xref: /openbmc/linux/fs/ext4/balloc.c (revision a17627ef)
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13 
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 
23 /*
24  * balloc.c contains the blocks allocation and deallocation routines
25  */
26 
27 /*
28  * Calculate the block group number and offset, given a block number
29  */
30 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
31 		unsigned long *blockgrpp, ext4_grpblk_t *offsetp)
32 {
33 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
34 	ext4_grpblk_t offset;
35 
36 	blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
37 	offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
38 	if (offsetp)
39 		*offsetp = offset;
40 	if (blockgrpp)
41 		*blockgrpp = blocknr;
42 
43 }
44 
45 /*
46  * The free blocks are managed by bitmaps.  A file system contains several
47  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
48  * block for inodes, N blocks for the inode table and data blocks.
49  *
50  * The file system contains group descriptors which are located after the
51  * super block.  Each descriptor contains the number of the bitmap block and
52  * the free blocks count in the block.  The descriptors are loaded in memory
53  * when a file system is mounted (see ext4_fill_super).
54  */
55 
56 
57 #define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)
58 
59 /**
60  * ext4_get_group_desc() -- load group descriptor from disk
61  * @sb:			super block
62  * @block_group:	given block group
63  * @bh:			pointer to the buffer head to store the block
64  *			group descriptor
65  */
66 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
67 					     unsigned int block_group,
68 					     struct buffer_head ** bh)
69 {
70 	unsigned long group_desc;
71 	unsigned long offset;
72 	struct ext4_group_desc * desc;
73 	struct ext4_sb_info *sbi = EXT4_SB(sb);
74 
75 	if (block_group >= sbi->s_groups_count) {
76 		ext4_error (sb, "ext4_get_group_desc",
77 			    "block_group >= groups_count - "
78 			    "block_group = %d, groups_count = %lu",
79 			    block_group, sbi->s_groups_count);
80 
81 		return NULL;
82 	}
83 	smp_rmb();
84 
85 	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
86 	offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
87 	if (!sbi->s_group_desc[group_desc]) {
88 		ext4_error (sb, "ext4_get_group_desc",
89 			    "Group descriptor not loaded - "
90 			    "block_group = %d, group_desc = %lu, desc = %lu",
91 			     block_group, group_desc, offset);
92 		return NULL;
93 	}
94 
95 	desc = (struct ext4_group_desc *)(
96 		(__u8 *)sbi->s_group_desc[group_desc]->b_data +
97 		offset * EXT4_DESC_SIZE(sb));
98 	if (bh)
99 		*bh = sbi->s_group_desc[group_desc];
100 	return desc;
101 }
102 
103 /**
104  * read_block_bitmap()
105  * @sb:			super block
106  * @block_group:	given block group
107  *
108  * Read the bitmap for a given block_group, reading into the specified
109  * slot in the superblock's bitmap cache.
110  *
111  * Return buffer_head on success or NULL in case of failure.
112  */
113 static struct buffer_head *
114 read_block_bitmap(struct super_block *sb, unsigned int block_group)
115 {
116 	struct ext4_group_desc * desc;
117 	struct buffer_head * bh = NULL;
118 
119 	desc = ext4_get_group_desc (sb, block_group, NULL);
120 	if (!desc)
121 		goto error_out;
122 	bh = sb_bread(sb, ext4_block_bitmap(sb, desc));
123 	if (!bh)
124 		ext4_error (sb, "read_block_bitmap",
125 			    "Cannot read block bitmap - "
126 			    "block_group = %d, block_bitmap = %llu",
127 			    block_group,
128 			    ext4_block_bitmap(sb, desc));
129 error_out:
130 	return bh;
131 }
132 /*
133  * The reservation window structure operations
134  * --------------------------------------------
135  * Operations include:
136  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
137  *
138  * We use a red-black tree to represent per-filesystem reservation
139  * windows.
140  *
141  */
142 
143 /**
144  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
145  * @rb_root:		root of per-filesystem reservation rb tree
146  * @verbose:		verbose mode
147  * @fn:			function which wishes to dump the reservation map
148  *
149  * If verbose is turned on, it will print the whole block reservation
150  * windows(start, end).	Otherwise, it will only print out the "bad" windows,
151  * those windows that overlap with their immediate neighbors.
152  */
153 #if 1
154 static void __rsv_window_dump(struct rb_root *root, int verbose,
155 			      const char *fn)
156 {
157 	struct rb_node *n;
158 	struct ext4_reserve_window_node *rsv, *prev;
159 	int bad;
160 
161 restart:
162 	n = rb_first(root);
163 	bad = 0;
164 	prev = NULL;
165 
166 	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
167 	while (n) {
168 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
169 		if (verbose)
170 			printk("reservation window 0x%p "
171 			       "start:  %llu, end:  %llu\n",
172 			       rsv, rsv->rsv_start, rsv->rsv_end);
173 		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
174 			printk("Bad reservation %p (start >= end)\n",
175 			       rsv);
176 			bad = 1;
177 		}
178 		if (prev && prev->rsv_end >= rsv->rsv_start) {
179 			printk("Bad reservation %p (prev->end >= start)\n",
180 			       rsv);
181 			bad = 1;
182 		}
183 		if (bad) {
184 			if (!verbose) {
185 				printk("Restarting reservation walk in verbose mode\n");
186 				verbose = 1;
187 				goto restart;
188 			}
189 		}
190 		n = rb_next(n);
191 		prev = rsv;
192 	}
193 	printk("Window map complete.\n");
194 	if (bad)
195 		BUG();
196 }
197 #define rsv_window_dump(root, verbose) \
198 	__rsv_window_dump((root), (verbose), __FUNCTION__)
199 #else
200 #define rsv_window_dump(root, verbose) do {} while (0)
201 #endif
202 
203 /**
204  * goal_in_my_reservation()
205  * @rsv:		inode's reservation window
206  * @grp_goal:		given goal block relative to the allocation block group
207  * @group:		the current allocation block group
208  * @sb:			filesystem super block
209  *
210  * Test if the given goal block (group relative) is within the file's
211  * own block reservation window range.
212  *
213  * If the reservation window is outside the goal allocation group, return 0;
214  * grp_goal (given goal block) could be -1, which means no specific
215  * goal block. In this case, always return 1.
216  * If the goal block is within the reservation window, return 1;
217  * otherwise, return 0;
218  */
219 static int
220 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
221 			unsigned int group, struct super_block * sb)
222 {
223 	ext4_fsblk_t group_first_block, group_last_block;
224 
225 	group_first_block = ext4_group_first_block_no(sb, group);
226 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
227 
228 	if ((rsv->_rsv_start > group_last_block) ||
229 	    (rsv->_rsv_end < group_first_block))
230 		return 0;
231 	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
232 		|| (grp_goal + group_first_block > rsv->_rsv_end)))
233 		return 0;
234 	return 1;
235 }
236 
237 /**
238  * search_reserve_window()
239  * @rb_root:		root of reservation tree
240  * @goal:		target allocation block
241  *
242  * Find the reserved window which includes the goal, or the previous one
243  * if the goal is not in any window.
244  * Returns NULL if there are no windows or if all windows start after the goal.
245  */
246 static struct ext4_reserve_window_node *
247 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
248 {
249 	struct rb_node *n = root->rb_node;
250 	struct ext4_reserve_window_node *rsv;
251 
252 	if (!n)
253 		return NULL;
254 
255 	do {
256 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
257 
258 		if (goal < rsv->rsv_start)
259 			n = n->rb_left;
260 		else if (goal > rsv->rsv_end)
261 			n = n->rb_right;
262 		else
263 			return rsv;
264 	} while (n);
265 	/*
266 	 * We've fallen off the end of the tree: the goal wasn't inside
267 	 * any particular node.  OK, the previous node must be to one
268 	 * side of the interval containing the goal.  If it's the RHS,
269 	 * we need to back up one.
