xref: /openbmc/linux/fs/ext4/dir.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  *  linux/fs/ext4/dir.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/dir.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  ext4 directory handling functions
16  *
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *
20  * Hash Tree Directory indexing (c) 2001  Daniel Phillips
21  *
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/buffer_head.h>
26 #include <linux/slab.h>
27 #include "ext4.h"
28 #include "xattr.h"
29 
30 static int ext4_dx_readdir(struct file *, struct dir_context *);
31 
32 /**
33  * Check if the given dir-inode refers to an htree-indexed directory
34  * (or a directory which could potentially get converted to use htree
35  * indexing).
36  *
37  * Return 1 if it is a dx dir, 0 if not
38  */
39 static int is_dx_dir(struct inode *inode)
40 {
41 	struct super_block *sb = inode->i_sb;
42 
43 	if (ext4_has_feature_dir_index(inode->i_sb) &&
44 	    ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
45 	     ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
46 	     ext4_has_inline_data(inode)))
47 		return 1;
48 
49 	return 0;
50 }
51 
52 /*
53  * Return 0 if the directory entry is OK, and 1 if there is a problem
54  *
55  * Note: this is the opposite of what ext2 and ext3 historically returned...
56  *
57  * bh passed here can be an inode block or a dir data block, depending
58  * on the inode inline data flag.
59  */
60 int __ext4_check_dir_entry(const char *function, unsigned int line,
61 			   struct inode *dir, struct file *filp,
62 			   struct ext4_dir_entry_2 *de,
63 			   struct buffer_head *bh, char *buf, int size,
64 			   unsigned int offset)
65 {
66 	const char *error_msg = NULL;
67 	const int rlen = ext4_rec_len_from_disk(de->rec_len,
68 						dir->i_sb->s_blocksize);
69 
70 	if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
71 		error_msg = "rec_len is smaller than minimal";
72 	else if (unlikely(rlen % 4 != 0))
73 		error_msg = "rec_len % 4 != 0";
74 	else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
75 		error_msg = "rec_len is too small for name_len";
76 	else if (unlikely(((char *) de - buf) + rlen > size))
77 		error_msg = "directory entry across range";
78 	else if (unlikely(le32_to_cpu(de->inode) >
79 			le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
80 		error_msg = "inode out of bounds";
81 	else
82 		return 0;
83 
84 	if (filp)
85 		ext4_error_file(filp, function, line, bh->b_blocknr,
86 				"bad entry in directory: %s - offset=%u(%u), "
87 				"inode=%u, rec_len=%d, name_len=%d",
88 				error_msg, (unsigned) (offset % size),
89 				offset, le32_to_cpu(de->inode),
90 				rlen, de->name_len);
91 	else
92 		ext4_error_inode(dir, function, line, bh->b_blocknr,
93 				"bad entry in directory: %s - offset=%u(%u), "
94 				"inode=%u, rec_len=%d, name_len=%d",
95 				error_msg, (unsigned) (offset % size),
96 				offset, le32_to_cpu(de->inode),
97 				rlen, de->name_len);
98 
99 	return 1;
100 }
101 
102 static int ext4_readdir(struct file *file, struct dir_context *ctx)
103 {
104 	unsigned int offset;
105 	int i;
106 	struct ext4_dir_entry_2 *de;
107 	int err;
108 	struct inode *inode = file_inode(file);
109 	struct super_block *sb = inode->i_sb;
110 	struct buffer_head *bh = NULL;
111 	int dir_has_error = 0;
112 	struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
113 
114 	if (ext4_encrypted_inode(inode)) {
115 		err = fscrypt_get_encryption_info(inode);
116 		if (err && err != -ENOKEY)
117 			return err;
118 	}
119 
120 	if (is_dx_dir(inode)) {
121 		err = ext4_dx_readdir(file, ctx);
122 		if (err != ERR_BAD_DX_DIR) {
123 			return err;
124 		}
125 		/*
126 		 * We don't set the inode dirty flag since it's not
127 		 * critical that it get flushed back to the disk.
