xref: /openbmc/linux/fs/ext4/dir.c (revision c000c4f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/dir.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/dir.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 directory handling functions
17  *
18  *  Big-endian to little-endian byte-swapping/bitmaps by
19  *        David S. Miller (davem@caip.rutgers.edu), 1995
20  *
21  * Hash Tree Directory indexing (c) 2001  Daniel Phillips
22  *
23  */
24 
25 #include <linux/fs.h>
26 #include <linux/buffer_head.h>
27 #include <linux/slab.h>
28 #include <linux/iversion.h>
29 #include "ext4.h"
30 #include "xattr.h"
31 
32 static int ext4_dx_readdir(struct file *, struct dir_context *);
33 
34 /**
35  * Check if the given dir-inode refers to an htree-indexed directory
36  * (or a directory which could potentially get converted to use htree
37  * indexing).
38  *
39  * Return 1 if it is a dx dir, 0 if not
40  */
41 static int is_dx_dir(struct inode *inode)
42 {
43 	struct super_block *sb = inode->i_sb;
44 
45 	if (ext4_has_feature_dir_index(inode->i_sb) &&
46 	    ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
47 	     ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
48 	     ext4_has_inline_data(inode)))
49 		return 1;
50 
51 	return 0;
52 }
53 
54 /*
55  * Return 0 if the directory entry is OK, and 1 if there is a problem
56  *
57  * Note: this is the opposite of what ext2 and ext3 historically returned...
58  *
59  * bh passed here can be an inode block or a dir data block, depending
60  * on the inode inline data flag.
61  */
62 int __ext4_check_dir_entry(const char *function, unsigned int line,
63 			   struct inode *dir, struct file *filp,
64 			   struct ext4_dir_entry_2 *de,
65 			   struct buffer_head *bh, char *buf, int size,
66 			   unsigned int offset)
67 {
68 	const char *error_msg = NULL;
69 	const int rlen = ext4_rec_len_from_disk(de->rec_len,
70 						dir->i_sb->s_blocksize);
71 
72 	if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
73 		error_msg = "rec_len is smaller than minimal";
74 	else if (unlikely(rlen % 4 != 0))
75 		error_msg = "rec_len % 4 != 0";
76 	else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
77 		error_msg = "rec_len is too small for name_len";
78 	else if (unlikely(((char *) de - buf) + rlen > size))
79 		error_msg = "directory entry across range";
80 	else if (unlikely(le32_to_cpu(de->inode) >
81 			le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
82 		error_msg = "inode out of bounds";
83 	else
84 		return 0;
85 
86 	if (filp)
87 		ext4_error_file(filp, function, line, bh->b_blocknr,
88 				"bad entry in directory: %s - offset=%u(%u), "
89 				"inode=%u, rec_len=%d, name_len=%d",
90 				error_msg, (unsigned) (offset % size),
91 				offset, le32_to_cpu(de->inode),
92 				rlen, de->name_len);
93 	else
94 		ext4_error_inode(dir, function, line, bh->b_blocknr,
95 				"bad entry in directory: %s - offset=%u(%u), "
96 				"inode=%u, rec_len=%d, name_len=%d",
97 				error_msg, (unsigned) (offset % size),
98 				offset, le32_to_cpu(de->inode),
99 				rlen, de->name_len);
100 
101 	return 1;
102 }
103 
104 static int ext4_readdir(struct file *file, struct dir_context *ctx)
105 {
106 	unsigned int offset;
107 	int i;
108 	struct ext4_dir_entry_2 *de;
109 	int err;
110 	struct inode *inode = file_inode(file);
111 	struct super_block *sb = inode->i_sb;
112 	struct buffer_head *bh = NULL;
113 	int dir_has_error = 0;
114 	struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
115 
116 	if (ext4_encrypted_inode(inode)) {
117 		err = fscrypt_get_encryption_info(inode);
118 		if (err && err != -ENOKEY)
119 			return err;
120 	}
121 
122 	if (is_dx_dir(inode)) {
123 		err = ext4_dx_readdir(file, ctx);
124 		if (err != ERR_BAD_DX_DIR) {
125 			return err;
126 		}
127 		/*
128 		 * We don't set the inode dirty flag since it's not
129 		 * critical that it get flushed back to the disk.
