1 /* 2 * linux/fs/ext4/balloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 10 * Big-endian to little-endian byte-swapping/bitmaps by 11 * David S. Miller (davem@caip.rutgers.edu), 1995 12 */ 13 14 #include <linux/time.h> 15 #include <linux/capability.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/ext4_fs.h> 19 #include <linux/ext4_jbd2.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 23 /* 24 * balloc.c contains the blocks allocation and deallocation routines 25 */ 26 27 /* 28 * Calculate the block group number and offset, given a block number 29 */ 30 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr, 31 unsigned long *blockgrpp, ext4_grpblk_t *offsetp) 32 { 33 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 34 ext4_grpblk_t offset; 35 36 blocknr = blocknr - le32_to_cpu(es->s_first_data_block); 37 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb)); 38 if (offsetp) 39 *offsetp = offset; 40 if (blockgrpp) 41 *blockgrpp = blocknr; 42 43 } 44 45 /* 46 * The free blocks are managed by bitmaps. A file system contains several 47 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 48 * block for inodes, N blocks for the inode table and data blocks. 49 * 50 * The file system contains group descriptors which are located after the 51 * super block. Each descriptor contains the number of the bitmap block and 52 * the free blocks count in the block. The descriptors are loaded in memory 53 * when a file system is mounted (see ext4_fill_super). 54 */ 55 56 57 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) 58 59 /** 60 * ext4_get_group_desc() -- load group descriptor from disk 61 * @sb: super block 62 * @block_group: given block group 63 * @bh: pointer to the buffer head to store the block 64 * group descriptor 65 */ 66 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb, 67 unsigned int block_group, 68 struct buffer_head ** bh) 69 { 70 unsigned long group_desc; 71 unsigned long offset; 72 struct ext4_group_desc * desc; 73 struct ext4_sb_info *sbi = EXT4_SB(sb); 74 75 if (block_group >= sbi->s_groups_count) { 76 ext4_error (sb, "ext4_get_group_desc", 77 "block_group >= groups_count - " 78 "block_group = %d, groups_count = %lu", 79 block_group, sbi->s_groups_count); 80 81 return NULL; 82 } 83 smp_rmb(); 84 85 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb); 86 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1); 87 if (!sbi->s_group_desc[group_desc]) { 88 ext4_error (sb, "ext4_get_group_desc", 89 "Group descriptor not loaded - " 90 "block_group = %d, group_desc = %lu, desc = %lu", 91 block_group, group_desc, offset); 92 return NULL; 93 } 94 95 desc = (struct ext4_group_desc *)( 96 (__u8 *)sbi->s_group_desc[group_desc]->b_data + 97 offset * EXT4_DESC_SIZE(sb)); 98 if (bh) 99 *bh = sbi->s_group_desc[group_desc]; 100 return desc; 101 } 102 103 /** 104 * read_block_bitmap() 105 * @sb: super block 106 * @block_group: given block group 107 * 108 * Read the bitmap for a given block_group, reading into the specified 109 * slot in the superblock's bitmap cache. 110 * 111 * Return buffer_head on success or NULL in case of failure. 112 */ 113 static struct buffer_head * 114 read_block_bitmap(struct super_block *sb, unsigned int block_group) 115 { 116 struct ext4_group_desc * desc; 117 struct buffer_head * bh = NULL; 118 119 desc = ext4_get_group_desc (sb, block_group, NULL); 120 if (!desc) 121 goto error_out; 122 bh = sb_bread(sb, ext4_block_bitmap(sb, desc)); 123 if (!bh) 124 ext4_error (sb, "read_block_bitmap", 125 "Cannot read block bitmap - " 126 "block_group = %d, block_bitmap = %llu", 127 block_group, 128 ext4_block_bitmap(sb, desc)); 129 error_out: 130 return bh; 131 } 132 /* 133 * The reservation window structure operations 134 * -------------------------------------------- 135 * Operations include: 136 * dump, find, add, remove, is_empty, find_next_reservable_window, etc. 137 * 138 * We use a red-black tree to represent per-filesystem reservation 139 * windows. 140 * 141 */ 142 143 /** 144 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map 145 * @rb_root: root of per-filesystem reservation rb tree 146 * @verbose: verbose mode 147 * @fn: function which wishes to dump the reservation map 148 * 149 * If verbose is turned on, it will print the whole block reservation 150 * windows(start, end). Otherwise, it will only print out the "bad" windows, 151 * those windows that overlap with their immediate neighbors. 152 */ 153 #if 1 154 static void __rsv_window_dump(struct rb_root *root, int verbose, 155 const char *fn) 156 { 157 struct rb_node *n; 158 struct ext4_reserve_window_node *rsv, *prev; 159 int bad; 160 161 restart: 162 n = rb_first(root); 163 bad = 0; 164 prev = NULL; 165 166 printk("Block Allocation Reservation Windows Map (%s):\n", fn); 167 while (n) { 168 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node); 169 if (verbose) 170 printk("reservation window 0x%p " 171 "start: %llu, end: %llu\n", 172 rsv, rsv->rsv_start, rsv->rsv_end); 173 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { 174 printk("Bad reservation %p (start >= end)\n", 175 rsv); 176 bad = 1; 177 } 178 if (prev && prev->rsv_end >= rsv->rsv_start) { 179 printk("Bad reservation %p (prev->end >= start)\n", 180 rsv); 181 bad = 1; 182 } 183 if (bad) { 184 if (!verbose) { 185 printk("Restarting reservation walk in verbose mode\n"); 186 verbose = 1; 187 goto restart; 188 } 189 } 190 n = rb_next(n); 191 prev = rsv; 192 } 193 printk("Window map complete.\n"); 194 if (bad) 195 BUG(); 196 } 197 #define rsv_window_dump(root, verbose) \ 198 __rsv_window_dump((root), (verbose), __FUNCTION__) 199 #else 200 #define rsv_window_dump(root, verbose) do {} while (0) 201 #endif 202 203 /** 204 * goal_in_my_reservation() 205 * @rsv: inode's reservation window 206 * @grp_goal: given goal block relative to the allocation block group 207 * @group: the current allocation block group 208 * @sb: filesystem super block 209 * 210 * Test if the given goal block (group relative) is within the file's 211 * own block reservation window range. 212 * 213 * If the reservation window is outside the goal allocation group, return 0; 214 * grp_goal (given goal block) could be -1, which means no specific 215 * goal block. In this case, always return 1. 216 * If the goal block is within the reservation window, return 1; 217 * otherwise, return 0; 218 */ 219 static int 220 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal, 221 unsigned int group, struct super_block * sb) 222 { 223 ext4_fsblk_t group_first_block, group_last_block; 224 225 group_first_block = ext4_group_first_block_no(sb, group); 226 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); 227 228 if ((rsv->_rsv_start > group_last_block) || 229 (rsv->_rsv_end < group_first_block)) 230 return 0; 231 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start) 232 || (grp_goal + group_first_block > rsv->_rsv_end))) 233 return 0; 234 return 1; 235 } 236 237 /** 238 * search_reserve_window() 239 * @rb_root: root of reservation tree 240 * @goal: target allocation block 241 * 242 * Find the reserved window which includes the goal, or the previous one 243 * if the goal is not in any window. 