xref: /openbmc/linux/fs/ext4/balloc.c (revision 384740dc)
1 /*
2  *  linux/fs/ext4/balloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10  *  Big-endian to little-endian byte-swapping/bitmaps by
11  *        David S. Miller (davem@caip.rutgers.edu), 1995
12  */
13 
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
20 #include "ext4.h"
21 #include "ext4_jbd2.h"
22 #include "group.h"
23 
24 /*
25  * balloc.c contains the blocks allocation and deallocation routines
26  */
27 
28 /*
29  * Calculate the block group number and offset, given a block number
30  */
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 		ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
33 {
34 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 	ext4_grpblk_t offset;
36 
37 	blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 	offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 	if (offsetp)
40 		*offsetp = offset;
41 	if (blockgrpp)
42 		*blockgrpp = blocknr;
43 
44 }
45 
46 static int ext4_block_in_group(struct super_block *sb, ext4_fsblk_t block,
47 			ext4_group_t block_group)
48 {
49 	ext4_group_t actual_group;
50 	ext4_get_group_no_and_offset(sb, block, &actual_group, NULL);
51 	if (actual_group == block_group)
52 		return 1;
53 	return 0;
54 }
55 
56 static int ext4_group_used_meta_blocks(struct super_block *sb,
57 				ext4_group_t block_group)
58 {
59 	ext4_fsblk_t tmp;
60 	struct ext4_sb_info *sbi = EXT4_SB(sb);
61 	/* block bitmap, inode bitmap, and inode table blocks */
62 	int used_blocks = sbi->s_itb_per_group + 2;
63 
64 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
65 		struct ext4_group_desc *gdp;
66 		struct buffer_head *bh;
67 
68 		gdp = ext4_get_group_desc(sb, block_group, &bh);
69 		if (!ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp),
70 					block_group))
71 			used_blocks--;
72 
73 		if (!ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp),
74 					block_group))
75 			used_blocks--;
76 
77 		tmp = ext4_inode_table(sb, gdp);
78 		for (; tmp < ext4_inode_table(sb, gdp) +
79 				sbi->s_itb_per_group; tmp++) {
80 			if (!ext4_block_in_group(sb, tmp, block_group))
81 				used_blocks -= 1;
82 		}
83 	}
84 	return used_blocks;
85 }
86 /* Initializes an uninitialized block bitmap if given, and returns the
87  * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
89 		 ext4_group_t block_group, struct ext4_group_desc *gdp)
90 {
91 	int bit, bit_max;
92 	unsigned free_blocks, group_blocks;
93 	struct ext4_sb_info *sbi = EXT4_SB(sb);
94 
95 	if (bh) {
96 		J_ASSERT_BH(bh, buffer_locked(bh));
97 
98 		/* If checksum is bad mark all blocks used to prevent allocation
99 		 * essentially implementing a per-group read-only flag. */
100 		if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
101 			ext4_error(sb, __func__,
102 				  "Checksum bad for group %lu\n", block_group);
103 			gdp->bg_free_blocks_count = 0;
104 			gdp->bg_free_inodes_count = 0;
105 			gdp->bg_itable_unused = 0;
106 			memset(bh->b_data, 0xff, sb->s_blocksize);
107 			return 0;
108 		}
109 		memset(bh->b_data, 0, sb->s_blocksize);
110 	}
111 
112 	/* Check for superblock and gdt backups in this group */
113 	bit_max = ext4_bg_has_super(sb, block_group);
114 
115 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
116 	    block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
117 			  sbi->s_desc_per_block) {
118 		if (bit_max) {
119 			bit_max += ext4_bg_num_gdb(sb, block_group);
120 			bit_max +=
121 				le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
122 		}
123 	} else { /* For META_BG_BLOCK_GROUPS */
124 		bit_max += ext4_bg_num_gdb(sb, block_group);
125 	}
126 
127 	if (block_group == sbi->s_groups_count - 1) {
128 		/*
129 		 * Even though mke2fs always initialize first and last group
130 		 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
131 		 * to make sure we calculate the right free blocks
132 		 */
133 		group_blocks = ext4_blocks_count(sbi->s_es) -
134 			le32_to_cpu(sbi->s_es->s_first_data_block) -
135 			(EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
136 	} else {
137 		group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
138 	}
139 
140 	free_blocks = group_blocks - bit_max;
141 
142 	if (bh) {
143 		ext4_fsblk_t start, tmp;
144 		int flex_bg = 0;
145 
146 		for (bit = 0; bit < bit_max; bit++)
147 			ext4_set_bit(bit, bh->b_data);
148 
149 		start = ext4_group_first_block_no(sb, block_group);
150 
151 		if (EXT4_HAS_INCOMPAT_FEATURE(sb,
152 					      EXT4_FEATURE_INCOMPAT_FLEX_BG))
153 			flex_bg = 1;
154 
155 		/* Set bits for block and inode bitmaps, and inode table */
156 		tmp = ext4_block_bitmap(sb, gdp);
157 		if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
158 			ext4_set_bit(tmp - start, bh->b_data);
159 
160 		tmp = ext4_inode_bitmap(sb, gdp);
161 		if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
162 			ext4_set_bit(tmp - start, bh->b_data);
163 
164 		tmp = ext4_inode_table(sb, gdp);
165 		for (; tmp < ext4_inode_table(sb, gdp) +
166 				sbi->s_itb_per_group; tmp++) {
167 			if (!flex_bg ||
168 				ext4_block_in_group(sb, tmp, block_group))
169 				ext4_set_bit(tmp - start, bh->b_data);
170 		}
171 		/*
172 		 * Also if the number of blocks within the group is
173 		 * less than the blocksize * 8 ( which is the size
174 		 * of bitmap ), set rest of the block bitmap to 1
175 		 */
176 		mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
177 	}
178 	return free_blocks - ext4_group_used_meta_blocks(sb, block_group);
179 }
180 
181 
182 /*
183  * The free blocks are managed by bitmaps.  A file system contains several
184  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
185  * block for inodes, N blocks for the inode table and data blocks.
