1 /* 2 * linux/fs/ext4/crypto.c 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * 6 * This contains encryption functions for ext4 7 * 8 * Written by Michael Halcrow, 2014. 9 * 10 * Filename encryption additions 11 * Uday Savagaonkar, 2014 12 * Encryption policy handling additions 13 * Ildar Muslukhov, 2014 14 * 15 * This has not yet undergone a rigorous security audit. 16 * 17 * The usage of AES-XTS should conform to recommendations in NIST 18 * Special Publication 800-38E and IEEE P1619/D16. 19 */ 20 21 #include <crypto/skcipher.h> 22 #include <keys/user-type.h> 23 #include <keys/encrypted-type.h> 24 #include <linux/ecryptfs.h> 25 #include <linux/gfp.h> 26 #include <linux/kernel.h> 27 #include <linux/key.h> 28 #include <linux/list.h> 29 #include <linux/mempool.h> 30 #include <linux/module.h> 31 #include <linux/mutex.h> 32 #include <linux/random.h> 33 #include <linux/scatterlist.h> 34 #include <linux/spinlock_types.h> 35 36 #include "ext4_extents.h" 37 #include "xattr.h" 38 39 /* Encryption added and removed here! (L: */ 40 41 static unsigned int num_prealloc_crypto_pages = 32; 42 static unsigned int num_prealloc_crypto_ctxs = 128; 43 44 module_param(num_prealloc_crypto_pages, uint, 0444); 45 MODULE_PARM_DESC(num_prealloc_crypto_pages, 46 "Number of crypto pages to preallocate"); 47 module_param(num_prealloc_crypto_ctxs, uint, 0444); 48 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 49 "Number of crypto contexts to preallocate"); 50 51 static mempool_t *ext4_bounce_page_pool; 52 53 static LIST_HEAD(ext4_free_crypto_ctxs); 54 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); 55 56 static struct kmem_cache *ext4_crypto_ctx_cachep; 57 struct kmem_cache *ext4_crypt_info_cachep; 58 59 /** 60 * ext4_release_crypto_ctx() - Releases an encryption context 61 * @ctx: The encryption context to release. 62 * 63 * If the encryption context was allocated from the pre-allocated pool, returns 64 * it to that pool. Else, frees it. 65 * 66 * If there's a bounce page in the context, this frees that. 67 */ 68 void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) 69 { 70 unsigned long flags; 71 72 if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page) 73 mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool); 74 ctx->w.bounce_page = NULL; 75 ctx->w.control_page = NULL; 76 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { 77 kmem_cache_free(ext4_crypto_ctx_cachep, ctx); 78 } else { 79 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); 80 list_add(&ctx->free_list, &ext4_free_crypto_ctxs); 81 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); 82 } 83 } 84 85 /** 86 * ext4_get_crypto_ctx() - Gets an encryption context 87 * @inode: The inode for which we are doing the crypto 88 * 89 * Allocates and initializes an encryption context. 90 * 91 * Return: An allocated and initialized encryption context on success; error 92 * value or NULL otherwise. 93 */ 94 struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode) 95 { 96 struct ext4_crypto_ctx *ctx = NULL; 97 int res = 0; 98 unsigned long flags; 99 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; 100 101 if (ci == NULL) 102 return ERR_PTR(-ENOKEY); 103 104 /* 105 * We first try getting the ctx from a free list because in 106 * the common case the ctx will have an allocated and 107 * initialized crypto tfm, so it's probably a worthwhile 108 * optimization. For the bounce page, we first try getting it 109 * from the kernel allocator because that's just about as fast 110 * as getting it from a list and because a cache of free pages 111 * should generally be a "last resort" option for a filesystem 112 * to be able to do its job. 113 */ 114 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); 115 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, 116 struct ext4_crypto_ctx, free_list); 117 