xref: /openbmc/linux/fs/ext4/dir.c (revision 68198dca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/dir.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/dir.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 directory handling functions
17  *
18  *  Big-endian to little-endian byte-swapping/bitmaps by
19  *        David S. Miller (davem@caip.rutgers.edu), 1995
20  *
21  * Hash Tree Directory indexing (c) 2001  Daniel Phillips
22  *
23  */
24 
25 #include <linux/fs.h>
26 #include <linux/buffer_head.h>
27 #include <linux/slab.h>
28 #include "ext4.h"
29 #include "xattr.h"
30 
31 static int ext4_dx_readdir(struct file *, struct dir_context *);
32 
33 /**
34  * Check if the given dir-inode refers to an htree-indexed directory
35  * (or a directory which could potentially get converted to use htree
36  * indexing).
37  *
38  * Return 1 if it is a dx dir, 0 if not
39  */
40 static int is_dx_dir(struct inode *inode)
41 {
42 	struct super_block *sb = inode->i_sb;
43 
44 	if (ext4_has_feature_dir_index(inode->i_sb) &&
45 	    ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
46 	     ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
47 	     ext4_has_inline_data(inode)))
48 		return 1;
49 
50 	return 0;
51 }
52 
53 /*
54  * Return 0 if the directory entry is OK, and 1 if there is a problem
55  *
56  * Note: this is the opposite of what ext2 and ext3 historically returned...
57  *
58  * bh passed here can be an inode block or a dir data block, depending
59  * on the inode inline data flag.
60  */
61 int __ext4_check_dir_entry(const char *function, unsigned int line,
62 			   struct inode *dir, struct file *filp,
63 			   struct ext4_dir_entry_2 *de,
64 			   struct buffer_head *bh, char *buf, int size,
65 			   unsigned int offset)
66 {
67 	const char *error_msg = NULL;
68 	const int rlen = ext4_rec_len_from_disk(de->rec_len,
69 						dir->i_sb->s_blocksize);
70 
71 	if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
72 		error_msg = "rec_len is smaller than minimal";
73 	else if (unlikely(rlen % 4 != 0))
74 		error_msg = "rec_len % 4 != 0";
75 	else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
76 		error_msg = "rec_len is too small for name_len";
77 	else if (unlikely(((char *) de - buf) + rlen > size))
78 		error_msg = "directory entry across range";
79 	else if (unlikely(le32_to_cpu(de->inode) >
80 			le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
81 		error_msg = "inode out of bounds";
82 	else
83 		return 0;
84 
85 	if (filp)
86 		ext4_error_file(filp, function, line, bh->b_blocknr,
87 				"bad entry in directory: %s - offset=%u(%u), "
88 				"inode=%u, rec_len=%d, name_len=%d",
89 				error_msg, (unsigned) (offset % size),
90 				offset, le32_to_cpu(de->inode),
91 				rlen, de->name_len);
92 	else
93 		ext4_error_inode(dir, function, line, bh->b_blocknr,
94 				"bad entry in directory: %s - offset=%u(%u), "
95 				"inode=%u, rec_len=%d, name_len=%d",
96 				error_msg, (unsigned) (offset % size),
97 				offset, le32_to_cpu(de->inode),
98 				rlen, de->name_len);
99 
100 	return 1;
101 }
102 
103 static int ext4_readdir(struct file *file, struct dir_context *ctx)
104 {
105 	unsigned int offset;
106 	int i;
107 	struct ext4_dir_entry_2 *de;
108 	int err;
109 	struct inode *inode = file_inode(file);
110 	struct super_block *sb = inode->i_sb;
111 	struct buffer_head *bh = NULL;
112 	int dir_has_error = 0;
113 	struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
114 
115 	if (ext4_encrypted_inode(inode)) {
116 		err = fscrypt_get_encryption_info(inode);
117 		if (err && err != -ENOKEY)
118 			return err;
119 	}
120 
121 	if (is_dx_dir(inode)) {
122 		err = ext4_dx_readdir(file, ctx);
123 		if (err != ERR_BAD_DX_DIR) {
124 			return err;
125 		}
126 		/*
127 		 * We don't set the inode dirty flag since it's not
128 		 * critical that it get flushed back to the disk.