244 * Returns NULL if there are no windows or if all windows start after the goal. 245 */ 246 static struct ext4_reserve_window_node * 247 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal) 248 { 249 struct rb_node *n = root->rb_node; 250 struct ext4_reserve_window_node *rsv; 251 252 if (!n) 253 return NULL; 254 255 do { 256 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node); 257 258 if (goal < rsv->rsv_start) 259 n = n->rb_left; 260 else if (goal > rsv->rsv_end) 261 n = n->rb_right; 262 else 263 return rsv; 264 } while (n); 265 /* 266 * We've fallen off the end of the tree: the goal wasn't inside 267 * any particular node. OK, the previous node must be to one 268 * side of the interval containing the goal. If it's the RHS, 269 * we need to back up one. 270 */ 271 if (rsv->rsv_start > goal) { 272 n = rb_prev(&rsv->rsv_node); 273 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node); 274 } 275 return rsv; 276 } 277 278 /** 279 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree. 280 * @sb: super block 281 * @rsv: reservation window to add 282 * 283 * Must be called with rsv_lock hold. 284 */ 285 void ext4_rsv_window_add(struct super_block *sb, 286 struct ext4_reserve_window_node *rsv) 287 { 288 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root; 289 struct rb_node *node = &rsv->rsv_node; 290 ext4_fsblk_t start = rsv->rsv_start; 291 292 struct rb_node ** p = &root->rb_node; 293 struct rb_node * parent = NULL; 294 struct ext4_reserve_window_node *this; 295 296 while (*p) 297 { 298 parent = *p; 299 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node); 300 301 if (start < this->rsv_start) 302 p = &(*p)->rb_left; 303 else if (start > this->rsv_end) 304 p = &(*p)->rb_right; 305 else { 306 rsv_window_dump(root, 1); 307 BUG(); 308 } 309 } 310 311 rb_link_node(node, parent, p); 312 rb_insert_color(node, root); 313 } 314 315 /** 316 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree 317 * @sb: super block 318 * @rsv: reservation window to remove 319 * 320 * Mark the block reservation window as not allocated, and unlink it 321 * from the filesystem reservation window rb tree. Must be called with 322 * rsv_lock hold. 323 */ 324 static void rsv_window_remove(struct super_block *sb, 325 struct ext4_reserve_window_node *rsv) 326 { 327 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 328 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 329 rsv->rsv_alloc_hit = 0; 330 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root); 331 } 332 333 /* 334 * rsv_is_empty() -- Check if the reservation window is allocated. 335 * @rsv: given reservation window to check 336 * 337 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED. 338 */ 339 static inline int rsv_is_empty(struct ext4_reserve_window *rsv) 340 { 341 /* a valid reservation end block could not be 0 */ 342 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 343 } 344 345 /** 346 * ext4_init_block_alloc_info() 347 * @inode: file inode structure 348 * 349 * Allocate and initialize the reservation window structure, and 350 * link the window to the ext4 inode structure at last 351 * 352 * The reservation window structure is only dynamically allocated 353 * and linked to ext4 inode the first time the open file 354 * needs a new block. So, before every ext4_new_block(s) call, for 355 * regular files, we should check whether the reservation window 356 * structure exists or not. In the latter case, this function is called. 357 * Fail to do so will result in block reservation being turned off for that 358 * open file. 359 * 360 * This function is called from ext4_get_blocks_handle(), also called 361 * when setting the reservation window size through ioctl before the file 362 * is open for write (needs block allocation). 363 * 364 * Needs truncate_mutex protection prior to call this function. 365 */ 366 void ext4_init_block_alloc_info(struct inode *inode) 367 { 368 struct ext4_inode_info *ei = EXT4_I(inode); 369 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info; 370 struct super_block *sb = inode->i_sb; 371 372 block_i = kmalloc(sizeof(*block_i), GFP_NOFS); 373 if (block_i) { 374 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node; 375 376 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 377 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED; 378 379 /* 380 * if filesystem is mounted with NORESERVATION, the goal 381 * reservation window size is set to zero to indicate 382 * block reservation is off 383 */ 384 if (!test_opt(sb, RESERVATION)) 385 rsv->rsv_goal_size = 0; 386 else 387 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS; 388 rsv->rsv_alloc_hit = 0; 389 block_i->last_alloc_logical_block = 0; 390 block_i->last_alloc_physical_block = 0; 391 } 392 ei->i_block_alloc_info = block_i; 393 } 394 395 /** 396 * ext4_discard_reservation() 397 * @inode: inode 398 * 399 * Discard(free) block reservation window on last file close, or truncate 400 * or at last iput(). 401 * 402 * It is being called in three cases: 403 * ext4_release_file(): last writer close the file 404 * ext4_clear_inode(): last iput(), when nobody link to this file. 405 * ext4_truncate(): when the block indirect map is about to change. 406 * 407 */ 408 void ext4_discard_reservation(struct inode *inode) 409 { 410 struct ext4_inode_info *ei = EXT4_I(inode); 411 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info; 412 struct ext4_reserve_window_node *rsv; 413 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock; 414 415 if (!block_i) 416 return; 417 418 rsv = &block_i->rsv_window_node; 419 if (!rsv_is_empty(&rsv->rsv_window)) { 420 spin_lock(rsv_lock); 421 if (!rsv_is_empty(&rsv->rsv_window)) 422 rsv_window_remove(inode->i_sb, rsv); 423 spin_unlock(rsv_lock); 424 } 425 } 426 427 /** 428 * ext4_free_blocks_sb() -- Free given blocks and update quota 429 * @handle: handle to this transaction 430 * @sb: super block 431 * @block: start physcial block to free 432 * @count: number of blocks to free 433 * @pdquot_freed_blocks: pointer to quota 434 */ 435 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb, 436 ext4_fsblk_t block, unsigned long count, 437 unsigned long *pdquot_freed_blocks) 438 { 439 struct buffer_head *bitmap_bh = NULL; 440 struct buffer_head *gd_bh; 441 unsigned long block_group; 442 ext4_grpblk_t bit; 443 unsigned long i; 444 unsigned long overflow; 445 struct ext4_group_desc * desc; 446 struct ext4_super_block * es; 447 struct ext4_sb_info *sbi; 448 int err = 0, ret; 449 ext4_grpblk_t group_freed; 450 451 *pdquot_freed_blocks = 0; 452 sbi = EXT4_SB(sb); 453 es = sbi->s_es; 454 if (block < le32_to_cpu(es->s_first_data_block) || 455 block + count < block || 456 block + count > ext4_blocks_count(es)) { 457 ext4_error (sb, "ext4_free_blocks", 458 "Freeing blocks not in datazone - " 459 "block = %llu, count = %lu", block, count); 460 goto error_return; 461 } 462 463 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1); 464 465 do_more: 466 overflow = 0; 467 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 468 /* 469 * Check to see if we are freeing blocks across a group 470 * boundary. 