1 /* 2 * linux/fs/ext4/crypto.c 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * 6 * This contains encryption functions for ext4 7 * 8 * Written by Michael Halcrow, 2014. 9 * 10 * Filename encryption additions 11 * Uday Savagaonkar, 2014 12 * Encryption policy handling additions 13 * Ildar Muslukhov, 2014 14 * 15 * This has not yet undergone a rigorous security audit. 16 * 17 * The usage of AES-XTS should conform to recommendations in NIST 18 * Special Publication 800-38E and IEEE P1619/D16. 19 */ 20 21 #include <crypto/hash.h> 22 #include <crypto/sha.h> 23 #include <keys/user-type.h> 24 #include <keys/encrypted-type.h> 25 #include <linux/crypto.h> 26 #include <linux/ecryptfs.h> 27 #include <linux/gfp.h> 28 #include <linux/kernel.h> 29 #include <linux/key.h> 30 #include <linux/list.h> 31 #include <linux/mempool.h> 32 #include <linux/module.h> 33 #include <linux/mutex.h> 34 #include <linux/random.h> 35 #include <linux/scatterlist.h> 36 #include <linux/spinlock_types.h> 37 38 #include "ext4_extents.h" 39 #include "xattr.h" 40 41 /* Encryption added and removed here! (L: */ 42 43 static unsigned int num_prealloc_crypto_pages = 32; 44 static unsigned int num_prealloc_crypto_ctxs = 128; 45 46 module_param(num_prealloc_crypto_pages, uint, 0444); 47 MODULE_PARM_DESC(num_prealloc_crypto_pages, 48 "Number of crypto pages to preallocate"); 49 module_param(num_prealloc_crypto_ctxs, uint, 0444); 50 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 51 "Number of crypto contexts to preallocate"); 52 53 static mempool_t *ext4_bounce_page_pool; 54 55 static LIST_HEAD(ext4_free_crypto_ctxs); 56 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); 57 58 static struct kmem_cache *ext4_crypto_ctx_cachep; 59 struct kmem_cache *ext4_crypt_info_cachep; 60 61 /** 62 * ext4_release_crypto_ctx() - Releases an encryption context 63 * @ctx: The encryption context to release. 64 * 65 * If the encryption context was allocated from the pre-allocated pool, returns 66 * it to that pool. Else, frees it. 67 * 68 * If there's a bounce page in the context, this frees that. 69 */ 70 void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) 71 { 72 unsigned long flags; 73 74 if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page) 75 mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool); 76 ctx->w.bounce_page = NULL; 77 ctx->w.control_page = NULL; 78 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { 79 kmem_cache_free(ext4_crypto_ctx_cachep, ctx); 80 } else { 81 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); 82 list_add(&ctx->free_list, &ext4_free_crypto_ctxs); 83 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); 84 } 85 } 86 87 /** 88 * ext4_get_crypto_ctx() - Gets an encryption context 89 * @inode: The inode for which we are doing the crypto 90 * 91 * Allocates and initializes an encryption context. 92 * 93 * Return: An allocated and initialized encryption context on success; error 94 * value or NULL otherwise. 95 */ 96 struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode) 97 { 98 struct ext4_crypto_ctx *ctx = NULL; 99 int res = 0; 100 unsigned long flags; 101 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; 102 103 if (ci == NULL) 104 return ERR_PTR(-ENOKEY); 105 106 /* 107 * We first try getting the ctx from a free list because in 108 * the common case the ctx will have an allocated and 109 * initialized crypto tfm, so it's probably a worthwhile 110 * optimization. For the bounce page, we first try getting it 111 * from the kernel allocator because that's just about as fast 112 * as getting it from a list and because a cache of free pages 113 * should generally be a "last resort" option for a filesystem 114 * to be able to do its job. 115 */ 116 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); 117 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, 118 struct ext4_crypto_ctx, free_list); 119 if (ctx) 120 list_del(&ctx->free_list); 121 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); 122 if (!ctx) { 123 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS); 124 if (!ctx) { 125 res = -ENOMEM; 126 goto out; 127 } 128 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; 129 } else { 130 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; 131 } 132 ctx->flags &= ~EXT4_WRITE_PATH_FL; 133 134 out: 135 if (res) { 136 if (!IS_ERR_OR_NULL(ctx)) 137 ext4_release_crypto_ctx(ctx); 138 ctx = ERR_PTR(res); 139 } 140 return ctx; 141 } 142 143 struct workqueue_struct *ext4_read_workqueue; 144 static DEFINE_MUTEX(crypto_init); 145 146 /** 147 * ext4_exit_crypto() - Shutdown the ext4 encryption