1 /* 2 * linux/fs/ext4/dir.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/dir.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * ext4 directory handling functions 16 * 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 20 * Hash Tree Directory indexing (c) 2001 Daniel Phillips 21 * 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/buffer_head.h> 26 #include <linux/slab.h> 27 #include "ext4.h" 28 #include "xattr.h" 29 30 static int ext4_dx_readdir(struct file *, struct dir_context *); 31 32 /** 33 * Check if the given dir-inode refers to an htree-indexed directory 34 * (or a directory which could potentially get converted to use htree 35 * indexing). 36 * 37 * Return 1 if it is a dx dir, 0 if not 38 */ 39 static int is_dx_dir(struct inode *inode) 40 { 41 struct super_block *sb = inode->i_sb; 42 43 if (ext4_has_feature_dir_index(inode->i_sb) && 44 ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) || 45 ((inode->i_size >> sb->s_blocksize_bits) == 1) || 46 ext4_has_inline_data(inode))) 47 return 1; 48 49 return 0; 50 } 51 52 /* 53 * Return 0 if the directory entry is OK, and 1 if there is a problem 54 * 55 * Note: this is the opposite of what ext2 and ext3 historically returned... 56 * 57 * bh passed here can be an inode block or a dir data block, depending 58 * on the inode inline data flag. 59 */ 60 int __ext4_check_dir_entry(const char *function, unsigned int line, 61 struct inode *dir, struct file *filp, 62 struct ext4_dir_entry_2 *de, 63 struct buffer_head *bh, char *buf, int size, 64 unsigned int offset) 65 { 66 const char *error_msg = NULL; 67 const int rlen = ext4_rec_len_from_disk(de->rec_len, 68 dir->i_sb->s_blocksize); 69 70 if (unlikely(rlen < EXT4_DIR_REC_LEN(1))) 71 error_msg = "rec_len is smaller than minimal"; 72 else if (unlikely(rlen % 4 != 0)) 73 error_msg = "rec_len % 4 != 0"; 74 else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len))) 75 error_msg = "rec_len is too small for name_len"; 76 else if (unlikely(((char *) de - buf) + rlen > size)) 77 error_msg = "directory entry across range"; 78 else if (unlikely(le32_to_cpu(de->inode) > 79 le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count))) 80 error_msg = "inode out of bounds"; 81 else 82 return 0; 83 84 if (filp) 85 ext4_error_file(filp, function, line, bh->b_blocknr, 86 "bad entry in directory: %s - offset=%u(%u), " 87 "inode=%u, rec_len=%d, name_len=%d", 88 error_msg, (unsigned) (offset % size), 89 offset, le32_to_cpu(de->inode), 90 rlen, de->name_len); 91 else 92 ext4_error_inode(dir, function, line, bh->b_blocknr, 93 "bad entry in directory: %s - offset=%u(%u), " 94 "inode=%u, rec_len=%d, name_len=%d", 95 error_msg, (unsigned) (offset % size), 96 offset, le32_to_cpu(de->inode), 97 rlen, de->name_len); 98 99 return 1; 100 } 101 102 static int ext4_readdir(struct file *file, struct dir_context *ctx) 103 { 104 unsigned int offset; 105 int i; 106 struct ext4_dir_entry_2 *de; 107 int err; 108 struct inode *inode = file_inode(file); 109 struct super_block *sb = inode->i_sb; 110 struct buffer_head *bh = NULL; 111 int dir_has_error = 0; 112 struct ext4_str fname_crypto_str = {.name = NULL, .len = 0}; 113 114 if (is_dx_dir(inode)) { 115 err = ext4_dx_readdir(file, ctx); 116 if (err != ERR_BAD_DX_DIR) { 117 return err; 118 } 119 /* 120 * We don't set the inode dirty flag since it's not 121 * critical that it get flushed back to the disk. 122 */ 123 ext4_clear_inode_flag(file_inode(file), 124 EXT4_INODE_INDEX); 125 } 126 127 if (ext4_has_inline_data(inode)) { 128 int has_inline_data = 1; 129 err = ext4_read_inline_dir(file, ctx, 130 &has_inline_data); 131 if (has_inline_data) 132 return err; 133 } 134 135 if (ext4_encrypted_inode(inode)) { 136 err = ext4_fname_crypto_alloc_buffer(inode, EXT4_NAME_LEN, 137 &fname_crypto_str); 138 if (err < 0) 139 return err; 140 } 141 142 offset = ctx->pos & (sb->s_blocksize - 1); 143 144 while (ctx->pos < inode->i_size) { 145 struct ext4_map_blocks map; 146 147 map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb); 148 map.m_len = 1; 149 err = ext4_map_blocks(NULL, inode, &map, 0); 150 if (err > 0) { 151 pgoff_t index = map.m_pblk >> 152 (PAGE_CACHE_SHIFT - inode->i_blkbits); 153 if (!ra_has_index(&file->f_ra, index)) 154 page_cache_sync_readahead( 155 sb->s_bdev->bd_inode->i_mapping, 156 &file->f_ra, file, 157 index, 1); 158 file->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 159 bh = ext4_bread(NULL, inode, map.m_lblk, 0); 160 if (IS_ERR(bh)) 161 return PTR_ERR(bh); 162 } 163 164 if (!bh) { 165 if (!dir_has_error) { 166 EXT4_ERROR_FILE(file, 0, 167 "directory contains a " 168 "hole at offset %llu", 169 (unsigned long long) ctx->pos); 170 dir_has_error = 1; 171 } 172 /* corrupt size? Maybe no more blocks to read */ 173 if (ctx->pos > inode->i_blocks << 9) 174 break; 175 ctx->pos += sb->s_blocksize - offset; 176 continue; 177 } 178 179 /* Check the checksum */ 180 if (!buffer_verified(bh) && 181 !ext4_dirent_csum_verify(inode, 182 (struct ext4_dir_entry *)bh->b_data)) { 183 EXT4_ERROR_FILE(file, 0, "directory fails checksum " 184 "at offset %llu", 185 (unsigned long long)ctx->pos); 186 ctx->pos += sb->s_blocksize - offset; 187 brelse(bh); 188 bh = NULL; 189 continue; 190 } 191 set_buffer_verified(bh); 192 193 /* If the dir block has changed since the last call to 194 * readdir(2), then we might be pointing to an invalid 195 * dirent right now. Scan from the start of the block 196 * to make sure. */ 197 if (file->f_version != inode->i_version) { 198 for (i = 0; i < sb->s_blocksize && i < offset; ) { 199 de = (struct ext4_dir_entry_2 *) 200 (bh->b_data + i); 201 /* It's too expensive to do a full 202 * dirent test each time round this 203 * loop, but we do have to test at 204 * least that it is non-zero. A 205 * failure will be detected in the 206 * dirent test below. */ 207 if (ext4_rec_len_from_disk(de->rec_len, 208 sb->s_blocksize) < EXT4_DIR_REC_LEN(1)) 209 break; 210 i += ext4_rec_len_from_disk(de->rec_len, 211 sb->s_blocksize); 212 } 213 offset = i; 214 ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1)) 215 | offset; 216 file->f_version = inode->i_version; 217 } 218 219 while (ctx->pos < inode->i_size 220 && offset < sb->s_blocksize) { 221 de = (struct ext4_dir_entry_2 *) (bh->b_data + offset); 222 if (ext4_check_dir_entry(inode, file, de, bh, 223 bh->b_data, bh->b_size, 224 offset)) { 225 /* 226 * On error, skip to the next block 227 */ 228 ctx->pos = (ctx->pos | 229 (sb->s_blocksize - 1)) + 1; 230 break; 231 } 232 offset += ext4_rec_len_from_disk(de->rec_len, 233 sb->s_blocksize); 234 if (le32_to_cpu(de->inode)) { 235 if (!ext4_encrypted_inode(inode)) { 236 if (!dir_emit(ctx, de->name, 237 de->name_len, 238 le32_to_cpu(de->inode), 239 get_dtype(sb, de->file_type))) 240 goto done; 241 } else { 242 int save_len = fname_crypto_str.len; 243 244 /* Directory is encrypted */ 245 err = ext4_fname_disk_to_usr(inode, 246 NULL, de, &fname_crypto_str); 247 fname_crypto_str.len = save_len; 248 if (err < 0) 249 goto errout; 250 if (!dir_emit(ctx, 251 fname_crypto_str.name, err, 252 le32_to_cpu(de->inode), 253 get_dtype(sb, de->file_type))) 254 goto done; 255 } 256 } 257 