xref: /openbmc/linux/fs/ext4/dir.c (revision 26ba4e57)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/dir.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/dir.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 directory handling functions
17  *
18  *  Big-endian to little-endian byte-swapping/bitmaps by
19  *        David S. Miller (davem@caip.rutgers.edu), 1995
20  *
21  * Hash Tree Directory indexing (c) 2001  Daniel Phillips
22  *
23  */
24 
25 #include <linux/fs.h>
26 #include <linux/buffer_head.h>
27 #include <linux/slab.h>
28 #include <linux/iversion.h>
29 #include <linux/unicode.h>
30 #include "ext4.h"
31 #include "xattr.h"
32 
33 static int ext4_dx_readdir(struct file *, struct dir_context *);
34 
35 /**
36  * is_dx_dir() - check if a directory is using htree indexing
37  * @inode: directory inode
38  *
39  * Check if the given dir-inode refers to an htree-indexed directory
40  * (or a directory which could potentially get converted to use htree
41  * indexing).
42  *
43  * Return 1 if it is a dx dir, 0 if not
44  */
45 static int is_dx_dir(struct inode *inode)
46 {
47 	struct super_block *sb = inode->i_sb;
48 
49 	if (ext4_has_feature_dir_index(inode->i_sb) &&
50 	    ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
51 	     ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
52 	     ext4_has_inline_data(inode)))
53 		return 1;
54 
55 	return 0;
56 }
57 
58 /*
59  * Return 0 if the directory entry is OK, and 1 if there is a problem
60  *
61  * Note: this is the opposite of what ext2 and ext3 historically returned...
62  *
63  * bh passed here can be an inode block or a dir data block, depending
64  * on the inode inline data flag.
65  */
66 int __ext4_check_dir_entry(const char *function, unsigned int line,
67 			   struct inode *dir, struct file *filp,
68 			   struct ext4_dir_entry_2 *de,
69 			   struct buffer_head *bh, char *buf, int size,
70 			   unsigned int offset)
71 {
72 	const char *error_msg = NULL;
73 	const int rlen = ext4_rec_len_from_disk(de->rec_len,
74 						dir->i_sb->s_blocksize);
75 
76 	if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
77 		error_msg = "rec_len is smaller than minimal";
78 	else if (unlikely(rlen % 4 != 0))
79 		error_msg = "rec_len % 4 != 0";
80 	else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
81 		error_msg = "rec_len is too small for name_len";
82 	else if (unlikely(((char *) de - buf) + rlen > size))
83 		error_msg = "directory entry overrun";
84 	else if (unlikely(le32_to_cpu(de->inode) >
85 			le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
86 		error_msg = "inode out of bounds";
87 	else
88 		return 0;
89 
90 	if (filp)
91 		ext4_error_file(filp, function, line, bh->b_blocknr,
92 				"bad entry in directory: %s - offset=%u, "
93 				"inode=%u, rec_len=%d, name_len=%d, size=%d",
94 				error_msg, offset, le32_to_cpu(de->inode),
95 				rlen, de->name_len, size);
96 	else
97 		ext4_error_inode(dir, function, line, bh->b_blocknr,
98 				"bad entry in directory: %s - offset=%u, "
99 				"inode=%u, rec_len=%d, name_len=%d, size=%d",
100 				 error_msg, offset, le32_to_cpu(de->inode),
101 				 rlen, de->name_len, size);
102 
103 	return 1;
104 }
105 
106 static int ext4_readdir(struct file *file, struct dir_context *ctx)
107 {
108 	unsigned int offset;
109 	int i;
110 	struct ext4_dir_entry_2 *de;
111 	int err;
112 	struct inode *inode = file_inode(file);
113 	struct super_block *sb = inode->i_sb;
114 	struct buffer_head *bh = NULL;
115 	struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
116 
117 	if (IS_ENCRYPTED(inode)) {
118 		err = fscrypt_get_encryption_info(inode);
119 		if (err && err != -ENOKEY)
120 			return err;
121 	}
122 
123 	if (is_dx_dir(inode)) {
124 		err = ext4_dx_readdir(file, ctx);
125 		if (err != ERR_BAD_DX_DIR) {
126 			return err;
127 		}
128 		/*
129 		 * We don't set the inode dirty flag since it's not
130 		 * critical that it get flushed back to the disk.