system 148 */ 149 void ext4_exit_crypto(void) 150 { 151 struct ext4_crypto_ctx *pos, *n; 152 153 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) 154 kmem_cache_free(ext4_crypto_ctx_cachep, pos); 155 INIT_LIST_HEAD(&ext4_free_crypto_ctxs); 156 if (ext4_bounce_page_pool) 157 mempool_destroy(ext4_bounce_page_pool); 158 ext4_bounce_page_pool = NULL; 159 if (ext4_read_workqueue) 160 destroy_workqueue(ext4_read_workqueue); 161 ext4_read_workqueue = NULL; 162 if (ext4_crypto_ctx_cachep) 163 kmem_cache_destroy(ext4_crypto_ctx_cachep); 164 ext4_crypto_ctx_cachep = NULL; 165 if (ext4_crypt_info_cachep) 166 kmem_cache_destroy(ext4_crypt_info_cachep); 167 ext4_crypt_info_cachep = NULL; 168 } 169 170 /** 171 * ext4_init_crypto() - Set up for ext4 encryption. 172 * 173 * We only call this when we start accessing encrypted files, since it 174 * results in memory getting allocated that wouldn't otherwise be used. 175 * 176 * Return: Zero on success, non-zero otherwise. 177 */ 178 int ext4_init_crypto(void) 179 { 180 int i, res = -ENOMEM; 181 182 mutex_lock(&crypto_init); 183 if (ext4_read_workqueue) 184 goto already_initialized; 185 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); 186 if (!ext4_read_workqueue) 187 goto fail; 188 189 ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx, 190 SLAB_RECLAIM_ACCOUNT); 191 if (!ext4_crypto_ctx_cachep) 192 goto fail; 193 194 ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info, 195 SLAB_RECLAIM_ACCOUNT); 196 if (!ext4_crypt_info_cachep) 197 goto fail; 198 199 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 200 struct ext4_crypto_ctx *ctx; 201 202 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS); 203 if (!ctx) { 204 res = -ENOMEM; 205 goto fail; 206 } 207 list_add(&ctx->free_list, &ext4_free_crypto_ctxs); 208 } 209 210 ext4_bounce_page_pool = 211 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 212 if (!ext4_bounce_page_pool) { 213 res = -ENOMEM; 214 goto fail; 215 } 216 already_initialized: 217 mutex_unlock(&crypto_init); 218 return 0; 219 fail: 220 ext4_exit_crypto(); 221 mutex_unlock(&crypto_init); 222 return res; 223 } 224 225 void ext4_restore_control_page(struct page *data_page) 226 { 227 struct ext4_crypto_ctx *ctx = 228 (struct ext4_crypto_ctx *)page_private(data_page); 229 230 set_page_private(data_page, (unsigned long)NULL); 231 ClearPagePrivate(data_page); 232 unlock_page(data_page); 233 ext4_release_crypto_ctx(ctx); 234 } 235 236 /** 237 * ext4_crypt_complete() - The completion callback for page encryption 238 * @req: The asynchronous encryption request context 239 * @res: The result of the encryption operation 240 */ 241 static void ext4_crypt_complete(struct crypto_async_request *req, int res) 242 { 243 struct ext4_completion_result *ecr = req->data; 244 245 if (res == -EINPROGRESS) 246 return; 247 ecr->res = res; 248 complete(&ecr->completion); 249 } 250 251 typedef enum { 252 EXT4_DECRYPT = 0, 253 EXT4_ENCRYPT, 254 } ext4_direction_t; 255 256 static int ext4_page_crypto(struct ext4_crypto_ctx *ctx, 257 struct inode *inode, 258 ext4_direction_t rw, 259 pgoff_t index, 260 struct page *src_page, 261 struct page *dest_page) 262 263 { 264 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; 265 struct ablkcipher_request *req = NULL; 266 DECLARE_EXT4_COMPLETION_RESULT(ecr); 267 struct scatterlist dst, src; 268 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; 269 struct crypto_ablkcipher *tfm = ci->ci_ctfm; 270 int res = 0; 271 272 req = ablkcipher_request_alloc(tfm, GFP_NOFS); 273 if (!req) { 274 printk_ratelimited(KERN_ERR 275 "%s: crypto_request_alloc() failed\n", 276 __func__); 277 return -ENOMEM; 278 } 279 ablkcipher_request_set_callback( 280 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 281 ext4_crypt_complete, &ecr); 282 283 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); 284 memcpy(xts_tweak, &index, sizeof(index)); 285 memset(&xts_tweak[sizeof(index)], 0, 286 EXT4_XTS_TWEAK_SIZE - sizeof(index)); 287 288 sg_init_table(&dst, 1); 289 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); 290 sg_init_table(&src, 1); 291 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); 292 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, 293 xts_tweak); 294 if (rw == EXT4_DECRYPT) 295 res = crypto_ablkcipher_decrypt(req); 296 else 297 res = crypto_ablkcipher_encrypt(req); 298 if (res == -EINPROGRESS || res == -EBUSY) { 299 BUG_ON(req->base.data != &ecr); 300 wait_for_completion(&ecr.completion); 301 res = ecr.res; 302 } 303 ablkcipher_request_free(req); 304 if (res) { 305 printk_ratelimited( 306 KERN_ERR 307 "%s: crypto_ablkcipher_encrypt() returned %d\n", 308 __func__, res); 309 return res; 310 } 311 return 0; 312 } 313 314 static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx) 315 { 316 ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, GFP_NOWAIT); 317 if (ctx->w.bounce_page == NULL) 318 return ERR_PTR(-ENOMEM); 319 ctx->flags |= EXT4_WRITE_PATH_FL; 320 return ctx->w.bounce_page; 321 } 322 323 /** 324 * ext4_encrypt() - Encrypts a page 325 * @inode: The inode for which the encryption should take place 326 * @plaintext_page: The page to encrypt. Must be locked. 