128 		 */
129 		ext4_clear_inode_flag(file_inode(file),
130 				      EXT4_INODE_INDEX);
131 	}
132 
133 	if (ext4_has_inline_data(inode)) {
134 		int has_inline_data = 1;
135 		err = ext4_read_inline_dir(file, ctx,
136 					   &has_inline_data);
137 		if (has_inline_data)
138 			return err;
139 	}
140 
141 	if (ext4_encrypted_inode(inode)) {
142 		err = fscrypt_fname_alloc_buffer(inode, EXT4_NAME_LEN, &fstr);
143 		if (err < 0)
144 			return err;
145 	}
146 
147 	offset = ctx->pos & (sb->s_blocksize - 1);
148 
149 	while (ctx->pos < inode->i_size) {
150 		struct ext4_map_blocks map;
151 
152 		if (fatal_signal_pending(current)) {
153 			err = -ERESTARTSYS;
154 			goto errout;
155 		}
156 		cond_resched();
157 		map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
158 		map.m_len = 1;
159 		err = ext4_map_blocks(NULL, inode, &map, 0);
160 		if (err > 0) {
161 			pgoff_t index = map.m_pblk >>
162 					(PAGE_SHIFT - inode->i_blkbits);
163 			if (!ra_has_index(&file->f_ra, index))
164 				page_cache_sync_readahead(
165 					sb->s_bdev->bd_inode->i_mapping,
166 					&file->f_ra, file,
167 					index, 1);
168 			file->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
169 			bh = ext4_bread(NULL, inode, map.m_lblk, 0);
170 			if (IS_ERR(bh)) {
171 				err = PTR_ERR(bh);
172 				bh = NULL;
173 				goto errout;
174 			}
175 		}
176 
177 		if (!bh) {
178 			if (!dir_has_error) {
179 				EXT4_ERROR_FILE(file, 0,
180 						"directory contains a "
181 						"hole at offset %llu",
182 					   (unsigned long long) ctx->pos);
183 				dir_has_error = 1;
184 			}
185 			/* corrupt size?  Maybe no more blocks to read */
186 			if (ctx->pos > inode->i_blocks << 9)
187 				break;
188 			ctx->pos += sb->s_blocksize - offset;
189 			continue;
190 		}
191 
192 		/* Check the checksum */
193 		if (!buffer_verified(bh) &&
194 		    !ext4_dirent_csum_verify(inode,
195 				(struct ext4_dir_entry *)bh->b_data)) {
196 			EXT4_ERROR_FILE(file, 0, "directory fails checksum "
197 					"at offset %llu",
198 					(unsigned long long)ctx->pos);
199 			ctx->pos += sb->s_blocksize - offset;
200 			brelse(bh);
201 			bh = NULL;
202 			continue;
203 		}
204 		set_buffer_verified(bh);
205 
206 		/* If the dir block has changed since the last call to
207 		 * readdir(2), then we might be pointing to an invalid
208 		 * dirent right now.  Scan from the start of the block
209 		 * to make sure. */
210 		if (file->f_version != inode->i_version) {
211 			for (i = 0; i < sb->s_blocksize && i < offset; ) {
212 				de = (struct ext4_dir_entry_2 *)
213 					(bh->b_data + i);
214 				/* It's too expensive to do a full
215 				 * dirent test each time round this
216 				 * loop, but we do have to test at
217 				 * least that it is non-zero.  A
218 				 * failure will be detected in the
219 				 * dirent test below. */
220 				if (ext4_rec_len_from_disk(de->rec_len,
221 					sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
222 					break;
223 				i += ext4_rec_len_from_disk(de->rec_len,
224 							    sb->s_blocksize);
225 			}
226 			offset = i;
227 			ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
228 				| offset;
229 			file->f_version = inode->i_version;
230 		}
231 
232 		while (ctx->pos < inode->i_size
233 		       && offset < sb->s_blocksize) {
234 			de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
235 			if (ext4_check_dir_entry(inode, file, de, bh,
236 						 bh->b_data, bh->b_size,
237 						 offset)) {
238 				/*
239 				 * On error, skip to the next block
240 				 */
241 				ctx->pos = (ctx->pos |
242 						(sb->s_blocksize - 1)) + 1;
243 				break;
244 			}
245 			offset += ext4_rec_len_from_disk(de->rec_len,
246 					sb->s_blocksize);
247 			if (le32_to_cpu(de->inode)) {
248 				if (!ext4_encrypted_inode(inode)) {
249 					if (!dir_emit(ctx, de->name,
250 					    de->name_len,
251 					    le32_to_cpu(de->inode),
252 					    get_dtype(sb, de->file_type)))
253 						goto done;