131 		 */
132 		ext4_clear_inode_flag(file_inode(file),
133 				      EXT4_INODE_INDEX);
134 	}
135 
136 	if (ext4_has_inline_data(inode)) {
137 		int has_inline_data = 1;
138 		err = ext4_read_inline_dir(file, ctx,
139 					   &has_inline_data);
140 		if (has_inline_data)
141 			return err;
142 	}
143 
144 	if (IS_ENCRYPTED(inode)) {
145 		err = fscrypt_fname_alloc_buffer(inode, EXT4_NAME_LEN, &fstr);
146 		if (err < 0)
147 			return err;
148 	}
149 
150 	while (ctx->pos < inode->i_size) {
151 		struct ext4_map_blocks map;
152 
153 		if (fatal_signal_pending(current)) {
154 			err = -ERESTARTSYS;
155 			goto errout;
156 		}
157 		cond_resched();
158 		offset = ctx->pos & (sb->s_blocksize - 1);
159 		map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
160 		map.m_len = 1;
161 		err = ext4_map_blocks(NULL, inode, &map, 0);
162 		if (err == 0) {
163 			/* m_len should never be zero but let's avoid
164 			 * an infinite loop if it somehow is */
165 			if (map.m_len == 0)
166 				map.m_len = 1;
167 			ctx->pos += map.m_len * sb->s_blocksize;
168 			continue;
169 		}
170 		if (err > 0) {
171 			pgoff_t index = map.m_pblk >>
172 					(PAGE_SHIFT - inode->i_blkbits);
173 			if (!ra_has_index(&file->f_ra, index))
174 				page_cache_sync_readahead(
175 					sb->s_bdev->bd_inode->i_mapping,
176 					&file->f_ra, file,
177 					index, 1);
178 			file->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
179 			bh = ext4_bread(NULL, inode, map.m_lblk, 0);
180 			if (IS_ERR(bh)) {
181 				err = PTR_ERR(bh);
182 				bh = NULL;
183 				goto errout;
184 			}
185 		}
186 
187 		if (!bh) {
188 			/* corrupt size?  Maybe no more blocks to read */
189 			if (ctx->pos > inode->i_blocks << 9)
190 				break;
191 			ctx->pos += sb->s_blocksize - offset;
192 			continue;
193 		}
194 
195 		/* Check the checksum */
196 		if (!buffer_verified(bh) &&
197 		    !ext4_dirblock_csum_verify(inode, bh)) {
198 			EXT4_ERROR_FILE(file, 0, "directory fails checksum "
199 					"at offset %llu",
200 					(unsigned long long)ctx->pos);
201 			ctx->pos += sb->s_blocksize - offset;
202 			brelse(bh);
203 			bh = NULL;
204 			continue;
205 		}
206 		set_buffer_verified(bh);
207 
208 		/* If the dir block has changed since the last call to
209 		 * readdir(2), then we might be pointing to an invalid
210 		 * dirent right now.  Scan from the start of the block
211 		 * to make sure. */
212 		if (!inode_eq_iversion(inode, file->f_version)) {
213 			for (i = 0; i < sb->s_blocksize && i < offset; ) {
214 				de = (struct ext4_dir_entry_2 *)
215 					(bh->b_data + i);
216 				/* It's too expensive to do a full
217 				 * dirent test each time round this
218 				 * loop, but we do have to test at
219 				 * least that it is non-zero.  A
220 				 * failure will be detected in the
221 				 * dirent test below. */
222 				if (ext4_rec_len_from_disk(de->rec_len,
223 					sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
224 					break;
225 				i += ext4_rec_len_from_disk(de->rec_len,
226 							    sb->s_blocksize);
227 			}
228 			offset = i;
229 			ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
230 				| offset;
231 			file->f_version = inode_query_iversion(inode);
232 		}
233 
234 		while (ctx->pos < inode->i_size
235 		       && offset < sb->s_blocksize) {
236 			de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
237 			if (ext4_check_dir_entry(inode, file, de, bh,
238 						 bh->b_data, bh->b_size,
239 						 offset)) {