186  *
187  * The file system contains group descriptors which are located after the
188  * super block.  Each descriptor contains the number of the bitmap block and
189  * the free blocks count in the block.  The descriptors are loaded in memory
190  * when a file system is mounted (see ext4_fill_super).
191  */
192 
193 
194 #define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)
195 
196 /**
197  * ext4_get_group_desc() -- load group descriptor from disk
198  * @sb:			super block
199  * @block_group:	given block group
200  * @bh:			pointer to the buffer head to store the block
201  *			group descriptor
202  */
203 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
204 					     ext4_group_t block_group,
205 					     struct buffer_head ** bh)
206 {
207 	unsigned long group_desc;
208 	unsigned long offset;
209 	struct ext4_group_desc * desc;
210 	struct ext4_sb_info *sbi = EXT4_SB(sb);
211 
212 	if (block_group >= sbi->s_groups_count) {
213 		ext4_error (sb, "ext4_get_group_desc",
214 			    "block_group >= groups_count - "
215 			    "block_group = %lu, groups_count = %lu",
216 			    block_group, sbi->s_groups_count);
217 
218 		return NULL;
219 	}
220 	smp_rmb();
221 
222 	group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
223 	offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
224 	if (!sbi->s_group_desc[group_desc]) {
225 		ext4_error (sb, "ext4_get_group_desc",
226 			    "Group descriptor not loaded - "
227 			    "block_group = %lu, group_desc = %lu, desc = %lu",
228 			     block_group, group_desc, offset);
229 		return NULL;
230 	}
231 
232 	desc = (struct ext4_group_desc *)(
233 		(__u8 *)sbi->s_group_desc[group_desc]->b_data +
234 		offset * EXT4_DESC_SIZE(sb));
235 	if (bh)
236 		*bh = sbi->s_group_desc[group_desc];
237 	return desc;
238 }
239 
240 static int ext4_valid_block_bitmap(struct super_block *sb,
241 					struct ext4_group_desc *desc,
242 					unsigned int block_group,
243 					struct buffer_head *bh)
244 {
245 	ext4_grpblk_t offset;
246 	ext4_grpblk_t next_zero_bit;
247 	ext4_fsblk_t bitmap_blk;
248 	ext4_fsblk_t group_first_block;
249 
250 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
251 		/* with FLEX_BG, the inode/block bitmaps and itable
252 		 * blocks may not be in the group at all
253 		 * so the bitmap validation will be skipped for those groups
254 		 * or it has to also read the block group where the bitmaps
255 		 * are located to verify they are set.
256 		 */
257 		return 1;
258 	}
259 	group_first_block = ext4_group_first_block_no(sb, block_group);
260 
261 	/* check whether block bitmap block number is set */
262 	bitmap_blk = ext4_block_bitmap(sb, desc);
263 	offset = bitmap_blk - group_first_block;
264 	if (!ext4_test_bit(offset, bh->b_data))
265 		/* bad block bitmap */
266 		goto err_out;
267 
268 	/* check whether the inode bitmap block number is set */
269 	bitmap_blk = ext4_inode_bitmap(sb, desc);
270 	offset = bitmap_blk - group_first_block;
271 	if (!ext4_test_bit(offset, bh->b_data))
272 		/* bad block bitmap */
273 		goto err_out;
274 
275 	/* check whether the inode table block number is set */
276 	bitmap_blk = ext4_inode_table(sb, desc);
277 	offset = bitmap_blk - group_first_block;
278 	next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
279 				offset + EXT4_SB(sb)->s_itb_per_group,
280 				offset);
281 	if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
282 		/* good bitmap for inode tables */
283 		return 1;
284 
285 err_out:
286 	ext4_error(sb, __func__,
287 			"Invalid block bitmap - "
288 			"block_group = %d, block = %llu",
289 			block_group, bitmap_blk);
290 	return 0;
291 }
292 /**
293  * ext4_read_block_bitmap()
294  * @sb:			super block
295  * @block_group:	given block group
296  *
297  * Read the bitmap for a given block_group,and validate the
298  * bits for block/inode/inode tables are set in the bitmaps
299  *
300  * Return buffer_head on success or NULL in case of failure.