471 */ 472 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 473 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); 474 count -= overflow; 475 } 476 brelse(bitmap_bh); 477 bitmap_bh = read_block_bitmap(sb, block_group); 478 if (!bitmap_bh) 479 goto error_return; 480 desc = ext4_get_group_desc (sb, block_group, &gd_bh); 481 if (!desc) 482 goto error_return; 483 484 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 485 in_range(ext4_inode_bitmap(sb, desc), block, count) || 486 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 487 in_range(block + count - 1, ext4_inode_table(sb, desc), 488 sbi->s_itb_per_group)) 489 ext4_error (sb, "ext4_free_blocks", 490 "Freeing blocks in system zones - " 491 "Block = %llu, count = %lu", 492 block, count); 493 494 /* 495 * We are about to start releasing blocks in the bitmap, 496 * so we need undo access. 497 */ 498 /* @@@ check errors */ 499 BUFFER_TRACE(bitmap_bh, "getting undo access"); 500 err = ext4_journal_get_undo_access(handle, bitmap_bh); 501 if (err) 502 goto error_return; 503 504 /* 505 * We are about to modify some metadata. Call the journal APIs 506 * to unshare ->b_data if a currently-committing transaction is 507 * using it 508 */ 509 BUFFER_TRACE(gd_bh, "get_write_access"); 510 err = ext4_journal_get_write_access(handle, gd_bh); 511 if (err) 512 goto error_return; 513 514 jbd_lock_bh_state(bitmap_bh); 515 516 for (i = 0, group_freed = 0; i < count; i++) { 517 /* 518 * An HJ special. This is expensive... 519 */ 520 #ifdef CONFIG_JBD_DEBUG 521 jbd_unlock_bh_state(bitmap_bh); 522 { 523 struct buffer_head *debug_bh; 524 debug_bh = sb_find_get_block(sb, block + i); 525 if (debug_bh) { 526 BUFFER_TRACE(debug_bh, "Deleted!"); 527 if (!bh2jh(bitmap_bh)->b_committed_data) 528 BUFFER_TRACE(debug_bh, 529 "No commited data in bitmap"); 530 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap"); 531 __brelse(debug_bh); 532 } 533 } 534 jbd_lock_bh_state(bitmap_bh); 535 #endif 536 if (need_resched()) { 537 jbd_unlock_bh_state(bitmap_bh); 538 cond_resched(); 539 jbd_lock_bh_state(bitmap_bh); 540 } 541 /* @@@ This prevents newly-allocated data from being 542 * freed and then reallocated within the same 543 * transaction. 544 * 545 * Ideally we would want to allow that to happen, but to 546 * do so requires making jbd2_journal_forget() capable of 547 * revoking the queued write of a data block, which 548 * implies blocking on the journal lock. *forget() 549 * cannot block due to truncate races. 550 * 551 * Eventually we can fix this by making jbd2_journal_forget() 552 * return a status indicating whether or not it was able 553 * to revoke the buffer. On successful revoke, it is 554 * safe not to set the allocation bit in the committed 555 * bitmap, because we know that there is no outstanding 556 * activity on the buffer any more and so it is safe to 557 * reallocate it. 558 */ 559 BUFFER_TRACE(bitmap_bh, "set in b_committed_data"); 560 J_ASSERT_BH(bitmap_bh, 561 bh2jh(bitmap_bh)->b_committed_data != NULL); 562 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i, 563 bh2jh(bitmap_bh)->b_committed_data); 564 565 /* 566 * We clear the bit in the bitmap after setting the committed 567 * data bit, because this is the reverse order to that which 568 * the allocator uses. 569 */ 570 BUFFER_TRACE(bitmap_bh, "clear bit"); 571 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group), 572 bit + i, bitmap_bh->b_data)) { 573 jbd_unlock_bh_state(bitmap_bh); 574 ext4_error(sb, __FUNCTION__, 575 "bit already cleared for block %llu", 576 (ext4_fsblk_t)(block + i)); 577 jbd_lock_bh_state(bitmap_bh); 578 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 579 } else { 580 group_freed++; 581 } 582 } 583 jbd_unlock_bh_state(bitmap_bh); 584 585 spin_lock(sb_bgl_lock(sbi, block_group)); 586 desc->bg_free_blocks_count = 587 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) + 588 group_freed); 589 spin_unlock(sb_bgl_lock(sbi, block_group)); 590 percpu_counter_mod(&sbi->s_freeblocks_counter, count); 591 592 /* We dirtied the bitmap block */ 593 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 594 err = ext4_journal_dirty_metadata(handle, bitmap_bh); 595 596 /* And the group descriptor block */ 597 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 598 ret = ext4_journal_dirty_metadata(handle, gd_bh); 599 if (!err) err = ret; 600 *pdquot_freed_blocks += group_freed; 601 602 if (overflow && !err) { 603 block += count; 604 count = overflow; 605 goto do_more; 606 } 607 sb->s_dirt = 1; 608 error_return: 609 brelse(bitmap_bh); 610 ext4_std_error(sb, err); 611 return; 612 } 613 614 /** 615 * ext4_free_blocks() -- Free given blocks and update quota 616 * @handle: handle for this transaction 617 * @inode: inode 618 * @block: start physical block to free 619 * @count: number of blocks to count 620 */ 621 void ext4_free_blocks(handle_t *handle, struct inode *inode, 622 ext4_fsblk_t block, unsigned long count) 623 { 624 struct super_block * sb; 625 unsigned long dquot_freed_blocks; 626 627 sb = inode->i_sb; 628 if (!sb) { 629 printk ("ext4_free_blocks: nonexistent device"); 630 return; 631 } 632 ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks); 633 if (dquot_freed_blocks) 634 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks); 635 return; 636 } 637 638 /** 639 * ext4_test_allocatable() 640 * @nr: given allocation block group 641 * @bh: bufferhead contains the bitmap of the given block group 642 * 643 * For ext4 allocations, we must not reuse any blocks which are 644 * allocated in the bitmap buffer's "last committed data" copy. This 645 * prevents deletes from freeing up the page for reuse until we have 646 * committed the delete transaction. 647 * 648 * If we didn't do this, then deleting something and reallocating it as 649 * data would allow the old block to be overwritten before the 650 * transaction committed (because we force data to disk before commit). 651 * This would lead to corruption if we crashed between overwriting the 652 * data and committing the delete. 653 * 654 * @@@ We may want to make this allocation behaviour conditional on 655 * data-writes at some point, and disable it for metadata allocations or 656 * sync-data inodes. 657 */ 658 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh) 659 { 660 int ret; 661 struct journal_head *jh = bh2jh(bh); 662 663 if (ext4_test_bit(nr, bh->b_data)) 664 return 0; 665 666 jbd_lock_bh_state(bh); 667 if (!jh->b_committed_data) 668 ret = 1; 669 else 670 ret = !ext4_test_bit(nr, jh->b_committed_data); 671 jbd_unlock_bh_state(bh); 672 return ret; 673 } 674 675 /** 676 * bitmap_search_next_usable_block() 677 * @start: the starting block (group relative) of the search 678 * @bh: bufferhead contains the block group bitmap 679 * @maxblocks: the ending block (group relative) of the reservation 680 * 681 * The bitmap search --- search forward alternately through the actual 682 * bitmap on disk and the last-committed copy in journal, until we find a 683 * bit free in both bitmaps. 684 */ 685 static ext4_grpblk_t 686 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh, 687 ext4_grpblk_t maxblocks) 688 { 689 ext4_grpblk_t next; 690 struct journal_head *jh = bh2jh(bh); 691 692 while (start < maxblocks) { 693 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start); 694 if (next >= maxblocks) 695 return -1; 696 if (ext4_test_allocatable(next, bh)) 697 return next; 698 jbd_lock_bh_state(bh); 699 if (jh->b_committed_data) 700 start = ext4_find_next_zero_bit(jh->b_committed_data, 701 maxblocks, next); 702 jbd_unlock_bh_state(bh); 703 } 704 return -1; 705 } 706 707 /** 708 * find_next_usable_block() 709 * @start: the starting block (group relative) to find next 710 * allocatable block in bitmap. 