1 /* 2 * linux/fs/ext4/crypto.c 3 * 4 * Copyright (C) 2015, Google, Inc. 5 * 6 * This contains encryption functions for ext4 7 * 8 * Written by Michael Halcrow, 2014. 9 * 10 * Filename encryption additions 11 * Uday Savagaonkar, 2014 12 * Encryption policy handling additions 13 * Ildar Muslukhov, 2014 14 * 15 * This has not yet undergone a rigorous security audit. 16 * 17 * The usage of AES-XTS should conform to recommendations in NIST 18 * Special Publication 800-38E and IEEE P1619/D16. 19 */ 20 21 #include <crypto/skcipher.h> 22 #include <keys/user-type.h> 23 #include <keys/encrypted-type.h> 24 #include <linux/ecryptfs.h> 25 #include <linux/gfp.h> 26 #include <linux/kernel.h> 27 #include <linux/key.h> 28 #include <linux/list.h> 29 #include <linux/mempool.h> 30 #include <linux/module.h> 31 #include <linux/mutex.h> 32 #include <linux/random.h> 33 #include <linux/scatterlist.h> 34 #include <linux/spinlock_types.h> 35 #include <linux/namei.h> 36 37 #include "ext4_extents.h" 38 #include "xattr.h" 39 40 /* Encryption added and removed here! (L: */ 41 42 static unsigned int num_prealloc_crypto_pages = 32; 43 static unsigned int num_prealloc_crypto_ctxs = 128; 44 45 module_param(num_prealloc_crypto_pages, uint, 0444); 46 MODULE_PARM_DESC(num_prealloc_crypto_pages, 47 "Number of crypto pages to preallocate"); 48 module_param(num_prealloc_crypto_ctxs, uint, 0444); 49 MODULE_PARM_DESC(num_prealloc_crypto_ctxs, 50 "Number of crypto contexts to preallocate"); 51 52 static mempool_t *ext4_bounce_page_pool; 53 54 static LIST_HEAD(ext4_free_crypto_ctxs); 55 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); 56 57 static struct kmem_cache *ext4_crypto_ctx_cachep; 58 struct kmem_cache *ext4_crypt_info_cachep; 59 60 /** 61 * ext4_release_crypto_ctx() - Releases an encryption context 62 * @ctx: The encryption context to release. 63 * 64 * If the encryption context was allocated from the pre-allocated pool, returns 65 * it to that pool. Else, frees it. 66 * 67 * If there's a bounce page in the context, this frees that. 68 */ 69 void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) 70 { 71 unsigned long flags; 72 73 if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page) 74 mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool); 75 ctx->w.bounce_page = NULL; 76 ctx->w.control_page = NULL; 77 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { 78 kmem_cache_free(ext4_crypto_ctx_cachep, ctx); 79 } else { 80 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); 81 list_add(&ctx->free_list, &ext4_free_crypto_ctxs); 82 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); 83 } 84 } 85 86 /** 87 * ext4_get_crypto_ctx() - Gets an encryption context 88 * @inode: The inode for which we are doing the crypto 89 * 90 * Allocates and initializes an encryption context. 91 * 92 * Return: An allocated and initialized encryption context on success; error 93 * value or NULL otherwise. 94 */ 95 struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode, 96 gfp_t gfp_flags) 97 { 98 struct ext4_crypto_ctx *ctx = NULL; 99 int res = 0; 100 unsigned long flags; 101 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; 102 103 if (ci == NULL) 104 return ERR_PTR(-ENOKEY); 105 106 /* 107 * We first try getting the ctx from a free list because in 108 * the common case the ctx will have an allocated and 109 * initialized crypto tfm, so it's probably a worthwhile 110 * optimization. For the bounce page, we first try getting it 111 * from the kernel allocator because that's just about as fast 112 * as getting it from a list and because a cache of free pages 113 * should generally be a "last resort" option for a filesystem 114 * to be able to do its job. 115 */ 116 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); 117 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, 118 struct ext4_crypto_ctx, free_list); 119 if (ctx) 120 list_del(&ctx->free_list); 