xref: /openbmc/linux/fs/ext4/balloc.c (revision a1e58bbd)
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13 
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 
23 #include "group.h"
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27 
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 		ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 	ext4_grpblk_t offset;
36 
37 	blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 	offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 	if (offsetp)
40 		*offsetp = offset;
41 	if (blockgrpp)
42 		*blockgrpp = blocknr;
43 
44 }
45 
46 /* Initializes an uninitialized block bitmap if given, and returns the
47  * number of blocks free in the group. */
48 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
49 		 ext4_group_t block_group, struct ext4_group_desc *gdp)
50 {
51 	unsigned long start;
52 	int bit, bit_max;
53 	unsigned free_blocks, group_blocks;
54 	struct ext4_sb_info *sbi = EXT4_SB(sb);
55 
56 	if (bh) {
57 		J_ASSERT_BH(bh, buffer_locked(bh));
58 
59 		/* If checksum is bad mark all blocks used to prevent allocation
60 		 * essentially implementing a per-group read-only flag. */
61 		if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
62 			ext4_error(sb, __FUNCTION__,
63 				  "Checksum bad for group %lu\n", block_group);
64 			gdp->bg_free_blocks_count = 0;
65 			gdp->bg_free_inodes_count = 0;
66 			gdp->bg_itable_unused = 0;
67 			memset(bh->b_data, 0xff, sb->s_blocksize);
68 			return 0;
69 		}
70 		memset(bh->b_data, 0, sb->s_blocksize);
71 	}
72 
73 	/* Check for superblock and gdt backups in this group */
74 	bit_max = ext4_bg_has_super(sb, block_group);
75 
76 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
77 	    block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
78 			  sbi->s_desc_per_block) {
79 		if (bit_max) {
80 			bit_max += ext4_bg_num_gdb(sb, block_group);
81 			bit_max +=
82 				le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
83 		}
84 	} else { /* For META_BG_BLOCK_GROUPS */
85 		int group_rel = (block_group -
86 				 le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
87 				EXT4_DESC_PER_BLOCK(sb);
88 		if (group_rel == 0 || group_rel == 1 ||
89 		    (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
90 			bit_max += 1;
91 	}
92 
93 	if (block_group == sbi->s_groups_count - 1) {
94 		/*
95 		 * Even though mke2fs always initialize first and last group
96 		 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
97 		 * to make sure we calculate the right free blocks
98 		 */
99 		group_blocks = ext4_blocks_count(sbi->s_es) -
100 			le32_to_cpu(sbi->s_es->s_first_data_block) -
101 			(EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
102 	} else {
103 		group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
104 	}
105 
106 	free_blocks = group_blocks - bit_max;
107 
108 	if (bh) {
109 		for (bit = 0; bit < bit_max; bit++)
110 			ext4_set_bit(bit, bh->b_data);
111 
112 		start = block_group * EXT4_BLOCKS_PER_GROUP(sb) +
113 			le32_to_cpu(sbi->s_es->s_first_data_block);
114 
115 		/* Set bits for block and inode bitmaps, and inode table */
116 		ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data);
117 		ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data);
118 		for (bit = (ext4_inode_table(sb, gdp) - start),
119 		     bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++)
120 			ext4_set_bit(bit, bh->b_data);
121 
122 		/*
123 		 * Also if the number of blocks within the group is
124 		 * less than the blocksize * 8 ( which is the size
125 		 * of bitmap ), set rest of the block bitmap to 1
126 		 */
127 		mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
128 	}
129 
130 	return free_blocks - sbi->s_itb_per_group - 2;
131 }
132 
133 
134 /*
135  * The free blocks are managed by bitmaps.  A file system contains several
136  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
137  * block for inodes, N blocks for the inode table and data blocks.
138  *
139  * The file system contains group descriptors which are located after the
140  * super block.  Each descriptor contains the number of the bitmap block and
141  * the free blocks count in the block.  The descriptors are loaded in memory
142  * when a file system is mounted (see ext4_fill_super).
143  */
144 
145 
146 #define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)
147 
148 /**
149  * ext4_get_group_desc() -- load group descriptor from disk
150  * @sb:			super block
151  * @block_group:	given block group
152  * @bh:			pointer to the buffer head to store the block
153  *			group descriptor
154  */
155 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
156 					     ext4_group_t block_group,
157 					     struct buffer_head ** bh)
158 {
159 	unsigned long group_desc;
160 	unsigned long offset;
161 	struct ext4_group_desc * desc;
162 	struct ext4_sb_info *sbi = EXT4_SB(sb);
163 
164 	if (block_group >= sbi->s_groups_count) {
165 		ext4_error (sb, "ext4_get_group_desc",
166 			    "block_group >= groups_count - "
167 			    "block_group = %lu, groups_count = %lu",
168 			    block_group, sbi->s_groups_count);
169 
170 		return NULL;
171 	}
172 	smp_rmb();
173 
174 	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
175 	offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
176 	if (!sbi->s_group_desc[group_desc]) {
177 		ext4_error (sb, "ext4_get_group_desc",
178 			    "Group descriptor not loaded - "
179 			    "block_group = %lu, group_desc = %lu, desc = %lu",
180 			     block_group, group_desc, offset);
181 		return NULL;
182 	}
183 
184 	desc = (struct ext4_group_desc *)(
185 		(__u8 *)sbi->s_group_desc[group_desc]->b_data +
186 		offset * EXT4_DESC_SIZE(sb));
187 	if (bh)
188 		*bh = sbi->s_group_desc[group_desc];
189 	return desc;
190 }
191 
192 static int ext4_valid_block_bitmap(struct super_block *sb,
193 					struct ext4_group_desc *desc,
194 					unsigned int block_group,
195 					struct buffer_head *bh)
196 {
197 	ext4_grpblk_t offset;
198 	ext4_grpblk_t next_zero_bit;
199 	ext4_fsblk_t bitmap_blk;
200 	ext4_fsblk_t group_first_block;
201 
202 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
203 		/* with FLEX_BG, the inode/block bitmaps and itable
204 		 * blocks may not be in the group at all
205 		 * so the bitmap validation will be skipped for those groups
206 		 * or it has to also read the block group where the bitmaps
207 		 * are located to verify they are set.
208 		 */
209 		return 1;
210 	}
211 	group_first_block = ext4_group_first_block_no(sb, block_group);
212 
213 	/* check whether block bitmap block number is set */
214 	bitmap_blk = ext4_block_bitmap(sb, desc);
215 	offset = bitmap_blk - group_first_block;
216 	if (!ext4_test_bit(offset, bh->b_data))
217 		/* bad block bitmap */
218 		goto err_out;
219 
220 	/* check whether the inode bitmap block number is set */
221 	bitmap_blk = ext4_inode_bitmap(sb, desc);
222 	offset = bitmap_blk - group_first_block;
223 	if (!ext4_test_bit(offset, bh->b_data))
224 		/* bad block bitmap */
225 		goto err_out;
226 
227 	/* check whether the inode table block number is set */
228 	bitmap_blk = ext4_inode_table(sb, desc);
229 	offset = bitmap_blk - group_first_block;
230 	next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
231 				offset + EXT4_SB(sb)->s_itb_per_group,
232 				offset);
233 	if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
234 		/* good bitmap for inode tables */
235 		return 1;
236 
237 err_out:
238 	ext4_error(sb, __FUNCTION__,
239 			"Invalid block bitmap - "
240 			"block_group = %d, block = %llu",
241 			block_group, bitmap_blk);
242 	return 0;
243 }
244 /**
245  * read_block_bitmap()
246  * @sb:			super block
247  * @block_group:	given block group
248  *
249  * Read the bitmap for a given block_group,and validate the
250  * bits for block/inode/inode tables are set in the bitmaps
251  *
252  * Return buffer_head on success or NULL in case of failure.