if (ctx) 118 list_del(&ctx->free_list); 119 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); 120 if (!ctx) { 121 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS); 122 if (!ctx) { 123 res = -ENOMEM; 124 goto out; 125 } 126 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; 127 } else { 128 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; 129 } 130 ctx->flags &= ~EXT4_WRITE_PATH_FL; 131 132 out: 133 if (res) { 134 if (!IS_ERR_OR_NULL(ctx)) 135 ext4_release_crypto_ctx(ctx); 136 ctx = ERR_PTR(res); 137 } 138 return ctx; 139 } 140 141 struct workqueue_struct *ext4_read_workqueue; 142 static DEFINE_MUTEX(crypto_init); 143 144 /** 145 * ext4_exit_crypto() - Shutdown the ext4 encryption system 146 */ 147 void ext4_exit_crypto(void) 148 { 149 struct ext4_crypto_ctx *pos, *n; 150 151 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) 152 kmem_cache_free(ext4_crypto_ctx_cachep, pos); 153 INIT_LIST_HEAD(&ext4_free_crypto_ctxs); 154 if (ext4_bounce_page_pool) 155 mempool_destroy(ext4_bounce_page_pool); 156 ext4_bounce_page_pool = NULL; 157 if (ext4_read_workqueue) 158 destroy_workqueue(ext4_read_workqueue); 159 ext4_read_workqueue = NULL; 160 if (ext4_crypto_ctx_cachep) 161 kmem_cache_destroy(ext4_crypto_ctx_cachep); 162 ext4_crypto_ctx_cachep = NULL; 163 if (ext4_crypt_info_cachep) 164 kmem_cache_destroy(ext4_crypt_info_cachep); 165 ext4_crypt_info_cachep = NULL; 166 } 167 168 /** 169 * ext4_init_crypto() - Set up for ext4 encryption. 170 * 171 * We only call this when we start accessing encrypted files, since it 172 * results in memory getting allocated that wouldn't otherwise be used. 173 * 174 * Return: Zero on success, non-zero otherwise. 175 */ 176 int ext4_init_crypto(void) 177 { 178 int i, res = -ENOMEM; 179 180 mutex_lock(&crypto_init); 181 if (ext4_read_workqueue) 182 goto already_initialized; 183 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); 184 if (!ext4_read_workqueue) 185 goto fail; 186 187 ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx, 188 SLAB_RECLAIM_ACCOUNT); 189 if (!ext4_crypto_ctx_cachep) 190 goto fail; 191 192 ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info, 193 SLAB_RECLAIM_ACCOUNT); 194 if (!ext4_crypt_info_cachep) 195 goto fail; 196 197 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 198 struct ext4_crypto_ctx *ctx; 199 200 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS); 201 if (!ctx) { 202 res = -ENOMEM; 203 goto fail; 204 } 205 list_add(&ctx->free_list, &ext4_free_crypto_ctxs); 206 } 207 208 ext4_bounce_page_pool = 209 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 210 if (!ext4_bounce_page_pool) { 211 res = -ENOMEM; 212 goto fail; 213 } 214 already_initialized: 215 mutex_unlock(&crypto_init); 216 return 0; 217 fail: 218 ext4_exit_crypto(); 219 mutex_unlock(&crypto_init); 220 return res; 221 } 222 223 void ext4_restore_control_page(struct page *data_page) 224 { 225 struct ext4_crypto_ctx *ctx = 226 (struct ext4_crypto_ctx *)page_private(data_page); 227 228 set_page_private(data_page, (unsigned long)NULL); 229 ClearPagePrivate(data_page); 230 unlock_page(data_page); 231 ext4_release_crypto_ctx(ctx); 232 } 233 234 /** 235 * ext4_crypt_complete() - The completion callback for page encryption 236 * @req: The asynchronous encryption request context 237 * @res: The result of the encryption operation 238 */ 239 static void ext4_crypt_complete(struct crypto_async_request *req, int res) 240 { 241 struct ext4_completion_result *ecr = req->data; 242 243 if (res == -EINPROGRESS) 244 return; 245 ecr->res = res; 246 complete(&ecr->completion); 247 } 248 249 typedef enum { 250 EXT4_DECRYPT = 0, 251 EXT4_ENCRYPT, 252 } ext4_direction_t; 253 254 static int ext4_page_crypto(struct inode *inode, 255 ext4_direction_t rw, 256 pgoff_t index, 257 struct page *src_page, 258 struct page *dest_page) 259 