711 * @bh: bufferhead contains the block group bitmap 712 * @maxblocks: the ending block (group relative) for the search 713 * 714 * Find an allocatable block in a bitmap. We honor both the bitmap and 715 * its last-committed copy (if that exists), and perform the "most 716 * appropriate allocation" algorithm of looking for a free block near 717 * the initial goal; then for a free byte somewhere in the bitmap; then 718 * for any free bit in the bitmap. 719 */ 720 static ext4_grpblk_t 721 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh, 722 ext4_grpblk_t maxblocks) 723 { 724 ext4_grpblk_t here, next; 725 char *p, *r; 726 727 if (start > 0) { 728 /* 729 * The goal was occupied; search forward for a free 730 * block within the next XX blocks. 731 * 732 * end_goal is more or less random, but it has to be 733 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the 734 * next 64-bit boundary is simple.. 735 */ 736 ext4_grpblk_t end_goal = (start + 63) & ~63; 737 if (end_goal > maxblocks) 738 end_goal = maxblocks; 739 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start); 740 if (here < end_goal && ext4_test_allocatable(here, bh)) 741 return here; 742 ext4_debug("Bit not found near goal\n"); 743 } 744 745 here = start; 746 if (here < 0) 747 here = 0; 748 749 p = ((char *)bh->b_data) + (here >> 3); 750 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3)); 751 next = (r - ((char *)bh->b_data)) << 3; 752 753 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh)) 754 return next; 755 756 /* 757 * The bitmap search --- search forward alternately through the actual 758 * bitmap and the last-committed copy until we find a bit free in 759 * both 760 */ 761 here = bitmap_search_next_usable_block(here, bh, maxblocks); 762 return here; 763 } 764 765 /** 766 * claim_block() 767 * @block: the free block (group relative) to allocate 768 * @bh: the bufferhead containts the block group bitmap 769 * 770 * We think we can allocate this block in this bitmap. Try to set the bit. 771 * If that succeeds then check that nobody has allocated and then freed the 772 * block since we saw that is was not marked in b_committed_data. If it _was_ 773 * allocated and freed then clear the bit in the bitmap again and return 774 * zero (failure). 775 */ 776 static inline int 777 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh) 778 { 779 struct journal_head *jh = bh2jh(bh); 780 int ret; 781 782 if (ext4_set_bit_atomic(lock, block, bh->b_data)) 783 return 0; 784 jbd_lock_bh_state(bh); 785 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) { 786 ext4_clear_bit_atomic(lock, block, bh->b_data); 787 ret = 0; 788 } else { 789 ret = 1; 790 } 791 jbd_unlock_bh_state(bh); 792 return ret; 793 } 794 795 /** 796 * ext4_try_to_allocate() 797 * @sb: superblock 798 * @handle: handle to this transaction 799 * @group: given allocation block group 800 * @bitmap_bh: bufferhead holds the block bitmap 801 * @grp_goal: given target block within the group 802 * @count: target number of blocks to allocate 803 * @my_rsv: reservation window 804 * 805 * Attempt to allocate blocks within a give range. Set the range of allocation 806 * first, then find the first free bit(s) from the bitmap (within the range), 807 * and at last, allocate the blocks by claiming the found free bit as allocated. 808 * 809 * To set the range of this allocation: 810 * if there is a reservation window, only try to allocate block(s) from the 811 * file's own reservation window; 812 * Otherwise, the allocation range starts from the give goal block, ends at 813 * the block group's last block. 814 * 815 * If we failed to allocate the desired block then we may end up crossing to a 816 * new bitmap. In that case we must release write access to the old one via 817 * ext4_journal_release_buffer(), else we'll run out of credits. 818 */ 819 static ext4_grpblk_t 820 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group, 821 struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal, 822 unsigned long *count, struct ext4_reserve_window *my_rsv) 823 { 824 ext4_fsblk_t group_first_block; 825 ext4_grpblk_t start, end; 826 unsigned long num = 0; 827 828 /* we do allocation within the reservation window if we have a window */ 829 if (my_rsv) { 830 group_first_block = ext4_group_first_block_no(sb, group); 831 if (my_rsv->_rsv_start >= group_first_block) 832 start = my_rsv->_rsv_start - group_first_block; 833 else 834 /* reservation window cross group boundary */ 835 start = 0; 836 end = my_rsv->_rsv_end - group_first_block + 1; 837 if (end > EXT4_BLOCKS_PER_GROUP(sb)) 838 /* reservation window crosses group boundary */ 839 end = EXT4_BLOCKS_PER_GROUP(sb); 840 if ((start <= grp_goal) && (grp_goal < end)) 841 start = grp_goal; 842 else 843 grp_goal = -1; 844 } else { 845 if (grp_goal > 0) 846 start = grp_goal; 847 else 848 start = 0; 849 end = EXT4_BLOCKS_PER_GROUP(sb); 850 } 851 852 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb)); 853 854 repeat: 855 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) { 856 grp_goal = find_next_usable_block(start, bitmap_bh, end); 857 if (grp_goal < 0) 858 goto fail_access; 859 if (!my_rsv) { 860 int i; 861 862 for (i = 0; i < 7 && grp_goal > start && 863 ext4_test_allocatable(grp_goal - 1, 864 bitmap_bh); 865 i++, grp_goal--) 866 ; 867 } 868 } 869 start = grp_goal; 870 871 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group), 872 grp_goal, bitmap_bh)) { 873 /* 874 * The block was allocated by another thread, or it was 875 * allocated and then freed by another thread 876 */ 877 start++; 878 grp_goal++; 879 if (start >= end) 880 goto fail_access; 881 goto repeat; 882 } 883 num++; 884 grp_goal++; 885 while (num < *count && grp_goal < end 886 && ext4_test_allocatable(grp_goal, bitmap_bh) 887 && claim_block(sb_bgl_lock(EXT4_SB(sb), group), 888 grp_goal, bitmap_bh)) { 889 num++; 890 grp_goal++; 891 } 892 *count = num; 893 return grp_goal - num; 894 fail_access: 895 *count = num; 896 return -1; 897 } 898 899 /** 900 * find_next_reservable_window(): 901 * find a reservable space within the given range. 902 * It does not allocate the reservation window for now: 903 * alloc_new_reservation() will do the work later. 904 * 905 * @search_head: the head of the searching list; 906 * This is not necessarily the list head of the whole filesystem 907 * 908 * We have both head and start_block to assist the search 909 * for the reservable space. The list starts from head, 910 * but we will shift to the place where start_block is, 911 * then start from there, when looking for a reservable space. 912 * 913 * @size: the target new reservation window size 914 * 915 * @group_first_block: the first block we consider to start 916 * the real search from 917 * 918 * @last_block: 919 * the maximum block number that our goal reservable space 920 * could start from. This is normally the last block in this 921 * group. The search will end when we found the start of next 922 * possible reservable space is out of this boundary. 923 * This could handle the cross boundary reservation window 924 * request. 925 * 926 * basically we search from the given range, rather than the whole 927 * reservation double linked list, (start_block, last_block) 928 * to find a free region that is of my size and has not 929 * been reserved. 