253  */
254 struct buffer_head *
255 read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
256 {
257 	struct ext4_group_desc * desc;
258 	struct buffer_head * bh = NULL;
259 	ext4_fsblk_t bitmap_blk;
260 
261 	desc = ext4_get_group_desc(sb, block_group, NULL);
262 	if (!desc)
263 		return NULL;
264 	bitmap_blk = ext4_block_bitmap(sb, desc);
265 	bh = sb_getblk(sb, bitmap_blk);
266 	if (unlikely(!bh)) {
267 		ext4_error(sb, __FUNCTION__,
268 			    "Cannot read block bitmap - "
269 			    "block_group = %d, block_bitmap = %llu",
270 			    (int)block_group, (unsigned long long)bitmap_blk);
271 		return NULL;
272 	}
273 	if (bh_uptodate_or_lock(bh))
274 		return bh;
275 
276 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
277 		ext4_init_block_bitmap(sb, bh, block_group, desc);
278 		set_buffer_uptodate(bh);
279 		unlock_buffer(bh);
280 		return bh;
281 	}
282 	if (bh_submit_read(bh) < 0) {
283 		put_bh(bh);
284 		ext4_error(sb, __FUNCTION__,
285 			    "Cannot read block bitmap - "
286 			    "block_group = %d, block_bitmap = %llu",
287 			    (int)block_group, (unsigned long long)bitmap_blk);
288 		return NULL;
289 	}
290 	if (!ext4_valid_block_bitmap(sb, desc, block_group, bh)) {
291 		put_bh(bh);
292 		return NULL;
293 	}
294 
295 	return bh;
296 }
297 /*
298  * The reservation window structure operations
299  * --------------------------------------------
300  * Operations include:
301  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
302  *
303  * We use a red-black tree to represent per-filesystem reservation
304  * windows.
305  *
306  */
307 
308 /**
309  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
310  * @rb_root:		root of per-filesystem reservation rb tree
311  * @verbose:		verbose mode
312  * @fn:			function which wishes to dump the reservation map
313  *
314  * If verbose is turned on, it will print the whole block reservation
315  * windows(start, end).	Otherwise, it will only print out the "bad" windows,
316  * those windows that overlap with their immediate neighbors.
317  */
318 #if 1
319 static void __rsv_window_dump(struct rb_root *root, int verbose,
320 			      const char *fn)
321 {
322 	struct rb_node *n;
323 	struct ext4_reserve_window_node *rsv, *prev;
324 	int bad;
325 
326 restart:
327 	n = rb_first(root);
328 	bad = 0;
329 	prev = NULL;
330 
331 	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
332 	while (n) {
333 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
334 		if (verbose)
335 			printk("reservation window 0x%p "
336 			       "start:  %llu, end:  %llu\n",
337 			       rsv, rsv->rsv_start, rsv->rsv_end);
338 		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
339 			printk("Bad reservation %p (start >= end)\n",
340 			       rsv);
341 			bad = 1;
342 		}
343 		if (prev && prev->rsv_end >= rsv->rsv_start) {
344 			printk("Bad reservation %p (prev->end >= start)\n",
345 			       rsv);
346 			bad = 1;
347 		}
348 		if (bad) {
349 			if (!verbose) {
350 				printk("Restarting reservation walk in verbose mode\n");
351 				verbose = 1;
352 				goto restart;
353 			}
354 		}
355 		n = rb_next(n);
356 		prev = rsv;
357 	}
358 	printk("Window map complete.\n");
359 	if (bad)
360 		BUG();
361 }
362 #define rsv_window_dump(root, verbose) \
363 	__rsv_window_dump((root), (verbose), __FUNCTION__)
364 #else
365 #define rsv_window_dump(root, verbose) do {} while (0)
366 #endif
367 
368 /**
369  * goal_in_my_reservation()
370  * @rsv:		inode's reservation window
371  * @grp_goal:		given goal block relative to the allocation block group
372  * @group:		the current allocation block group
373  * @sb:			filesystem super block
374  *
375  * Test if the given goal block (group relative) is within the file's
376  * own block reservation window range.
377  *
378  * If the reservation window is outside the goal allocation group, return 0;
379  * grp_goal (given goal block) could be -1, which means no specific
380  * goal block. In this case, always return 1.
381  * If the goal block is within the reservation window, return 1;
382  * otherwise, return 0;
383  */
384 static int
385 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
386 			ext4_group_t group, struct super_block *sb)
387 {
388 	ext4_fsblk_t group_first_block, group_last_block;
389 
390 	group_first_block = ext4_group_first_block_no(sb, group);
391 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
392 
393 	if ((rsv->_rsv_start > group_last_block) ||
394 	    (rsv->_rsv_end < group_first_block))
395 		return 0;
396 	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
397 		|| (grp_goal + group_first_block > rsv->_rsv_end)))
398 		return 0;
399 	return 1;
400 }
401 
402 /**
403  * search_reserve_window()
404  * @rb_root:		root of reservation tree
405  * @goal:		target allocation block
406  *
407  * Find the reserved window which includes the goal, or the previous one
408  * if the goal is not in any window.
409  * Returns NULL if there are no windows or if all windows start after the goal.
410  */
411 static struct ext4_reserve_window_node *
412 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
413 {
414 	struct rb_node *n = root->rb_node;
415 	struct ext4_reserve_window_node *rsv;
416 
417 	if (!n)
418 		return NULL;
419 
420 	do {
421 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
422 
423 		if (goal < rsv->rsv_start)
424 			n = n->rb_left;
425 		else if (goal > rsv->rsv_end)
426 			n = n->rb_right;
427 		else
428 			return rsv;
429 	} while (n);
430 	/*
431 	 * We've fallen off the end of the tree: the goal wasn't inside
432 	 * any particular node.  OK, the previous node must be to one
433 	 * side of the interval containing the goal.  If it's the RHS,
434 	 * we need to back up one.
435 	 */
436 	if (rsv->rsv_start > goal) {
437 		n = rb_prev(&rsv->rsv_node);
438 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
439 	}
440 	return rsv;
441 }
442 
443 /**
444  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
445  * @sb:			super block
446  * @rsv:		reservation window to add
447  *
448  * Must be called with rsv_lock hold.
449  */
450 void ext4_rsv_window_add(struct super_block *sb,
451 		    struct ext4_reserve_window_node *rsv)
452 {
453 	struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
454 	struct rb_node *node = &rsv->rsv_node;
455 	ext4_fsblk_t start = rsv->rsv_start;
456 
457 	struct rb_node ** p = &root->rb_node;
458 	struct rb_node * parent = NULL;
459 	struct ext4_reserve_window_node *this;
460 
461 	while (*p)
462 	{
463 		parent = *p;
464 		this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
465 
466 		if (start < this->rsv_start)
467 			p = &(*p)->rb_left;
468 		else if (start > this->rsv_end)
469 			p = &(*p)->rb_right;
470 		else {
471 			rsv_window_dump(root, 1);
472 			BUG();
473 		}
474 	}
475 
476 	rb_link_node(node, parent, p);
477 	rb_insert_color(node, root);
478 }
479 
480 /**
481  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
482  * @sb:			super block
483  * @rsv:		reservation window to remove
484  *
485  * Mark the block reservation window as not allocated, and unlink it
486  * from the filesystem reservation window rb tree. Must be called with
487  * rsv_lock hold.
488  */
489 static void rsv_window_remove(struct super_block *sb,
490 			      struct ext4_reserve_window_node *rsv)
491 {
492 	rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
493 	rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
494 	rsv->rsv_alloc_hit = 0;
495 	rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
496 }
497 
498 /*
499  * rsv_is_empty() -- Check if the reservation window is allocated.
500  * @rsv:		given reservation window to check
501  *
502  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
503  */
504 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
505 {
506 	/* a valid reservation end block could not be 0 */
507 	return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
508 }
509 
510 /**
511  * ext4_init_block_alloc_info()
512  * @inode:		file inode structure
513  *
514  * Allocate and initialize the	reservation window structure, and
515  * link the window to the ext4 inode structure at last
516  *
517  * The reservation window structure is only dynamically allocated
518  * and linked to ext4 inode the first time the open file
519  * needs a new block. So, before every ext4_new_block(s) call, for
520  * regular files, we should check whether the reservation window
521  * structure exists or not. In the latter case, this function is called.
522  * Fail to do so will result in block reservation being turned off for that
523  * open file.
524  *
525  * This function is called from ext4_get_blocks_handle(), also called
526  * when setting the reservation window size through ioctl before the file
527  * is open for write (needs block allocation).
528  *
529  * Needs down_write(i_data_sem) protection prior to call this function.
530  */
531 void ext4_init_block_alloc_info(struct inode *inode)
532 {
533 	struct ext4_inode_info *ei = EXT4_I(inode);
534 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
535 	struct super_block *sb = inode->i_sb;
536 
537 	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
538 	if (block_i) {
539 		struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
540 
541 		rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
542 		rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
543 
544 		/*
545 		 * if filesystem is mounted with NORESERVATION, the goal
546 		 * reservation window size is set to zero to indicate
547 		 * block reservation is off
548 		 */
549 		if (!test_opt(sb, RESERVATION))
550 			rsv->rsv_goal_size = 0;
551 		else
552 			rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
553 		rsv->rsv_alloc_hit = 0;
554 		block_i->last_alloc_logical_block = 0;
555 		block_i->last_alloc_physical_block = 0;
556 	}
557 	ei->i_block_alloc_info = block_i;
558 }
559 
560 /**
561  * ext4_discard_reservation()
562  * @inode:		inode
563  *
564  * Discard(free) block reservation window on last file close, or truncate
565  * or at last iput().