121 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); 122 if (!ctx) { 123 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, gfp_flags); 124 if (!ctx) { 125 res = -ENOMEM; 126 goto out; 127 } 128 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; 129 } else { 130 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; 131 } 132 ctx->flags &= ~EXT4_WRITE_PATH_FL; 133 134 out: 135 if (res) { 136 if (!IS_ERR_OR_NULL(ctx)) 137 ext4_release_crypto_ctx(ctx); 138 ctx = ERR_PTR(res); 139 } 140 return ctx; 141 } 142 143 struct workqueue_struct *ext4_read_workqueue; 144 static DEFINE_MUTEX(crypto_init); 145 146 /** 147 * ext4_exit_crypto() - Shutdown the ext4 encryption system 148 */ 149 void ext4_exit_crypto(void) 150 { 151 struct ext4_crypto_ctx *pos, *n; 152 153 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) 154 kmem_cache_free(ext4_crypto_ctx_cachep, pos); 155 INIT_LIST_HEAD(&ext4_free_crypto_ctxs); 156 if (ext4_bounce_page_pool) 157 mempool_destroy(ext4_bounce_page_pool); 158 ext4_bounce_page_pool = NULL; 159 if (ext4_read_workqueue) 160 destroy_workqueue(ext4_read_workqueue); 161 ext4_read_workqueue = NULL; 162 if (ext4_crypto_ctx_cachep) 163 kmem_cache_destroy(ext4_crypto_ctx_cachep); 164 ext4_crypto_ctx_cachep = NULL; 165 if (ext4_crypt_info_cachep) 166 kmem_cache_destroy(ext4_crypt_info_cachep); 167 ext4_crypt_info_cachep = NULL; 168 } 169 170 /** 171 * ext4_init_crypto() - Set up for ext4 encryption. 172 * 173 * We only call this when we start accessing encrypted files, since it 174 * results in memory getting allocated that wouldn't otherwise be used. 175 * 176 * Return: Zero on success, non-zero otherwise. 177 */ 178 int ext4_init_crypto(void) 179 { 180 int i, res = -ENOMEM; 181 182 mutex_lock(&crypto_init); 183 if (ext4_read_workqueue) 184 goto already_initialized; 185 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); 186 if (!ext4_read_workqueue) 187 goto fail; 188 189 ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx, 190 SLAB_RECLAIM_ACCOUNT); 191 if (!ext4_crypto_ctx_cachep) 192 goto fail; 193 194 ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info, 195 SLAB_RECLAIM_ACCOUNT); 196 if (!ext4_crypt_info_cachep) 197 goto fail; 198 199 for (i = 0; i < num_prealloc_crypto_ctxs; i++) { 200 struct ext4_crypto_ctx *ctx; 201 202 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS); 203 if (!ctx) { 204 res = -ENOMEM; 205 goto fail; 206 } 207 list_add(&ctx->free_list, &ext4_free_crypto_ctxs); 208 } 209 210 ext4_bounce_page_pool = 211 mempool_create_page_pool(num_prealloc_crypto_pages, 0); 212 if (!ext4_bounce_page_pool) { 213 res = -ENOMEM; 214 goto fail; 215 } 216 already_initialized: 217 mutex_unlock(&crypto_init); 218 return 0; 219 fail: 220 ext4_exit_crypto(); 221 mutex_unlock(&crypto_init); 222 return res; 223 } 224 225 void ext4_restore_control_page(struct page *data_page) 226 { 227 struct ext4_crypto_ctx *ctx = 228 (struct ext4_crypto_ctx *)page_private(data_page); 229 230 set_page_private(data_page, (unsigned long)NULL); 231 ClearPagePrivate(data_page); 232 unlock_page(data_page); 233 ext4_release_crypto_ctx(ctx); 234 } 235 236 /** 237 * ext4_crypt_complete() - The completion callback for page encryption 238 * @req: The asynchronous encryption request context 239 * @res: The result of the encryption operation 240 */ 241 static void ext4_crypt_complete(struct crypto_async_request *req, int res) 242 { 243 struct ext4_completion_result *ecr = req->data; 244 245 if (res == -EINPROGRESS) 246 return; 247 ecr->res = res; 248 complete(&ecr->completion); 249 } 250 251 typedef enum { 252 EXT4_DECRYPT = 0, 253 EXT4_ENCRYPT, 254 } ext4_direction_t; 255 256 static int ext4_page_crypto(struct inode *inode, 257 ext4_direction_t rw, 258 pgoff_t index, 259 struct page *src_page, 260 struct page *dest_page, 261 gfp_t gfp_flags) 262 263 { 264 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; 265 struct