260 { 261 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; 262 struct skcipher_request *req = NULL; 263 DECLARE_EXT4_COMPLETION_RESULT(ecr); 264 struct scatterlist dst, src; 265 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; 266 struct crypto_skcipher *tfm = ci->ci_ctfm; 267 int res = 0; 268 269 req = skcipher_request_alloc(tfm, GFP_NOFS); 270 if (!req) { 271 printk_ratelimited(KERN_ERR 272 "%s: crypto_request_alloc() failed\n", 273 __func__); 274 return -ENOMEM; 275 } 276 skcipher_request_set_callback( 277 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 278 ext4_crypt_complete, &ecr); 279 280 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); 281 memcpy(xts_tweak, &index, sizeof(index)); 282 memset(&xts_tweak[sizeof(index)], 0, 283 EXT4_XTS_TWEAK_SIZE - sizeof(index)); 284 285 sg_init_table(&dst, 1); 286 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); 287 sg_init_table(&src, 1); 288 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); 289 skcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, 290 xts_tweak); 291 if (rw == EXT4_DECRYPT) 292 res = crypto_skcipher_decrypt(req); 293 else 294 res = crypto_skcipher_encrypt(req); 295 if (res == -EINPROGRESS || res == -EBUSY) { 296 wait_for_completion(&ecr.completion); 297 res = ecr.res; 298 } 299 skcipher_request_free(req); 300 if (res) { 301 printk_ratelimited( 302 KERN_ERR 303 "%s: crypto_skcipher_encrypt() returned %d\n", 304 __func__, res); 305 return res; 306 } 307 return 0; 308 } 309 310 static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx) 311 { 312 ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, GFP_NOWAIT); 313 if (ctx->w.bounce_page == NULL) 314 return ERR_PTR(-ENOMEM); 315 ctx->flags |= EXT4_WRITE_PATH_FL; 316 return ctx->w.bounce_page; 317 } 318 319 /** 320 * ext4_encrypt() - Encrypts a page 321 * @inode: The inode for which the encryption should take place 322 * @plaintext_page: The page to encrypt. Must be locked. 323 * 324 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx 325 * encryption context. 326 * 327 * Called on the page write path. The caller must call 328 * ext4_restore_control_page() on the returned ciphertext page to 329 * release the bounce buffer and the encryption context. 330 * 331 * Return: An allocated page with the encrypted content on success. Else, an 332 * error value or NULL. 333 */ 334 struct page *ext4_encrypt(struct inode *inode, 335 struct page *plaintext_page) 336 { 337 struct ext4_crypto_ctx *ctx; 338 struct page *ciphertext_page = NULL; 339 int err; 340 341 BUG_ON(!PageLocked(plaintext_page)); 342 343 ctx = ext4_get_crypto_ctx(inode); 344 if (IS_ERR(ctx)) 345 return (struct page *) ctx; 346 347 /* The encryption operation will require a bounce page. */ 348 ciphertext_page = alloc_bounce_page(ctx); 349 if (IS_ERR(ciphertext_page)) 350 goto errout; 351 ctx->w.control_page = plaintext_page; 352 err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index, 353 plaintext_page, ciphertext_page); 354 if (err) { 355 ciphertext_page = ERR_PTR(err); 356 errout: 357 ext4_release_crypto_ctx(ctx); 358 return ciphertext_page; 359 } 360 SetPagePrivate(ciphertext_page); 361 set_page_private(ciphertext_page, (unsigned long)ctx); 362 lock_page(ciphertext_page); 363 return ciphertext_page; 364 } 365 366 /** 367 * ext4_decrypt() - Decrypts a page in-place 368 * @ctx: The encryption context. 369 * @page: The page to decrypt. Must be locked. 370 * 371 * Decrypts page in-place using the ctx encryption context. 372 * 373 * Called from the read completion callback. 374 * 375 * Return: Zero on success, non-zero otherwise. 