566  *
567  * It is being called in three cases:
568  *	ext4_release_file(): last writer close the file
569  *	ext4_clear_inode(): last iput(), when nobody link to this file.
570  *	ext4_truncate(): when the block indirect map is about to change.
571  *
572  */
573 void ext4_discard_reservation(struct inode *inode)
574 {
575 	struct ext4_inode_info *ei = EXT4_I(inode);
576 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
577 	struct ext4_reserve_window_node *rsv;
578 	spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
579 
580 	ext4_mb_discard_inode_preallocations(inode);
581 
582 	if (!block_i)
583 		return;
584 
585 	rsv = &block_i->rsv_window_node;
586 	if (!rsv_is_empty(&rsv->rsv_window)) {
587 		spin_lock(rsv_lock);
588 		if (!rsv_is_empty(&rsv->rsv_window))
589 			rsv_window_remove(inode->i_sb, rsv);
590 		spin_unlock(rsv_lock);
591 	}
592 }
593 
594 /**
595  * ext4_free_blocks_sb() -- Free given blocks and update quota
596  * @handle:			handle to this transaction
597  * @sb:				super block
598  * @block:			start physcial block to free
599  * @count:			number of blocks to free
600  * @pdquot_freed_blocks:	pointer to quota
601  */
602 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
603 			 ext4_fsblk_t block, unsigned long count,
604 			 unsigned long *pdquot_freed_blocks)
605 {
606 	struct buffer_head *bitmap_bh = NULL;
607 	struct buffer_head *gd_bh;
608 	ext4_group_t block_group;
609 	ext4_grpblk_t bit;
610 	unsigned long i;
611 	unsigned long overflow;
612 	struct ext4_group_desc * desc;
613 	struct ext4_super_block * es;
614 	struct ext4_sb_info *sbi;
615 	int err = 0, ret;
616 	ext4_grpblk_t group_freed;
617 
618 	*pdquot_freed_blocks = 0;
619 	sbi = EXT4_SB(sb);
620 	es = sbi->s_es;
621 	if (block < le32_to_cpu(es->s_first_data_block) ||
622 	    block + count < block ||
623 	    block + count > ext4_blocks_count(es)) {
624 		ext4_error (sb, "ext4_free_blocks",
625 			    "Freeing blocks not in datazone - "
626 			    "block = %llu, count = %lu", block, count);
627 		goto error_return;
628 	}
629 
630 	ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
631 
632 do_more:
633 	overflow = 0;
634 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
635 	/*
636 	 * Check to see if we are freeing blocks across a group
637 	 * boundary.
638 	 */
639 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
640 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
641 		count -= overflow;
642 	}
643 	brelse(bitmap_bh);
644 	bitmap_bh = read_block_bitmap(sb, block_group);
645 	if (!bitmap_bh)
646 		goto error_return;
647 	desc = ext4_get_group_desc (sb, block_group, &gd_bh);
648 	if (!desc)
649 		goto error_return;
650 
651 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
652 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
653 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
654 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
655 		     sbi->s_itb_per_group)) {
656 		ext4_error (sb, "ext4_free_blocks",
657 			    "Freeing blocks in system zones - "
658 			    "Block = %llu, count = %lu",
659 			    block, count);
660 		goto error_return;
661 	}
662 
663 	/*
664 	 * We are about to start releasing blocks in the bitmap,
665 	 * so we need undo access.
666 	 */
667 	/* @@@ check errors */
668 	BUFFER_TRACE(bitmap_bh, "getting undo access");
669 	err = ext4_journal_get_undo_access(handle, bitmap_bh);
670 	if (err)
671 		goto error_return;
672 
673 	/*
674 	 * We are about to modify some metadata.  Call the journal APIs
675 	 * to unshare ->b_data if a currently-committing transaction is
676 	 * using it
677 	 */
678 	BUFFER_TRACE(gd_bh, "get_write_access");
679 	err = ext4_journal_get_write_access(handle, gd_bh);
680 	if (err)
681 		goto error_return;
682 
683 	jbd_lock_bh_state(bitmap_bh);
684 
685 	for (i = 0, group_freed = 0; i < count; i++) {
686 		/*
687 		 * An HJ special.  This is expensive...
688 		 */
689 #ifdef CONFIG_JBD2_DEBUG
690 		jbd_unlock_bh_state(bitmap_bh);
691 		{
692 			struct buffer_head *debug_bh;
693 			debug_bh = sb_find_get_block(sb, block + i);
694 			if (debug_bh) {
695 				BUFFER_TRACE(debug_bh, "Deleted!");
696 				if (!bh2jh(bitmap_bh)->b_committed_data)
697 					BUFFER_TRACE(debug_bh,
698 						"No commited data in bitmap");
699 				BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
700 				__brelse(debug_bh);
701 			}
702 		}
703 		jbd_lock_bh_state(bitmap_bh);
704 #endif
705 		if (need_resched()) {
706 			jbd_unlock_bh_state(bitmap_bh);
707 			cond_resched();
708 			jbd_lock_bh_state(bitmap_bh);
709 		}
710 		/* @@@ This prevents newly-allocated data from being
711 		 * freed and then reallocated within the same
712 		 * transaction.
713 		 *
714 		 * Ideally we would want to allow that to happen, but to
715 		 * do so requires making jbd2_journal_forget() capable of
716 		 * revoking the queued write of a data block, which
717 		 * implies blocking on the journal lock.  *forget()
718 		 * cannot block due to truncate races.
719 		 *
720 		 * Eventually we can fix this by making jbd2_journal_forget()
721 		 * return a status indicating whether or not it was able
722 		 * to revoke the buffer.  On successful revoke, it is
723 		 * safe not to set the allocation bit in the committed
724 		 * bitmap, because we know that there is no outstanding
725 		 * activity on the buffer any more and so it is safe to
726 		 * reallocate it.
727 		 */
728 		BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
729 		J_ASSERT_BH(bitmap_bh,
730 				bh2jh(bitmap_bh)->b_committed_data != NULL);
731 		ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
732 				bh2jh(bitmap_bh)->b_committed_data);
733 
734 		/*
735 		 * We clear the bit in the bitmap after setting the committed
736 		 * data bit, because this is the reverse order to that which
737 		 * the allocator uses.
738 		 */
739 		BUFFER_TRACE(bitmap_bh, "clear bit");
740 		if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
741 						bit + i, bitmap_bh->b_data)) {
742 			jbd_unlock_bh_state(bitmap_bh);
743 			ext4_error(sb, __FUNCTION__,
744 				   "bit already cleared for block %llu",
745 				   (ext4_fsblk_t)(block + i));
746 			jbd_lock_bh_state(bitmap_bh);
747 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
748 		} else {
749 			group_freed++;
750 		}
751 	}
752 	jbd_unlock_bh_state(bitmap_bh);
753 
754 	spin_lock(sb_bgl_lock(sbi, block_group));
755 	desc->bg_free_blocks_count =
756 		cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
757 			group_freed);
758 	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
759 	spin_unlock(sb_bgl_lock(sbi, block_group));
760 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
761 
762 	/* We dirtied the bitmap block */
763 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
764 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
765 
766 	/* And the group descriptor block */
767 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
768 	ret = ext4_journal_dirty_metadata(handle, gd_bh);
769 	if (!err) err = ret;
770 	*pdquot_freed_blocks += group_freed;
771 
772 	if (overflow && !err) {
773 		block += count;
774 		count = overflow;
775 		goto do_more;
776 	}
777 	sb->s_dirt = 1;
778 error_return:
779 	brelse(bitmap_bh);
780 	ext4_std_error(sb, err);
781 	return;
782 }
783 
784 /**
785  * ext4_free_blocks() -- Free given blocks and update quota
786  * @handle:		handle for this transaction
787  * @inode:		inode
788  * @block:		start physical block to free
789  * @count:		number of blocks to count
790  * @metadata: 		Are these metadata blocks
791  */
792 void ext4_free_blocks(handle_t *handle, struct inode *inode,
793 			ext4_fsblk_t block, unsigned long count,
794 			int metadata)
795 {
796 	struct super_block * sb;
797 	unsigned long dquot_freed_blocks;
798 
799 	/* this isn't the right place to decide whether block is metadata
800 	 * inode.c/extents.c knows better, but for safety ... */
801 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
802 			ext4_should_journal_data(inode))
803 		metadata = 1;
804 
805 	sb = inode->i_sb;
806 
807 	if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
808 		ext4_free_blocks_sb(handle, sb, block, count,
809 						&dquot_freed_blocks);
810 	else
811 		ext4_mb_free_blocks(handle, inode, block, count,
812 						metadata, &dquot_freed_blocks);
813 	if (dquot_freed_blocks)
814 		DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
815 	return;
816 }
817 
818 /**
819  * ext4_test_allocatable()
820  * @nr:			given allocation block group
821  * @bh:			bufferhead contains the bitmap of the given block group
822  *
823  * For ext4 allocations, we must not reuse any blocks which are
824  * allocated in the bitmap buffer's "last committed data" copy.  This
825  * prevents deletes from freeing up the page for reuse until we have
826  * committed the delete transaction.