130 		 */
131 		ext4_clear_inode_flag(file_inode(file),
132 				      EXT4_INODE_INDEX);
133 	}
134 
135 	if (ext4_has_inline_data(inode)) {
136 		int has_inline_data = 1;
137 		err = ext4_read_inline_dir(file, ctx,
138 					   &has_inline_data);
139 		if (has_inline_data)
140 			return err;
141 	}
142 
143 	if (ext4_encrypted_inode(inode)) {
144 		err = fscrypt_fname_alloc_buffer(inode, EXT4_NAME_LEN, &fstr);
145 		if (err < 0)
146 			return err;
147 	}
148 
149 	offset = ctx->pos & (sb->s_blocksize - 1);
150 
151 	while (ctx->pos < inode->i_size) {
152 		struct ext4_map_blocks map;
153 
154 		if (fatal_signal_pending(current)) {
155 			err = -ERESTARTSYS;
156 			goto errout;
157 		}
158 		cond_resched();
159 		map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
160 		map.m_len = 1;
161 		err = ext4_map_blocks(NULL, inode, &map, 0);
162 		if (err > 0) {
163 			pgoff_t index = map.m_pblk >>
164 					(PAGE_SHIFT - inode->i_blkbits);
165 			if (!ra_has_index(&file->f_ra, index))
166 				page_cache_sync_readahead(
167 					sb->s_bdev->bd_inode->i_mapping,
168 					&file->f_ra, file,
169 					index, 1);
170 			file->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
171 			bh = ext4_bread(NULL, inode, map.m_lblk, 0);
172 			if (IS_ERR(bh)) {
173 				err = PTR_ERR(bh);
174 				bh = NULL;
175 				goto errout;
176 			}
177 		}
178 
179 		if (!bh) {
180 			if (!dir_has_error) {
181 				EXT4_ERROR_FILE(file, 0,
182 						"directory contains a "
183 						"hole at offset %llu",
184 					   (unsigned long long) ctx->pos);
185 				dir_has_error = 1;
186 			}
187 			/* corrupt size?  Maybe no more blocks to read */
188 			if (ctx->pos > inode->i_blocks << 9)
189 				break;
190 			ctx->pos += sb->s_blocksize - offset;
191 			continue;
192 		}
193 
194 		/* Check the checksum */
195 		if (!buffer_verified(bh) &&
196 		    !ext4_dirent_csum_verify(inode,
197 				(struct ext4_dir_entry *)bh->b_data)) {
198 			EXT4_ERROR_FILE(file, 0, "directory fails checksum "
199 					"at offset %llu",
200 					(unsigned long long)ctx->pos);
201 			ctx->pos += sb->s_blocksize - offset;
202 			brelse(bh);
203 			bh = NULL;
204 			continue;
205 		}
206 		set_buffer_verified(bh);
207 
208 		/* If the dir block has changed since the last call to
209 		 * readdir(2), then we might be pointing to an invalid
210 		 * dirent right now.  Scan from the start of the block
211 		 * to make sure. */
212 		if (!inode_eq_iversion(inode, file->f_version)) {
213 			for (i = 0; i < sb->s_blocksize && i < offset; ) {
214 				de = (struct ext4_dir_entry_2 *)
215 					(bh->b_data + i);
216 				/* It's too expensive to do a full
217 				 * dirent test each time round this
218 				 * loop, but we do have to test at
219 				 * least that it is non-zero.  A
220 				 * failure will be detected in the
221 				 * dirent test below. */
222 				if (ext4_rec_len_from_disk(de->rec_len,
223 					sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
224 					break;
225 				i += ext4_rec_len_from_disk(de->rec_len,
226 							    sb->s_blocksize);
227 			}
228 			offset = i;
229 			ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
230 				| offset;
231 			file->f_version = inode_query_iversion(inode);
232 		}
233 
234 		while (ctx->pos < inode->i_size
235 		       && offset < sb->s_blocksize) {
236 			de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
237 			if (ext4_check_dir_entry(inode, file, de, bh,
238 						 bh->b_data, bh->b_size,
239 						 offset)) {
240 				/*
241 				 * On error, skip to the next block
242 				 */
243 				ctx->pos = (ctx->pos |
244 						(sb->s_blocksize - 1)) + 1;
245 				break;
246 			}
247 			offset += ext4_rec_len_from_disk(de->rec_len,
248 					sb->s_blocksize);
249 			if (le32_to_cpu(de->inode)) {
250 				if (!ext4_encrypted_inode(inode)) {
251 					if (!dir_emit(ctx, de->name,
252 					    de->name_len,
253 					    le32_to_cpu(de->inode),
254 					    get_dtype(sb, de->file_type)))
255 						goto done;
256 				} else {