129 		 */
130 		ext4_clear_inode_flag(file_inode(file),
131 				      EXT4_INODE_INDEX);
132 	}
133 
134 	if (ext4_has_inline_data(inode)) {
135 		int has_inline_data = 1;
136 		err = ext4_read_inline_dir(file, ctx,
137 					   &has_inline_data);
138 		if (has_inline_data)
139 			return err;
140 	}
141 
142 	if (ext4_encrypted_inode(inode)) {
143 		err = fscrypt_fname_alloc_buffer(inode, EXT4_NAME_LEN, &fstr);
144 		if (err < 0)
145 			return err;
146 	}
147 
148 	offset = ctx->pos & (sb->s_blocksize - 1);
149 
150 	while (ctx->pos < inode->i_size) {
151 		struct ext4_map_blocks map;
152 
153 		if (fatal_signal_pending(current)) {
154 			err = -ERESTARTSYS;
155 			goto errout;
156 		}
157 		cond_resched();
158 		map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
159 		map.m_len = 1;
160 		err = ext4_map_blocks(NULL, inode, &map, 0);
161 		if (err > 0) {
162 			pgoff_t index = map.m_pblk >>
163 					(PAGE_SHIFT - inode->i_blkbits);
164 			if (!ra_has_index(&file->f_ra, index))
165 				page_cache_sync_readahead(
166 					sb->s_bdev->bd_inode->i_mapping,
167 					&file->f_ra, file,
168 					index, 1);
169 			file->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
170 			bh = ext4_bread(NULL, inode, map.m_lblk, 0);
171 			if (IS_ERR(bh)) {
172 				err = PTR_ERR(bh);
173 				bh = NULL;
174 				goto errout;
175 			}
176 		}
177 
178 		if (!bh) {
179 			if (!dir_has_error) {
180 				EXT4_ERROR_FILE(file, 0,
181 						"directory contains a "
182 						"hole at offset %llu",
183 					   (unsigned long long) ctx->pos);
184 				dir_has_error = 1;
185 			}
186 			/* corrupt size?  Maybe no more blocks to read */
187 			if (ctx->pos > inode->i_blocks << 9)
188 				break;
189 			ctx->pos += sb->s_blocksize - offset;
190 			continue;
191 		}
192 
193 		/* Check the checksum */
194 		if (!buffer_verified(bh) &&
195 		    !ext4_dirent_csum_verify(inode,
196 				(struct ext4_dir_entry *)bh->b_data)) {
197 			EXT4_ERROR_FILE(file, 0, "directory fails checksum "
198 					"at offset %llu",
199 					(unsigned long long)ctx->pos);
200 			ctx->pos += sb->s_blocksize - offset;
201 			brelse(bh);
202 			bh = NULL;
203 			continue;
204 		}
205 		set_buffer_verified(bh);
206 
207 		/* If the dir block has changed since the last call to
208 		 * readdir(2), then we might be pointing to an invalid
209 		 * dirent right now.  Scan from the start of the block
210 		 * to make sure. */
211 		if (file->f_version != inode->i_version) {
212 			for (i = 0; i < sb->s_blocksize && i < offset; ) {
213 				de = (struct ext4_dir_entry_2 *)
214 					(bh->b_data + i);
215 				/* It's too expensive to do a full
216 				 * dirent test each time round this
217 				 * loop, but we do have to test at
218 				 * least that it is non-zero.  A
219 				 * failure will be detected in the
220 				 * dirent test below. */
221 				if (ext4_rec_len_from_disk(de->rec_len,
222 					sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
223 					break;
224 				i += ext4_rec_len_from_disk(de->rec_len,
225 							    sb->s_blocksize);
226 			}
227 			offset = i;
228 			ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
229 				| offset;
230 			file->f_version = inode->i_version;
231 		}
232 
233 		while (ctx->pos < inode->i_size
234 		       && offset < sb->s_blocksize) {
235 			de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
236 			if (ext4_check_dir_entry(inode, file, de, bh,
237 						 bh->b_data, bh->b_size,
238 						 offset)) {
239 				/*
240 				 * On error, skip to the next block
241 				 */
242 				ctx->pos = (ctx->pos |
243 						(sb->s_blocksize - 1)) + 1;
244 				break;
245 			}
246 			offset += ext4_rec_len_from_disk(de->rec_len,
247 					sb->s_blocksize);
248 			if (le32_to_cpu(de->inode)) {
249 				if (!ext4_encrypted_inode(inode)) {
250 					if (!dir_emit(ctx, de->name,
251 					    de->name_len,
252 					    le32_to_cpu(de->inode),
253 					    get_dtype(sb, de->file_type)))
254 						goto done;
