583 	next_node:
584 		info->curr_node = rb_next(info->curr_node);
585 		if (info->curr_node) {
586 			fname = rb_entry(info->curr_node, struct fname,
587 					 rb_hash);
588 			info->curr_hash = fname->hash;
589 			info->curr_minor_hash = fname->minor_hash;
590 		} else {
591 			if (info->next_hash == ~0) {
592 				ctx->pos = ext4_get_htree_eof(file);
593 				break;
594 			}
595 			info->curr_hash = info->next_hash;
596 			info->curr_minor_hash = 0;
597 		}
598 	}
599 finished:
600 	info->last_pos = ctx->pos;
601 	return 0;
602 }
603 
604 static int ext4_release_dir(struct inode *inode, struct file *filp)
605 {
606 	if (filp->private_data)
607 		ext4_htree_free_dir_info(filp->private_data);
608 
609 	return 0;
610 }
611 
612 int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
613 		      int buf_size)
614 {
615 	struct ext4_dir_entry_2 *de;
616 	int nlen, rlen;
617 	unsigned int offset = 0;
618 	char *top;
619 
620 	de = (struct ext4_dir_entry_2 *)buf;
621 	top = buf + buf_size;
622 	while ((char *) de < top) {
623 		if (ext4_check_dir_entry(dir, NULL, de, bh,
624 					 buf, buf_size, offset))
625 			return -EIO;
626 		nlen = EXT4_DIR_REC_LEN(de->name_len);
627 		rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
628 		de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
629 		offset += rlen;
630 	}
631 	if ((char *) de > top)
632 		return -EIO;
633 
634 	return 0;
635 }
636 
637 const struct file_operations ext4_dir_operations = {
638 	.llseek		= ext4_dir_llseek,
639 	.read		= generic_read_dir,
640 	.iterate	= ext4_readdir,
641 	.unlocked_ioctl = ext4_ioctl,
642 #ifdef CONFIG_COMPAT
643 	.compat_ioctl	= ext4_compat_ioctl,
644 #endif
645 	.fsync		= ext4_sync_file,
646 	.release	= ext4_release_dir,
647 };
648