827  *
828  * If we didn't do this, then deleting something and reallocating it as
829  * data would allow the old block to be overwritten before the
830  * transaction committed (because we force data to disk before commit).
831  * This would lead to corruption if we crashed between overwriting the
832  * data and committing the delete.
833  *
834  * @@@ We may want to make this allocation behaviour conditional on
835  * data-writes at some point, and disable it for metadata allocations or
836  * sync-data inodes.
837  */
838 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
839 {
840 	int ret;
841 	struct journal_head *jh = bh2jh(bh);
842 
843 	if (ext4_test_bit(nr, bh->b_data))
844 		return 0;
845 
846 	jbd_lock_bh_state(bh);
847 	if (!jh->b_committed_data)
848 		ret = 1;
849 	else
850 		ret = !ext4_test_bit(nr, jh->b_committed_data);
851 	jbd_unlock_bh_state(bh);
852 	return ret;
853 }
854 
855 /**
856  * bitmap_search_next_usable_block()
857  * @start:		the starting block (group relative) of the search
858  * @bh:			bufferhead contains the block group bitmap
859  * @maxblocks:		the ending block (group relative) of the reservation
860  *
861  * The bitmap search --- search forward alternately through the actual
862  * bitmap on disk and the last-committed copy in journal, until we find a
863  * bit free in both bitmaps.
864  */
865 static ext4_grpblk_t
866 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
867 					ext4_grpblk_t maxblocks)
868 {
869 	ext4_grpblk_t next;
870 	struct journal_head *jh = bh2jh(bh);
871 
872 	while (start < maxblocks) {
873 		next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
874 		if (next >= maxblocks)
875 			return -1;
876 		if (ext4_test_allocatable(next, bh))
877 			return next;
878 		jbd_lock_bh_state(bh);
879 		if (jh->b_committed_data)
880 			start = ext4_find_next_zero_bit(jh->b_committed_data,
881 							maxblocks, next);
882 		jbd_unlock_bh_state(bh);
883 	}
884 	return -1;
885 }
886 
887 /**
888  * find_next_usable_block()
889  * @start:		the starting block (group relative) to find next
890  *			allocatable block in bitmap.
891  * @bh:			bufferhead contains the block group bitmap
892  * @maxblocks:		the ending block (group relative) for the search
893  *
894  * Find an allocatable block in a bitmap.  We honor both the bitmap and
895  * its last-committed copy (if that exists), and perform the "most
896  * appropriate allocation" algorithm of looking for a free block near
897  * the initial goal; then for a free byte somewhere in the bitmap; then
898  * for any free bit in the bitmap.
899  */
900 static ext4_grpblk_t
901 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
902 			ext4_grpblk_t maxblocks)
903 {
904 	ext4_grpblk_t here, next;
905 	char *p, *r;
906 
907 	if (start > 0) {
908 		/*
909 		 * The goal was occupied; search forward for a free
910 		 * block within the next XX blocks.
911 		 *
912 		 * end_goal is more or less random, but it has to be
913 		 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
914 		 * next 64-bit boundary is simple..
915 		 */
916 		ext4_grpblk_t end_goal = (start + 63) & ~63;
917 		if (end_goal > maxblocks)
918 			end_goal = maxblocks;
919 		here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
920 		if (here < end_goal && ext4_test_allocatable(here, bh))
921 			return here;
922 		ext4_debug("Bit not found near goal\n");
923 	}
924 
925 	here = start;
926 	if (here < 0)
927 		here = 0;
928 
929 	p = ((char *)bh->b_data) + (here >> 3);
930 	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
931 	next = (r - ((char *)bh->b_data)) << 3;
932 
933 	if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
934 		return next;
935 
936 	/*
937 	 * The bitmap search --- search forward alternately through the actual
938 	 * bitmap and the last-committed copy until we find a bit free in
939 	 * both
940 	 */
941 	here = bitmap_search_next_usable_block(here, bh, maxblocks);
942 	return here;
943 }
944 
945 /**
946  * claim_block()
947  * @block:		the free block (group relative) to allocate
948  * @bh:			the bufferhead containts the block group bitmap
949  *
950  * We think we can allocate this block in this bitmap.  Try to set the bit.
951  * If that succeeds then check that nobody has allocated and then freed the
952  * block since we saw that is was not marked in b_committed_data.  If it _was_
953  * allocated and freed then clear the bit in the bitmap again and return
954  * zero (failure).
955  */
956 static inline int
957 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
958 {
959 	struct journal_head *jh = bh2jh(bh);
960 	int ret;
961 
962 	if (ext4_set_bit_atomic(lock, block, bh->b_data))
963 		return 0;
964 	jbd_lock_bh_state(bh);
965 	if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
966 		ext4_clear_bit_atomic(lock, block, bh->b_data);
967 		ret = 0;
968 	} else {
969 		ret = 1;
970 	}
971 	jbd_unlock_bh_state(bh);
972 	return ret;
973 }
974 
975 /**
976  * ext4_try_to_allocate()
977  * @sb:			superblock
978  * @handle:		handle to this transaction
979  * @group:		given allocation block group
980  * @bitmap_bh:		bufferhead holds the block bitmap
981  * @grp_goal:		given target block within the group
982  * @count:		target number of blocks to allocate
983  * @my_rsv:		reservation window
984  *
985  * Attempt to allocate blocks within a give range. Set the range of allocation
986  * first, then find the first free bit(s) from the bitmap (within the range),
987  * and at last, allocate the blocks by claiming the found free bit as allocated.
988  *
989  * To set the range of this allocation:
990  *	if there is a reservation window, only try to allocate block(s) from the
991  *	file's own reservation window;
992  *	Otherwise, the allocation range starts from the give goal block, ends at
993  *	the block group's last block.
994  *
995  * If we failed to allocate the desired block then we may end up crossing to a
996  * new bitmap.  In that case we must release write access to the old one via
997  * ext4_journal_release_buffer(), else we'll run out of credits.
998  */
999 static ext4_grpblk_t
1000 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1001 			ext4_group_t group, struct buffer_head *bitmap_bh,
1002 			ext4_grpblk_t grp_goal, unsigned long *count,
1003 			struct ext4_reserve_window *my_rsv)
1004 {
1005 	ext4_fsblk_t group_first_block;
1006 	ext4_grpblk_t start, end;
1007 	unsigned long num = 0;
1008 
1009 	/* we do allocation within the reservation window if we have a window */
1010 	if (my_rsv) {
1011 		group_first_block = ext4_group_first_block_no(sb, group);
1012 		if (my_rsv->_rsv_start >= group_first_block)
1013 			start = my_rsv->_rsv_start - group_first_block;
1014 		else
1015 			/* reservation window cross group boundary */
1016 			start = 0;
1017 		end = my_rsv->_rsv_end - group_first_block + 1;
1018 		if (end > EXT4_BLOCKS_PER_GROUP(sb))
1019 			/* reservation window crosses group boundary */
1020 			end = EXT4_BLOCKS_PER_GROUP(sb);
1021 		if ((start <= grp_goal) && (grp_goal < end))
1022 			start = grp_goal;
1023 		else
1024 			grp_goal = -1;
1025 	} else {
1026 		if (grp_goal > 0)
1027 			start = grp_goal;
1028 		else
1029 			start = 0;
1030 		end = EXT4_BLOCKS_PER_GROUP(sb);
1031 	}
1032 
1033 	BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1034 
1035 repeat:
1036 	if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1037 		grp_goal = find_next_usable_block(start, bitmap_bh, end);
1038 		if (grp_goal < 0)
1039 			goto fail_access;
1040 		if (!my_rsv) {
1041 			int i;
1042 
1043 			for (i = 0; i < 7 && grp_goal > start &&
1044 					ext4_test_allocatable(grp_goal - 1,
1045 								bitmap_bh);
1046 					i++, grp_goal--)
1047 				;
1048 		}
1049 	}
1050 	start = grp_goal;
1051 
1052 	if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1053 		grp_goal, bitmap_bh)) {
1054 		/*
1055 		 * The block was allocated by another thread, or it was
1056 		 * allocated and then freed by another thread
1057 		 */
1058 		start++;
1059 		grp_goal++;
1060 		if (start >= end)
1061 			goto fail_access;
1062 		goto repeat;
1063 	}
1064 	num++;
1065 	grp_goal++;
1066 	while (num < *count && grp_goal < end
1067 		&& ext4_test_allocatable(grp_goal, bitmap_bh)
1068 		&& claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1069 				grp_goal, bitmap_bh)) {
1070 		num++;
1071 		grp_goal++;
1072 	}
1073 	*count = num;
1074 	return grp_goal - num;
1075 fail_access:
1076 	*count = num;
1077 	return -1;
1078 }
1079 
1080 /**
1081  *	find_next_reservable_window():
1082  *		find a reservable space within the given range.