ctx->pos += ext4_rec_len_from_disk(de->rec_len, 258 sb->s_blocksize); 259 } 260 if ((ctx->pos < inode->i_size) && !dir_relax(inode)) 261 goto done; 262 brelse(bh); 263 bh = NULL; 264 offset = 0; 265 } 266 done: 267 err = 0; 268 errout: 269 #ifdef CONFIG_EXT4_FS_ENCRYPTION 270 ext4_fname_crypto_free_buffer(&fname_crypto_str); 271 #endif 272 brelse(bh); 273 return err; 274 } 275 276 static inline int is_32bit_api(void) 277 { 278 #ifdef CONFIG_COMPAT 279 return is_compat_task(); 280 #else 281 return (BITS_PER_LONG == 32); 282 #endif 283 } 284 285 /* 286 * These functions convert from the major/minor hash to an f_pos 287 * value for dx directories 288 * 289 * Upper layer (for example NFS) should specify FMODE_32BITHASH or 290 * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted 291 * directly on both 32-bit and 64-bit nodes, under such case, neither 292 * FMODE_32BITHASH nor FMODE_64BITHASH is specified. 293 */ 294 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor) 295 { 296 if ((filp->f_mode & FMODE_32BITHASH) || 297 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 298 return major >> 1; 299 else 300 return ((__u64)(major >> 1) << 32) | (__u64)minor; 301 } 302 303 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos) 304 { 305 if ((filp->f_mode & FMODE_32BITHASH) || 306 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 307 return (pos << 1) & 0xffffffff; 308 else 309 return ((pos >> 32) << 1) & 0xffffffff; 310 } 311 312 static inline __u32 pos2min_hash(struct file *filp, loff_t pos) 313 { 314 if ((filp->f_mode & FMODE_32BITHASH) || 315 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 316 return 0; 317 else 318 return pos & 0xffffffff; 319 } 320 321 /* 322 * Return 32- or 64-bit end-of-file for dx directories 323 */ 324 static inline loff_t ext4_get_htree_eof(struct file *filp) 325 { 326 if ((filp->f_mode & FMODE_32BITHASH) || 327 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 328 return EXT4_HTREE_EOF_32BIT; 329 else 330 return EXT4_HTREE_EOF_64BIT; 331 } 332 333 334 /* 335 * ext4_dir_llseek() calls generic_file_llseek_size to handle htree 336 * directories, where the "offset" is in terms of the filename hash 337 * value instead of the byte offset. 338 * 339 * Because we may return a 64-bit hash that is well beyond offset limits, 340 * we need to pass the max hash as the maximum allowable offset in 341 * the htree directory case. 342 * 343 * For non-htree, ext4_llseek already chooses the proper max offset. 344 */ 345 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence) 346 { 347 struct inode *inode = file->f_mapping->host; 348 int dx_dir = is_dx_dir(inode); 349 loff_t htree_max = ext4_get_htree_eof(file); 350 351 if (likely(dx_dir)) 352 return generic_file_llseek_size(file, offset, whence, 353 htree_max, htree_max); 354 else 355 return ext4_llseek(file, offset, whence); 356 } 357 358 /* 359 * This structure holds the nodes of the red-black tree used to store 360 * the directory entry in hash order. 361 */ 362 struct fname { 363 __u32 hash; 364 __u32 minor_hash; 365 struct rb_node rb_hash; 366 struct fname *next; 367 __u32 inode; 368 __u8 name_len; 369 __u8 file_type; 370 char name[0]; 371 }; 372 373 /* 374 * This functoin implements a non-recursive way of freeing all of the 375 * nodes in the red-black tree. 376 */ 377 static void free_rb_tree_fname(struct rb_root *root) 378 { 379 struct fname *fname, *next; 380 381 rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash) 382 while (fname) { 383 struct fname *old = fname; 384 fname = fname->next; 385 kfree(old); 386 } 