270 	 */
271 	if (rsv->rsv_start > goal) {
272 		n = rb_prev(&rsv->rsv_node);
273 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
274 	}
275 	return rsv;
276 }
277 
278 /**
279  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
280  * @sb:			super block
281  * @rsv:		reservation window to add
282  *
283  * Must be called with rsv_lock hold.
284  */
285 void ext4_rsv_window_add(struct super_block *sb,
286 		    struct ext4_reserve_window_node *rsv)
287 {
288 	struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
289 	struct rb_node *node = &rsv->rsv_node;
290 	ext4_fsblk_t start = rsv->rsv_start;
291 
292 	struct rb_node ** p = &root->rb_node;
293 	struct rb_node * parent = NULL;
294 	struct ext4_reserve_window_node *this;
295 
296 	while (*p)
297 	{
298 		parent = *p;
299 		this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
300 
301 		if (start < this->rsv_start)
302 			p = &(*p)->rb_left;
303 		else if (start > this->rsv_end)
304 			p = &(*p)->rb_right;
305 		else {
306 			rsv_window_dump(root, 1);
307 			BUG();
308 		}
309 	}
310 
311 	rb_link_node(node, parent, p);
312 	rb_insert_color(node, root);
313 }
314 
315 /**
316  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
317  * @sb:			super block
318  * @rsv:		reservation window to remove
319  *
320  * Mark the block reservation window as not allocated, and unlink it
321  * from the filesystem reservation window rb tree. Must be called with
322  * rsv_lock hold.
323  */
324 static void rsv_window_remove(struct super_block *sb,
325 			      struct ext4_reserve_window_node *rsv)
326 {
327 	rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
328 	rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
329 	rsv->rsv_alloc_hit = 0;
330 	rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
331 }
332 
333 /*
334  * rsv_is_empty() -- Check if the reservation window is allocated.
335  * @rsv:		given reservation window to check
336  *
337  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
338  */
339 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
340 {
341 	/* a valid reservation end block could not be 0 */
342 	return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
343 }
344 
345 /**
346  * ext4_init_block_alloc_info()
347  * @inode:		file inode structure
348  *
349  * Allocate and initialize the	reservation window structure, and
350  * link the window to the ext4 inode structure at last
351  *
352  * The reservation window structure is only dynamically allocated
353  * and linked to ext4 inode the first time the open file
354  * needs a new block. So, before every ext4_new_block(s) call, for
355  * regular files, we should check whether the reservation window
356  * structure exists or not. In the latter case, this function is called.
357  * Fail to do so will result in block reservation being turned off for that
358  * open file.
359  *
360  * This function is called from ext4_get_blocks_handle(), also called
361  * when setting the reservation window size through ioctl before the file
362  * is open for write (needs block allocation).
363  *
364  * Needs truncate_mutex protection prior to call this function.
365  */
366 void ext4_init_block_alloc_info(struct inode *inode)
367 {
368 	struct ext4_inode_info *ei = EXT4_I(inode);
369 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
370 	struct super_block *sb = inode->i_sb;
371 
372 	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
373 	if (block_i) {
374 		struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
375 
376 		rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
377 		rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
378 
379 		/*
380 		 * if filesystem is mounted with NORESERVATION, the goal
381 		 * reservation window size is set to zero to indicate
382 		 * block reservation is off
383 		 */
384 		if (!test_opt(sb, RESERVATION))
385 			rsv->rsv_goal_size = 0;
386 		else
387 			rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
388 		rsv->rsv_alloc_hit = 0;
389 		block_i->last_alloc_logical_block = 0;
390 		block_i->last_alloc_physical_block = 0;
391 	}
392 	ei->i_block_alloc_info = block_i;
393 }
394 
395 /**
396  * ext4_discard_reservation()
397  * @inode:		inode
398  *
399  * Discard(free) block reservation window on last file close, or truncate
400  * or at last iput().
401  *
402  * It is being called in three cases:
403  *	ext4_release_file(): last writer close the file
404  *	ext4_clear_inode(): last iput(), when nobody link to this file.
405  *	ext4_truncate(): when the block indirect map is about to change.
406  *
407  */
408 void ext4_discard_reservation(struct inode *inode)
409 {
410 	struct ext4_inode_info *ei = EXT4_I(inode);
411 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
412 	struct ext4_reserve_window_node *rsv;
413 	spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
414 
415 	if (!block_i)
416 		return;
417 
418 	rsv = &block_i->rsv_window_node;
419 	if (!rsv_is_empty(&rsv->rsv_window)) {
420 		spin_lock(rsv_lock);
421 		if (!rsv_is_empty(&rsv->rsv_window))
422 			rsv_window_remove(inode->i_sb, rsv);
423 		spin_unlock(rsv_lock);
424 	}
425 }
426 
427 /**
428  * ext4_free_blocks_sb() -- Free given blocks and update quota
429  * @handle:			handle to this transaction
430  * @sb:				super block
431  * @block:			start physcial block to free
432  * @count:			number of blocks to free
433  * @pdquot_freed_blocks:	pointer to quota
434  */
435 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
436 			 ext4_fsblk_t block, unsigned long count,
437 			 unsigned long *pdquot_freed_blocks)
438 {
439 	struct buffer_head *bitmap_bh = NULL;
440 	struct buffer_head *gd_bh;
441 	unsigned long block_group;
442 	ext4_grpblk_t bit;
443 	unsigned long i;
444 	unsigned long overflow;
445 	struct ext4_group_desc * desc;
446 	struct ext4_super_block * es;
447 	struct ext4_sb_info *sbi;
448 	int err = 0, ret;
449 	ext4_grpblk_t group_freed;
450 
451 	*pdquot_freed_blocks = 0;
452 	sbi = EXT4_SB(sb);
453 	es = sbi->s_es;
454 	if (block < le32_to_cpu(es->s_first_data_block) ||
455 	    block + count < block ||
456 	    block + count > ext4_blocks_count(es)) {
457 		ext4_error (sb, "ext4_free_blocks",
458 			    "Freeing blocks not in datazone - "
459 			    "block = %llu, count = %lu", block, count);
460 		goto error_return;
461 	}
462 
463 	ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
464 
465 do_more:
466 	overflow = 0;
467 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
468 	/*
469 	 * Check to see if we are freeing blocks across a group
470 	 * boundary.
471 	 */
472 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
473 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
474 		count -= overflow;
475 	}
476 	brelse(bitmap_bh);
477 	bitmap_bh = read_block_bitmap(sb, block_group);
478 	if (!bitmap_bh)
479 		goto error_return;
480 	desc = ext4_get_group_desc (sb, block_group, &gd_bh);
481 	if (!desc)
482 		goto error_return;
483 
484 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
485 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
486 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
487 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
488 		     sbi->s_itb_per_group))
489 		ext4_error (sb, "ext4_free_blocks",
490 			    "Freeing blocks in system zones - "
491 			    "Block = %llu, count = %lu",
492 			    block, count);
493 
494 	/*
495 	 * We are about to start releasing blocks in the bitmap,
496 	 * so we need undo access.