240 				/*
241 				 * On error, skip to the next block
242 				 */
243 				ctx->pos = (ctx->pos |
244 						(sb->s_blocksize - 1)) + 1;
245 				break;
246 			}
247 			offset += ext4_rec_len_from_disk(de->rec_len,
248 					sb->s_blocksize);
249 			if (le32_to_cpu(de->inode)) {
250 				if (!IS_ENCRYPTED(inode)) {
251 					if (!dir_emit(ctx, de->name,
252 					    de->name_len,
253 					    le32_to_cpu(de->inode),
254 					    get_dtype(sb, de->file_type)))
255 						goto done;
256 				} else {
257 					int save_len = fstr.len;
258 					struct fscrypt_str de_name =
259 							FSTR_INIT(de->name,
260 								de->name_len);
261 
262 					/* Directory is encrypted */
263 					err = fscrypt_fname_disk_to_usr(inode,
264 						0, 0, &de_name, &fstr);
265 					de_name = fstr;
266 					fstr.len = save_len;
267 					if (err)
268 						goto errout;
269 					if (!dir_emit(ctx,
270 					    de_name.name, de_name.len,
271 					    le32_to_cpu(de->inode),
272 					    get_dtype(sb, de->file_type)))
273 						goto done;
274 				}
275 			}
276 			ctx->pos += ext4_rec_len_from_disk(de->rec_len,
277 						sb->s_blocksize);
278 		}
279 		if ((ctx->pos < inode->i_size) && !dir_relax_shared(inode))
280 			goto done;
281 		brelse(bh);
282 		bh = NULL;
283 		offset = 0;
284 	}
285 done:
286 	err = 0;
287 errout:
288 	fscrypt_fname_free_buffer(&fstr);
289 	brelse(bh);
290 	return err;
291 }
292 
293 static inline int is_32bit_api(void)
294 {
295 #ifdef CONFIG_COMPAT
296 	return in_compat_syscall();
297 #else
298 	return (BITS_PER_LONG == 32);
299 #endif
300 }
301 
302 /*
303  * These functions convert from the major/minor hash to an f_pos
304  * value for dx directories
305  *
306  * Upper layer (for example NFS) should specify FMODE_32BITHASH or
307  * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
308  * directly on both 32-bit and 64-bit nodes, under such case, neither
309  * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
310  */
311 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
312 {
313 	if ((filp->f_mode & FMODE_32BITHASH) ||
314 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
315 		return major >> 1;
316 	else
317 		return ((__u64)(major >> 1) << 32) | (__u64)minor;
318 }
319 
320 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
321 {
322 	if ((filp->f_mode & FMODE_32BITHASH) ||
323 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
324 		return (pos << 1) & 0xffffffff;
325 	else
326 		return ((pos >> 32) << 1) & 0xffffffff;
327 }
328 
329 static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
330 {
331 	if ((filp->f_mode & FMODE_32BITHASH) ||
332 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
333 		return 0;
334 	else
335 		return pos & 0xffffffff;
336 }
337 
338 /*
339  * Return 32- or 64-bit end-of-file for dx directories
340  */
341 static inline loff_t ext4_get_htree_eof(struct file *filp)
342 {
343 	if ((filp->f_mode & FMODE_32BITHASH) ||
344 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
345 		return EXT4_HTREE_EOF_32BIT;
346 	else
347 		return EXT4_HTREE_EOF_64BIT;
348 }
349 
350 
351 /*
352  * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
353  * directories, where the "offset" is in terms of the filename hash
354  * value instead of the byte offset.
355  *
356  * Because we may return a 64-bit hash that is well beyond offset limits,
357  * we need to pass the max hash as the maximum allowable offset in
358  * the htree directory case.
