xref: /openbmc/linux/fs/ext4/crypto.c (revision 110e6f26)
1 /*
2  * linux/fs/ext4/crypto.c
3  *
4  * Copyright (C) 2015, Google, Inc.
5  *
6  * This contains encryption functions for ext4
7  *
8  * Written by Michael Halcrow, 2014.
9  *
10  * Filename encryption additions
11  *	Uday Savagaonkar, 2014
12  * Encryption policy handling additions
13  *	Ildar Muslukhov, 2014
14  *
15  * This has not yet undergone a rigorous security audit.
16  *
17  * The usage of AES-XTS should conform to recommendations in NIST
18  * Special Publication 800-38E and IEEE P1619/D16.
19  */
20 
21 #include <crypto/skcipher.h>
22 #include <keys/user-type.h>
23 #include <keys/encrypted-type.h>
24 #include <linux/ecryptfs.h>
25 #include <linux/gfp.h>
26 #include <linux/kernel.h>
27 #include <linux/key.h>
28 #include <linux/list.h>
29 #include <linux/mempool.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/random.h>
33 #include <linux/scatterlist.h>
34 #include <linux/spinlock_types.h>
35 
36 #include "ext4_extents.h"
37 #include "xattr.h"
38 
39 /* Encryption added and removed here! (L: */
40 
41 static unsigned int num_prealloc_crypto_pages = 32;
42 static unsigned int num_prealloc_crypto_ctxs = 128;
43 
44 module_param(num_prealloc_crypto_pages, uint, 0444);
45 MODULE_PARM_DESC(num_prealloc_crypto_pages,
46 		 "Number of crypto pages to preallocate");
47 module_param(num_prealloc_crypto_ctxs, uint, 0444);
48 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
49 		 "Number of crypto contexts to preallocate");
50 
51 static mempool_t *ext4_bounce_page_pool;
52 
53 static LIST_HEAD(ext4_free_crypto_ctxs);
54 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
55 
56 static struct kmem_cache *ext4_crypto_ctx_cachep;
57 struct kmem_cache *ext4_crypt_info_cachep;
58 
59 /**
60  * ext4_release_crypto_ctx() - Releases an encryption context
61  * @ctx: The encryption context to release.
62  *
63  * If the encryption context was allocated from the pre-allocated pool, returns
64  * it to that pool. Else, frees it.
65  *
66  * If there's a bounce page in the context, this frees that.
67  */
68 void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
69 {
70 	unsigned long flags;
71 
72 	if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
73 		mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
74 	ctx->w.bounce_page = NULL;
75 	ctx->w.control_page = NULL;
76 	if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
77 		kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
78 	} else {
79 		spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
80 		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
81 		spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
82 	}
83 }
84 
85 /**
86  * ext4_get_crypto_ctx() - Gets an encryption context
87  * @inode:       The inode for which we are doing the crypto
88  *
89  * Allocates and initializes an encryption context.
90  *
91  * Return: An allocated and initialized encryption context on success; error
92  * value or NULL otherwise.
93  */
94 struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode,
95 					    gfp_t gfp_flags)
96 {
97 	struct ext4_crypto_ctx *ctx = NULL;
98 	int res = 0;
99 	unsigned long flags;
100 	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
101 
102 	if (ci == NULL)
103 		return ERR_PTR(-ENOKEY);
104 
105 	/*
106 	 * We first try getting the ctx from a free list because in
107 	 * the common case the ctx will have an allocated and
108 	 * initialized crypto tfm, so it's probably a worthwhile
109 	 * optimization. For the bounce page, we first try getting it
110 	 * from the kernel allocator because that's just about as fast
111 	 * as getting it from a list and because a cache of free pages
112 	 * should generally be a "last resort" option for a filesystem
113 	 * to be able to do its job.