376 */ 377 int ext4_decrypt(struct page *page) 378 { 379 BUG_ON(!PageLocked(page)); 380 381 return ext4_page_crypto(page->mapping->host, 382 EXT4_DECRYPT, page->index, page, page); 383 } 384 385 int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk, 386 ext4_fsblk_t pblk, ext4_lblk_t len) 387 { 388 struct ext4_crypto_ctx *ctx; 389 struct page *ciphertext_page = NULL; 390 struct bio *bio; 391 int ret, err = 0; 392 393 #if 0 394 ext4_msg(inode->i_sb, KERN_CRIT, 395 "ext4_encrypted_zeroout ino %lu lblk %u len %u", 396 (unsigned long) inode->i_ino, lblk, len); 397 #endif 398 399 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE); 400 401 ctx = ext4_get_crypto_ctx(inode); 402 if (IS_ERR(ctx)) 403 return PTR_ERR(ctx); 404 405 ciphertext_page = alloc_bounce_page(ctx); 406 if (IS_ERR(ciphertext_page)) { 407 err = PTR_ERR(ciphertext_page); 408 goto errout; 409 } 410 411 while (len--) { 412 err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk, 413 ZERO_PAGE(0), ciphertext_page); 414 if (err) 415 goto errout; 416 417 bio = bio_alloc(GFP_KERNEL, 1); 418 if (!bio) { 419 err = -ENOMEM; 420 goto errout; 421 } 422 bio->bi_bdev = inode->i_sb->s_bdev; 423 bio->bi_iter.bi_sector = 424 pblk << (inode->i_sb->s_blocksize_bits - 9); 425 ret = bio_add_page(bio, ciphertext_page, 426 inode->i_sb->s_blocksize, 0); 427 if (ret != inode->i_sb->s_blocksize) { 428 /* should never happen! */ 429 ext4_msg(inode->i_sb, KERN_ERR, 430 "bio_add_page failed: %d", ret); 431 WARN_ON(1); 432 bio_put(bio); 433 err = -EIO; 434 goto errout; 435 } 436 err = submit_bio_wait(WRITE, bio); 437 if ((err == 0) && bio->bi_error) 438 err = -EIO; 439 bio_put(bio); 440 if (err) 441 goto errout; 442 lblk++; pblk++; 443 } 444 err = 0; 445 errout: 446 ext4_release_crypto_ctx(ctx); 447 return err; 448 } 449 450 bool ext4_valid_contents_enc_mode(uint32_t mode) 451 { 452 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); 453 } 454 455 /** 456 * ext4_validate_encryption_key_size() - Validate the encryption key size 457 * @mode: The key mode. 458 * @size: The key size to validate. 459 * 460 * Return: The validated key size for @mode. Zero if invalid. 461 */ 462 uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) 463 { 464 if (size == ext4_encryption_key_size(mode)) 465 return size; 466 return 0; 467 } 468 469 /* 470 * Validate dentries for encrypted directories to make sure we aren't 471 * potentially caching stale data after a key has been added or 472 * removed. 473 */ 474 static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags) 475 { 476 struct inode *dir = d_inode(dentry->d_parent); 477 struct ext4_crypt_info *ci = EXT4_I(dir)->i_crypt_info; 478 int dir_has_key, cached_with_key; 479 480 if (!ext4_encrypted_inode(dir)) 481 return 0; 482 483 if (ci && ci->ci_keyring_key && 484 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | 485 (1 << KEY_FLAG_REVOKED) | 486 (1 << KEY_FLAG_DEAD)))) 487 ci = NULL; 488 489 /* this should eventually be an flag in d_flags */ 490 cached_with_key = dentry->d_fsdata != NULL; 491 dir_has_key = (ci != NULL); 492 493 /* 494 * If the dentry was cached without the key, and it is a 495 * negative dentry, it might be a valid name. We can't check 496 * if the key has since been made available due to locking 497 * reasons, so we fail the validation so ext4_lookup() can do 498 * this check. 499 * 500 * We also fail the validation if the dentry was created with 501 * the key present, but we no longer have the key, or vice versa. 502 */ 503 if ((!cached_with_key && d_is_negative(dentry)) || 504 (!cached_with_key && dir_has_key) || 505 (cached_with_key && !dir_has_key)) { 506 #if 0 /* Revalidation debug */ 507 char buf[80]; 508 char *cp = simple_dname(dentry, buf, sizeof(buf)); 509 510 if (IS_ERR(cp)) 511 cp = (char *) "???"; 512 pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata, 513 cached_with_key, d_is_negative(dentry), 514 dir_has_key); 515 #endif 516 return 0; 517 } 518 return 1; 519 } 520 521 const struct dentry_operations ext4_encrypted_d_ops = { 522 .d_revalidate = ext4_d_revalidate, 523 }; 524