359  *
360  * For non-htree, ext4_llseek already chooses the proper max offset.
361  */
362 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
363 {
364 	struct inode *inode = file->f_mapping->host;
365 	int dx_dir = is_dx_dir(inode);
366 	loff_t ret, htree_max = ext4_get_htree_eof(file);
367 
368 	if (likely(dx_dir))
369 		ret = generic_file_llseek_size(file, offset, whence,
370 						    htree_max, htree_max);
371 	else
372 		ret = ext4_llseek(file, offset, whence);
373 	file->f_version = inode_peek_iversion(inode) - 1;
374 	return ret;
375 }
376 
377 /*
378  * This structure holds the nodes of the red-black tree used to store
379  * the directory entry in hash order.
380  */
381 struct fname {
382 	__u32		hash;
383 	__u32		minor_hash;
384 	struct rb_node	rb_hash;
385 	struct fname	*next;
386 	__u32		inode;
387 	__u8		name_len;
388 	__u8		file_type;
389 	char		name[0];
390 };
391 
392 /*
393  * This functoin implements a non-recursive way of freeing all of the
394  * nodes in the red-black tree.
395  */
396 static void free_rb_tree_fname(struct rb_root *root)
397 {
398 	struct fname *fname, *next;
399 
400 	rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
401 		while (fname) {
402 			struct fname *old = fname;
403 			fname = fname->next;
404 			kfree(old);
405 		}
406 
407 	*root = RB_ROOT;
408 }
409 
410 
411 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
412 							   loff_t pos)
413 {
414 	struct dir_private_info *p;
415 
416 	p = kzalloc(sizeof(*p), GFP_KERNEL);
417 	if (!p)
418 		return NULL;
419 	p->curr_hash = pos2maj_hash(filp, pos);
420 	p->curr_minor_hash = pos2min_hash(filp, pos);
421 	return p;
422 }
423 
424 void ext4_htree_free_dir_info(struct dir_private_info *p)
425 {
426 	free_rb_tree_fname(&p->root);
427 	kfree(p);
428 }
429 
430 /*
431  * Given a directory entry, enter it into the fname rb tree.
432  *
433  * When filename encryption is enabled, the dirent will hold the
434  * encrypted filename, while the htree will hold decrypted filename.
435  * The decrypted filename is passed in via ent_name.  parameter.
436  */
437 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
438 			     __u32 minor_hash,
439 			    struct ext4_dir_entry_2 *dirent,
440 			    struct fscrypt_str *ent_name)
441 {
442 	struct rb_node **p, *parent = NULL;
443 	struct fname *fname, *new_fn;
444 	struct dir_private_info *info;
445 	int len;
446 
447 	info = dir_file->private_data;
448 	p = &info->root.rb_node;
449 
450 	/* Create and allocate the fname structure */
451 	len = sizeof(struct fname) + ent_name->len + 1;
452 	new_fn = kzalloc(len, GFP_KERNEL);
453 	if (!new_fn)
454 		return -ENOMEM;
455 	new_fn->hash = hash;
456 	new_fn->minor_hash = minor_hash;
457 	new_fn->inode = le32_to_cpu(dirent->inode);
458 	new_fn->name_len = ent_name->len;
459 	new_fn->file_type = dirent->file_type;
460 	memcpy(new_fn->name, ent_name->name, ent_name->len);
461 	new_fn->name[ent_name->len] = 0;
462 
463 	while (*p) {
464 		parent = *p;
465 		fname = rb_entry(parent, struct fname, rb_hash);
466 
467 		/*
468 		 * If the hash and minor hash match up, then we put
469 		 * them on a linked list.  This rarely happens...