497 	 */
498 	/* @@@ check errors */
499 	BUFFER_TRACE(bitmap_bh, "getting undo access");
500 	err = ext4_journal_get_undo_access(handle, bitmap_bh);
501 	if (err)
502 		goto error_return;
503 
504 	/*
505 	 * We are about to modify some metadata.  Call the journal APIs
506 	 * to unshare ->b_data if a currently-committing transaction is
507 	 * using it
508 	 */
509 	BUFFER_TRACE(gd_bh, "get_write_access");
510 	err = ext4_journal_get_write_access(handle, gd_bh);
511 	if (err)
512 		goto error_return;
513 
514 	jbd_lock_bh_state(bitmap_bh);
515 
516 	for (i = 0, group_freed = 0; i < count; i++) {
517 		/*
518 		 * An HJ special.  This is expensive...
519 		 */
520 #ifdef CONFIG_JBD_DEBUG
521 		jbd_unlock_bh_state(bitmap_bh);
522 		{
523 			struct buffer_head *debug_bh;
524 			debug_bh = sb_find_get_block(sb, block + i);
525 			if (debug_bh) {
526 				BUFFER_TRACE(debug_bh, "Deleted!");
527 				if (!bh2jh(bitmap_bh)->b_committed_data)
528 					BUFFER_TRACE(debug_bh,
529 						"No commited data in bitmap");
530 				BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
531 				__brelse(debug_bh);
532 			}
533 		}
534 		jbd_lock_bh_state(bitmap_bh);
535 #endif
536 		if (need_resched()) {
537 			jbd_unlock_bh_state(bitmap_bh);
538 			cond_resched();
539 			jbd_lock_bh_state(bitmap_bh);
540 		}
541 		/* @@@ This prevents newly-allocated data from being
542 		 * freed and then reallocated within the same
543 		 * transaction.
544 		 *
545 		 * Ideally we would want to allow that to happen, but to
546 		 * do so requires making jbd2_journal_forget() capable of
547 		 * revoking the queued write of a data block, which
548 		 * implies blocking on the journal lock.  *forget()
549 		 * cannot block due to truncate races.
550 		 *
551 		 * Eventually we can fix this by making jbd2_journal_forget()
552 		 * return a status indicating whether or not it was able
553 		 * to revoke the buffer.  On successful revoke, it is
554 		 * safe not to set the allocation bit in the committed
555 		 * bitmap, because we know that there is no outstanding
556 		 * activity on the buffer any more and so it is safe to
557 		 * reallocate it.
558 		 */
559 		BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
560 		J_ASSERT_BH(bitmap_bh,
561 				bh2jh(bitmap_bh)->b_committed_data != NULL);
562 		ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
563 				bh2jh(bitmap_bh)->b_committed_data);
564 
565 		/*
566 		 * We clear the bit in the bitmap after setting the committed
567 		 * data bit, because this is the reverse order to that which
568 		 * the allocator uses.
569 		 */
570 		BUFFER_TRACE(bitmap_bh, "clear bit");
571 		if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
572 						bit + i, bitmap_bh->b_data)) {
573 			jbd_unlock_bh_state(bitmap_bh);
574 			ext4_error(sb, __FUNCTION__,
575 				   "bit already cleared for block %llu",
576 				   (ext4_fsblk_t)(block + i));
577 			jbd_lock_bh_state(bitmap_bh);
578 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
579 		} else {
580 			group_freed++;
581 		}
582 	}
583 	jbd_unlock_bh_state(bitmap_bh);
584 
585 	spin_lock(sb_bgl_lock(sbi, block_group));
586 	desc->bg_free_blocks_count =
587 		cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
588 			group_freed);
589 	spin_unlock(sb_bgl_lock(sbi, block_group));
590 	percpu_counter_mod(&sbi->s_freeblocks_counter, count);
591 
592 	/* We dirtied the bitmap block */
593 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
594 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
595 
596 	/* And the group descriptor block */
597 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
598 	ret = ext4_journal_dirty_metadata(handle, gd_bh);
599 	if (!err) err = ret;
600 	*pdquot_freed_blocks += group_freed;
601 
602 	if (overflow && !err) {
603 		block += count;
604 		count = overflow;
605 		goto do_more;
606 	}
607 	sb->s_dirt = 1;
608 error_return:
609 	brelse(bitmap_bh);
610 	ext4_std_error(sb, err);
611 	return;
612 }
613 
614 /**
615  * ext4_free_blocks() -- Free given blocks and update quota
616  * @handle:		handle for this transaction
617  * @inode:		inode
618  * @block:		start physical block to free
619  * @count:		number of blocks to count
620  */
621 void ext4_free_blocks(handle_t *handle, struct inode *inode,
622 			ext4_fsblk_t block, unsigned long count)
623 {
624 	struct super_block * sb;
625 	unsigned long dquot_freed_blocks;
626 
627 	sb = inode->i_sb;
628 	if (!sb) {
629 		printk ("ext4_free_blocks: nonexistent device");
630 		return;
631 	}
632 	ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
633 	if (dquot_freed_blocks)
634 		DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
635 	return;
636 }
637 
638 /**
639  * ext4_test_allocatable()
640  * @nr:			given allocation block group
641  * @bh:			bufferhead contains the bitmap of the given block group
642  *
643  * For ext4 allocations, we must not reuse any blocks which are
644  * allocated in the bitmap buffer's "last committed data" copy.  This
645  * prevents deletes from freeing up the page for reuse until we have
646  * committed the delete transaction.
647  *
648  * If we didn't do this, then deleting something and reallocating it as
649  * data would allow the old block to be overwritten before the
650  * transaction committed (because we force data to disk before commit).
651  * This would lead to corruption if we crashed between overwriting the
652  * data and committing the delete.
653  *
654  * @@@ We may want to make this allocation behaviour conditional on
655  * data-writes at some point, and disable it for metadata allocations or
656  * sync-data inodes.
657  */
658 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
659 {
660 	int ret;
661 	struct journal_head *jh = bh2jh(bh);
662 
663 	if (ext4_test_bit(nr, bh->b_data))
664 		return 0;
665 
666 	jbd_lock_bh_state(bh);
667 	if (!jh->b_committed_data)
668 		ret = 1;
669 	else
670 		ret = !ext4_test_bit(nr, jh->b_committed_data);
671 	jbd_unlock_bh_state(bh);
672 	return ret;
673 }
674 
675 /**
676  * bitmap_search_next_usable_block()
677  * @start:		the starting block (group relative) of the search
678  * @bh:			bufferhead contains the block group bitmap
679  * @maxblocks:		the ending block (group relative) of the reservation
680  *
681  * The bitmap search --- search forward alternately through the actual
682  * bitmap on disk and the last-committed copy in journal, until we find a
683  * bit free in both bitmaps.
684  */
685 static ext4_grpblk_t
686 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
687 					ext4_grpblk_t maxblocks)
688 {
689 	ext4_grpblk_t next;
690 	struct journal_head *jh = bh2jh(bh);
691 
692 	while (start < maxblocks) {
693 		next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
694 		if (next >= maxblocks)
695 			return -1;
696 		if (ext4_test_allocatable(next, bh))
697 			return next;
698 		jbd_lock_bh_state(bh);
699 		if (jh->b_committed_data)
700 			start = ext4_find_next_zero_bit(jh->b_committed_data,
701 							maxblocks, next);
702 		jbd_unlock_bh_state(bh);
703 	}
704 	return -1;
705 }
706 
707 /**
708  * find_next_usable_block()
709  * @start:		the starting block (group relative) to find next
710  *			allocatable block in bitmap.
711  * @bh:			bufferhead contains the block group bitmap
712  * @maxblocks:		the ending block (group relative) for the search
713  *
714  * Find an allocatable block in a bitmap.  We honor both the bitmap and
715  * its last-committed copy (if that exists), and perform the "most
716  * appropriate allocation" algorithm of looking for a free block near
717  * the initial goal; then for a free byte somewhere in the bitmap; then
718  * for any free bit in the bitmap.