930 * 931 */ 932 static int find_next_reservable_window( 933 struct ext4_reserve_window_node *search_head, 934 struct ext4_reserve_window_node *my_rsv, 935 struct super_block * sb, 936 ext4_fsblk_t start_block, 937 ext4_fsblk_t last_block) 938 { 939 struct rb_node *next; 940 struct ext4_reserve_window_node *rsv, *prev; 941 ext4_fsblk_t cur; 942 int size = my_rsv->rsv_goal_size; 943 944 /* TODO: make the start of the reservation window byte-aligned */ 945 /* cur = *start_block & ~7;*/ 946 cur = start_block; 947 rsv = search_head; 948 if (!rsv) 949 return -1; 950 951 while (1) { 952 if (cur <= rsv->rsv_end) 953 cur = rsv->rsv_end + 1; 954 955 /* TODO? 956 * in the case we could not find a reservable space 957 * that is what is expected, during the re-search, we could 958 * remember what's the largest reservable space we could have 959 * and return that one. 960 * 961 * For now it will fail if we could not find the reservable 962 * space with expected-size (or more)... 963 */ 964 if (cur > last_block) 965 return -1; /* fail */ 966 967 prev = rsv; 968 next = rb_next(&rsv->rsv_node); 969 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node); 970 971 /* 972 * Reached the last reservation, we can just append to the 973 * previous one. 974 */ 975 if (!next) 976 break; 977 978 if (cur + size <= rsv->rsv_start) { 979 /* 980 * Found a reserveable space big enough. We could 981 * have a reservation across the group boundary here 982 */ 983 break; 984 } 985 } 986 /* 987 * we come here either : 988 * when we reach the end of the whole list, 989 * and there is empty reservable space after last entry in the list. 990 * append it to the end of the list. 991 * 992 * or we found one reservable space in the middle of the list, 993 * return the reservation window that we could append to. 994 * succeed. 995 */ 996 997 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window))) 998 rsv_window_remove(sb, my_rsv); 999 1000 /* 1001 * Let's book the whole avaliable window for now. We will check the 1002 * disk bitmap later and then, if there are free blocks then we adjust 1003 * the window size if it's larger than requested. 1004 * Otherwise, we will remove this node from the tree next time 1005 * call find_next_reservable_window. 1006 */ 1007 my_rsv->rsv_start = cur; 1008 my_rsv->rsv_end = cur + size - 1; 1009 my_rsv->rsv_alloc_hit = 0; 1010 1011 if (prev != my_rsv) 1012 ext4_rsv_window_add(sb, my_rsv); 1013 1014 return 0; 1015 } 1016 1017 /** 1018 * alloc_new_reservation()--allocate a new reservation window 1019 * 1020 * To make a new reservation, we search part of the filesystem 1021 * reservation list (the list that inside the group). We try to 1022 * allocate a new reservation window near the allocation goal, 1023 * or the beginning of the group, if there is no goal. 1024 * 1025 * We first find a reservable space after the goal, then from 1026 * there, we check the bitmap for the first free block after 1027 * it. If there is no free block until the end of group, then the 1028 * whole group is full, we failed. Otherwise, check if the free 1029 * block is inside the expected reservable space, if so, we 1030 * succeed. 1031 * If the first free block is outside the reservable space, then 1032 * start from the first free block, we search for next available 1033 * space, and go on. 1034 * 1035 * on succeed, a new reservation will be found and inserted into the list 1036 * It contains at least one free block, and it does not overlap with other 1037 * reservation windows. 1038 * 1039 * failed: we failed to find a reservation window in this group 1040 * 1041 * @rsv: the reservation 1042 * 1043 * @grp_goal: The goal (group-relative). It is where the search for a 1044 * free reservable space should start from. 1045 * if we have a grp_goal(grp_goal >0 ), then start from there, 1046 * no grp_goal(grp_goal = -1), we start from the first block 1047 * of the group. 1048 * 1049 * @sb: the super block 1050 * @group: the group we are trying to allocate in 1051 * @bitmap_bh: the block group block bitmap 1052 * 1053 */ 1054 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv, 1055 ext4_grpblk_t grp_goal, struct super_block *sb, 1056 unsigned int group, struct buffer_head *bitmap_bh) 1057 { 1058 struct ext4_reserve_window_node *search_head; 1059 ext4_fsblk_t group_first_block, group_end_block, start_block; 1060 ext4_grpblk_t first_free_block; 1061 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root; 1062 unsigned long size; 1063 int ret; 1064 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock; 1065 1066 group_first_block = ext4_group_first_block_no(sb, group); 1067 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1068 1069 if (grp_goal < 0) 1070 start_block = group_first_block; 1071 else 1072 start_block = grp_goal + group_first_block; 1073 1074 size = my_rsv->rsv_goal_size; 1075 1076 if (!rsv_is_empty(&my_rsv->rsv_window)) { 1077 /* 1078 * if the old reservation is cross group boundary 1079 * and if the goal is inside the old reservation window, 1080 * we will come here when we just failed to allocate from 1081 * the first part of the window. We still have another part 1082 * that belongs to the next group. In this case, there is no 1083 * point to discard our window and try to allocate a new one 1084 * in this group(which will fail). we should 1085 * keep the reservation window, just simply move on. 1086 * 1087 * Maybe we could shift the start block of the reservation 1088 * window to the first block of next group. 1089 */ 1090 1091 if ((my_rsv->rsv_start <= group_end_block) && 1092 (my_rsv->rsv_end > group_end_block) && 1093 (start_block >= my_rsv->rsv_start)) 1094 return -1; 1095 1096 if ((my_rsv->rsv_alloc_hit > 1097 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { 1098 /* 1099 * if the previously allocation hit ratio is 1100 * greater than 1/2, then we double the size of 1101 * the reservation window the next time, 1102 * otherwise we keep the same size window 1103 */ 1104 size = size * 2; 1105 if (size > EXT4_MAX_RESERVE_BLOCKS) 1106 size = EXT4_MAX_RESERVE_BLOCKS; 1107 my_rsv->rsv_goal_size= size; 1108 } 1109 } 1110 1111 spin_lock(rsv_lock); 1112 /* 1113 * shift the search start to the window near the goal block 1114 */ 1115 search_head = search_reserve_window(fs_rsv_root, start_block); 1116 1117 /* 1118 * find_next_reservable_window() simply finds a reservable window 1119 * inside the given range(start_block, group_end_block). 1120 * 1121 * To make sure the reservation window has a free bit inside it, we 1122 * need to check the bitmap after we found a reservable window. 1123 */ 1124 retry: 1125 ret = find_next_reservable_window(search_head, my_rsv, sb, 1126 start_block, group_end_block); 1127 1128 if (ret == -1) { 1129 if (!rsv_is_empty(&my_rsv->rsv_window)) 1130 rsv_window_remove(sb, my_rsv); 1131 spin_unlock(rsv_lock); 1132 return -1; 1133 } 1134 1135 /* 1136 * On success, find_next_reservable_window() returns the 1137 * reservation window where there is a reservable space after it. 1138 * Before we reserve this reservable space, we need 1139 * to make sure there is at least a free block inside this region. 