257 					int save_len = fstr.len;
258 					struct fscrypt_str de_name =
259 							FSTR_INIT(de->name,
260 								de->name_len);
261 
262 					/* Directory is encrypted */
263 					err = fscrypt_fname_disk_to_usr(inode,
264 						0, 0, &de_name, &fstr);
265 					de_name = fstr;
266 					fstr.len = save_len;
267 					if (err)
268 						goto errout;
269 					if (!dir_emit(ctx,
270 					    de_name.name, de_name.len,
271 					    le32_to_cpu(de->inode),
272 					    get_dtype(sb, de->file_type)))
273 						goto done;
274 				}
275 			}
276 			ctx->pos += ext4_rec_len_from_disk(de->rec_len,
277 						sb->s_blocksize);
278 		}
279 		if ((ctx->pos < inode->i_size) && !dir_relax_shared(inode))
280 			goto done;
281 		brelse(bh);
282 		bh = NULL;
283 		offset = 0;
284 	}
285 done:
286 	err = 0;
287 errout:
288 #ifdef CONFIG_EXT4_FS_ENCRYPTION
289 	fscrypt_fname_free_buffer(&fstr);
290 #endif
291 	brelse(bh);
292 	return err;
293 }
294 
295 static inline int is_32bit_api(void)
296 {
297 #ifdef CONFIG_COMPAT
298 	return in_compat_syscall();
299 #else
300 	return (BITS_PER_LONG == 32);
301 #endif
302 }
303 
304 /*
305  * These functions convert from the major/minor hash to an f_pos
306  * value for dx directories
307  *
308  * Upper layer (for example NFS) should specify FMODE_32BITHASH or
309  * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
310  * directly on both 32-bit and 64-bit nodes, under such case, neither
311  * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
312  */
313 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
314 {
315 	if ((filp->f_mode & FMODE_32BITHASH) ||
316 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
317 		return major >> 1;
318 	else
319 		return ((__u64)(major >> 1) << 32) | (__u64)minor;
320 }
321 
322 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
323 {
324 	if ((filp->f_mode & FMODE_32BITHASH) ||
325 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
326 		return (pos << 1) & 0xffffffff;
327 	else
328 		return ((pos >> 32) << 1) & 0xffffffff;
329 }
330 
331 static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
332 {
333 	if ((filp->f_mode & FMODE_32BITHASH) ||
334 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
335 		return 0;
336 	else
337 		return pos & 0xffffffff;
338 }
339 
340 /*
341  * Return 32- or 64-bit end-of-file for dx directories
342  */
343 static inline loff_t ext4_get_htree_eof(struct file *filp)
344 {
345 	if ((filp->f_mode & FMODE_32BITHASH) ||
346 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
347 		return EXT4_HTREE_EOF_32BIT;
348 	else
349 		return EXT4_HTREE_EOF_64BIT;
350 }
351 
352 
353 /*
354  * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
355  * directories, where the "offset" is in terms of the filename hash
356  * value instead of the byte offset.
357  *
358  * Because we may return a 64-bit hash that is well beyond offset limits,
359  * we need to pass the max hash as the maximum allowable offset in
360  * the htree directory case.
361  *
362  * For non-htree, ext4_llseek already chooses the proper max offset.
363  */
364 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
365 {
366 	struct inode *inode = file->f_mapping->host;
367 	int dx_dir = is_dx_dir(inode);
368 	loff_t ret, htree_max = ext4_get_htree_eof(file);
369 
370 	if (likely(dx_dir))
371 		ret = generic_file_llseek_size(file, offset, whence,
372 						    htree_max, htree_max);
373 	else
374 		ret = ext4_llseek(file, offset, whence);
375 	file->f_version = inode_peek_iversion(inode) - 1;
376 	return ret;
377 }
378 
379 /*
380  * This structure holds the nodes of the red-black tree used to store
381  * the directory entry in hash order.
382  */
383 struct fname {
384 	__u32		hash;
385 	__u32		minor_hash;
386 	struct rb_node	rb_hash;
387 	struct fname	*next;
388 	__u32		inode;
389 	__u8		name_len;
390 	__u8		file_type;
391 	char		name[0];
392 };
393 
394 /*
395  * This functoin implements a non-recursive way of freeing all of the
396  * nodes in the red-black tree.