254 				} else {
255 					int save_len = fstr.len;
256 					struct fscrypt_str de_name =
257 							FSTR_INIT(de->name,
258 								de->name_len);
259 
260 					/* Directory is encrypted */
261 					err = fscrypt_fname_disk_to_usr(inode,
262 						0, 0, &de_name, &fstr);
263 					de_name = fstr;
264 					fstr.len = save_len;
265 					if (err)
266 						goto errout;
267 					if (!dir_emit(ctx,
268 					    de_name.name, de_name.len,
269 					    le32_to_cpu(de->inode),
270 					    get_dtype(sb, de->file_type)))
271 						goto done;
272 				}
273 			}
274 			ctx->pos += ext4_rec_len_from_disk(de->rec_len,
275 						sb->s_blocksize);
276 		}
277 		if ((ctx->pos < inode->i_size) && !dir_relax_shared(inode))
278 			goto done;
279 		brelse(bh);
280 		bh = NULL;
281 		offset = 0;
282 	}
283 done:
284 	err = 0;
285 errout:
286 #ifdef CONFIG_EXT4_FS_ENCRYPTION
287 	fscrypt_fname_free_buffer(&fstr);
288 #endif
289 	brelse(bh);
290 	return err;
291 }
292 
293 static inline int is_32bit_api(void)
294 {
295 #ifdef CONFIG_COMPAT
296 	return in_compat_syscall();
297 #else
298 	return (BITS_PER_LONG == 32);
299 #endif
300 }
301 
302 /*
303  * These functions convert from the major/minor hash to an f_pos
304  * value for dx directories
305  *
306  * Upper layer (for example NFS) should specify FMODE_32BITHASH or
307  * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
308  * directly on both 32-bit and 64-bit nodes, under such case, neither
309  * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
310  */
311 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
312 {
313 	if ((filp->f_mode & FMODE_32BITHASH) ||
314 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
315 		return major >> 1;
316 	else
317 		return ((__u64)(major >> 1) << 32) | (__u64)minor;
318 }
319 
320 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
321 {
322 	if ((filp->f_mode & FMODE_32BITHASH) ||
323 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
324 		return (pos << 1) & 0xffffffff;
325 	else
326 		return ((pos >> 32) << 1) & 0xffffffff;
327 }
328 
329 static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
330 {
331 	if ((filp->f_mode & FMODE_32BITHASH) ||
332 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
333 		return 0;
334 	else
335 		return pos & 0xffffffff;
336 }
337 
338 /*
339  * Return 32- or 64-bit end-of-file for dx directories
340  */
341 static inline loff_t ext4_get_htree_eof(struct file *filp)
342 {
343 	if ((filp->f_mode & FMODE_32BITHASH) ||
344 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
345 		return EXT4_HTREE_EOF_32BIT;
346 	else
347 		return EXT4_HTREE_EOF_64BIT;
348 }
349 
350 
351 /*
352  * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
353  * directories, where the "offset" is in terms of the filename hash
354  * value instead of the byte offset.
355  *
356  * Because we may return a 64-bit hash that is well beyond offset limits,
357  * we need to pass the max hash as the maximum allowable offset in
358  * the htree directory case.
359  *
360  * For non-htree, ext4_llseek already chooses the proper max offset.
361  */
362 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
363 {
364 	struct inode *inode = file->f_mapping->host;
365 	int dx_dir = is_dx_dir(inode);
366 	loff_t htree_max = ext4_get_htree_eof(file);
367 
368 	if (likely(dx_dir))
369 		return generic_file_llseek_size(file, offset, whence,
370 						    htree_max, htree_max);
371 	else
372 		return ext4_llseek(file, offset, whence);
373 }
374 
375 /*
376  * This structure holds the nodes of the red-black tree used to store
377  * the directory entry in hash order.
378  */
379 struct fname {
380 	__u32		hash;
381 	__u32		minor_hash;
382 	struct rb_node	rb_hash;
383 	struct fname	*next;
384 	__u32		inode;
385 	__u8		name_len;
386 	__u8		file_type;
387 	char		name[0];
388 };
389 
390 /*
391  * This functoin implements a non-recursive way of freeing all of the
392  * nodes in the red-black tree.