470 		 */
471 		if ((new_fn->hash == fname->hash) &&
472 		    (new_fn->minor_hash == fname->minor_hash)) {
473 			new_fn->next = fname->next;
474 			fname->next = new_fn;
475 			return 0;
476 		}
477 
478 		if (new_fn->hash < fname->hash)
479 			p = &(*p)->rb_left;
480 		else if (new_fn->hash > fname->hash)
481 			p = &(*p)->rb_right;
482 		else if (new_fn->minor_hash < fname->minor_hash)
483 			p = &(*p)->rb_left;
484 		else /* if (new_fn->minor_hash > fname->minor_hash) */
485 			p = &(*p)->rb_right;
486 	}
487 
488 	rb_link_node(&new_fn->rb_hash, parent, p);
489 	rb_insert_color(&new_fn->rb_hash, &info->root);
490 	return 0;
491 }
492 
493 
494 
495 /*
496  * This is a helper function for ext4_dx_readdir.  It calls filldir
497  * for all entres on the fname linked list.  (Normally there is only
498  * one entry on the linked list, unless there are 62 bit hash collisions.)
499  */
500 static int call_filldir(struct file *file, struct dir_context *ctx,
501 			struct fname *fname)
502 {
503 	struct dir_private_info *info = file->private_data;
504 	struct inode *inode = file_inode(file);
505 	struct super_block *sb = inode->i_sb;
506 
507 	if (!fname) {
508 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
509 			 "called with null fname?!?", __func__, __LINE__,
510 			 inode->i_ino, current->comm);
511 		return 0;
512 	}
513 	ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
514 	while (fname) {
515 		if (!dir_emit(ctx, fname->name,
516 				fname->name_len,
517 				fname->inode,
518 				get_dtype(sb, fname->file_type))) {
519 			info->extra_fname = fname;
520 			return 1;
521 		}
522 		fname = fname->next;
523 	}
524 	return 0;
525 }
526 
527 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
528 {
529 	struct dir_private_info *info = file->private_data;
530 	struct inode *inode = file_inode(file);
531 	struct fname *fname;
532 	int	ret;
533 
534 	if (!info) {
535 		info = ext4_htree_create_dir_info(file, ctx->pos);
536 		if (!info)
537 			return -ENOMEM;
538 		file->private_data = info;
539 	}
540 
541 	if (ctx->pos == ext4_get_htree_eof(file))
542 		return 0;	/* EOF */
543 
544 	/* Some one has messed with f_pos; reset the world */
545 	if (info->last_pos != ctx->pos) {
546 		free_rb_tree_fname(&info->root);
547 		info->curr_node = NULL;
548 		info->extra_fname = NULL;
549 		info->curr_hash = pos2maj_hash(file, ctx->pos);
550 		info->curr_minor_hash = pos2min_hash(file, ctx->pos);
551 	}
552 
553 	/*
554 	 * If there are any leftover names on the hash collision
555 	 * chain, return them first.
556 	 */
557 	if (info->extra_fname) {
558 		if (call_filldir(file, ctx, info->extra_fname))
559 			goto finished;
560 		info->extra_fname = NULL;
561 		goto next_node;
562 	} else if (!info->curr_node)
563 		info->curr_node = rb_first(&info->root);
564 
565 	while (1) {
566 		/*
567 		 * Fill the rbtree if we have no more entries,
568 		 * or the inode has changed since we last read in the
569 		 * cached entries.