397  */
398 static void free_rb_tree_fname(struct rb_root *root)
399 {
400 	struct fname *fname, *next;
401 
402 	rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
403 		while (fname) {
404 			struct fname *old = fname;
405 			fname = fname->next;
406 			kfree(old);
407 		}
408 
409 	*root = RB_ROOT;
410 }
411 
412 
413 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
414 							   loff_t pos)
415 {
416 	struct dir_private_info *p;
417 
418 	p = kzalloc(sizeof(*p), GFP_KERNEL);
419 	if (!p)
420 		return NULL;
421 	p->curr_hash = pos2maj_hash(filp, pos);
422 	p->curr_minor_hash = pos2min_hash(filp, pos);
423 	return p;
424 }
425 
426 void ext4_htree_free_dir_info(struct dir_private_info *p)
427 {
428 	free_rb_tree_fname(&p->root);
429 	kfree(p);
430 }
431 
432 /*
433  * Given a directory entry, enter it into the fname rb tree.
434  *
435  * When filename encryption is enabled, the dirent will hold the
436  * encrypted filename, while the htree will hold decrypted filename.
437  * The decrypted filename is passed in via ent_name.  parameter.
438  */
439 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
440 			     __u32 minor_hash,
441 			    struct ext4_dir_entry_2 *dirent,
442 			    struct fscrypt_str *ent_name)
443 {
444 	struct rb_node **p, *parent = NULL;
445 	struct fname *fname, *new_fn;
446 	struct dir_private_info *info;
447 	int len;
448 
449 	info = dir_file->private_data;
450 	p = &info->root.rb_node;
451 
452 	/* Create and allocate the fname structure */
453 	len = sizeof(struct fname) + ent_name->len + 1;
454 	new_fn = kzalloc(len, GFP_KERNEL);
455 	if (!new_fn)
456 		return -ENOMEM;
457 	new_fn->hash = hash;
458 	new_fn->minor_hash = minor_hash;
459 	new_fn->inode = le32_to_cpu(dirent->inode);
460 	new_fn->name_len = ent_name->len;
461 	new_fn->file_type = dirent->file_type;
462 	memcpy(new_fn->name, ent_name->name, ent_name->len);
463 	new_fn->name[ent_name->len] = 0;
464 
465 	while (*p) {
466 		parent = *p;
467 		fname = rb_entry(parent, struct fname, rb_hash);
468 
469 		/*
470 		 * If the hash and minor hash match up, then we put
471 		 * them on a linked list.  This rarely happens...
472 		 */
473 		if ((new_fn->hash == fname->hash) &&
474 		    (new_fn->minor_hash == fname->minor_hash)) {
475 			new_fn->next = fname->next;
476 			fname->next = new_fn;
477 			return 0;
478 		}
479 
480 		if (new_fn->hash < fname->hash)
481 			p = &(*p)->rb_left;
482 		else if (new_fn->hash > fname->hash)
483 			p = &(*p)->rb_right;
484 		else if (new_fn->minor_hash < fname->minor_hash)
485 			p = &(*p)->rb_left;
486 		else /* if (new_fn->minor_hash > fname->minor_hash) */
487 			p = &(*p)->rb_right;
488 	}
489 
490 	rb_link_node(&new_fn->rb_hash, parent, p);
491 	rb_insert_color(&new_fn->rb_hash, &info->root);
492 	return 0;
493 }
494 
495 
496 
497 /*
498  * This is a helper function for ext4_dx_readdir.  It calls filldir
499  * for all entres on the fname linked list.  (Normally there is only
500  * one entry on the linked list, unless there are 62 bit hash collisions.)
501  */
502 static int call_filldir(struct file *file, struct dir_context *ctx,
503 			struct fname *fname)
504 {
505 	struct dir_private_info *info = file->private_data;
506 	struct inode *inode = file_inode(file);
507 	struct super_block *sb = inode->i_sb;
508 
509 	if (!fname) {
510 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
511 			 "called with null fname?!?", __func__, __LINE__,
512 			 inode->i_ino, current->comm);
513 		return 0;
514 	}
515 	ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
516 	while (fname) {
517 		if (!dir_emit(ctx, fname->name,
518 				fname->name_len,
519 				fname->inode,
520 				get_dtype(sb, fname->file_type))) {
521 			info->extra_fname = fname;
522 			return 1;
523 		}
524 		fname = fname->next;
525 	}
526 	return 0;
527 }
528 
529 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
530 {
531 	struct dir_private_info *info = file->private_data;
532 	struct inode *inode = file_inode(file);
533 	struct fname *fname;
534 	int	ret;
535 
536 	if (!info) {
537 		info = ext4_htree_create_dir_info(file, ctx->pos);
538 		if (!info)
539 			return -ENOMEM;
540 		file->private_data = info;
541 	}
542 
543 	if (ctx->pos == ext4_get_htree_eof(file))
544 		return 0;	/* EOF */
545 
546 	/* Some one has messed with f_pos; reset the world */
547 	if (info->last_pos != ctx->pos) {
548 		free_rb_tree_fname(&info->root);
549 		info->curr_node = NULL;
550 		info->extra_fname = NULL;
551 		info->curr_hash = pos2maj_hash(file, ctx->pos);
552 		info->curr_minor_hash = pos2min_hash(file, ctx->pos);
553 	}
554 
555 	/*
556 	 * If there are any leftover names on the hash collision
557 	 * chain, return them first.