393  */
394 static void free_rb_tree_fname(struct rb_root *root)
395 {
396 	struct fname *fname, *next;
397 
398 	rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
399 		while (fname) {
400 			struct fname *old = fname;
401 			fname = fname->next;
402 			kfree(old);
403 		}
404 
405 	*root = RB_ROOT;
406 }
407 
408 
409 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
410 							   loff_t pos)
411 {
412 	struct dir_private_info *p;
413 
414 	p = kzalloc(sizeof(*p), GFP_KERNEL);
415 	if (!p)
416 		return NULL;
417 	p->curr_hash = pos2maj_hash(filp, pos);
418 	p->curr_minor_hash = pos2min_hash(filp, pos);
419 	return p;
420 }
421 
422 void ext4_htree_free_dir_info(struct dir_private_info *p)
423 {
424 	free_rb_tree_fname(&p->root);
425 	kfree(p);
426 }
427 
428 /*
429  * Given a directory entry, enter it into the fname rb tree.
430  *
431  * When filename encryption is enabled, the dirent will hold the
432  * encrypted filename, while the htree will hold decrypted filename.
433  * The decrypted filename is passed in via ent_name.  parameter.
434  */
435 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
436 			     __u32 minor_hash,
437 			    struct ext4_dir_entry_2 *dirent,
438 			    struct fscrypt_str *ent_name)
439 {
440 	struct rb_node **p, *parent = NULL;
441 	struct fname *fname, *new_fn;
442 	struct dir_private_info *info;
443 	int len;
444 
445 	info = dir_file->private_data;
446 	p = &info->root.rb_node;
447 
448 	/* Create and allocate the fname structure */
449 	len = sizeof(struct fname) + ent_name->len + 1;
450 	new_fn = kzalloc(len, GFP_KERNEL);
451 	if (!new_fn)
452 		return -ENOMEM;
453 	new_fn->hash = hash;
454 	new_fn->minor_hash = minor_hash;
455 	new_fn->inode = le32_to_cpu(dirent->inode);
456 	new_fn->name_len = ent_name->len;
457 	new_fn->file_type = dirent->file_type;
458 	memcpy(new_fn->name, ent_name->name, ent_name->len);
459 	new_fn->name[ent_name->len] = 0;
460 
461 	while (*p) {
462 		parent = *p;
463 		fname = rb_entry(parent, struct fname, rb_hash);
464 
465 		/*
466 		 * If the hash and minor hash match up, then we put
467 		 * them on a linked list.  This rarely happens...
468 		 */
469 		if ((new_fn->hash == fname->hash) &&
470 		    (new_fn->minor_hash == fname->minor_hash)) {
471 			new_fn->next = fname->next;
472 			fname->next = new_fn;
473 			return 0;
474 		}
475 
476 		if (new_fn->hash < fname->hash)
477 			p = &(*p)->rb_left;
478 		else if (new_fn->hash > fname->hash)
479 			p = &(*p)->rb_right;
480 		else if (new_fn->minor_hash < fname->minor_hash)
481 			p = &(*p)->rb_left;
482 		else /* if (new_fn->minor_hash > fname->minor_hash) */
483 			p = &(*p)->rb_right;
484 	}
485 
486 	rb_link_node(&new_fn->rb_hash, parent, p);
487 	rb_insert_color(&new_fn->rb_hash, &info->root);
488 	return 0;
489 }
490 
491 
492 
493 /*
494  * This is a helper function for ext4_dx_readdir.  It calls filldir
495  * for all entres on the fname linked list.  (Normally there is only
496  * one entry on the linked list, unless there are 62 bit hash collisions.)
497  */
498 static int call_filldir(struct file *file, struct dir_context *ctx,
499 			struct fname *fname)
500 {
501 	struct dir_private_info *info = file->private_data;
502 	struct inode *inode = file_inode(file);
503 	struct super_block *sb = inode->i_sb;
504 
505 	if (!fname) {
506 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
507 			 "called with null fname?!?", __func__, __LINE__,
508 			 inode->i_ino, current->comm);
509 		return 0;
510 	}
511 	ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
512 	while (fname) {
513 		if (!dir_emit(ctx, fname->name,
514 				fname->name_len,
515 				fname->inode,
516 				get_dtype(sb, fname->file_type))) {
517 			info->extra_fname = fname;
518 			return 1;
519 		}
520 		fname = fname->next;
521 	}
522 	return 0;
523 }
524 
525 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
526 {
527 	struct dir_private_info *info = file->private_data;
528 	struct inode *inode = file_inode(file);
529 	struct fname *fname;
530 	int	ret;
531 
532 	if (!info) {
533 		info = ext4_htree_create_dir_info(file, ctx->pos);
534 		if (!info)
535 			return -ENOMEM;
536 		file->private_data = info;
537 	}
538 
539 	if (ctx->pos == ext4_get_htree_eof(file))
540 		return 0;	/* EOF */
541 
542 	/* Some one has messed with f_pos; reset the world */
543 	if (info->last_pos != ctx->pos) {
544 		free_rb_tree_fname(&info->root);
545 		info->curr_node = NULL;
546 		info->extra_fname = NULL;
547 		info->curr_hash = pos2maj_hash(file, ctx->pos);
548 		info->curr_minor_hash = pos2min_hash(file, ctx->pos);
549 	}
550 
551 	/*
552 	 * If there are any leftover names on the hash collision
553 	 * chain, return them first.