255 				} else {
256 					int save_len = fstr.len;
257 					struct fscrypt_str de_name =
258 							FSTR_INIT(de->name,
259 								de->name_len);
260 
261 					/* Directory is encrypted */
262 					err = fscrypt_fname_disk_to_usr(inode,
263 						0, 0, &de_name, &fstr);
264 					de_name = fstr;
265 					fstr.len = save_len;
266 					if (err)
267 						goto errout;
268 					if (!dir_emit(ctx,
269 					    de_name.name, de_name.len,
270 					    le32_to_cpu(de->inode),
271 					    get_dtype(sb, de->file_type)))
272 						goto done;
273 				}
274 			}
275 			ctx->pos += ext4_rec_len_from_disk(de->rec_len,
276 						sb->s_blocksize);
277 		}
278 		if ((ctx->pos < inode->i_size) && !dir_relax_shared(inode))
279 			goto done;
280 		brelse(bh);
281 		bh = NULL;
282 		offset = 0;
283 	}
284 done:
285 	err = 0;
286 errout:
287 #ifdef CONFIG_EXT4_FS_ENCRYPTION
288 	fscrypt_fname_free_buffer(&fstr);
289 #endif
290 	brelse(bh);
291 	return err;
292 }
293 
294 static inline int is_32bit_api(void)
295 {
296 #ifdef CONFIG_COMPAT
297 	return in_compat_syscall();
298 #else
299 	return (BITS_PER_LONG == 32);
300 #endif
301 }
302 
303 /*
304  * These functions convert from the major/minor hash to an f_pos
305  * value for dx directories
306  *
307  * Upper layer (for example NFS) should specify FMODE_32BITHASH or
308  * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
309  * directly on both 32-bit and 64-bit nodes, under such case, neither
310  * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
311  */
312 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
313 {
314 	if ((filp->f_mode & FMODE_32BITHASH) ||
315 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
316 		return major >> 1;
317 	else
318 		return ((__u64)(major >> 1) << 32) | (__u64)minor;
319 }
320 
321 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
322 {
323 	if ((filp->f_mode & FMODE_32BITHASH) ||
324 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
325 		return (pos << 1) & 0xffffffff;
326 	else
327 		return ((pos >> 32) << 1) & 0xffffffff;
328 }
329 
330 static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
331 {
332 	if ((filp->f_mode & FMODE_32BITHASH) ||
333 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
334 		return 0;
335 	else
336 		return pos & 0xffffffff;
337 }
338 
339 /*
340  * Return 32- or 64-bit end-of-file for dx directories
341  */
342 static inline loff_t ext4_get_htree_eof(struct file *filp)
343 {
344 	if ((filp->f_mode & FMODE_32BITHASH) ||
345 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
346 		return EXT4_HTREE_EOF_32BIT;
347 	else
348 		return EXT4_HTREE_EOF_64BIT;
349 }
350 
351 
352 /*
353  * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
354  * directories, where the "offset" is in terms of the filename hash
355  * value instead of the byte offset.
356  *
357  * Because we may return a 64-bit hash that is well beyond offset limits,
358  * we need to pass the max hash as the maximum allowable offset in
359  * the htree directory case.
360  *
361  * For non-htree, ext4_llseek already chooses the proper max offset.
362  */
363 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
364 {
365 	struct inode *inode = file->f_mapping->host;
366 	int dx_dir = is_dx_dir(inode);
367 	loff_t htree_max = ext4_get_htree_eof(file);
368 
369 	if (likely(dx_dir))
370 		return generic_file_llseek_size(file, offset, whence,
371 						    htree_max, htree_max);
372 	else
373 		return ext4_llseek(file, offset, whence);
374 }
375 
376 /*
377  * This structure holds the nodes of the red-black tree used to store
378  * the directory entry in hash order.
379  */
380 struct fname {
381 	__u32		hash;
382 	__u32		minor_hash;
383 	struct rb_node	rb_hash;
384 	struct fname	*next;
385 	__u32		inode;
386 	__u8		name_len;
387 	__u8		file_type;
388 	char		name[0];
389 };
390 
391 /*
392  * This functoin implements a non-recursive way of freeing all of the
393  * nodes in the red-black tree.