558 	 */
559 	if (info->extra_fname) {
560 		if (call_filldir(file, ctx, info->extra_fname))
561 			goto finished;
562 		info->extra_fname = NULL;
563 		goto next_node;
564 	} else if (!info->curr_node)
565 		info->curr_node = rb_first(&info->root);
566 
567 	while (1) {
568 		/*
569 		 * Fill the rbtree if we have no more entries,
570 		 * or the inode has changed since we last read in the
571 		 * cached entries.
572 		 */
573 		if ((!info->curr_node) ||
574 		    !inode_eq_iversion(inode, file->f_version)) {
575 			info->curr_node = NULL;
576 			free_rb_tree_fname(&info->root);
577 			file->f_version = inode_query_iversion(inode);
578 			ret = ext4_htree_fill_tree(file, info->curr_hash,
579 						   info->curr_minor_hash,
580 						   &info->next_hash);
581 			if (ret < 0)
582 				return ret;
583 			if (ret == 0) {
584 				ctx->pos = ext4_get_htree_eof(file);
585 				break;
586 			}
587 			info->curr_node = rb_first(&info->root);
588 		}
589 
590 		fname = rb_entry(info->curr_node, struct fname, rb_hash);
591 		info->curr_hash = fname->hash;
592 		info->curr_minor_hash = fname->minor_hash;
593 		if (call_filldir(file, ctx, fname))
594 			break;
595 	next_node:
596 		info->curr_node = rb_next(info->curr_node);
597 		if (info->curr_node) {
598 			fname = rb_entry(info->curr_node, struct fname,
599 					 rb_hash);
600 			info->curr_hash = fname->hash;
601 			info->curr_minor_hash = fname->minor_hash;
602 		} else {
603 			if (info->next_hash == ~0) {
604 				ctx->pos = ext4_get_htree_eof(file);
605 				break;
606 			}
607 			info->curr_hash = info->next_hash;
608 			info->curr_minor_hash = 0;
609 		}
610 	}
611 finished:
612 	info->last_pos = ctx->pos;
613 	return 0;
614 }
615 
616 static int ext4_dir_open(struct inode * inode, struct file * filp)
617 {
618 	if (ext4_encrypted_inode(inode))
619 		return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
620 	return 0;
621 }
622 
623 static int ext4_release_dir(struct inode *inode, struct file *filp)
624 {
625 	if (filp->private_data)
626 		ext4_htree_free_dir_info(filp->private_data);
627 
628 	return 0;
629 }
630 
631 int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
632 		      int buf_size)
633 {
634 	struct ext4_dir_entry_2 *de;
635 	int rlen;
636 	unsigned int offset = 0;
637 	char *top;
638 
639 	de = (struct ext4_dir_entry_2 *)buf;
640 	top = buf + buf_size;
641 	while ((char *) de < top) {
642 		if (ext4_check_dir_entry(dir, NULL, de, bh,
643 					 buf, buf_size, offset))
644 			return -EFSCORRUPTED;
645 		rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
646 		de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
647 		offset += rlen;
648 	}
649 	if ((char *) de > top)
650 		return -EFSCORRUPTED;
651 
652 	return 0;
653 }
654 
655 const struct file_operations ext4_dir_operations = {
656 	.llseek		= ext4_dir_llseek,
657 	.read		= generic_read_dir,
658 	.iterate_shared	= ext4_readdir,
659 	.unlocked_ioctl = ext4_ioctl,
660 #ifdef CONFIG_COMPAT
661 	.compat_ioctl	= ext4_compat_ioctl,
662 #endif
663 	.fsync		= ext4_sync_file,
664 	.open		= ext4_dir_open,
665 	.release	= ext4_release_dir,
666 };
667