114 	 */
115 	spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
116 	ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
117 				       struct ext4_crypto_ctx, free_list);
118 	if (ctx)
119 		list_del(&ctx->free_list);
120 	spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
121 	if (!ctx) {
122 		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, gfp_flags);
123 		if (!ctx) {
124 			res = -ENOMEM;
125 			goto out;
126 		}
127 		ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 	} else {
129 		ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
130 	}
131 	ctx->flags &= ~EXT4_WRITE_PATH_FL;
132 
133 out:
134 	if (res) {
135 		if (!IS_ERR_OR_NULL(ctx))
136 			ext4_release_crypto_ctx(ctx);
137 		ctx = ERR_PTR(res);
138 	}
139 	return ctx;
140 }
141 
142 struct workqueue_struct *ext4_read_workqueue;
143 static DEFINE_MUTEX(crypto_init);
144 
145 /**
146  * ext4_exit_crypto() - Shutdown the ext4 encryption system
147  */
148 void ext4_exit_crypto(void)
149 {
150 	struct ext4_crypto_ctx *pos, *n;
151 
152 	list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
153 		kmem_cache_free(ext4_crypto_ctx_cachep, pos);
154 	INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
155 	if (ext4_bounce_page_pool)
156 		mempool_destroy(ext4_bounce_page_pool);
157 	ext4_bounce_page_pool = NULL;
158 	if (ext4_read_workqueue)
159 		destroy_workqueue(ext4_read_workqueue);
160 	ext4_read_workqueue = NULL;
161 	if (ext4_crypto_ctx_cachep)
162 		kmem_cache_destroy(ext4_crypto_ctx_cachep);
163 	ext4_crypto_ctx_cachep = NULL;
164 	if (ext4_crypt_info_cachep)
165 		kmem_cache_destroy(ext4_crypt_info_cachep);
166 	ext4_crypt_info_cachep = NULL;
167 }
168 
169 /**
170  * ext4_init_crypto() - Set up for ext4 encryption.
171  *
172  * We only call this when we start accessing encrypted files, since it
173  * results in memory getting allocated that wouldn't otherwise be used.
174  *
175  * Return: Zero on success, non-zero otherwise.
176  */
177 int ext4_init_crypto(void)
178 {
179 	int i, res = -ENOMEM;
180 
181 	mutex_lock(&crypto_init);
182 	if (ext4_read_workqueue)
183 		goto already_initialized;
184 	ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
185 	if (!ext4_read_workqueue)
186 		goto fail;
187 
188 	ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
189 					    SLAB_RECLAIM_ACCOUNT);
190 	if (!ext4_crypto_ctx_cachep)
191 		goto fail;
192 
193 	ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
194 					    SLAB_RECLAIM_ACCOUNT);
195 	if (!ext4_crypt_info_cachep)
196 		goto fail;
197 
198 	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
199 		struct ext4_crypto_ctx *ctx;
200 
201 		ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
202 		if (!ctx) {
203 			res = -ENOMEM;
204 			goto fail;
205 		}
206 		list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
207 	}
208 
209 	ext4_bounce_page_pool =
210 		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
211 	if (!ext4_bounce_page_pool) {
212 		res = -ENOMEM;
213 		goto fail;
214 	}
215 already_initialized:
216 	mutex_unlock(&crypto_init);
217 	return 0;
218 fail:
219 	ext4_exit_crypto();
220 	mutex_unlock(&crypto_init);
221 	return res;
222 }
223 
224 void ext4_restore_control_page(struct page *data_page)
225 {
226 	struct ext4_crypto_ctx *ctx =
227 		(struct ext4_crypto_ctx *)page_private(data_page);
228 
229 	set_page_private(data_page, (unsigned long)NULL);
230 	ClearPagePrivate(data_page);
231 	unlock_page(data_page);
232 	ext4_release_crypto_ctx(ctx);
233 }
234 
235 /**
236  * ext4_crypt_complete() - The completion callback for page encryption
237  * @req: The asynchronous encryption request context
238  * @res: The result of the encryption operation
239  */
240 static void ext4_crypt_complete(struct crypto_async_request *req, int res)
241 {
242 	struct ext4_completion_result *ecr = req->data;
243 
244 	if (res == -EINPROGRESS)
245 		return;
246 	ecr->res = res;
247 	complete(&ecr->completion);
248 }
249 
250 typedef enum {
251 	EXT4_DECRYPT = 0,
252 	EXT4_ENCRYPT,
253 } ext4_direction_t;
254 