719  */
720 static ext4_grpblk_t
721 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
722 			ext4_grpblk_t maxblocks)
723 {
724 	ext4_grpblk_t here, next;
725 	char *p, *r;
726 
727 	if (start > 0) {
728 		/*
729 		 * The goal was occupied; search forward for a free
730 		 * block within the next XX blocks.
731 		 *
732 		 * end_goal is more or less random, but it has to be
733 		 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
734 		 * next 64-bit boundary is simple..
735 		 */
736 		ext4_grpblk_t end_goal = (start + 63) & ~63;
737 		if (end_goal > maxblocks)
738 			end_goal = maxblocks;
739 		here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
740 		if (here < end_goal && ext4_test_allocatable(here, bh))
741 			return here;
742 		ext4_debug("Bit not found near goal\n");
743 	}
744 
745 	here = start;
746 	if (here < 0)
747 		here = 0;
748 
749 	p = ((char *)bh->b_data) + (here >> 3);
750 	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
751 	next = (r - ((char *)bh->b_data)) << 3;
752 
753 	if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
754 		return next;
755 
756 	/*
757 	 * The bitmap search --- search forward alternately through the actual
758 	 * bitmap and the last-committed copy until we find a bit free in
759 	 * both
760 	 */
761 	here = bitmap_search_next_usable_block(here, bh, maxblocks);
762 	return here;
763 }
764 
765 /**
766  * claim_block()
767  * @block:		the free block (group relative) to allocate
768  * @bh:			the bufferhead containts the block group bitmap
769  *
770  * We think we can allocate this block in this bitmap.  Try to set the bit.
771  * If that succeeds then check that nobody has allocated and then freed the
772  * block since we saw that is was not marked in b_committed_data.  If it _was_
773  * allocated and freed then clear the bit in the bitmap again and return
774  * zero (failure).
775  */
776 static inline int
777 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
778 {
779 	struct journal_head *jh = bh2jh(bh);
780 	int ret;
781 
782 	if (ext4_set_bit_atomic(lock, block, bh->b_data))
783 		return 0;
784 	jbd_lock_bh_state(bh);
785 	if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
786 		ext4_clear_bit_atomic(lock, block, bh->b_data);
787 		ret = 0;
788 	} else {
789 		ret = 1;
790 	}
791 	jbd_unlock_bh_state(bh);
792 	return ret;
793 }
794 
795 /**
796  * ext4_try_to_allocate()
797  * @sb:			superblock
798  * @handle:		handle to this transaction
799  * @group:		given allocation block group
800  * @bitmap_bh:		bufferhead holds the block bitmap
801  * @grp_goal:		given target block within the group
802  * @count:		target number of blocks to allocate
803  * @my_rsv:		reservation window
804  *
805  * Attempt to allocate blocks within a give range. Set the range of allocation
806  * first, then find the first free bit(s) from the bitmap (within the range),
807  * and at last, allocate the blocks by claiming the found free bit as allocated.
808  *
809  * To set the range of this allocation:
810  *	if there is a reservation window, only try to allocate block(s) from the
811  *	file's own reservation window;
812  *	Otherwise, the allocation range starts from the give goal block, ends at
813  *	the block group's last block.
814  *
815  * If we failed to allocate the desired block then we may end up crossing to a
816  * new bitmap.  In that case we must release write access to the old one via
817  * ext4_journal_release_buffer(), else we'll run out of credits.
818  */
819 static ext4_grpblk_t
820 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
821 			struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
822 			unsigned long *count, struct ext4_reserve_window *my_rsv)
823 {
824 	ext4_fsblk_t group_first_block;
825 	ext4_grpblk_t start, end;
826 	unsigned long num = 0;
827 
828 	/* we do allocation within the reservation window if we have a window */
829 	if (my_rsv) {
830 		group_first_block = ext4_group_first_block_no(sb, group);
831 		if (my_rsv->_rsv_start >= group_first_block)
832 			start = my_rsv->_rsv_start - group_first_block;
833 		else
834 			/* reservation window cross group boundary */
835 			start = 0;
836 		end = my_rsv->_rsv_end - group_first_block + 1;
837 		if (end > EXT4_BLOCKS_PER_GROUP(sb))
838 			/* reservation window crosses group boundary */
839 			end = EXT4_BLOCKS_PER_GROUP(sb);
840 		if ((start <= grp_goal) && (grp_goal < end))
841 			start = grp_goal;
842 		else
843 			grp_goal = -1;
844 	} else {
845 		if (grp_goal > 0)
846 			start = grp_goal;
847 		else
848 			start = 0;
849 		end = EXT4_BLOCKS_PER_GROUP(sb);
850 	}
851 
852 	BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
853 
854 repeat:
855 	if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
856 		grp_goal = find_next_usable_block(start, bitmap_bh, end);
857 		if (grp_goal < 0)
858 			goto fail_access;
859 		if (!my_rsv) {
860 			int i;
861 
862 			for (i = 0; i < 7 && grp_goal > start &&
863 					ext4_test_allocatable(grp_goal - 1,
864 								bitmap_bh);
865 					i++, grp_goal--)
866 				;
867 		}
868 	}
869 	start = grp_goal;
870 
871 	if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
872 		grp_goal, bitmap_bh)) {
873 		/*
874 		 * The block was allocated by another thread, or it was
875 		 * allocated and then freed by another thread
876 		 */
877 		start++;
878 		grp_goal++;
879 		if (start >= end)
880 			goto fail_access;
881 		goto repeat;
882 	}
883 	num++;
884 	grp_goal++;
885 	while (num < *count && grp_goal < end
886 		&& ext4_test_allocatable(grp_goal, bitmap_bh)
887 		&& claim_block(sb_bgl_lock(EXT4_SB(sb), group),
888 				grp_goal, bitmap_bh)) {
889 		num++;
890 		grp_goal++;
891 	}
892 	*count = num;
893 	return grp_goal - num;
894 fail_access:
895 	*count = num;
896 	return -1;
897 }
898 
899 /**
900  *	find_next_reservable_window():
901  *		find a reservable space within the given range.
902  *		It does not allocate the reservation window for now:
903  *		alloc_new_reservation() will do the work later.
904  *
905  *	@search_head: the head of the searching list;
906  *		This is not necessarily the list head of the whole filesystem
907  *
908  *		We have both head and start_block to assist the search
909  *		for the reservable space. The list starts from head,
910  *		but we will shift to the place where start_block is,
911  *		then start from there, when looking for a reservable space.
912  *
913  *	@size: the target new reservation window size
914  *
915  *	@group_first_block: the first block we consider to start
916  *			the real search from
917  *
918  *	@last_block:
919  *		the maximum block number that our goal reservable space
920  *		could start from. This is normally the last block in this
921  *		group. The search will end when we found the start of next
922  *		possible reservable space is out of this boundary.
923  *		This could handle the cross boundary reservation window
924  *		request.
925  *
926  *	basically we search from the given range, rather than the whole
927  *	reservation double linked list, (start_block, last_block)
928  *	to find a free region that is of my size and has not
929  *	been reserved.
930  *
931  */
932 static int find_next_reservable_window(
933 				struct ext4_reserve_window_node *search_head,
934 				struct ext4_reserve_window_node *my_rsv,
935 				struct super_block * sb,
936 				ext4_fsblk_t start_block,
937 				ext4_fsblk_t last_block)
938 {
939 	struct rb_node *next;
940 	struct ext4_reserve_window_node *rsv, *prev;
941 	ext4_fsblk_t cur;
942 	int size = my_rsv->rsv_goal_size;
943 
944 	/* TODO: make the start of the reservation window byte-aligned */
945 	/* cur = *start_block & ~7;*/
946 	cur = start_block;
947 	rsv = search_head;
948 	if (!rsv)
949 		return -1;
950 
951 	while (1) {
952 		if (cur <= rsv->rsv_end)
953 			cur = rsv->rsv_end + 1;
954 
955 		/* TODO?