1083  *		It does not allocate the reservation window for now:
1084  *		alloc_new_reservation() will do the work later.
1085  *
1086  *	@search_head: the head of the searching list;
1087  *		This is not necessarily the list head of the whole filesystem
1088  *
1089  *		We have both head and start_block to assist the search
1090  *		for the reservable space. The list starts from head,
1091  *		but we will shift to the place where start_block is,
1092  *		then start from there, when looking for a reservable space.
1093  *
1094  *	@size: the target new reservation window size
1095  *
1096  *	@group_first_block: the first block we consider to start
1097  *			the real search from
1098  *
1099  *	@last_block:
1100  *		the maximum block number that our goal reservable space
1101  *		could start from. This is normally the last block in this
1102  *		group. The search will end when we found the start of next
1103  *		possible reservable space is out of this boundary.
1104  *		This could handle the cross boundary reservation window
1105  *		request.
1106  *
1107  *	basically we search from the given range, rather than the whole
1108  *	reservation double linked list, (start_block, last_block)
1109  *	to find a free region that is of my size and has not
1110  *	been reserved.
1111  *
1112  */
1113 static int find_next_reservable_window(
1114 				struct ext4_reserve_window_node *search_head,
1115 				struct ext4_reserve_window_node *my_rsv,
1116 				struct super_block * sb,
1117 				ext4_fsblk_t start_block,
1118 				ext4_fsblk_t last_block)
1119 {
1120 	struct rb_node *next;
1121 	struct ext4_reserve_window_node *rsv, *prev;
1122 	ext4_fsblk_t cur;
1123 	int size = my_rsv->rsv_goal_size;
1124 
1125 	/* TODO: make the start of the reservation window byte-aligned */
1126 	/* cur = *start_block & ~7;*/
1127 	cur = start_block;
1128 	rsv = search_head;
1129 	if (!rsv)
1130 		return -1;
1131 
1132 	while (1) {
1133 		if (cur <= rsv->rsv_end)
1134 			cur = rsv->rsv_end + 1;
1135 
1136 		/* TODO?
1137 		 * in the case we could not find a reservable space
1138 		 * that is what is expected, during the re-search, we could
1139 		 * remember what's the largest reservable space we could have
1140 		 * and return that one.
1141 		 *
1142 		 * For now it will fail if we could not find the reservable
1143 		 * space with expected-size (or more)...
1144 		 */
1145 		if (cur > last_block)
1146 			return -1;		/* fail */
1147 
1148 		prev = rsv;
1149 		next = rb_next(&rsv->rsv_node);
1150 		rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1151 
1152 		/*
1153 		 * Reached the last reservation, we can just append to the
1154 		 * previous one.
1155 		 */
1156 		if (!next)
1157 			break;
1158 
1159 		if (cur + size <= rsv->rsv_start) {
1160 			/*
1161 			 * Found a reserveable space big enough.  We could
1162 			 * have a reservation across the group boundary here
1163 			 */
1164 			break;
1165 		}
1166 	}
1167 	/*
1168 	 * we come here either :
1169 	 * when we reach the end of the whole list,
1170 	 * and there is empty reservable space after last entry in the list.
1171 	 * append it to the end of the list.
1172 	 *
1173 	 * or we found one reservable space in the middle of the list,
1174 	 * return the reservation window that we could append to.
1175 	 * succeed.
1176 	 */
1177 
1178 	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1179 		rsv_window_remove(sb, my_rsv);
1180 
1181 	/*
1182 	 * Let's book the whole avaliable window for now.  We will check the
1183 	 * disk bitmap later and then, if there are free blocks then we adjust
1184 	 * the window size if it's larger than requested.
1185 	 * Otherwise, we will remove this node from the tree next time
1186 	 * call find_next_reservable_window.
1187 	 */
1188 	my_rsv->rsv_start = cur;
1189 	my_rsv->rsv_end = cur + size - 1;
1190 	my_rsv->rsv_alloc_hit = 0;
1191 
1192 	if (prev != my_rsv)
1193 		ext4_rsv_window_add(sb, my_rsv);
1194 
1195 	return 0;
1196 }
1197 
1198 /**
1199  *	alloc_new_reservation()--allocate a new reservation window
1200  *
1201  *		To make a new reservation, we search part of the filesystem
1202  *		reservation list (the list that inside the group). We try to
1203  *		allocate a new reservation window near the allocation goal,
1204  *		or the beginning of the group, if there is no goal.
1205  *
1206  *		We first find a reservable space after the goal, then from
1207  *		there, we check the bitmap for the first free block after
1208  *		it. If there is no free block until the end of group, then the
1209  *		whole group is full, we failed. Otherwise, check if the free
1210  *		block is inside the expected reservable space, if so, we
1211  *		succeed.
1212  *		If the first free block is outside the reservable space, then
1213  *		start from the first free block, we search for next available
1214  *		space, and go on.
1215  *
1216  *	on succeed, a new reservation will be found and inserted into the list
1217  *	It contains at least one free block, and it does not overlap with other
1218  *	reservation windows.
1219  *
1220  *	failed: we failed to find a reservation window in this group
1221  *
1222  *	@rsv: the reservation
1223  *
1224  *	@grp_goal: The goal (group-relative).  It is where the search for a
1225  *		free reservable space should start from.
1226  *		if we have a grp_goal(grp_goal >0 ), then start from there,
1227  *		no grp_goal(grp_goal = -1), we start from the first block
1228  *		of the group.
1229  *
1230  *	@sb: the super block
1231  *	@group: the group we are trying to allocate in
1232  *	@bitmap_bh: the block group block bitmap
1233  *
1234  */
1235 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1236 		ext4_grpblk_t grp_goal, struct super_block *sb,
1237 		ext4_group_t group, struct buffer_head *bitmap_bh)
1238 {
1239 	struct ext4_reserve_window_node *search_head;
1240 	ext4_fsblk_t group_first_block, group_end_block, start_block;
1241 	ext4_grpblk_t first_free_block;
1242 	struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1243 	unsigned long size;
1244 	int ret;
1245 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1246 
1247 	group_first_block = ext4_group_first_block_no(sb, group);
1248 	group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1249 
1250 	if (grp_goal < 0)
1251 		start_block = group_first_block;
1252 	else
1253 		start_block = grp_goal + group_first_block;
1254 
1255 	size = my_rsv->rsv_goal_size;
1256 
1257 	if (!rsv_is_empty(&my_rsv->rsv_window)) {
1258 		/*
1259 		 * if the old reservation is cross group boundary
1260 		 * and if the goal is inside the old reservation window,
1261 		 * we will come here when we just failed to allocate from
1262 		 * the first part of the window. We still have another part
1263 		 * that belongs to the next group. In this case, there is no
1264 		 * point to discard our window and try to allocate a new one
1265 		 * in this group(which will fail). we should
1266 		 * keep the reservation window, just simply move on.
1267 		 *
1268 		 * Maybe we could shift the start block of the reservation
1269 		 * window to the first block of next group.