554 	 */
555 	if (info->extra_fname) {
556 		if (call_filldir(file, ctx, info->extra_fname))
557 			goto finished;
558 		info->extra_fname = NULL;
559 		goto next_node;
560 	} else if (!info->curr_node)
561 		info->curr_node = rb_first(&info->root);
562 
563 	while (1) {
564 		/*
565 		 * Fill the rbtree if we have no more entries,
566 		 * or the inode has changed since we last read in the
567 		 * cached entries.
568 		 */
569 		if ((!info->curr_node) ||
570 		    (file->f_version != inode->i_version)) {
571 			info->curr_node = NULL;
572 			free_rb_tree_fname(&info->root);
573 			file->f_version = inode->i_version;
574 			ret = ext4_htree_fill_tree(file, info->curr_hash,
575 						   info->curr_minor_hash,
576 						   &info->next_hash);
577 			if (ret < 0)
578 				return ret;
579 			if (ret == 0) {
580 				ctx->pos = ext4_get_htree_eof(file);
581 				break;
582 			}
583 			info->curr_node = rb_first(&info->root);
584 		}
585 
586 		fname = rb_entry(info->curr_node, struct fname, rb_hash);
587 		info->curr_hash = fname->hash;
588 		info->curr_minor_hash = fname->minor_hash;
589 		if (call_filldir(file, ctx, fname))
590 			break;
591 	next_node:
592 		info->curr_node = rb_next(info->curr_node);
593 		if (info->curr_node) {
594 			fname = rb_entry(info->curr_node, struct fname,
595 					 rb_hash);
596 			info->curr_hash = fname->hash;
597 			info->curr_minor_hash = fname->minor_hash;
598 		} else {
599 			if (info->next_hash == ~0) {
600 				ctx->pos = ext4_get_htree_eof(file);
601 				break;
602 			}
603 			info->curr_hash = info->next_hash;
604 			info->curr_minor_hash = 0;
605 		}
606 	}
607 finished:
608 	info->last_pos = ctx->pos;
609 	return 0;
610 }
611 
612 static int ext4_dir_open(struct inode * inode, struct file * filp)
613 {
614 	if (ext4_encrypted_inode(inode))
615 		return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
616 	return 0;
617 }
618 
619 static int ext4_release_dir(struct inode *inode, struct file *filp)
620 {
621 	if (filp->private_data)
622 		ext4_htree_free_dir_info(filp->private_data);
623 
624 	return 0;
625 }
626 
627 int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
628 		      int buf_size)
629 {
630 	struct ext4_dir_entry_2 *de;
631 	int rlen;
632 	unsigned int offset = 0;
633 	char *top;
634 
635 	de = (struct ext4_dir_entry_2 *)buf;
636 	top = buf + buf_size;
637 	while ((char *) de < top) {
638 		if (ext4_check_dir_entry(dir, NULL, de, bh,
639 					 buf, buf_size, offset))
640 			return -EFSCORRUPTED;
641 		rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
642 		de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
643 		offset += rlen;
644 	}
645 	if ((char *) de > top)
646 		return -EFSCORRUPTED;
647 
648 	return 0;
649 }
650 
651 const struct file_operations ext4_dir_operations = {
652 	.llseek		= ext4_dir_llseek,
653 	.read		= generic_read_dir,
654 	.iterate_shared	= ext4_readdir,
655 	.unlocked_ioctl = ext4_ioctl,
656 #ifdef CONFIG_COMPAT
657 	.compat_ioctl	= ext4_compat_ioctl,
658 #endif
659 	.fsync		= ext4_sync_file,
660 	.open		= ext4_dir_open,
661 	.release	= ext4_release_dir,
662 };
663