skcipher_request *req = NULL; 266 DECLARE_EXT4_COMPLETION_RESULT(ecr); 267 struct scatterlist dst, src; 268 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; 269 struct crypto_skcipher *tfm = ci->ci_ctfm; 270 int res = 0; 271 272 req = skcipher_request_alloc(tfm, gfp_flags); 273 if (!req) { 274 printk_ratelimited(KERN_ERR 275 "%s: crypto_request_alloc() failed\n", 276 __func__); 277 return -ENOMEM; 278 } 279 skcipher_request_set_callback( 280 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 281 ext4_crypt_complete, &ecr); 282 283 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); 284 memcpy(xts_tweak, &index, sizeof(index)); 285 memset(&xts_tweak[sizeof(index)], 0, 286 EXT4_XTS_TWEAK_SIZE - sizeof(index)); 287 288 sg_init_table(&dst, 1); 289 sg_set_page(&dst, dest_page, PAGE_SIZE, 0); 290 sg_init_table(&src, 1); 291 sg_set_page(&src, src_page, PAGE_SIZE, 0); 292 skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE, 293 xts_tweak); 294 if (rw == EXT4_DECRYPT) 295 res = crypto_skcipher_decrypt(req); 296 else 297 res = crypto_skcipher_encrypt(req); 298 if (res == -EINPROGRESS || res == -EBUSY) { 299 wait_for_completion(&ecr.completion); 300 res = ecr.res; 301 } 302 skcipher_request_free(req); 303 if (res) { 304 printk_ratelimited( 305 KERN_ERR 306 "%s: crypto_skcipher_encrypt() returned %d\n", 307 __func__, res); 308 return res; 309 } 310 return 0; 311 } 312 313 static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx, 314 gfp_t gfp_flags) 315 { 316 ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, gfp_flags); 317 if (ctx->w.bounce_page == NULL) 318 return ERR_PTR(-ENOMEM); 319 ctx->flags |= EXT4_WRITE_PATH_FL; 320 return ctx->w.bounce_page; 321 } 322 323 /** 324 * ext4_encrypt() - Encrypts a page 325 * @inode: The inode for which the encryption should take place 326 * @plaintext_page: The page to encrypt. Must be locked. 327 * 328 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx 329 * encryption context. 330 * 331 * Called on the page write path. The caller must call 332 * ext4_restore_control_page() on the returned ciphertext page to 333 * release the bounce buffer and the encryption context. 334 * 335 * Return: An allocated page with the encrypted content on success. Else, an 336 * error value or NULL. 337 */ 338 struct page *ext4_encrypt(struct inode *inode, 339 struct page *plaintext_page, 340 gfp_t gfp_flags) 341 { 342 struct ext4_crypto_ctx *ctx; 343 struct page *ciphertext_page = NULL; 344 int err; 345 346 BUG_ON(!PageLocked(plaintext_page)); 347 348 ctx = ext4_get_crypto_ctx(inode, gfp_flags); 349 if (IS_ERR(ctx)) 350 return (struct page *) ctx; 351 352 /* The encryption operation will require a bounce page. */ 353 ciphertext_page = alloc_bounce_page(ctx, gfp_flags); 354 if (IS_ERR(ciphertext_page)) 355 goto errout; 356 ctx->w.control_page = plaintext_page; 357 err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index, 358 plaintext_page, ciphertext_page, gfp_flags); 359 if (err) { 360 ciphertext_page = ERR_PTR(err); 361 errout: 362 ext4_release_crypto_ctx(ctx); 363 return ciphertext_page; 364 } 365 SetPagePrivate(ciphertext_page); 366 set_page_private(ciphertext_page, (unsigned long)ctx); 367 lock_page(ciphertext_page); 368 return ciphertext_page; 369 } 370 371 /** 372 * ext4_decrypt() - Decrypts a page in-place 373 * @ctx: The encryption context. 374 * @page: The page to decrypt. Must be locked. 375 * 376 * Decrypts page in-place using the ctx encryption context. 377 * 378 * Called from the read completion callback. 379 * 380 * Return: Zero on success, non-zero otherwise. 