570 		 */
571 		if ((!info->curr_node) ||
572 		    !inode_eq_iversion(inode, file->f_version)) {
573 			info->curr_node = NULL;
574 			free_rb_tree_fname(&info->root);
575 			file->f_version = inode_query_iversion(inode);
576 			ret = ext4_htree_fill_tree(file, info->curr_hash,
577 						   info->curr_minor_hash,
578 						   &info->next_hash);
579 			if (ret < 0)
580 				return ret;
581 			if (ret == 0) {
582 				ctx->pos = ext4_get_htree_eof(file);
583 				break;
584 			}
585 			info->curr_node = rb_first(&info->root);
586 		}
587 
588 		fname = rb_entry(info->curr_node, struct fname, rb_hash);
589 		info->curr_hash = fname->hash;
590 		info->curr_minor_hash = fname->minor_hash;
591 		if (call_filldir(file, ctx, fname))
592 			break;
593 	next_node:
594 		info->curr_node = rb_next(info->curr_node);
595 		if (info->curr_node) {
596 			fname = rb_entry(info->curr_node, struct fname,
597 					 rb_hash);
598 			info->curr_hash = fname->hash;
599 			info->curr_minor_hash = fname->minor_hash;
600 		} else {
601 			if (info->next_hash == ~0) {
602 				ctx->pos = ext4_get_htree_eof(file);
603 				break;
604 			}
605 			info->curr_hash = info->next_hash;
606 			info->curr_minor_hash = 0;
607 		}
608 	}
609 finished:
610 	info->last_pos = ctx->pos;
611 	return 0;
612 }
613 
614 static int ext4_dir_open(struct inode * inode, struct file * filp)
615 {
616 	if (IS_ENCRYPTED(inode))
617 		return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
618 	return 0;
619 }
620 
621 static int ext4_release_dir(struct inode *inode, struct file *filp)
622 {
623 	if (filp->private_data)
624 		ext4_htree_free_dir_info(filp->private_data);
625 
626 	return 0;
627 }
628 
629 int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
630 		      int buf_size)
631 {
632 	struct ext4_dir_entry_2 *de;
633 	int rlen;
634 	unsigned int offset = 0;
635 	char *top;
636 
637 	de = (struct ext4_dir_entry_2 *)buf;
638 	top = buf + buf_size;
639 	while ((char *) de < top) {
640 		if (ext4_check_dir_entry(dir, NULL, de, bh,
641 					 buf, buf_size, offset))
642 			return -EFSCORRUPTED;
643 		rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
644 		de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
645 		offset += rlen;
646 	}
647 	if ((char *) de > top)
648 		return -EFSCORRUPTED;
649 
650 	return 0;
651 }
652 
653 const struct file_operations ext4_dir_operations = {
654 	.llseek		= ext4_dir_llseek,
655 	.read		= generic_read_dir,
656 	.iterate_shared	= ext4_readdir,
657 	.unlocked_ioctl = ext4_ioctl,
658 #ifdef CONFIG_COMPAT
659 	.compat_ioctl	= ext4_compat_ioctl,
660 #endif
661 	.fsync		= ext4_sync_file,
662 	.open		= ext4_dir_open,
663 	.release	= ext4_release_dir,
664 };
665 
666 #ifdef CONFIG_UNICODE
667 static int ext4_d_compare(const struct dentry *dentry, unsigned int len,
668 			  const char *str, const struct qstr *name)
669 {
670 	struct qstr qstr = {.name = str, .len = len };
671 	struct inode *inode = dentry->d_parent->d_inode;
672 
673 	if (!IS_CASEFOLDED(inode) || !EXT4_SB(inode->i_sb)->s_encoding) {
674 		if (len != name->len)
675 			return -1;
676 		return memcmp(str, name->name, len);
677 	}
678 
679 	return ext4_ci_compare(inode, name, &qstr, false);
680 }
681 
682 static int ext4_d_hash(const struct dentry *dentry, struct qstr *str)
683 {
684 	const struct ext4_sb_info *sbi = EXT4_SB(dentry->d_sb);
685 	const struct unicode_map *um = sbi->s_encoding;
686 	unsigned char *norm;
687 	int len, ret = 0;
688 
689 	if (!IS_CASEFOLDED(dentry->d_inode) || !um)
690 		return 0;
691 
692 	norm = kmalloc(PATH_MAX, GFP_ATOMIC);
693 	if (!norm)
694 		return -ENOMEM;
695 
696 	len = utf8_casefold(um, str, norm, PATH_MAX);
697 	if (len < 0) {
698 		if (ext4_has_strict_mode(sbi))
699 			ret = -EINVAL;
700 		goto out;
701 	}
702 	str->hash = full_name_hash(dentry, norm, len);
703 out:
704 	kfree(norm);
705 	return ret;
706 }
707 
708 const struct dentry_operations ext4_dentry_ops = {
709 	.d_hash = ext4_d_hash,
710 	.d_compare = ext4_d_compare,
711 };
712 #endif
713