1270 		 */
1271 
1272 		if ((my_rsv->rsv_start <= group_end_block) &&
1273 				(my_rsv->rsv_end > group_end_block) &&
1274 				(start_block >= my_rsv->rsv_start))
1275 			return -1;
1276 
1277 		if ((my_rsv->rsv_alloc_hit >
1278 		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1279 			/*
1280 			 * if the previously allocation hit ratio is
1281 			 * greater than 1/2, then we double the size of
1282 			 * the reservation window the next time,
1283 			 * otherwise we keep the same size window
1284 			 */
1285 			size = size * 2;
1286 			if (size > EXT4_MAX_RESERVE_BLOCKS)
1287 				size = EXT4_MAX_RESERVE_BLOCKS;
1288 			my_rsv->rsv_goal_size= size;
1289 		}
1290 	}
1291 
1292 	spin_lock(rsv_lock);
1293 	/*
1294 	 * shift the search start to the window near the goal block
1295 	 */
1296 	search_head = search_reserve_window(fs_rsv_root, start_block);
1297 
1298 	/*
1299 	 * find_next_reservable_window() simply finds a reservable window
1300 	 * inside the given range(start_block, group_end_block).
1301 	 *
1302 	 * To make sure the reservation window has a free bit inside it, we
1303 	 * need to check the bitmap after we found a reservable window.
1304 	 */
1305 retry:
1306 	ret = find_next_reservable_window(search_head, my_rsv, sb,
1307 						start_block, group_end_block);
1308 
1309 	if (ret == -1) {
1310 		if (!rsv_is_empty(&my_rsv->rsv_window))
1311 			rsv_window_remove(sb, my_rsv);
1312 		spin_unlock(rsv_lock);
1313 		return -1;
1314 	}
1315 
1316 	/*
1317 	 * On success, find_next_reservable_window() returns the
1318 	 * reservation window where there is a reservable space after it.
1319 	 * Before we reserve this reservable space, we need
1320 	 * to make sure there is at least a free block inside this region.
1321 	 *
1322 	 * searching the first free bit on the block bitmap and copy of
1323 	 * last committed bitmap alternatively, until we found a allocatable
1324 	 * block. Search start from the start block of the reservable space
1325 	 * we just found.
1326 	 */
1327 	spin_unlock(rsv_lock);
1328 	first_free_block = bitmap_search_next_usable_block(
1329 			my_rsv->rsv_start - group_first_block,
1330 			bitmap_bh, group_end_block - group_first_block + 1);
1331 
1332 	if (first_free_block < 0) {
1333 		/*
1334 		 * no free block left on the bitmap, no point
1335 		 * to reserve the space. return failed.
1336 		 */
1337 		spin_lock(rsv_lock);
1338 		if (!rsv_is_empty(&my_rsv->rsv_window))
1339 			rsv_window_remove(sb, my_rsv);
1340 		spin_unlock(rsv_lock);
1341 		return -1;		/* failed */
1342 	}
1343 
1344 	start_block = first_free_block + group_first_block;
1345 	/*
1346 	 * check if the first free block is within the
1347 	 * free space we just reserved
1348 	 */
1349 	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1350 		return 0;		/* success */
1351 	/*
1352 	 * if the first free bit we found is out of the reservable space
1353 	 * continue search for next reservable space,
1354 	 * start from where the free block is,
1355 	 * we also shift the list head to where we stopped last time
1356 	 */
1357 	search_head = my_rsv;
1358 	spin_lock(rsv_lock);
1359 	goto retry;
1360 }
1361 
1362 /**
1363  * try_to_extend_reservation()
1364  * @my_rsv:		given reservation window
1365  * @sb:			super block
1366  * @size:		the delta to extend
1367  *
1368  * Attempt to expand the reservation window large enough to have
1369  * required number of free blocks
1370  *
1371  * Since ext4_try_to_allocate() will always allocate blocks within
1372  * the reservation window range, if the window size is too small,
1373  * multiple blocks allocation has to stop at the end of the reservation
1374  * window. To make this more efficient, given the total number of
1375  * blocks needed and the current size of the window, we try to
1376  * expand the reservation window size if necessary on a best-effort
1377  * basis before ext4_new_blocks() tries to allocate blocks,
1378  */
1379 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1380 			struct super_block *sb, int size)
1381 {
1382 	struct ext4_reserve_window_node *next_rsv;
1383 	struct rb_node *next;
1384 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1385 
1386 	if (!spin_trylock(rsv_lock))
1387 		return;
1388 
1389 	next = rb_next(&my_rsv->rsv_node);
1390 
1391 	if (!next)
1392 		my_rsv->rsv_end += size;
1393 	else {
1394 		next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1395 
1396 		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1397 			my_rsv->rsv_end += size;
1398 		else
1399 			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1400 	}
1401 	spin_unlock(rsv_lock);
1402 }
1403 
1404 /**
1405  * ext4_try_to_allocate_with_rsv()
1406  * @sb:			superblock
1407  * @handle:		handle to this transaction
1408  * @group:		given allocation block group
1409  * @bitmap_bh:		bufferhead holds the block bitmap
1410  * @grp_goal:		given target block within the group
1411  * @count:		target number of blocks to allocate
1412  * @my_rsv:		reservation window
1413  * @errp:		pointer to store the error code
1414  *
1415  * This is the main function used to allocate a new block and its reservation
1416  * window.
1417  *
1418  * Each time when a new block allocation is need, first try to allocate from
1419  * its own reservation.  If it does not have a reservation window, instead of
1420  * looking for a free bit on bitmap first, then look up the reservation list to
1421  * see if it is inside somebody else's reservation window, we try to allocate a
1422  * reservation window for it starting from the goal first. Then do the block
1423  * allocation within the reservation window.
1424  *
1425  * This will avoid keeping on searching the reservation list again and
1426  * again when somebody is looking for a free block (without
1427  * reservation), and there are lots of free blocks, but they are all
1428  * being reserved.
1429  *
1430  * We use a red-black tree for the per-filesystem reservation list.
1431  *
1432  */
1433 static ext4_grpblk_t
1434 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1435 			ext4_group_t group, struct buffer_head *bitmap_bh,
1436 			ext4_grpblk_t grp_goal,
1437 			struct ext4_reserve_window_node * my_rsv,
1438 			unsigned long *count, int *errp)
1439 {
1440 	ext4_fsblk_t group_first_block, group_last_block;
1441 	ext4_grpblk_t ret = 0;
1442 	int fatal;
1443 	unsigned long num = *count;
1444 
1445 	*errp = 0;
1446 
1447 	/*
1448 	 * Make sure we use undo access for the bitmap, because it is critical
1449 	 * that we do the frozen_data COW on bitmap buffers in all cases even
1450 	 * if the buffer is in BJ_Forget state in the committing transaction.
1451 	 */
1452 	BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1453 	fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1454 	if (fatal) {
1455 		*errp = fatal;
1456 		return -1;
1457 	}
1458 
1459 	/*
1460 	 * we don't deal with reservation when
1461 	 * filesystem is mounted without reservation
1462 	 * or the file is not a regular file
1463 	 * or last attempt to allocate a block with reservation turned on failed
1464 	 */
1465 	if (my_rsv == NULL ) {
1466 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1467 						grp_goal, count, NULL);
1468 		goto out;
1469 	}
1470 	/*
1471 	 * grp_goal is a group relative block number (if there is a goal)
1472 	 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1473 	 * first block is a filesystem wide block number
1474 	 * first block is the block number of the first block in this group
1475 	 */
1476 	group_first_block = ext4_group_first_block_no(sb, group);
1477 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1478 
1479 	/*
1480 	 * Basically we will allocate a new block from inode's reservation
1481 	 * window.
1482 	 *
1483 	 * We need to allocate a new reservation window, if:
1484 	 * a) inode does not have a reservation window; or
1485 	 * b) last attempt to allocate a block from existing reservation
1486 	 *    failed; or
1487 	 * c) we come here with a goal and with a reservation window
1488 	 *
1489 	 * We do not need to allocate a new reservation window if we come here
1490 	 * at the beginning with a goal and the goal is inside the window, or
1491 	 * we don't have a goal but already have a reservation window.
1492 	 * then we could go to allocate from the reservation window directly.