1140 * 1141 * searching the first free bit on the block bitmap and copy of 1142 * last committed bitmap alternatively, until we found a allocatable 1143 * block. Search start from the start block of the reservable space 1144 * we just found. 1145 */ 1146 spin_unlock(rsv_lock); 1147 first_free_block = bitmap_search_next_usable_block( 1148 my_rsv->rsv_start - group_first_block, 1149 bitmap_bh, group_end_block - group_first_block + 1); 1150 1151 if (first_free_block < 0) { 1152 /* 1153 * no free block left on the bitmap, no point 1154 * to reserve the space. return failed. 1155 */ 1156 spin_lock(rsv_lock); 1157 if (!rsv_is_empty(&my_rsv->rsv_window)) 1158 rsv_window_remove(sb, my_rsv); 1159 spin_unlock(rsv_lock); 1160 return -1; /* failed */ 1161 } 1162 1163 start_block = first_free_block + group_first_block; 1164 /* 1165 * check if the first free block is within the 1166 * free space we just reserved 1167 */ 1168 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end) 1169 return 0; /* success */ 1170 /* 1171 * if the first free bit we found is out of the reservable space 1172 * continue search for next reservable space, 1173 * start from where the free block is, 1174 * we also shift the list head to where we stopped last time 1175 */ 1176 search_head = my_rsv; 1177 spin_lock(rsv_lock); 1178 goto retry; 1179 } 1180 1181 /** 1182 * try_to_extend_reservation() 1183 * @my_rsv: given reservation window 1184 * @sb: super block 1185 * @size: the delta to extend 1186 * 1187 * Attempt to expand the reservation window large enough to have 1188 * required number of free blocks 1189 * 1190 * Since ext4_try_to_allocate() will always allocate blocks within 1191 * the reservation window range, if the window size is too small, 1192 * multiple blocks allocation has to stop at the end of the reservation 1193 * window. To make this more efficient, given the total number of 1194 * blocks needed and the current size of the window, we try to 1195 * expand the reservation window size if necessary on a best-effort 1196 * basis before ext4_new_blocks() tries to allocate blocks, 1197 */ 1198 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv, 1199 struct super_block *sb, int size) 1200 { 1201 struct ext4_reserve_window_node *next_rsv; 1202 struct rb_node *next; 1203 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock; 1204 1205 if (!spin_trylock(rsv_lock)) 1206 return; 1207 1208 next = rb_next(&my_rsv->rsv_node); 1209 1210 if (!next) 1211 my_rsv->rsv_end += size; 1212 else { 1213 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node); 1214 1215 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size) 1216 my_rsv->rsv_end += size; 1217 else 1218 my_rsv->rsv_end = next_rsv->rsv_start - 1; 1219 } 1220 spin_unlock(rsv_lock); 1221 } 1222 1223 /** 1224 * ext4_try_to_allocate_with_rsv() 1225 * @sb: superblock 1226 * @handle: handle to this transaction 1227 * @group: given allocation block group 1228 * @bitmap_bh: bufferhead holds the block bitmap 1229 * @grp_goal: given target block within the group 1230 * @count: target number of blocks to allocate 1231 * @my_rsv: reservation window 1232 * @errp: pointer to store the error code 1233 * 1234 * This is the main function used to allocate a new block and its reservation 1235 * window. 1236 * 1237 * Each time when a new block allocation is need, first try to allocate from 1238 * its own reservation. If it does not have a reservation window, instead of 1239 * looking for a free bit on bitmap first, then look up the reservation list to 1240 * see if it is inside somebody else's reservation window, we try to allocate a 1241 * reservation window for it starting from the goal first. Then do the block 1242 * allocation within the reservation window. 1243 * 1244 * This will avoid keeping on searching the reservation list again and 1245 * again when somebody is looking for a free block (without 1246 * reservation), and there are lots of free blocks, but they are all 1247 * being reserved. 1248 * 1249 * We use a red-black tree for the per-filesystem reservation list. 1250 * 1251 */ 1252 static ext4_grpblk_t 1253 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle, 1254 unsigned int group, struct buffer_head *bitmap_bh, 1255 ext4_grpblk_t grp_goal, 1256 struct ext4_reserve_window_node * my_rsv, 1257 unsigned long *count, int *errp) 1258 { 1259 ext4_fsblk_t group_first_block, group_last_block; 1260 ext4_grpblk_t ret = 0; 1261 int fatal; 1262 unsigned long num = *count; 1263 1264 *errp = 0; 1265 1266 /* 1267 * Make sure we use undo access for the bitmap, because it is critical 1268 * that we do the frozen_data COW on bitmap buffers in all cases even 1269 * if the buffer is in BJ_Forget state in the committing transaction. 1270 */ 1271 BUFFER_TRACE(bitmap_bh, "get undo access for new block"); 1272 fatal = ext4_journal_get_undo_access(handle, bitmap_bh); 1273 if (fatal) { 1274 *errp = fatal; 1275 return -1; 1276 } 1277 1278 /* 1279 * we don't deal with reservation when 1280 * filesystem is mounted without reservation 1281 * or the file is not a regular file 1282 * or last attempt to allocate a block with reservation turned on failed 1283 */ 1284 if (my_rsv == NULL ) { 1285 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh, 1286 grp_goal, count, NULL); 1287 goto out; 1288 } 1289 /* 1290 * grp_goal is a group relative block number (if there is a goal) 1291 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb) 1292 * first block is a filesystem wide block number 1293 * first block is the block number of the first block in this group 1294 */ 1295 group_first_block = ext4_group_first_block_no(sb, group); 1296 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1297 1298 /* 1299 * Basically we will allocate a new block from inode's reservation 1300 * window. 1301 * 1302 * We need to allocate a new reservation window, if: 1303 * a) inode does not have a reservation window; or 1304 * b) last attempt to allocate a block from existing reservation 1305 * failed; or 1306 * c) we come here with a goal and with a reservation window 1307 * 1308 * We do not need to allocate a new reservation window if we come here 1309 * at the beginning with a goal and the goal is inside the window, or 1310 * we don't have a goal but already have a reservation window. 1311 * then we could go to allocate from the reservation window directly. 1312 */ 1313 while (1) { 1314 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) || 1315 !goal_in_my_reservation(&my_rsv->rsv_window, 1316 grp_goal, group, sb)) { 1317 if (my_rsv->rsv_goal_size < *count) 1318 my_rsv->rsv_goal_size = *count; 1319 ret = alloc_new_reservation(my_rsv, grp_goal, sb, 1320 group, bitmap_bh); 1321 if (ret < 0) 1322 break; /* failed */ 1323 1324 if (!goal_in_my_reservation(&my_rsv->rsv_window, 1325 grp_goal, group, sb)) 1326 grp_goal = -1; 1327 } else if (grp_goal >= 0) { 1328 int curr = my_rsv->rsv_end - 1329 (grp_goal + group_first_block) + 1; 1330 1331 if (curr < *count) 1332 try_to_extend_reservation(my_rsv, sb, 1333 *count - curr); 1334 } 1335 1336 if ((my_rsv->rsv_start > group_last_block) || 1337 (my_rsv->rsv_end < group_first_block)) { 1338 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1); 1339 BUG(); 1340 } 1341 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh, 1342 grp_goal, &num, &my_rsv->rsv_window); 1343 if (ret >= 0) { 1344 my_rsv->rsv_alloc_hit += num; 1345 *count = num; 1346 break; /* succeed */ 1347 } 1348 num = *count; 1349 } 1350 out: 1351 if (ret >= 0) { 1352 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for " 1353 "bitmap block"); 1354 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh); 1355 if (fatal) { 1356 *errp = fatal; 1357 return -1; 1358 } 1359 return ret; 1360 } 1361 1362 BUFFER_TRACE(bitmap_bh, "journal_release_buffer"); 1363 ext4_journal_release_buffer(handle, bitmap_bh); 1364 return ret; 1365 } 1366 1367 /** 1368 * ext4_has_free_blocks() 1369 * @sbi: in-core super block structure. 