381 */ 382 int ext4_decrypt(struct page *page) 383 { 384 BUG_ON(!PageLocked(page)); 385 386 return ext4_page_crypto(page->mapping->host, EXT4_DECRYPT, 387 page->index, page, page, GFP_NOFS); 388 } 389 390 int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk, 391 ext4_fsblk_t pblk, ext4_lblk_t len) 392 { 393 struct ext4_crypto_ctx *ctx; 394 struct page *ciphertext_page = NULL; 395 struct bio *bio; 396 int ret, err = 0; 397 398 #if 0 399 ext4_msg(inode->i_sb, KERN_CRIT, 400 "ext4_encrypted_zeroout ino %lu lblk %u len %u", 401 (unsigned long) inode->i_ino, lblk, len); 402 #endif 403 404 BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE); 405 406 ctx = ext4_get_crypto_ctx(inode, GFP_NOFS); 407 if (IS_ERR(ctx)) 408 return PTR_ERR(ctx); 409 410 ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT); 411 if (IS_ERR(ciphertext_page)) { 412 err = PTR_ERR(ciphertext_page); 413 goto errout; 414 } 415 416 while (len--) { 417 err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk, 418 ZERO_PAGE(0), ciphertext_page, 419 GFP_NOFS); 420 if (err) 421 goto errout; 422 423 bio = bio_alloc(GFP_NOWAIT, 1); 424 if (!bio) { 425 err = -ENOMEM; 426 goto errout; 427 } 428 bio->bi_bdev = inode->i_sb->s_bdev; 429 bio->bi_iter.bi_sector = 430 pblk << (inode->i_sb->s_blocksize_bits - 9); 431 ret = bio_add_page(bio, ciphertext_page, 432 inode->i_sb->s_blocksize, 0); 433 if (ret != inode->i_sb->s_blocksize) { 434 /* should never happen! */ 435 ext4_msg(inode->i_sb, KERN_ERR, 436 "bio_add_page failed: %d", ret); 437 WARN_ON(1); 438 bio_put(bio); 439 err = -EIO; 440 goto errout; 441 } 442 err = submit_bio_wait(WRITE, bio); 443 if ((err == 0) && bio->bi_error) 444 err = -EIO; 445 bio_put(bio); 446 if (err) 447 goto errout; 448 lblk++; pblk++; 449 } 450 err = 0; 451 errout: 452 ext4_release_crypto_ctx(ctx); 453 return err; 454 } 455 456 bool ext4_valid_contents_enc_mode(uint32_t mode) 457 { 458 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); 459 } 460 461 /** 462 * ext4_validate_encryption_key_size() - Validate the encryption key size 463 * @mode: The key mode. 464 * @size: The key size to validate. 465 * 466 * Return: The validated key size for @mode. Zero if invalid. 467 */ 468 uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) 469 { 470 if (size == ext4_encryption_key_size(mode)) 471 return size; 472 return 0; 473 } 474 475 /* 476 * Validate dentries for encrypted directories to make sure we aren't 477 * potentially caching stale data after a key has been added or 478 * removed. 479 */ 480 static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags) 481 { 482 struct dentry *dir; 483 struct ext4_crypt_info *ci; 484 int dir_has_key, cached_with_key; 485 486 if (flags & LOOKUP_RCU) 487 return -ECHILD; 488 489 dir = dget_parent(dentry); 490 if (!ext4_encrypted_inode(d_inode(dir))) { 491 dput(dir); 492 return 0; 493 } 494 ci = EXT4_I(d_inode(dir))->i_crypt_info; 495 if (ci && ci->ci_keyring_key && 496 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | 497 (1 << KEY_FLAG_REVOKED) | 498 (1 << KEY_FLAG_DEAD)))) 499 ci = NULL; 500 501 /* this should eventually be an flag in d_flags */ 502 cached_with_key = dentry->d_fsdata != NULL; 503 dir_has_key = (ci != NULL); 504 dput(dir); 505 506 /* 507 * If the dentry was cached without the key, and it is a 508 * negative dentry, it might be a valid name. We can't check 509 * if the key has since been made available due to locking 510 * reasons, so we fail the validation so ext4_lookup() can do 511 * this check. 512 * 513 * We also fail the validation if the dentry was created with 514 * the key present, but we no longer have the key, or vice versa. 515 */ 516 if ((!cached_with_key && d_is_negative(dentry)) || 517 (!cached_with_key && dir_has_key) || 518 (cached_with_key && !dir_has_key)) { 519 #if 0 /* Revalidation debug */ 520 char buf[80]; 521 char *cp = simple_dname(dentry, buf, sizeof(buf)); 522 523 if (IS_ERR(cp)) 524 cp = (char *) "???"; 525 pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata, 526 cached_with_key, d_is_negative(dentry), 527 dir_has_key); 528 #endif 529 return 0; 530 } 531 return 1; 532 } 533 534 const struct dentry_operations ext4_encrypted_d_ops = { 535 .d_revalidate = ext4_d_revalidate, 536 }; 537