255 static int ext4_page_crypto(struct inode *inode,
256 			    ext4_direction_t rw,
257 			    pgoff_t index,
258 			    struct page *src_page,
259 			    struct page *dest_page,
260 			    gfp_t gfp_flags)
261 
262 {
263 	u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
264 	struct skcipher_request *req = NULL;
265 	DECLARE_EXT4_COMPLETION_RESULT(ecr);
266 	struct scatterlist dst, src;
267 	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
268 	struct crypto_skcipher *tfm = ci->ci_ctfm;
269 	int res = 0;
270 
271 	req = skcipher_request_alloc(tfm, gfp_flags);
272 	if (!req) {
273 		printk_ratelimited(KERN_ERR
274 				   "%s: crypto_request_alloc() failed\n",
275 				   __func__);
276 		return -ENOMEM;
277 	}
278 	skcipher_request_set_callback(
279 		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
280 		ext4_crypt_complete, &ecr);
281 
282 	BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
283 	memcpy(xts_tweak, &index, sizeof(index));
284 	memset(&xts_tweak[sizeof(index)], 0,
285 	       EXT4_XTS_TWEAK_SIZE - sizeof(index));
286 
287 	sg_init_table(&dst, 1);
288 	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
289 	sg_init_table(&src, 1);
290 	sg_set_page(&src, src_page, PAGE_SIZE, 0);
291 	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
292 				   xts_tweak);
293 	if (rw == EXT4_DECRYPT)
294 		res = crypto_skcipher_decrypt(req);
295 	else
296 		res = crypto_skcipher_encrypt(req);
297 	if (res == -EINPROGRESS || res == -EBUSY) {
298 		wait_for_completion(&ecr.completion);
299 		res = ecr.res;
300 	}
301 	skcipher_request_free(req);
302 	if (res) {
303 		printk_ratelimited(
304 			KERN_ERR
305 			"%s: crypto_skcipher_encrypt() returned %d\n",
306 			__func__, res);
307 		return res;
308 	}
309 	return 0;
310 }
311 
312 static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx,
313 				      gfp_t gfp_flags)
314 {
315 	ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, gfp_flags);
316 	if (ctx->w.bounce_page == NULL)
317 		return ERR_PTR(-ENOMEM);
318 	ctx->flags |= EXT4_WRITE_PATH_FL;
319 	return ctx->w.bounce_page;
320 }
321 
322 /**
323  * ext4_encrypt() - Encrypts a page
324  * @inode:          The inode for which the encryption should take place
325  * @plaintext_page: The page to encrypt. Must be locked.
326  *
327  * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
328  * encryption context.
329  *
330  * Called on the page write path.  The caller must call
331  * ext4_restore_control_page() on the returned ciphertext page to
332  * release the bounce buffer and the encryption context.
333  *
334  * Return: An allocated page with the encrypted content on success. Else, an
335  * error value or NULL.
336  */
337 struct page *ext4_encrypt(struct inode *inode,
338 			  struct page *plaintext_page,
339 			  gfp_t gfp_flags)
340 {
341 	struct ext4_crypto_ctx *ctx;
342 	struct page *ciphertext_page = NULL;
343 	int err;
344 
345 	BUG_ON(!PageLocked(plaintext_page));
346 
347 	ctx = ext4_get_crypto_ctx(inode, gfp_flags);
348 	if (IS_ERR(ctx))
349 		return (struct page *) ctx;
350 
351 	/* The encryption operation will require a bounce page. */
352 	ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
353 	if (IS_ERR(ciphertext_page))
354 		goto errout;
355 	ctx->w.control_page = plaintext_page;
356 	err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index,
357 			       plaintext_page, ciphertext_page, gfp_flags);
358 	if (err) {
359 		ciphertext_page = ERR_PTR(err);
360 	errout:
361 		ext4_release_crypto_ctx(ctx);
362 		return ciphertext_page;
363 	}
364 	SetPagePrivate(ciphertext_page);
365 	set_page_private(ciphertext_page, (unsigned long)ctx);
366 	lock_page(ciphertext_page);
367 	return ciphertext_page;
368 }
369 
370 /**
371  * ext4_decrypt() - Decrypts a page in-place
372  * @ctx:  The encryption context.
373  * @page: The page to decrypt. Must be locked.
374  *
375  * Decrypts page in-place using the ctx encryption context.
376  *
377  * Called from the read completion callback.
378  *
379  * Return: Zero on success, non-zero otherwise.