1370 * 1371 * Check if filesystem has at least 1 free block available for allocation. 1372 */ 1373 static int ext4_has_free_blocks(struct ext4_sb_info *sbi) 1374 { 1375 ext4_fsblk_t free_blocks, root_blocks; 1376 1377 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 1378 root_blocks = ext4_r_blocks_count(sbi->s_es); 1379 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && 1380 sbi->s_resuid != current->fsuid && 1381 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) { 1382 return 0; 1383 } 1384 return 1; 1385 } 1386 1387 /** 1388 * ext4_should_retry_alloc() 1389 * @sb: super block 1390 * @retries number of attemps has been made 1391 * 1392 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if 1393 * it is profitable to retry the operation, this function will wait 1394 * for the current or commiting transaction to complete, and then 1395 * return TRUE. 1396 * 1397 * if the total number of retries exceed three times, return FALSE. 1398 */ 1399 int ext4_should_retry_alloc(struct super_block *sb, int *retries) 1400 { 1401 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3) 1402 return 0; 1403 1404 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id); 1405 1406 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal); 1407 } 1408 1409 /** 1410 * ext4_new_blocks() -- core block(s) allocation function 1411 * @handle: handle to this transaction 1412 * @inode: file inode 1413 * @goal: given target block(filesystem wide) 1414 * @count: target number of blocks to allocate 1415 * @errp: error code 1416 * 1417 * ext4_new_blocks uses a goal block to assist allocation. It tries to 1418 * allocate block(s) from the block group contains the goal block first. If that 1419 * fails, it will try to allocate block(s) from other block groups without 1420 * any specific goal block. 1421 * 1422 */ 1423 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode, 1424 ext4_fsblk_t goal, unsigned long *count, int *errp) 1425 { 1426 struct buffer_head *bitmap_bh = NULL; 1427 struct buffer_head *gdp_bh; 1428 unsigned long group_no; 1429 int goal_group; 1430 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */ 1431 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/ 1432 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */ 1433 int bgi; /* blockgroup iteration index */ 1434 int fatal = 0, err; 1435 int performed_allocation = 0; 1436 ext4_grpblk_t free_blocks; /* number of free blocks in a group */ 1437 struct super_block *sb; 1438 struct ext4_group_desc *gdp; 1439 struct ext4_super_block *es; 1440 struct ext4_sb_info *sbi; 1441 struct ext4_reserve_window_node *my_rsv = NULL; 1442 struct ext4_block_alloc_info *block_i; 1443 unsigned short windowsz = 0; 1444 #ifdef EXT4FS_DEBUG 1445 static int goal_hits, goal_attempts; 1446 #endif 1447 unsigned long ngroups; 1448 unsigned long num = *count; 1449 1450 *errp = -ENOSPC; 1451 sb = inode->i_sb; 1452 if (!sb) { 1453 printk("ext4_new_block: nonexistent device"); 1454 return 0; 1455 } 1456 1457 /* 1458 * Check quota for allocation of this block. 1459 */ 1460 if (DQUOT_ALLOC_BLOCK(inode, num)) { 1461 *errp = -EDQUOT; 1462 return 0; 1463 } 1464 1465 sbi = EXT4_SB(sb); 1466 es = EXT4_SB(sb)->s_es; 1467 ext4_debug("goal=%lu.\n", goal); 1468 /* 1469 * Allocate a block from reservation only when 1470 * filesystem is mounted with reservation(default,-o reservation), and 1471 * it's a regular file, and 1472 * the desired window size is greater than 0 (One could use ioctl 1473 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off 1474 * reservation on that particular file) 1475 */ 1476 block_i = EXT4_I(inode)->i_block_alloc_info; 1477 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0)) 1478 my_rsv = &block_i->rsv_window_node; 1479 1480 if (!ext4_has_free_blocks(sbi)) { 1481 *errp = -ENOSPC; 1482 goto out; 1483 } 1484 1485 /* 1486 * First, test whether the goal block is free. 1487 */ 1488 if (goal < le32_to_cpu(es->s_first_data_block) || 1489 goal >= ext4_blocks_count(es)) 1490 goal = le32_to_cpu(es->s_first_data_block); 1491 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk); 1492 goal_group = group_no; 1493 retry_alloc: 1494 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh); 1495 if (!gdp) 1496 goto io_error; 1497 1498 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1499 /* 1500 * if there is not enough free blocks to make a new resevation 1501 * turn off reservation for this allocation 1502 */ 1503 if (my_rsv && (free_blocks < windowsz) 1504 && (rsv_is_empty(&my_rsv->rsv_window))) 1505 my_rsv = NULL; 1506 1507 if (free_blocks > 0) { 1508 bitmap_bh = read_block_bitmap(sb, group_no); 1509 if (!bitmap_bh) 1510 goto io_error; 1511 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle, 1512 group_no, bitmap_bh, grp_target_blk, 1513 my_rsv, &num, &fatal); 1514 if (fatal) 1515 goto out; 1516 if (grp_alloc_blk >= 0) 1517 goto allocated; 1518 } 1519 1520 ngroups = EXT4_SB(sb)->s_groups_count; 1521 smp_rmb(); 1522 1523 /* 1524 * Now search the rest of the groups. We assume that 1525 * i and gdp correctly point to the last group visited. 1526 */ 1527 for (bgi = 0; bgi < ngroups; bgi++) { 1528 group_no++; 1529 if (group_no >= ngroups) 1530 group_no = 0; 1531 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh); 1532 if (!gdp) 1533 goto io_error; 1534 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1535 /* 1536 * skip this group if the number of 1537 * free blocks is less than half of the reservation 1538 * window size. 1539 */ 1540 if (free_blocks <= (windowsz/2)) 1541 continue; 1542 1543 brelse(bitmap_bh); 1544 bitmap_bh = read_block_bitmap(sb, group_no); 1545 if (!bitmap_bh) 1546 goto io_error; 1547 /* 1548 * try to allocate block(s) from this group, without a goal(-1). 1549 */ 1550 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle, 1551 group_no, bitmap_bh, -1, my_rsv, 1552 &num, &fatal); 1553 if (fatal) 1554 goto out; 1555 if (grp_alloc_blk >= 0) 1556 goto allocated; 1557 } 1558 /* 1559 * We may end up a bogus ealier ENOSPC error due to 1560 * filesystem is "full" of reservations, but 1561 * there maybe indeed free blocks avaliable on disk 1562 * In this case, we just forget about the reservations 1563 * just do block allocation as without reservations. 