1493 	 */
1494 	while (1) {
1495 		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1496 			!goal_in_my_reservation(&my_rsv->rsv_window,
1497 						grp_goal, group, sb)) {
1498 			if (my_rsv->rsv_goal_size < *count)
1499 				my_rsv->rsv_goal_size = *count;
1500 			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1501 							group, bitmap_bh);
1502 			if (ret < 0)
1503 				break;			/* failed */
1504 
1505 			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1506 							grp_goal, group, sb))
1507 				grp_goal = -1;
1508 		} else if (grp_goal >= 0) {
1509 			int curr = my_rsv->rsv_end -
1510 					(grp_goal + group_first_block) + 1;
1511 
1512 			if (curr < *count)
1513 				try_to_extend_reservation(my_rsv, sb,
1514 							*count - curr);
1515 		}
1516 
1517 		if ((my_rsv->rsv_start > group_last_block) ||
1518 				(my_rsv->rsv_end < group_first_block)) {
1519 			rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1520 			BUG();
1521 		}
1522 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1523 					   grp_goal, &num, &my_rsv->rsv_window);
1524 		if (ret >= 0) {
1525 			my_rsv->rsv_alloc_hit += num;
1526 			*count = num;
1527 			break;				/* succeed */
1528 		}
1529 		num = *count;
1530 	}
1531 out:
1532 	if (ret >= 0) {
1533 		BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1534 					"bitmap block");
1535 		fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1536 		if (fatal) {
1537 			*errp = fatal;
1538 			return -1;
1539 		}
1540 		return ret;
1541 	}
1542 
1543 	BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1544 	ext4_journal_release_buffer(handle, bitmap_bh);
1545 	return ret;
1546 }
1547 
1548 /**
1549  * ext4_has_free_blocks()
1550  * @sbi:		in-core super block structure.
1551  *
1552  * Check if filesystem has at least 1 free block available for allocation.
1553  */
1554 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1555 {
1556 	ext4_fsblk_t free_blocks, root_blocks;
1557 
1558 	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1559 	root_blocks = ext4_r_blocks_count(sbi->s_es);
1560 	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1561 		sbi->s_resuid != current->fsuid &&
1562 		(sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1563 		return 0;
1564 	}
1565 	return 1;
1566 }
1567 
1568 /**
1569  * ext4_should_retry_alloc()
1570  * @sb:			super block
1571  * @retries		number of attemps has been made
1572  *
1573  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1574  * it is profitable to retry the operation, this function will wait
1575  * for the current or commiting transaction to complete, and then
1576  * return TRUE.
1577  *
1578  * if the total number of retries exceed three times, return FALSE.
1579  */
1580 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1581 {
1582 	if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1583 		return 0;
1584 
1585 	jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1586 
1587 	return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1588 }
1589 
1590 /**
1591  * ext4_new_blocks_old() -- core block(s) allocation function
1592  * @handle:		handle to this transaction
1593  * @inode:		file inode
1594  * @goal:		given target block(filesystem wide)
1595  * @count:		target number of blocks to allocate
1596  * @errp:		error code
1597  *
1598  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1599  * allocate block(s) from the block group contains the goal block first. If that
1600  * fails, it will try to allocate block(s) from other block groups without
1601  * any specific goal block.
1602  *
1603  */
1604 ext4_fsblk_t ext4_new_blocks_old(handle_t *handle, struct inode *inode,
1605 			ext4_fsblk_t goal, unsigned long *count, int *errp)
1606 {
1607 	struct buffer_head *bitmap_bh = NULL;
1608 	struct buffer_head *gdp_bh;
1609 	ext4_group_t group_no;
1610 	ext4_group_t goal_group;
1611 	ext4_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1612 	ext4_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1613 	ext4_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1614 	ext4_group_t bgi;			/* blockgroup iteration index */
1615 	int fatal = 0, err;
1616 	int performed_allocation = 0;
1617 	ext4_grpblk_t free_blocks;	/* number of free blocks in a group */
1618 	struct super_block *sb;
1619 	struct ext4_group_desc *gdp;
1620 	struct ext4_super_block *es;
1621 	struct ext4_sb_info *sbi;
1622 	struct ext4_reserve_window_node *my_rsv = NULL;
1623 	struct ext4_block_alloc_info *block_i;
1624 	unsigned short windowsz = 0;
1625 	ext4_group_t ngroups;
1626 	unsigned long num = *count;
1627 
1628 	*errp = -ENOSPC;
1629 	sb = inode->i_sb;
1630 	if (!sb) {
1631 		printk("ext4_new_block: nonexistent device");
1632 		return 0;
1633 	}
1634 
1635 	/*
1636 	 * Check quota for allocation of this block.
1637 	 */
1638 	if (DQUOT_ALLOC_BLOCK(inode, num)) {
1639 		*errp = -EDQUOT;
1640 		return 0;
1641 	}
1642 
1643 	sbi = EXT4_SB(sb);
1644 	es = EXT4_SB(sb)->s_es;
1645 	ext4_debug("goal=%llu.\n", goal);
1646 	/*
1647 	 * Allocate a block from reservation only when
1648 	 * filesystem is mounted with reservation(default,-o reservation), and
1649 	 * it's a regular file, and
1650 	 * the desired window size is greater than 0 (One could use ioctl
1651 	 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1652 	 * reservation on that particular file)
1653 	 */
1654 	block_i = EXT4_I(inode)->i_block_alloc_info;
1655 	if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1656 		my_rsv = &block_i->rsv_window_node;
1657 
1658 	if (!ext4_has_free_blocks(sbi)) {
1659 		*errp = -ENOSPC;
1660 		goto out;
1661 	}
1662 
1663 	/*
1664 	 * First, test whether the goal block is free.
1665 	 */
1666 	if (goal < le32_to_cpu(es->s_first_data_block) ||
1667 	    goal >= ext4_blocks_count(es))
1668 		goal = le32_to_cpu(es->s_first_data_block);
1669 	ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1670 	goal_group = group_no;
1671 retry_alloc:
1672 	gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1673 	if (!gdp)
1674 		goto io_error;
1675 
1676 	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1677 	/*
1678 	 * if there is not enough free blocks to make a new resevation
1679 	 * turn off reservation for this allocation
1680 	 */
1681 	if (my_rsv && (free_blocks < windowsz)
1682 		&& (rsv_is_empty(&my_rsv->rsv_window)))
1683 		my_rsv = NULL;
1684 
1685 	if (free_blocks > 0) {
1686 		bitmap_bh = read_block_bitmap(sb, group_no);
1687 		if (!bitmap_bh)
1688 			goto io_error;
1689 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1690 					group_no, bitmap_bh, grp_target_blk,
1691 					my_rsv,	&num, &fatal);
1692 		if (fatal)
1693 			goto out;
1694 		if (grp_alloc_blk >= 0)
1695 			goto allocated;
1696 	}
1697 
1698 	ngroups = EXT4_SB(sb)->s_groups_count;
1699 	smp_rmb();
1700 
1701 	/*
1702 	 * Now search the rest of the groups.  We assume that
1703 	 * group_no and gdp correctly point to the last group visited.
1704 	 */
1705 	for (bgi = 0; bgi < ngroups; bgi++) {
1706 		group_no++;
1707 		if (group_no >= ngroups)
1708 			group_no = 0;
1709 		gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1710 		if (!gdp)
1711 			goto io_error;
1712 		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1713 		/*
1714 		 * skip this group if the number of
1715 		 * free blocks is less than half of the reservation
1716 		 * window size.
1717 		 */
1718 		if (free_blocks <= (windowsz/2))
1719 			continue;
1720 
1721 		brelse(bitmap_bh);
1722 		bitmap_bh = read_block_bitmap(sb, group_no);
1723 		if (!bitmap_bh)
1724 			goto io_error;
1725 		/*
1726 		 * try to allocate block(s) from this group, without a goal(-1).
1727 		 */
1728 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1729 					group_no, bitmap_bh, -1, my_rsv,
1730 					&num, &fatal);
1731 		if (fatal)
1732 			goto out;
1733 		if (grp_alloc_blk >= 0)
1734 			goto allocated;
1735 	}
1736 	/*
1737 	 * We may end up a bogus ealier ENOSPC error due to
1738 	 * filesystem is "full" of reservations, but
1739 	 * there maybe indeed free blocks avaliable on disk
1740 	 * In this case, we just forget about the reservations
1741 	 * just do block allocation as without reservations.