380  */
381 int ext4_decrypt(struct page *page)
382 {
383 	BUG_ON(!PageLocked(page));
384 
385 	return ext4_page_crypto(page->mapping->host, EXT4_DECRYPT,
386 				page->index, page, page, GFP_NOFS);
387 }
388 
389 int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk,
390 			   ext4_fsblk_t pblk, ext4_lblk_t len)
391 {
392 	struct ext4_crypto_ctx	*ctx;
393 	struct page		*ciphertext_page = NULL;
394 	struct bio		*bio;
395 	int			ret, err = 0;
396 
397 #if 0
398 	ext4_msg(inode->i_sb, KERN_CRIT,
399 		 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
400 		 (unsigned long) inode->i_ino, lblk, len);
401 #endif
402 
403 	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
404 
405 	ctx = ext4_get_crypto_ctx(inode, GFP_NOFS);
406 	if (IS_ERR(ctx))
407 		return PTR_ERR(ctx);
408 
409 	ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
410 	if (IS_ERR(ciphertext_page)) {
411 		err = PTR_ERR(ciphertext_page);
412 		goto errout;
413 	}
414 
415 	while (len--) {
416 		err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk,
417 				       ZERO_PAGE(0), ciphertext_page,
418 				       GFP_NOFS);
419 		if (err)
420 			goto errout;
421 
422 		bio = bio_alloc(GFP_NOWAIT, 1);
423 		if (!bio) {
424 			err = -ENOMEM;
425 			goto errout;
426 		}
427 		bio->bi_bdev = inode->i_sb->s_bdev;
428 		bio->bi_iter.bi_sector =
429 			pblk << (inode->i_sb->s_blocksize_bits - 9);
430 		ret = bio_add_page(bio, ciphertext_page,
431 				   inode->i_sb->s_blocksize, 0);
432 		if (ret != inode->i_sb->s_blocksize) {
433 			/* should never happen! */
434 			ext4_msg(inode->i_sb, KERN_ERR,
435 				 "bio_add_page failed: %d", ret);
436 			WARN_ON(1);
437 			bio_put(bio);
438 			err = -EIO;
439 			goto errout;
440 		}
441 		err = submit_bio_wait(WRITE, bio);
442 		if ((err == 0) && bio->bi_error)
443 			err = -EIO;
444 		bio_put(bio);
445 		if (err)
446 			goto errout;
447 		lblk++; pblk++;
448 	}
449 	err = 0;
450 errout:
451 	ext4_release_crypto_ctx(ctx);
452 	return err;
453 }
454 
455 bool ext4_valid_contents_enc_mode(uint32_t mode)
456 {
457 	return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
458 }
459 
460 /**
461  * ext4_validate_encryption_key_size() - Validate the encryption key size
462  * @mode: The key mode.
463  * @size: The key size to validate.
464  *
465  * Return: The validated key size for @mode. Zero if invalid.
466  */
467 uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
468 {
469 	if (size == ext4_encryption_key_size(mode))
470 		return size;
471 	return 0;
472 }
473 
474 /*
475  * Validate dentries for encrypted directories to make sure we aren't
476  * potentially caching stale data after a key has been added or
477  * removed.
478  */
479 static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags)
480 {
481 	struct dentry *dir;
482 	struct ext4_crypt_info *ci;
483 	int dir_has_key, cached_with_key;
484 
485 	dir = dget_parent(dentry);
486 	if (!ext4_encrypted_inode(d_inode(dir))) {
487 		dput(dir);
488 		return 0;
489 	}
490 	ci = EXT4_I(d_inode(dir))->i_crypt_info;
491 	if (ci && ci->ci_keyring_key &&
492 	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
493 					  (1 << KEY_FLAG_REVOKED) |
494 					  (1 << KEY_FLAG_DEAD))))
495 		ci = NULL;
496 
497 	/* this should eventually be an flag in d_flags */
498 	cached_with_key = dentry->d_fsdata != NULL;
499 	dir_has_key = (ci != NULL);
500 	dput(dir);
501 
502 	/*
503 	 * If the dentry was cached without the key, and it is a
504 	 * negative dentry, it might be a valid name.  We can't check
505 	 * if the key has since been made available due to locking
506 	 * reasons, so we fail the validation so ext4_lookup() can do
507 	 * this check.
508 	 *
509 	 * We also fail the validation if the dentry was created with
510 	 * the key present, but we no longer have the key, or vice versa.
511 	 */
512 	if ((!cached_with_key && d_is_negative(dentry)) ||
513 	    (!cached_with_key && dir_has_key) ||
514 	    (cached_with_key && !dir_has_key)) {
515 #if 0				/* Revalidation debug */
516 		char buf[80];
517 		char *cp = simple_dname(dentry, buf, sizeof(buf));
518 
519 		if (IS_ERR(cp))
520 			cp = (char *) "???";
521 		pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata,
522 		       cached_with_key, d_is_negative(dentry),
523 		       dir_has_key);
524 #endif
525 		return 0;
526 	}
527 	return 1;
528 }
529 
530 const struct dentry_operations ext4_encrypted_d_ops = {
531 	.d_revalidate = ext4_d_revalidate,
532 };
533