956 		 * in the case we could not find a reservable space
957 		 * that is what is expected, during the re-search, we could
958 		 * remember what's the largest reservable space we could have
959 		 * and return that one.
960 		 *
961 		 * For now it will fail if we could not find the reservable
962 		 * space with expected-size (or more)...
963 		 */
964 		if (cur > last_block)
965 			return -1;		/* fail */
966 
967 		prev = rsv;
968 		next = rb_next(&rsv->rsv_node);
969 		rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
970 
971 		/*
972 		 * Reached the last reservation, we can just append to the
973 		 * previous one.
974 		 */
975 		if (!next)
976 			break;
977 
978 		if (cur + size <= rsv->rsv_start) {
979 			/*
980 			 * Found a reserveable space big enough.  We could
981 			 * have a reservation across the group boundary here
982 			 */
983 			break;
984 		}
985 	}
986 	/*
987 	 * we come here either :
988 	 * when we reach the end of the whole list,
989 	 * and there is empty reservable space after last entry in the list.
990 	 * append it to the end of the list.
991 	 *
992 	 * or we found one reservable space in the middle of the list,
993 	 * return the reservation window that we could append to.
994 	 * succeed.
995 	 */
996 
997 	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
998 		rsv_window_remove(sb, my_rsv);
999 
1000 	/*
1001 	 * Let's book the whole avaliable window for now.  We will check the
1002 	 * disk bitmap later and then, if there are free blocks then we adjust
1003 	 * the window size if it's larger than requested.
1004 	 * Otherwise, we will remove this node from the tree next time
1005 	 * call find_next_reservable_window.
1006 	 */
1007 	my_rsv->rsv_start = cur;
1008 	my_rsv->rsv_end = cur + size - 1;
1009 	my_rsv->rsv_alloc_hit = 0;
1010 
1011 	if (prev != my_rsv)
1012 		ext4_rsv_window_add(sb, my_rsv);
1013 
1014 	return 0;
1015 }
1016 
1017 /**
1018  *	alloc_new_reservation()--allocate a new reservation window
1019  *
1020  *		To make a new reservation, we search part of the filesystem
1021  *		reservation list (the list that inside the group). We try to
1022  *		allocate a new reservation window near the allocation goal,
1023  *		or the beginning of the group, if there is no goal.
1024  *
1025  *		We first find a reservable space after the goal, then from
1026  *		there, we check the bitmap for the first free block after
1027  *		it. If there is no free block until the end of group, then the
1028  *		whole group is full, we failed. Otherwise, check if the free
1029  *		block is inside the expected reservable space, if so, we
1030  *		succeed.
1031  *		If the first free block is outside the reservable space, then
1032  *		start from the first free block, we search for next available
1033  *		space, and go on.
1034  *
1035  *	on succeed, a new reservation will be found and inserted into the list
1036  *	It contains at least one free block, and it does not overlap with other
1037  *	reservation windows.
1038  *
1039  *	failed: we failed to find a reservation window in this group
1040  *
1041  *	@rsv: the reservation
1042  *
1043  *	@grp_goal: The goal (group-relative).  It is where the search for a
1044  *		free reservable space should start from.
1045  *		if we have a grp_goal(grp_goal >0 ), then start from there,
1046  *		no grp_goal(grp_goal = -1), we start from the first block
1047  *		of the group.
1048  *
1049  *	@sb: the super block
1050  *	@group: the group we are trying to allocate in
1051  *	@bitmap_bh: the block group block bitmap
1052  *
1053  */
1054 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1055 		ext4_grpblk_t grp_goal, struct super_block *sb,
1056 		unsigned int group, struct buffer_head *bitmap_bh)
1057 {
1058 	struct ext4_reserve_window_node *search_head;
1059 	ext4_fsblk_t group_first_block, group_end_block, start_block;
1060 	ext4_grpblk_t first_free_block;
1061 	struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1062 	unsigned long size;
1063 	int ret;
1064 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1065 
1066 	group_first_block = ext4_group_first_block_no(sb, group);
1067 	group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1068 
1069 	if (grp_goal < 0)
1070 		start_block = group_first_block;
1071 	else
1072 		start_block = grp_goal + group_first_block;
1073 
1074 	size = my_rsv->rsv_goal_size;
1075 
1076 	if (!rsv_is_empty(&my_rsv->rsv_window)) {
1077 		/*
1078 		 * if the old reservation is cross group boundary
1079 		 * and if the goal is inside the old reservation window,
1080 		 * we will come here when we just failed to allocate from
1081 		 * the first part of the window. We still have another part
1082 		 * that belongs to the next group. In this case, there is no
1083 		 * point to discard our window and try to allocate a new one
1084 		 * in this group(which will fail). we should
1085 		 * keep the reservation window, just simply move on.
1086 		 *
1087 		 * Maybe we could shift the start block of the reservation
1088 		 * window to the first block of next group.
1089 		 */
1090 
1091 		if ((my_rsv->rsv_start <= group_end_block) &&
1092 				(my_rsv->rsv_end > group_end_block) &&
1093 				(start_block >= my_rsv->rsv_start))
1094 			return -1;
1095 
1096 		if ((my_rsv->rsv_alloc_hit >
1097 		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1098 			/*
1099 			 * if the previously allocation hit ratio is
1100 			 * greater than 1/2, then we double the size of
1101 			 * the reservation window the next time,
1102 			 * otherwise we keep the same size window
1103 			 */
1104 			size = size * 2;
1105 			if (size > EXT4_MAX_RESERVE_BLOCKS)
1106 				size = EXT4_MAX_RESERVE_BLOCKS;
1107 			my_rsv->rsv_goal_size= size;
1108 		}
1109 	}
1110 
1111 	spin_lock(rsv_lock);
1112 	/*
1113 	 * shift the search start to the window near the goal block
1114 	 */
1115 	search_head = search_reserve_window(fs_rsv_root, start_block);
1116 
1117 	/*
1118 	 * find_next_reservable_window() simply finds a reservable window
1119 	 * inside the given range(start_block, group_end_block).
1120 	 *
1121 	 * To make sure the reservation window has a free bit inside it, we
1122 	 * need to check the bitmap after we found a reservable window.
1123 	 */
1124 retry:
1125 	ret = find_next_reservable_window(search_head, my_rsv, sb,
1126 						start_block, group_end_block);
1127 
1128 	if (ret == -1) {
1129 		if (!rsv_is_empty(&my_rsv->rsv_window))
1130 			rsv_window_remove(sb, my_rsv);
1131 		spin_unlock(rsv_lock);
1132 		return -1;
1133 	}
1134 
1135 	/*
1136 	 * On success, find_next_reservable_window() returns the
1137 	 * reservation window where there is a reservable space after it.
1138 	 * Before we reserve this reservable space, we need
1139 	 * to make sure there is at least a free block inside this region.
1140 	 *
1141 	 * searching the first free bit on the block bitmap and copy of
1142 	 * last committed bitmap alternatively, until we found a allocatable
1143 	 * block. Search start from the start block of the reservable space
1144 	 * we just found.
1145 	 */
1146 	spin_unlock(rsv_lock);
1147 	first_free_block = bitmap_search_next_usable_block(
1148 			my_rsv->rsv_start - group_first_block,
1149 			bitmap_bh, group_end_block - group_first_block + 1);
1150 
1151 	if (first_free_block < 0) {
1152 		/*
1153 		 * no free block left on the bitmap, no point
1154 		 * to reserve the space. return failed.