1742 	 */
1743 	if (my_rsv) {
1744 		my_rsv = NULL;
1745 		windowsz = 0;
1746 		group_no = goal_group;
1747 		goto retry_alloc;
1748 	}
1749 	/* No space left on the device */
1750 	*errp = -ENOSPC;
1751 	goto out;
1752 
1753 allocated:
1754 
1755 	ext4_debug("using block group %lu(%d)\n",
1756 			group_no, gdp->bg_free_blocks_count);
1757 
1758 	BUFFER_TRACE(gdp_bh, "get_write_access");
1759 	fatal = ext4_journal_get_write_access(handle, gdp_bh);
1760 	if (fatal)
1761 		goto out;
1762 
1763 	ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1764 
1765 	if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1766 	    in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1767 	    in_range(ret_block, ext4_inode_table(sb, gdp),
1768 		     EXT4_SB(sb)->s_itb_per_group) ||
1769 	    in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1770 		     EXT4_SB(sb)->s_itb_per_group)) {
1771 		ext4_error(sb, "ext4_new_block",
1772 			    "Allocating block in system zone - "
1773 			    "blocks from %llu, length %lu",
1774 			     ret_block, num);
1775 		goto out;
1776 	}
1777 
1778 	performed_allocation = 1;
1779 
1780 #ifdef CONFIG_JBD2_DEBUG
1781 	{
1782 		struct buffer_head *debug_bh;
1783 
1784 		/* Record bitmap buffer state in the newly allocated block */
1785 		debug_bh = sb_find_get_block(sb, ret_block);
1786 		if (debug_bh) {
1787 			BUFFER_TRACE(debug_bh, "state when allocated");
1788 			BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1789 			brelse(debug_bh);
1790 		}
1791 	}
1792 	jbd_lock_bh_state(bitmap_bh);
1793 	spin_lock(sb_bgl_lock(sbi, group_no));
1794 	if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1795 		int i;
1796 
1797 		for (i = 0; i < num; i++) {
1798 			if (ext4_test_bit(grp_alloc_blk+i,
1799 					bh2jh(bitmap_bh)->b_committed_data)) {
1800 				printk("%s: block was unexpectedly set in "
1801 					"b_committed_data\n", __FUNCTION__);
1802 			}
1803 		}
1804 	}
1805 	ext4_debug("found bit %d\n", grp_alloc_blk);
1806 	spin_unlock(sb_bgl_lock(sbi, group_no));
1807 	jbd_unlock_bh_state(bitmap_bh);
1808 #endif
1809 
1810 	if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1811 		ext4_error(sb, "ext4_new_block",
1812 			    "block(%llu) >= blocks count(%llu) - "
1813 			    "block_group = %lu, es == %p ", ret_block,
1814 			ext4_blocks_count(es), group_no, es);
1815 		goto out;
1816 	}
1817 
1818 	/*
1819 	 * It is up to the caller to add the new buffer to a journal
1820 	 * list of some description.  We don't know in advance whether
1821 	 * the caller wants to use it as metadata or data.
1822 	 */
1823 	spin_lock(sb_bgl_lock(sbi, group_no));
1824 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1825 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1826 	gdp->bg_free_blocks_count =
1827 			cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1828 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1829 	spin_unlock(sb_bgl_lock(sbi, group_no));
1830 	percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1831 
1832 	BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1833 	err = ext4_journal_dirty_metadata(handle, gdp_bh);
1834 	if (!fatal)
1835 		fatal = err;
1836 
1837 	sb->s_dirt = 1;
1838 	if (fatal)
1839 		goto out;
1840 
1841 	*errp = 0;
1842 	brelse(bitmap_bh);
1843 	DQUOT_FREE_BLOCK(inode, *count-num);
1844 	*count = num;
1845 	return ret_block;
1846 
1847 io_error:
1848 	*errp = -EIO;
1849 out:
1850 	if (fatal) {
1851 		*errp = fatal;
1852 		ext4_std_error(sb, fatal);
1853 	}
1854 	/*
1855 	 * Undo the block allocation
1856 	 */
1857 	if (!performed_allocation)
1858 		DQUOT_FREE_BLOCK(inode, *count);
1859 	brelse(bitmap_bh);
1860 	return 0;
1861 }
1862 
1863 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1864 		ext4_fsblk_t goal, int *errp)
1865 {
1866 	struct ext4_allocation_request ar;
1867 	ext4_fsblk_t ret;
1868 
1869 	if (!test_opt(inode->i_sb, MBALLOC)) {
1870 		unsigned long count = 1;
1871 		ret = ext4_new_blocks_old(handle, inode, goal, &count, errp);
1872 		return ret;
1873 	}
1874 
1875 	memset(&ar, 0, sizeof(ar));
1876 	ar.inode = inode;
1877 	ar.goal = goal;
1878 	ar.len = 1;
1879 	ret = ext4_mb_new_blocks(handle, &ar, errp);
1880 	return ret;
1881 }
1882 
1883 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1884 		ext4_fsblk_t goal, unsigned long *count, int *errp)
1885 {
1886 	struct ext4_allocation_request ar;
1887 	ext4_fsblk_t ret;
1888 
1889 	if (!test_opt(inode->i_sb, MBALLOC)) {
1890 		ret = ext4_new_blocks_old(handle, inode, goal, count, errp);
1891 		return ret;
1892 	}
1893 
1894 	memset(&ar, 0, sizeof(ar));
1895 	ar.inode = inode;
1896 	ar.goal = goal;
1897 	ar.len = *count;
1898 	ret = ext4_mb_new_blocks(handle, &ar, errp);
1899 	*count = ar.len;
1900 	return ret;
1901 }
1902 
1903 
1904 /**
1905  * ext4_count_free_blocks() -- count filesystem free blocks
1906  * @sb:		superblock
1907  *
1908  * Adds up the number of free blocks from each block group.
1909  */
1910 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1911 {
1912 	ext4_fsblk_t desc_count;
1913 	struct ext4_group_desc *gdp;
1914 	ext4_group_t i;
1915 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
1916 #ifdef EXT4FS_DEBUG
1917 	struct ext4_super_block *es;
1918 	ext4_fsblk_t bitmap_count;
1919 	unsigned long x;
1920 	struct buffer_head *bitmap_bh = NULL;
1921 
1922 	es = EXT4_SB(sb)->s_es;
1923 	desc_count = 0;
1924 	bitmap_count = 0;
1925 	gdp = NULL;
1926 
1927 	smp_rmb();
1928 	for (i = 0; i < ngroups; i++) {
1929 		gdp = ext4_get_group_desc(sb, i, NULL);
1930 		if (!gdp)
1931 			continue;
1932 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1933 		brelse(bitmap_bh);
1934 		bitmap_bh = read_block_bitmap(sb, i);
1935 		if (bitmap_bh == NULL)
1936 			continue;
1937 
1938 		x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1939 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1940 			i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1941 		bitmap_count += x;
1942 	}
1943 	brelse(bitmap_bh);
1944 	printk("ext4_count_free_blocks: stored = %llu"
1945 		", computed = %llu, %llu\n",
1946 		ext4_free_blocks_count(es),
1947 		desc_count, bitmap_count);
1948 	return bitmap_count;
1949 #else
1950 	desc_count = 0;
1951 	smp_rmb();
1952 	for (i = 0; i < ngroups; i++) {
1953 		gdp = ext4_get_group_desc(sb, i, NULL);
1954 		if (!gdp)
1955 			continue;
1956 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1957 	}
1958 
1959 	return desc_count;
1960 #endif
1961 }
1962 
1963 static inline int test_root(ext4_group_t a, int b)
1964 {
1965 	int num = b;
1966 
1967 	while (a > num)
1968 		num *= b;
1969 	return num == a;
1970 }
1971 
1972 static int ext4_group_sparse(ext4_group_t group)
1973 {
1974 	if (group <= 1)
1975 		return 1;
1976 	if (!(group & 1))
1977 		return 0;
1978 	return (test_root(group, 7) || test_root(group, 5) ||
1979 		test_root(group, 3));
1980 }
1981 
1982 /**
1983  *	ext4_bg_has_super - number of blocks used by the superblock in group
1984  *	@sb: superblock for filesystem
1985  *	@group: group number to check
1986  *
1987  *	Return the number of blocks used by the superblock (primary or backup)
1988  *	in this group.  Currently this will be only 0 or 1.
1989  */
1990 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
1991 {
1992 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1993 				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1994 			!ext4_group_sparse(group))
1995 		return 0;
1996 	return 1;
1997 }
1998 
1999 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2000 					ext4_group_t group)
2001 {
2002 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2003 	ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2004 	ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2005 
2006 	if (group == first || group == first + 1 || group == last)
2007 		return 1;
2008 	return 0;
2009 }
2010 
2011 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2012 					ext4_group_t group)
2013 {
2014 	return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2015 }
2016 
2017 /**
2018  *	ext4_bg_num_gdb - number of blocks used by the group table in group
2019  *	@sb: superblock for filesystem
2020  *	@group: group number to check
2021  *
2022  *	Return the number of blocks used by the group descriptor table
2023  *	(primary or backup) in this group.  In the future there may be a
2024  *	different number of descriptor blocks in each group.
2025  */
2026 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2027 {
2028 	unsigned long first_meta_bg =
2029 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2030 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2031 
2032 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2033 			metagroup < first_meta_bg)
2034 		return ext4_bg_num_gdb_nometa(sb,group);
2035 
2036 	return ext4_bg_num_gdb_meta(sb,group);
2037 
2038 }
2039