394  */
395 static void free_rb_tree_fname(struct rb_root *root)
396 {
397 	struct fname *fname, *next;
398 
399 	rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
400 		while (fname) {
401 			struct fname *old = fname;
402 			fname = fname->next;
403 			kfree(old);
404 		}
405 
406 	*root = RB_ROOT;
407 }
408 
409 
410 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
411 							   loff_t pos)
412 {
413 	struct dir_private_info *p;
414 
415 	p = kzalloc(sizeof(*p), GFP_KERNEL);
416 	if (!p)
417 		return NULL;
418 	p->curr_hash = pos2maj_hash(filp, pos);
419 	p->curr_minor_hash = pos2min_hash(filp, pos);
420 	return p;
421 }
422 
423 void ext4_htree_free_dir_info(struct dir_private_info *p)
424 {
425 	free_rb_tree_fname(&p->root);
426 	kfree(p);
427 }
428 
429 /*
430  * Given a directory entry, enter it into the fname rb tree.
431  *
432  * When filename encryption is enabled, the dirent will hold the
433  * encrypted filename, while the htree will hold decrypted filename.
434  * The decrypted filename is passed in via ent_name.  parameter.
435  */
436 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
437 			     __u32 minor_hash,
438 			    struct ext4_dir_entry_2 *dirent,
439 			    struct fscrypt_str *ent_name)
440 {
441 	struct rb_node **p, *parent = NULL;
442 	struct fname *fname, *new_fn;
443 	struct dir_private_info *info;
444 	int len;
445 
446 	info = dir_file->private_data;
447 	p = &info->root.rb_node;
448 
449 	/* Create and allocate the fname structure */
450 	len = sizeof(struct fname) + ent_name->len + 1;
451 	new_fn = kzalloc(len, GFP_KERNEL);
452 	if (!new_fn)
453 		return -ENOMEM;
454 	new_fn->hash = hash;
455 	new_fn->minor_hash = minor_hash;
456 	new_fn->inode = le32_to_cpu(dirent->inode);
457 	new_fn->name_len = ent_name->len;
458 	new_fn->file_type = dirent->file_type;
459 	memcpy(new_fn->name, ent_name->name, ent_name->len);
460 	new_fn->name[ent_name->len] = 0;
461 
462 	while (*p) {
463 		parent = *p;
464 		fname = rb_entry(parent, struct fname, rb_hash);
465 
466 		/*
467 		 * If the hash and minor hash match up, then we put
468 		 * them on a linked list.  This rarely happens...
469 		 */
470 		if ((new_fn->hash == fname->hash) &&
471 		    (new_fn->minor_hash == fname->minor_hash)) {
472 			new_fn->next = fname->next;
473 			fname->next = new_fn;
474 			return 0;
475 		}
476 
477 		if (new_fn->hash < fname->hash)
478 			p = &(*p)->rb_left;
479 		else if (new_fn->hash > fname->hash)
480 			p = &(*p)->rb_right;
481 		else if (new_fn->minor_hash < fname->minor_hash)
482 			p = &(*p)->rb_left;
483 		else /* if (new_fn->minor_hash > fname->minor_hash) */
484 			p = &(*p)->rb_right;
485 	}
486 
487 	rb_link_node(&new_fn->rb_hash, parent, p);
488 	rb_insert_color(&new_fn->rb_hash, &info->root);
489 	return 0;
490 }
491 
492 
493 
494 /*
495  * This is a helper function for ext4_dx_readdir.  It calls filldir
496  * for all entres on the fname linked list.  (Normally there is only
497  * one entry on the linked list, unless there are 62 bit hash collisions.)
498  */
499 static int call_filldir(struct file *file, struct dir_context *ctx,
500 			struct fname *fname)
501 {
502 	struct dir_private_info *info = file->private_data;
503 	struct inode *inode = file_inode(file);
504 	struct super_block *sb = inode->i_sb;
505 
506 	if (!fname) {
507 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
508 			 "called with null fname?!?", __func__, __LINE__,
509 			 inode->i_ino, current->comm);
510 		return 0;
511 	}
512 	ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
513 	while (fname) {
514 		if (!dir_emit(ctx, fname->name,
515 				fname->name_len,
516 				fname->inode,
517 				get_dtype(sb, fname->file_type))) {
518 			info->extra_fname = fname;
519 			return 1;
520 		}
521 		fname = fname->next;
522 	}
523 	return 0;
524 }
525 
526 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
527 {
528 	struct dir_private_info *info = file->private_data;
529 	struct inode *inode = file_inode(file);
530 	struct fname *fname;
531 	int	ret;
532 
533 	if (!info) {
534 		info = ext4_htree_create_dir_info(file, ctx->pos);
535 		if (!info)
536 			return -ENOMEM;
537 		file->private_data = info;
538 	}
539 
540 	if (ctx->pos == ext4_get_htree_eof(file))
541 		return 0;	/* EOF */
542 
543 	/* Some one has messed with f_pos; reset the world */
544 	if (info->last_pos != ctx->pos) {
545 		free_rb_tree_fname(&info->root);
546 		info->curr_node = NULL;
547 		info->extra_fname = NULL;
548 		info->curr_hash = pos2maj_hash(file, ctx->pos);
549 		info->curr_minor_hash = pos2min_hash(file, ctx->pos);
550 	}
551 
552 	/*
553 	 * If there are any leftover names on the hash collision
554 	 * chain, return them first.