1155 		 */
1156 		spin_lock(rsv_lock);
1157 		if (!rsv_is_empty(&my_rsv->rsv_window))
1158 			rsv_window_remove(sb, my_rsv);
1159 		spin_unlock(rsv_lock);
1160 		return -1;		/* failed */
1161 	}
1162 
1163 	start_block = first_free_block + group_first_block;
1164 	/*
1165 	 * check if the first free block is within the
1166 	 * free space we just reserved
1167 	 */
1168 	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1169 		return 0;		/* success */
1170 	/*
1171 	 * if the first free bit we found is out of the reservable space
1172 	 * continue search for next reservable space,
1173 	 * start from where the free block is,
1174 	 * we also shift the list head to where we stopped last time
1175 	 */
1176 	search_head = my_rsv;
1177 	spin_lock(rsv_lock);
1178 	goto retry;
1179 }
1180 
1181 /**
1182  * try_to_extend_reservation()
1183  * @my_rsv:		given reservation window
1184  * @sb:			super block
1185  * @size:		the delta to extend
1186  *
1187  * Attempt to expand the reservation window large enough to have
1188  * required number of free blocks
1189  *
1190  * Since ext4_try_to_allocate() will always allocate blocks within
1191  * the reservation window range, if the window size is too small,
1192  * multiple blocks allocation has to stop at the end of the reservation
1193  * window. To make this more efficient, given the total number of
1194  * blocks needed and the current size of the window, we try to
1195  * expand the reservation window size if necessary on a best-effort
1196  * basis before ext4_new_blocks() tries to allocate blocks,
1197  */
1198 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1199 			struct super_block *sb, int size)
1200 {
1201 	struct ext4_reserve_window_node *next_rsv;
1202 	struct rb_node *next;
1203 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1204 
1205 	if (!spin_trylock(rsv_lock))
1206 		return;
1207 
1208 	next = rb_next(&my_rsv->rsv_node);
1209 
1210 	if (!next)
1211 		my_rsv->rsv_end += size;
1212 	else {
1213 		next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1214 
1215 		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1216 			my_rsv->rsv_end += size;
1217 		else
1218 			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1219 	}
1220 	spin_unlock(rsv_lock);
1221 }
1222 
1223 /**
1224  * ext4_try_to_allocate_with_rsv()
1225  * @sb:			superblock
1226  * @handle:		handle to this transaction
1227  * @group:		given allocation block group
1228  * @bitmap_bh:		bufferhead holds the block bitmap
1229  * @grp_goal:		given target block within the group
1230  * @count:		target number of blocks to allocate
1231  * @my_rsv:		reservation window
1232  * @errp:		pointer to store the error code
1233  *
1234  * This is the main function used to allocate a new block and its reservation
1235  * window.
1236  *
1237  * Each time when a new block allocation is need, first try to allocate from
1238  * its own reservation.  If it does not have a reservation window, instead of
1239  * looking for a free bit on bitmap first, then look up the reservation list to
1240  * see if it is inside somebody else's reservation window, we try to allocate a
1241  * reservation window for it starting from the goal first. Then do the block
1242  * allocation within the reservation window.
1243  *
1244  * This will avoid keeping on searching the reservation list again and
1245  * again when somebody is looking for a free block (without
1246  * reservation), and there are lots of free blocks, but they are all
1247  * being reserved.
1248  *
1249  * We use a red-black tree for the per-filesystem reservation list.
1250  *
1251  */
1252 static ext4_grpblk_t
1253 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1254 			unsigned int group, struct buffer_head *bitmap_bh,
1255 			ext4_grpblk_t grp_goal,
1256 			struct ext4_reserve_window_node * my_rsv,
1257 			unsigned long *count, int *errp)
1258 {
1259 	ext4_fsblk_t group_first_block, group_last_block;
1260 	ext4_grpblk_t ret = 0;
1261 	int fatal;
1262 	unsigned long num = *count;
1263 
1264 	*errp = 0;
1265 
1266 	/*
1267 	 * Make sure we use undo access for the bitmap, because it is critical
1268 	 * that we do the frozen_data COW on bitmap buffers in all cases even
1269 	 * if the buffer is in BJ_Forget state in the committing transaction.
1270 	 */
1271 	BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1272 	fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1273 	if (fatal) {
1274 		*errp = fatal;
1275 		return -1;
1276 	}
1277 
1278 	/*
1279 	 * we don't deal with reservation when
1280 	 * filesystem is mounted without reservation
1281 	 * or the file is not a regular file
1282 	 * or last attempt to allocate a block with reservation turned on failed
1283 	 */
1284 	if (my_rsv == NULL ) {
1285 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1286 						grp_goal, count, NULL);
1287 		goto out;
1288 	}
1289 	/*
1290 	 * grp_goal is a group relative block number (if there is a goal)
1291 	 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1292 	 * first block is a filesystem wide block number
1293 	 * first block is the block number of the first block in this group
1294 	 */
1295 	group_first_block = ext4_group_first_block_no(sb, group);
1296 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1297 
1298 	/*
1299 	 * Basically we will allocate a new block from inode's reservation
1300 	 * window.
1301 	 *
1302 	 * We need to allocate a new reservation window, if:
1303 	 * a) inode does not have a reservation window; or
1304 	 * b) last attempt to allocate a block from existing reservation
1305 	 *    failed; or
1306 	 * c) we come here with a goal and with a reservation window
1307 	 *
1308 	 * We do not need to allocate a new reservation window if we come here
1309 	 * at the beginning with a goal and the goal is inside the window, or
1310 	 * we don't have a goal but already have a reservation window.
1311 	 * then we could go to allocate from the reservation window directly.
1312 	 */
1313 	while (1) {
1314 		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1315 			!goal_in_my_reservation(&my_rsv->rsv_window,
1316 						grp_goal, group, sb)) {
1317 			if (my_rsv->rsv_goal_size < *count)
1318 				my_rsv->rsv_goal_size = *count;
1319 			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1320 							group, bitmap_bh);
1321 			if (ret < 0)
1322 				break;			/* failed */
1323 
1324 			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1325 							grp_goal, group, sb))
1326 				grp_goal = -1;
1327 		} else if (grp_goal >= 0) {
1328 			int curr = my_rsv->rsv_end -
1329 					(grp_goal + group_first_block) + 1;
1330 
1331 			if (curr < *count)
1332 				try_to_extend_reservation(my_rsv, sb,
1333 							*count - curr);
1334 		}
1335 
1336 		if ((my_rsv->rsv_start > group_last_block) ||
1337 				(my_rsv->rsv_end < group_first_block)) {
1338 			rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1339 			BUG();
1340 		}
1341 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1342 					   grp_goal, &num, &my_rsv->rsv_window);
1343 		if (ret >= 0) {
1344 			my_rsv->rsv_alloc_hit += num;
1345 			*count = num;
1346 			break;				/* succeed */
1347 		}
1348 		num = *count;
1349 	}
1350 out:
1351 	if (ret >= 0) {
1352 		BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1353 					"bitmap block");
1354 		fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1355 		if (fatal) {
1356 			*errp = fatal;
1357 			return -1;
1358 		}
1359 		return ret;
1360 	}
1361 
1362 	BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1363 	ext4_journal_release_buffer(handle, bitmap_bh);
1364 	return ret;
1365 }
1366 
1367 /**
1368  * ext4_has_free_blocks()
1369  * @sbi:		in-core super block structure.
1370  *
1371  * Check if filesystem has at least 1 free block available for allocation.