387 388 *root = RB_ROOT; 389 } 390 391 392 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp, 393 loff_t pos) 394 { 395 struct dir_private_info *p; 396 397 p = kzalloc(sizeof(struct dir_private_info), GFP_KERNEL); 398 if (!p) 399 return NULL; 400 p->curr_hash = pos2maj_hash(filp, pos); 401 p->curr_minor_hash = pos2min_hash(filp, pos); 402 return p; 403 } 404 405 void ext4_htree_free_dir_info(struct dir_private_info *p) 406 { 407 free_rb_tree_fname(&p->root); 408 kfree(p); 409 } 410 411 /* 412 * Given a directory entry, enter it into the fname rb tree. 413 * 414 * When filename encryption is enabled, the dirent will hold the 415 * encrypted filename, while the htree will hold decrypted filename. 416 * The decrypted filename is passed in via ent_name. parameter. 417 */ 418 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash, 419 __u32 minor_hash, 420 struct ext4_dir_entry_2 *dirent, 421 struct ext4_str *ent_name) 422 { 423 struct rb_node **p, *parent = NULL; 424 struct fname *fname, *new_fn; 425 struct dir_private_info *info; 426 int len; 427 428 info = dir_file->private_data; 429 p = &info->root.rb_node; 430 431 /* Create and allocate the fname structure */ 432 len = sizeof(struct fname) + ent_name->len + 1; 433 new_fn = kzalloc(len, GFP_KERNEL); 434 if (!new_fn) 435 return -ENOMEM; 436 new_fn->hash = hash; 437 new_fn->minor_hash = minor_hash; 438 new_fn->inode = le32_to_cpu(dirent->inode); 439 new_fn->name_len = ent_name->len; 440 new_fn->file_type = dirent->file_type; 441 memcpy(new_fn->name, ent_name->name, ent_name->len); 442 new_fn->name[ent_name->len] = 0; 443 444 while (*p) { 445 parent = *p; 446 fname = rb_entry(parent, struct fname, rb_hash); 447 448 /* 449 * If the hash and minor hash match up, then we put 450 * them on a linked list. This rarely happens... 451 */ 452 if ((new_fn->hash == fname->hash) && 453 (new_fn->minor_hash == fname->minor_hash)) { 454 new_fn->next = fname->next; 455 fname->next = new_fn; 456 return 0; 457 } 458 459 if (new_fn->hash < fname->hash) 460 p = &(*p)->rb_left; 461 else if (new_fn->hash > fname->hash) 462 p = &(*p)->rb_right; 463 else if (new_fn->minor_hash < fname->minor_hash) 464 p = &(*p)->rb_left; 465 else /* if (new_fn->minor_hash > fname->minor_hash) */ 466 p = &(*p)->rb_right; 467 } 468 469 rb_link_node(&new_fn->rb_hash, parent, p); 470 rb_insert_color(&new_fn->rb_hash, &info->root); 471 return 0; 472 } 473 474 475 476 /* 477 * This is a helper function for ext4_dx_readdir. It calls filldir 478 * for all entres on the fname linked list. (Normally there is only 479 * one entry on the linked list, unless there are 62 bit hash collisions.) 480 */ 481 static int call_filldir(struct file *file, struct dir_context *ctx, 482 struct fname *fname) 483 { 484 struct dir_private_info *info = file->private_data; 485 struct inode *inode = file_inode(file); 486 struct super_block *sb = inode->i_sb; 487 488 if (!fname) { 489 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: " 490 "called with null fname?!?", __func__, __LINE__, 491 inode->i_ino, current->comm); 492 return 0; 493 } 494 ctx->pos = hash2pos(file, fname->hash, fname->minor_hash); 495 while (fname) { 496 if (!dir_emit(ctx, fname->name, 497 fname->name_len, 498 fname->inode, 499 get_dtype(sb, fname->file_type))) { 500 info->extra_fname = fname; 501 return 1; 502 } 503 fname = fname->next; 504 } 505 return 0; 506 } 507 508 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx) 509 { 510 struct dir_private_info *info = file->private_data; 511 struct inode *inode = file_inode(file); 512 struct fname *fname; 