327 * 328 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx 329 * encryption context. 330 * 331 * Called on the page write path. The caller must call 332 * ext4_restore_control_page() on the returned ciphertext page to 333 * release the bounce buffer and the encryption context. 334 * 335 * Return: An allocated page with the encrypted content on success. Else, an 336 * error value or NULL. 337 */ 338 struct page *ext4_encrypt(struct inode *inode, 339 struct page *plaintext_page) 340 { 341 struct ext4_crypto_ctx *ctx; 342 struct page *ciphertext_page = NULL; 343 int err; 344 345 BUG_ON(!PageLocked(plaintext_page)); 346 347 ctx = ext4_get_crypto_ctx(inode); 348 if (IS_ERR(ctx)) 349 return (struct page *) ctx; 350 351 /* The encryption operation will require a bounce page. */ 352 ciphertext_page = alloc_bounce_page(ctx); 353 if (IS_ERR(ciphertext_page)) 354 goto errout; 355 ctx->w.control_page = plaintext_page; 356 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index, 357 plaintext_page, ciphertext_page); 358 if (err) { 359 ciphertext_page = ERR_PTR(err); 360 errout: 361 ext4_release_crypto_ctx(ctx); 362 return ciphertext_page; 363 } 364 SetPagePrivate(ciphertext_page); 365 set_page_private(ciphertext_page, (unsigned long)ctx); 366 lock_page(ciphertext_page); 367 return ciphertext_page; 368 } 369 370 /** 371 * ext4_decrypt() - Decrypts a page in-place 372 * @ctx: The encryption context. 373 * @page: The page to decrypt. Must be locked. 374 * 375 * Decrypts page in-place using the ctx encryption context. 376 * 377 * Called from the read completion callback. 378 * 379 * Return: Zero on success, non-zero otherwise. 380 */ 381 int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page) 382 { 383 BUG_ON(!PageLocked(page)); 384 385 return ext4_page_crypto(ctx, page->mapping->host, 386 EXT4_DECRYPT, page->index, page, page); 387 } 388 389 /* 390 * Convenience function which takes care of allocating and 391 * deallocating the encryption context 392 */ 393 int ext4_decrypt_one(struct inode *inode, struct page *page) 394 { 395 int ret; 396 397 struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode); 398 399 if (IS_ERR(ctx)) 400 return PTR_ERR(ctx); 401 ret = ext4_decrypt(ctx, page); 402 ext4_release_crypto_ctx(ctx); 403 return ret; 404 } 405 406 int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex) 407 { 408 struct ext4_crypto_ctx *ctx; 409 struct page *ciphertext_page = NULL; 410 struct bio *bio; 411 ext4_lblk_t lblk = ex->ee_block; 412 ext4_fsblk_t pblk = ext4_ext_pblock(ex); 413 unsigned int len = ext4_ext_get_actual_len(ex); 414 int err = 0; 415 416 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE); 417 418 ctx = ext4_get_crypto_ctx(inode); 419 if (IS_ERR(ctx)) 420 return PTR_ERR(ctx); 421 422 ciphertext_page = alloc_bounce_page(ctx); 423 if (IS_ERR(ciphertext_page)) { 424 err = PTR_ERR(ciphertext_page); 425 goto errout; 426 } 427 428 while (len--) { 429 err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk, 430 ZERO_PAGE(0), ciphertext_page); 431 if (err) 432 goto errout; 433 434 bio = bio_alloc(GFP_KERNEL, 1); 435 if (!bio) { 436 err = -ENOMEM; 437 goto errout; 438 } 439 bio->bi_bdev = inode->i_sb->s_bdev; 440 bio->bi_iter.bi_sector = pblk; 441 err = bio_add_page(bio, ciphertext_page, 442 inode->i_sb->s_blocksize, 0); 443 if (err) { 444 bio_put(bio); 445 goto errout; 446 } 447 err = submit_bio_wait(WRITE, bio); 448 bio_put(bio); 449 if (err) 450 goto errout; 451 } 452 err = 0; 453 errout: 454 ext4_release_crypto_ctx(ctx); 455 return err; 456 } 457 458 bool ext4_valid_contents_enc_mode(uint32_t mode) 459 { 460 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); 461 } 462 463 /** 464 * ext4_validate_encryption_key_size() - Validate the encryption key size 465 * @mode: The key mode. 466 * @size: The key size to validate. 467 * 468 * Return: The validated key size for @mode. Zero if invalid. 469 */ 470 uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) 471 { 472 if (size == ext4_encryption_key_size(mode)) 473 return size; 474 return 0; 475 } 476