1372  */
1373 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1374 {
1375 	ext4_fsblk_t free_blocks, root_blocks;
1376 
1377 	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1378 	root_blocks = ext4_r_blocks_count(sbi->s_es);
1379 	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1380 		sbi->s_resuid != current->fsuid &&
1381 		(sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1382 		return 0;
1383 	}
1384 	return 1;
1385 }
1386 
1387 /**
1388  * ext4_should_retry_alloc()
1389  * @sb:			super block
1390  * @retries		number of attemps has been made
1391  *
1392  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1393  * it is profitable to retry the operation, this function will wait
1394  * for the current or commiting transaction to complete, and then
1395  * return TRUE.
1396  *
1397  * if the total number of retries exceed three times, return FALSE.
1398  */
1399 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1400 {
1401 	if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1402 		return 0;
1403 
1404 	jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1405 
1406 	return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1407 }
1408 
1409 /**
1410  * ext4_new_blocks() -- core block(s) allocation function
1411  * @handle:		handle to this transaction
1412  * @inode:		file inode
1413  * @goal:		given target block(filesystem wide)
1414  * @count:		target number of blocks to allocate
1415  * @errp:		error code
1416  *
1417  * ext4_new_blocks uses a goal block to assist allocation.  It tries to
1418  * allocate block(s) from the block group contains the goal block first. If that
1419  * fails, it will try to allocate block(s) from other block groups without
1420  * any specific goal block.
1421  *
1422  */
1423 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1424 			ext4_fsblk_t goal, unsigned long *count, int *errp)
1425 {
1426 	struct buffer_head *bitmap_bh = NULL;
1427 	struct buffer_head *gdp_bh;
1428 	unsigned long group_no;
1429 	int goal_group;
1430 	ext4_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1431 	ext4_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1432 	ext4_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1433 	int bgi;			/* blockgroup iteration index */
1434 	int fatal = 0, err;
1435 	int performed_allocation = 0;
1436 	ext4_grpblk_t free_blocks;	/* number of free blocks in a group */
1437 	struct super_block *sb;
1438 	struct ext4_group_desc *gdp;
1439 	struct ext4_super_block *es;
1440 	struct ext4_sb_info *sbi;
1441 	struct ext4_reserve_window_node *my_rsv = NULL;
1442 	struct ext4_block_alloc_info *block_i;
1443 	unsigned short windowsz = 0;
1444 #ifdef EXT4FS_DEBUG
1445 	static int goal_hits, goal_attempts;
1446 #endif
1447 	unsigned long ngroups;
1448 	unsigned long num = *count;
1449 
1450 	*errp = -ENOSPC;
1451 	sb = inode->i_sb;
1452 	if (!sb) {
1453 		printk("ext4_new_block: nonexistent device");
1454 		return 0;
1455 	}
1456 
1457 	/*
1458 	 * Check quota for allocation of this block.
1459 	 */
1460 	if (DQUOT_ALLOC_BLOCK(inode, num)) {
1461 		*errp = -EDQUOT;
1462 		return 0;
1463 	}
1464 
1465 	sbi = EXT4_SB(sb);
1466 	es = EXT4_SB(sb)->s_es;
1467 	ext4_debug("goal=%lu.\n", goal);
1468 	/*
1469 	 * Allocate a block from reservation only when
1470 	 * filesystem is mounted with reservation(default,-o reservation), and
1471 	 * it's a regular file, and
1472 	 * the desired window size is greater than 0 (One could use ioctl
1473 	 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1474 	 * reservation on that particular file)
1475 	 */
1476 	block_i = EXT4_I(inode)->i_block_alloc_info;
1477 	if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1478 		my_rsv = &block_i->rsv_window_node;
1479 
1480 	if (!ext4_has_free_blocks(sbi)) {
1481 		*errp = -ENOSPC;
1482 		goto out;
1483 	}
1484 
1485 	/*
1486 	 * First, test whether the goal block is free.
1487 	 */
1488 	if (goal < le32_to_cpu(es->s_first_data_block) ||
1489 	    goal >= ext4_blocks_count(es))
1490 		goal = le32_to_cpu(es->s_first_data_block);
1491 	ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1492 	goal_group = group_no;
1493 retry_alloc:
1494 	gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1495 	if (!gdp)
1496 		goto io_error;
1497 
1498 	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1499 	/*
1500 	 * if there is not enough free blocks to make a new resevation
1501 	 * turn off reservation for this allocation
1502 	 */
1503 	if (my_rsv && (free_blocks < windowsz)
1504 		&& (rsv_is_empty(&my_rsv->rsv_window)))
1505 		my_rsv = NULL;
1506 
1507 	if (free_blocks > 0) {
1508 		bitmap_bh = read_block_bitmap(sb, group_no);
1509 		if (!bitmap_bh)
1510 			goto io_error;
1511 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1512 					group_no, bitmap_bh, grp_target_blk,
1513 					my_rsv,	&num, &fatal);
1514 		if (fatal)
1515 			goto out;
1516 		if (grp_alloc_blk >= 0)
1517 			goto allocated;
1518 	}
1519 
1520 	ngroups = EXT4_SB(sb)->s_groups_count;
1521 	smp_rmb();
1522 
1523 	/*
1524 	 * Now search the rest of the groups.  We assume that
1525 	 * i and gdp correctly point to the last group visited.
1526 	 */
1527 	for (bgi = 0; bgi < ngroups; bgi++) {
1528 		group_no++;
1529 		if (group_no >= ngroups)
1530 			group_no = 0;
1531 		gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1532 		if (!gdp)
1533 			goto io_error;
1534 		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1535 		/*
1536 		 * skip this group if the number of
1537 		 * free blocks is less than half of the reservation
1538 		 * window size.
1539 		 */
1540 		if (free_blocks <= (windowsz/2))
1541 			continue;
1542 
1543 		brelse(bitmap_bh);
1544 		bitmap_bh = read_block_bitmap(sb, group_no);
1545 		if (!bitmap_bh)
1546 			goto io_error;
1547 		/*
1548 		 * try to allocate block(s) from this group, without a goal(-1).
1549 		 */
1550 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1551 					group_no, bitmap_bh, -1, my_rsv,
1552 					&num, &fatal);
1553 		if (fatal)
1554 			goto out;
1555 		if (grp_alloc_blk >= 0)
1556 			goto allocated;
1557 	}
1558 	/*
1559 	 * We may end up a bogus ealier ENOSPC error due to
1560 	 * filesystem is "full" of reservations, but
1561 	 * there maybe indeed free blocks avaliable on disk
1562 	 * In this case, we just forget about the reservations
1563 	 * just do block allocation as without reservations.