513 int ret; 514 515 if (!info) { 516 info = ext4_htree_create_dir_info(file, ctx->pos); 517 if (!info) 518 return -ENOMEM; 519 file->private_data = info; 520 } 521 522 if (ctx->pos == ext4_get_htree_eof(file)) 523 return 0; /* EOF */ 524 525 /* Some one has messed with f_pos; reset the world */ 526 if (info->last_pos != ctx->pos) { 527 free_rb_tree_fname(&info->root); 528 info->curr_node = NULL; 529 info->extra_fname = NULL; 530 info->curr_hash = pos2maj_hash(file, ctx->pos); 531 info->curr_minor_hash = pos2min_hash(file, ctx->pos); 532 } 533 534 /* 535 * If there are any leftover names on the hash collision 536 * chain, return them first. 537 */ 538 if (info->extra_fname) { 539 if (call_filldir(file, ctx, info->extra_fname)) 540 goto finished; 541 info->extra_fname = NULL; 542 goto next_node; 543 } else if (!info->curr_node) 544 info->curr_node = rb_first(&info->root); 545 546 while (1) { 547 /* 548 * Fill the rbtree if we have no more entries, 549 * or the inode has changed since we last read in the 550 * cached entries. 551 */ 552 if ((!info->curr_node) || 553 (file->f_version != inode->i_version)) { 554 info->curr_node = NULL; 555 free_rb_tree_fname(&info->root); 556 file->f_version = inode->i_version; 557 ret = ext4_htree_fill_tree(file, info->curr_hash, 558 info->curr_minor_hash, 559 &info->next_hash); 560 if (ret < 0) 561 return ret; 562 if (ret == 0) { 563 ctx->pos = ext4_get_htree_eof(file); 564 break; 565 } 566 info->curr_node = rb_first(&info->root); 567 } 568 569 fname = rb_entry(info->curr_node, struct fname, rb_hash); 570 info->curr_hash = fname->hash; 571 info->curr_minor_hash = fname->minor_hash; 572 if (call_filldir(file, ctx, fname)) 573 break; 574 next_node: 575 info->curr_node = rb_next(info->curr_node); 576 if (info->curr_node) { 577 fname = rb_entry(info->curr_node, struct fname, 578 rb_hash); 579 info->curr_hash = fname->hash; 580 info->curr_minor_hash = fname->minor_hash; 581 } else { 582 if (info->next_hash == ~0) { 583 ctx->pos = ext4_get_htree_eof(file); 584 break; 585 } 586 info->curr_hash = info->next_hash; 587 info->curr_minor_hash = 0; 588 } 589 } 590 finished: 591 info->last_pos = ctx->pos; 592 return 0; 593 } 594 595 static int ext4_dir_open(struct inode * inode, struct file * filp) 596 { 597 if (ext4_encrypted_inode(inode)) 598 return ext4_get_encryption_info(inode) ? -EACCES : 0; 599 return 0; 600 } 601 602 static int ext4_release_dir(struct inode *inode, struct file *filp) 603 { 604 if (filp->private_data) 605 ext4_htree_free_dir_info(filp->private_data); 606 607 return 0; 608 } 609 610 int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf, 611 int buf_size) 612 { 613 struct ext4_dir_entry_2 *de; 614 int nlen, rlen; 615 unsigned int offset = 0; 616 char *top; 617 618 de = (struct ext4_dir_entry_2 *)buf; 619 top = buf + buf_size; 620 while ((char *) de < top) { 621 if (ext4_check_dir_entry(dir, NULL, de, bh, 622 buf, buf_size, offset)) 623 return -EFSCORRUPTED; 624 nlen = EXT4_DIR_REC_LEN(de->name_len); 625 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 626 de = (struct ext4_dir_entry_2 *)((char *)de + rlen); 627 offset += rlen; 628 } 629 if ((char *) de > top) 630 return -EFSCORRUPTED; 631 632 return 0; 633 } 634 635 const struct file_operations ext4_dir_operations = { 636 .llseek = ext4_dir_llseek, 637 .read = generic_read_dir, 638 .iterate = ext4_readdir, 639 .unlocked_ioctl = ext4_ioctl, 640 #ifdef CONFIG_COMPAT 641 .compat_ioctl = ext4_compat_ioctl, 642 #endif 643 .fsync = ext4_sync_file, 644 .open = ext4_dir_open, 645 .release = ext4_release_dir, 646 }; 647