1564 */ 1565 if (my_rsv) { 1566 my_rsv = NULL; 1567 windowsz = 0; 1568 group_no = goal_group; 1569 goto retry_alloc; 1570 } 1571 /* No space left on the device */ 1572 *errp = -ENOSPC; 1573 goto out; 1574 1575 allocated: 1576 1577 ext4_debug("using block group %d(%d)\n", 1578 group_no, gdp->bg_free_blocks_count); 1579 1580 BUFFER_TRACE(gdp_bh, "get_write_access"); 1581 fatal = ext4_journal_get_write_access(handle, gdp_bh); 1582 if (fatal) 1583 goto out; 1584 1585 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no); 1586 1587 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) || 1588 in_range(ext4_block_bitmap(sb, gdp), ret_block, num) || 1589 in_range(ret_block, ext4_inode_table(sb, gdp), 1590 EXT4_SB(sb)->s_itb_per_group) || 1591 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp), 1592 EXT4_SB(sb)->s_itb_per_group)) 1593 ext4_error(sb, "ext4_new_block", 1594 "Allocating block in system zone - " 1595 "blocks from %llu, length %lu", 1596 ret_block, num); 1597 1598 performed_allocation = 1; 1599 1600 #ifdef CONFIG_JBD_DEBUG 1601 { 1602 struct buffer_head *debug_bh; 1603 1604 /* Record bitmap buffer state in the newly allocated block */ 1605 debug_bh = sb_find_get_block(sb, ret_block); 1606 if (debug_bh) { 1607 BUFFER_TRACE(debug_bh, "state when allocated"); 1608 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state"); 1609 brelse(debug_bh); 1610 } 1611 } 1612 jbd_lock_bh_state(bitmap_bh); 1613 spin_lock(sb_bgl_lock(sbi, group_no)); 1614 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) { 1615 int i; 1616 1617 for (i = 0; i < num; i++) { 1618 if (ext4_test_bit(grp_alloc_blk+i, 1619 bh2jh(bitmap_bh)->b_committed_data)) { 1620 printk("%s: block was unexpectedly set in " 1621 "b_committed_data\n", __FUNCTION__); 1622 } 1623 } 1624 } 1625 ext4_debug("found bit %d\n", grp_alloc_blk); 1626 spin_unlock(sb_bgl_lock(sbi, group_no)); 1627 jbd_unlock_bh_state(bitmap_bh); 1628 #endif 1629 1630 if (ret_block + num - 1 >= ext4_blocks_count(es)) { 1631 ext4_error(sb, "ext4_new_block", 1632 "block(%llu) >= blocks count(%llu) - " 1633 "block_group = %lu, es == %p ", ret_block, 1634 ext4_blocks_count(es), group_no, es); 1635 goto out; 1636 } 1637 1638 /* 1639 * It is up to the caller to add the new buffer to a journal 1640 * list of some description. We don't know in advance whether 1641 * the caller wants to use it as metadata or data. 1642 */ 1643 ext4_debug("allocating block %lu. Goal hits %d of %d.\n", 1644 ret_block, goal_hits, goal_attempts); 1645 1646 spin_lock(sb_bgl_lock(sbi, group_no)); 1647 gdp->bg_free_blocks_count = 1648 cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num); 1649 spin_unlock(sb_bgl_lock(sbi, group_no)); 1650 percpu_counter_mod(&sbi->s_freeblocks_counter, -num); 1651 1652 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor"); 1653 err = ext4_journal_dirty_metadata(handle, gdp_bh); 1654 if (!fatal) 1655 fatal = err; 1656 1657 sb->s_dirt = 1; 1658 if (fatal) 1659 goto out; 1660 1661 *errp = 0; 1662 brelse(bitmap_bh); 1663 DQUOT_FREE_BLOCK(inode, *count-num); 1664 *count = num; 1665 return ret_block; 1666 1667 io_error: 1668 *errp = -EIO; 1669 out: 1670 if (fatal) { 1671 *errp = fatal; 1672 ext4_std_error(sb, fatal); 1673 } 1674 /* 1675 * Undo the block allocation 1676 */ 1677 if (!performed_allocation) 1678 DQUOT_FREE_BLOCK(inode, *count); 1679 brelse(bitmap_bh); 1680 return 0; 1681 } 1682 1683 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode, 1684 ext4_fsblk_t goal, int *errp) 1685 { 1686 unsigned long count = 1; 1687 1688 return ext4_new_blocks(handle, inode, goal, &count, errp); 1689 } 1690 1691 /** 1692 * ext4_count_free_blocks() -- count filesystem free blocks 1693 * @sb: superblock 1694 * 1695 * Adds up the number of free blocks from each block group. 1696 */ 1697 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb) 1698 { 1699 ext4_fsblk_t desc_count; 1700 struct ext4_group_desc *gdp; 1701 int i; 1702 unsigned long ngroups = EXT4_SB(sb)->s_groups_count; 1703 #ifdef EXT4FS_DEBUG 1704 struct ext4_super_block *es; 1705 ext4_fsblk_t bitmap_count; 1706 unsigned long x; 1707 struct buffer_head *bitmap_bh = NULL; 1708 1709 es = EXT4_SB(sb)->s_es; 1710 desc_count = 0; 1711 bitmap_count = 0; 1712 gdp = NULL; 1713 1714 smp_rmb(); 1715 for (i = 0; i < ngroups; i++) { 1716 gdp = ext4_get_group_desc(sb, i, NULL); 1717 if (!gdp) 1718 continue; 1719 desc_count += le16_to_cpu(gdp->bg_free_blocks_count); 1720 brelse(bitmap_bh); 1721 bitmap_bh = read_block_bitmap(sb, i); 1722 if (bitmap_bh == NULL) 1723 continue; 1724 1725 x = ext4_count_free(bitmap_bh, sb->s_blocksize); 1726 printk("group %d: stored = %d, counted = %lu\n", 1727 i, le16_to_cpu(gdp->bg_free_blocks_count), x); 1728 bitmap_count += x; 1729 } 1730 brelse(bitmap_bh); 1731 printk("ext4_count_free_blocks: stored = %llu" 1732 ", computed = %llu, %llu\n", 1733 EXT4_FREE_BLOCKS_COUNT(es), 1734 desc_count, bitmap_count); 1735 return bitmap_count; 1736 #else 1737 desc_count = 0; 1738 smp_rmb(); 1739 for (i = 0; i < ngroups; i++) { 1740 gdp = ext4_get_group_desc(sb, i, NULL); 1741 if (!gdp) 1742 continue; 1743 desc_count += le16_to_cpu(gdp->bg_free_blocks_count); 1744 } 1745 1746 return desc_count; 1747 #endif 1748 } 1749 1750 static inline int 1751 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map) 1752 { 1753 ext4_grpblk_t offset; 1754 1755 ext4_get_group_no_and_offset(sb, block, NULL, &offset); 1756 return ext4_test_bit (offset, map); 1757 } 1758 1759 static inline int test_root(int a, int b) 1760 { 1761 int num = b; 1762 1763 while (a > num) 1764 num *= b; 1765 return num == a; 1766 } 1767 1768 static int ext4_group_sparse(int group) 1769 { 1770 if (group <= 1) 1771 return 1; 1772 if (!(group & 1)) 1773 return 0; 1774 return (test_root(group, 7) || test_root(group, 5) || 1775 test_root(group, 3)); 1776 } 1777 1778 /** 1779 * ext4_bg_has_super - number of blocks used by the superblock in group 1780 * @sb: superblock for filesystem 1781 * @group: group number to check 1782 * 1783 * Return the number of blocks used by the superblock (primary or backup) 1784 * in this group. Currently this will be only 0 or 1. 1785 */ 1786 int ext4_bg_has_super(struct super_block *sb, int group) 1787 { 1788 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1789 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) && 1790 !ext4_group_sparse(group)) 1791 return 0; 1792 return 1; 1793 } 1794 1795 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group) 1796 { 1797 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb); 1798 unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb); 1799 unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1; 1800 1801 if (group == first || group == first + 1 || group == last) 1802 return 1; 1803 return 0; 1804 } 1805 1806 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group) 1807 { 1808 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1809 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) && 1810 !ext4_group_sparse(group)) 1811 return 0; 1812 return EXT4_SB(sb)->s_gdb_count; 1813 } 1814 1815 /** 1816 * ext4_bg_num_gdb - number of blocks used by the group table in group 1817 * @sb: superblock for filesystem 1818 * @group: group number to check 1819 * 1820 * Return the number of blocks used by the group descriptor table 1821 * (primary or backup) in this group. In the future there may be a 1822 * different number of descriptor blocks in each group. 1823 */ 1824 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group) 1825 { 1826 unsigned long first_meta_bg = 1827 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg); 1828 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb); 1829 1830 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) || 1831 metagroup < first_meta_bg) 1832 return ext4_bg_num_gdb_nometa(sb,group); 1833 1834 return ext4_bg_num_gdb_meta(sb,group); 1835 1836 } 1837