555 	 */
556 	if (info->extra_fname) {
557 		if (call_filldir(file, ctx, info->extra_fname))
558 			goto finished;
559 		info->extra_fname = NULL;
560 		goto next_node;
561 	} else if (!info->curr_node)
562 		info->curr_node = rb_first(&info->root);
563 
564 	while (1) {
565 		/*
566 		 * Fill the rbtree if we have no more entries,
567 		 * or the inode has changed since we last read in the
568 		 * cached entries.
569 		 */
570 		if ((!info->curr_node) ||
571 		    (file->f_version != inode->i_version)) {
572 			info->curr_node = NULL;
573 			free_rb_tree_fname(&info->root);
574 			file->f_version = inode->i_version;
575 			ret = ext4_htree_fill_tree(file, info->curr_hash,
576 						   info->curr_minor_hash,
577 						   &info->next_hash);
578 			if (ret < 0)
579 				return ret;
580 			if (ret == 0) {
581 				ctx->pos = ext4_get_htree_eof(file);
582 				break;
583 			}
584 			info->curr_node = rb_first(&info->root);
585 		}
586 
587 		fname = rb_entry(info->curr_node, struct fname, rb_hash);
588 		info->curr_hash = fname->hash;
589 		info->curr_minor_hash = fname->minor_hash;
590 		if (call_filldir(file, ctx, fname))
591 			break;
592 	next_node:
593 		info->curr_node = rb_next(info->curr_node);
594 		if (info->curr_node) {
595 			fname = rb_entry(info->curr_node, struct fname,
596 					 rb_hash);
597 			info->curr_hash = fname->hash;
598 			info->curr_minor_hash = fname->minor_hash;
599 		} else {
600 			if (info->next_hash == ~0) {
601 				ctx->pos = ext4_get_htree_eof(file);
602 				break;
603 			}
604 			info->curr_hash = info->next_hash;
605 			info->curr_minor_hash = 0;
606 		}
607 	}
608 finished:
609 	info->last_pos = ctx->pos;
610 	return 0;
611 }
612 
613 static int ext4_dir_open(struct inode * inode, struct file * filp)
614 {
615 	if (ext4_encrypted_inode(inode))
616 		return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
617 	return 0;
618 }
619 
620 static int ext4_release_dir(struct inode *inode, struct file *filp)
621 {
622 	if (filp->private_data)
623 		ext4_htree_free_dir_info(filp->private_data);
624 
625 	return 0;
626 }
627 
628 int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
629 		      int buf_size)
630 {
631 	struct ext4_dir_entry_2 *de;
632 	int rlen;
633 	unsigned int offset = 0;
634 	char *top;
635 
636 	de = (struct ext4_dir_entry_2 *)buf;
637 	top = buf + buf_size;
638 	while ((char *) de < top) {
639 		if (ext4_check_dir_entry(dir, NULL, de, bh,
640 					 buf, buf_size, offset))
641 			return -EFSCORRUPTED;
642 		rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
643 		de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
644 		offset += rlen;
645 	}
646 	if ((char *) de > top)
647 		return -EFSCORRUPTED;
648 
649 	return 0;
650 }
651 
652 const struct file_operations ext4_dir_operations = {
653 	.llseek		= ext4_dir_llseek,
654 	.read		= generic_read_dir,
655 	.iterate_shared	= ext4_readdir,
656 	.unlocked_ioctl = ext4_ioctl,
657 #ifdef CONFIG_COMPAT
658 	.compat_ioctl	= ext4_compat_ioctl,
659 #endif
660 	.fsync		= ext4_sync_file,
661 	.open		= ext4_dir_open,
662 	.release	= ext4_release_dir,
663 };
664