1564 	 */
1565 	if (my_rsv) {
1566 		my_rsv = NULL;
1567 		windowsz = 0;
1568 		group_no = goal_group;
1569 		goto retry_alloc;
1570 	}
1571 	/* No space left on the device */
1572 	*errp = -ENOSPC;
1573 	goto out;
1574 
1575 allocated:
1576 
1577 	ext4_debug("using block group %d(%d)\n",
1578 			group_no, gdp->bg_free_blocks_count);
1579 
1580 	BUFFER_TRACE(gdp_bh, "get_write_access");
1581 	fatal = ext4_journal_get_write_access(handle, gdp_bh);
1582 	if (fatal)
1583 		goto out;
1584 
1585 	ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1586 
1587 	if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1588 	    in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1589 	    in_range(ret_block, ext4_inode_table(sb, gdp),
1590 		     EXT4_SB(sb)->s_itb_per_group) ||
1591 	    in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1592 		     EXT4_SB(sb)->s_itb_per_group))
1593 		ext4_error(sb, "ext4_new_block",
1594 			    "Allocating block in system zone - "
1595 			    "blocks from %llu, length %lu",
1596 			     ret_block, num);
1597 
1598 	performed_allocation = 1;
1599 
1600 #ifdef CONFIG_JBD_DEBUG
1601 	{
1602 		struct buffer_head *debug_bh;
1603 
1604 		/* Record bitmap buffer state in the newly allocated block */
1605 		debug_bh = sb_find_get_block(sb, ret_block);
1606 		if (debug_bh) {
1607 			BUFFER_TRACE(debug_bh, "state when allocated");
1608 			BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1609 			brelse(debug_bh);
1610 		}
1611 	}
1612 	jbd_lock_bh_state(bitmap_bh);
1613 	spin_lock(sb_bgl_lock(sbi, group_no));
1614 	if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1615 		int i;
1616 
1617 		for (i = 0; i < num; i++) {
1618 			if (ext4_test_bit(grp_alloc_blk+i,
1619 					bh2jh(bitmap_bh)->b_committed_data)) {
1620 				printk("%s: block was unexpectedly set in "
1621 					"b_committed_data\n", __FUNCTION__);
1622 			}
1623 		}
1624 	}
1625 	ext4_debug("found bit %d\n", grp_alloc_blk);
1626 	spin_unlock(sb_bgl_lock(sbi, group_no));
1627 	jbd_unlock_bh_state(bitmap_bh);
1628 #endif
1629 
1630 	if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1631 		ext4_error(sb, "ext4_new_block",
1632 			    "block(%llu) >= blocks count(%llu) - "
1633 			    "block_group = %lu, es == %p ", ret_block,
1634 			ext4_blocks_count(es), group_no, es);
1635 		goto out;
1636 	}
1637 
1638 	/*
1639 	 * It is up to the caller to add the new buffer to a journal
1640 	 * list of some description.  We don't know in advance whether
1641 	 * the caller wants to use it as metadata or data.
1642 	 */
1643 	ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1644 			ret_block, goal_hits, goal_attempts);
1645 
1646 	spin_lock(sb_bgl_lock(sbi, group_no));
1647 	gdp->bg_free_blocks_count =
1648 			cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1649 	spin_unlock(sb_bgl_lock(sbi, group_no));
1650 	percpu_counter_mod(&sbi->s_freeblocks_counter, -num);
1651 
1652 	BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1653 	err = ext4_journal_dirty_metadata(handle, gdp_bh);
1654 	if (!fatal)
1655 		fatal = err;
1656 
1657 	sb->s_dirt = 1;
1658 	if (fatal)
1659 		goto out;
1660 
1661 	*errp = 0;
1662 	brelse(bitmap_bh);
1663 	DQUOT_FREE_BLOCK(inode, *count-num);
1664 	*count = num;
1665 	return ret_block;
1666 
1667 io_error:
1668 	*errp = -EIO;
1669 out:
1670 	if (fatal) {
1671 		*errp = fatal;
1672 		ext4_std_error(sb, fatal);
1673 	}
1674 	/*
1675 	 * Undo the block allocation
1676 	 */
1677 	if (!performed_allocation)
1678 		DQUOT_FREE_BLOCK(inode, *count);
1679 	brelse(bitmap_bh);
1680 	return 0;
1681 }
1682 
1683 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1684 			ext4_fsblk_t goal, int *errp)
1685 {
1686 	unsigned long count = 1;
1687 
1688 	return ext4_new_blocks(handle, inode, goal, &count, errp);
1689 }
1690 
1691 /**
1692  * ext4_count_free_blocks() -- count filesystem free blocks
1693  * @sb:		superblock
1694  *
1695  * Adds up the number of free blocks from each block group.
1696  */
1697 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1698 {
1699 	ext4_fsblk_t desc_count;
1700 	struct ext4_group_desc *gdp;
1701 	int i;
1702 	unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1703 #ifdef EXT4FS_DEBUG
1704 	struct ext4_super_block *es;
1705 	ext4_fsblk_t bitmap_count;
1706 	unsigned long x;
1707 	struct buffer_head *bitmap_bh = NULL;
1708 
1709 	es = EXT4_SB(sb)->s_es;
1710 	desc_count = 0;
1711 	bitmap_count = 0;
1712 	gdp = NULL;
1713 
1714 	smp_rmb();
1715 	for (i = 0; i < ngroups; i++) {
1716 		gdp = ext4_get_group_desc(sb, i, NULL);
1717 		if (!gdp)
1718 			continue;
1719 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1720 		brelse(bitmap_bh);
1721 		bitmap_bh = read_block_bitmap(sb, i);
1722 		if (bitmap_bh == NULL)
1723 			continue;
1724 
1725 		x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1726 		printk("group %d: stored = %d, counted = %lu\n",
1727 			i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1728 		bitmap_count += x;
1729 	}
1730 	brelse(bitmap_bh);
1731 	printk("ext4_count_free_blocks: stored = %llu"
1732 		", computed = %llu, %llu\n",
1733 	       EXT4_FREE_BLOCKS_COUNT(es),
1734 		desc_count, bitmap_count);
1735 	return bitmap_count;
1736 #else
1737 	desc_count = 0;
1738 	smp_rmb();
1739 	for (i = 0; i < ngroups; i++) {
1740 		gdp = ext4_get_group_desc(sb, i, NULL);
1741 		if (!gdp)
1742 			continue;
1743 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1744 	}
1745 
1746 	return desc_count;
1747 #endif
1748 }
1749 
1750 static inline int
1751 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
1752 {
1753 	ext4_grpblk_t offset;
1754 
1755 	ext4_get_group_no_and_offset(sb, block, NULL, &offset);
1756 	return ext4_test_bit (offset, map);
1757 }
1758 
1759 static inline int test_root(int a, int b)
1760 {
1761 	int num = b;
1762 
1763 	while (a > num)
1764 		num *= b;
1765 	return num == a;
1766 }
1767 
1768 static int ext4_group_sparse(int group)
1769 {
1770 	if (group <= 1)
1771 		return 1;
1772 	if (!(group & 1))
1773 		return 0;
1774 	return (test_root(group, 7) || test_root(group, 5) ||
1775 		test_root(group, 3));
1776 }
1777 
1778 /**
1779  *	ext4_bg_has_super - number of blocks used by the superblock in group
1780  *	@sb: superblock for filesystem
1781  *	@group: group number to check
1782  *
1783  *	Return the number of blocks used by the superblock (primary or backup)
1784  *	in this group.  Currently this will be only 0 or 1.
1785  */
1786 int ext4_bg_has_super(struct super_block *sb, int group)
1787 {
1788 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1789 				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1790 			!ext4_group_sparse(group))
1791 		return 0;
1792 	return 1;
1793 }
1794 
1795 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1796 {
1797 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1798 	unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1799 	unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1800 
1801 	if (group == first || group == first + 1 || group == last)
1802 		return 1;
1803 	return 0;
1804 }
1805 
1806 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1807 {
1808 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1809 				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1810 			!ext4_group_sparse(group))
1811 		return 0;
1812 	return EXT4_SB(sb)->s_gdb_count;
1813 }
1814 
1815 /**
1816  *	ext4_bg_num_gdb - number of blocks used by the group table in group
1817  *	@sb: superblock for filesystem
1818  *	@group: group number to check
1819  *
1820  *	Return the number of blocks used by the group descriptor table
1821  *	(primary or backup) in this group.  In the future there may be a
1822  *	different number of descriptor blocks in each group.
1823  */
1824 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1825 {
1826 	unsigned long first_meta_bg =
1827 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1828 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1829 
1830 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1831 			metagroup < first_meta_bg)
1832 		return ext4_bg_num_gdb_nometa(sb,group);
1833 
1834 	return ext4_bg_num_gdb_meta(sb,group);
1835 
1836 }
1837