301  */
302 struct buffer_head *
303 ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
304 {
305 	struct ext4_group_desc * desc;
306 	struct buffer_head * bh = NULL;
307 	ext4_fsblk_t bitmap_blk;
308 
309 	desc = ext4_get_group_desc(sb, block_group, NULL);
310 	if (!desc)
311 		return NULL;
312 	bitmap_blk = ext4_block_bitmap(sb, desc);
313 	bh = sb_getblk(sb, bitmap_blk);
314 	if (unlikely(!bh)) {
315 		ext4_error(sb, __func__,
316 			    "Cannot read block bitmap - "
317 			    "block_group = %lu, block_bitmap = %llu",
318 			    block_group, bitmap_blk);
319 		return NULL;
320 	}
321 	if (bh_uptodate_or_lock(bh))
322 		return bh;
323 
324 	spin_lock(sb_bgl_lock(EXT4_SB(sb), block_group));
325 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
326 		ext4_init_block_bitmap(sb, bh, block_group, desc);
327 		set_buffer_uptodate(bh);
328 		unlock_buffer(bh);
329 		spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group));
330 		return bh;
331 	}
332 	spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group));
333 	if (bh_submit_read(bh) < 0) {
334 		put_bh(bh);
335 		ext4_error(sb, __func__,
336 			    "Cannot read block bitmap - "
337 			    "block_group = %lu, block_bitmap = %llu",
338 			    block_group, bitmap_blk);
339 		return NULL;
340 	}
341 	ext4_valid_block_bitmap(sb, desc, block_group, bh);
342 	/*
343 	 * file system mounted not to panic on error,
344 	 * continue with corrupt bitmap
345 	 */
346 	return bh;
347 }
348 /*
349  * The reservation window structure operations
350  * --------------------------------------------
351  * Operations include:
352  * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
353  *
354  * We use a red-black tree to represent per-filesystem reservation
355  * windows.
356  *
357  */
358 
359 /**
360  * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
361  * @rb_root:		root of per-filesystem reservation rb tree
362  * @verbose:		verbose mode
363  * @fn:			function which wishes to dump the reservation map
364  *
365  * If verbose is turned on, it will print the whole block reservation
366  * windows(start, end).	Otherwise, it will only print out the "bad" windows,
367  * those windows that overlap with their immediate neighbors.
368  */
369 #if 1
370 static void __rsv_window_dump(struct rb_root *root, int verbose,
371 			      const char *fn)
372 {
373 	struct rb_node *n;
374 	struct ext4_reserve_window_node *rsv, *prev;
375 	int bad;
376 
377 restart:
378 	n = rb_first(root);
379 	bad = 0;
380 	prev = NULL;
381 
382 	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
383 	while (n) {
384 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
385 		if (verbose)
386 			printk("reservation window 0x%p "
387 			       "start:  %llu, end:  %llu\n",
388 			       rsv, rsv->rsv_start, rsv->rsv_end);
389 		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
390 			printk("Bad reservation %p (start >= end)\n",
391 			       rsv);
392 			bad = 1;
393 		}
394 		if (prev && prev->rsv_end >= rsv->rsv_start) {
395 			printk("Bad reservation %p (prev->end >= start)\n",
396 			       rsv);
397 			bad = 1;
398 		}
399 		if (bad) {
400 			if (!verbose) {
401 				printk("Restarting reservation walk in verbose mode\n");
402 				verbose = 1;
403 				goto restart;
404 			}
405 		}
406 		n = rb_next(n);
407 		prev = rsv;
408 	}
409 	printk("Window map complete.\n");
410 	BUG_ON(bad);
411 }
412 #define rsv_window_dump(root, verbose) \
413 	__rsv_window_dump((root), (verbose), __func__)
414 #else
415 #define rsv_window_dump(root, verbose) do {} while (0)
416 #endif
417 
418 /**
419  * goal_in_my_reservation()
420  * @rsv:		inode's reservation window
421  * @grp_goal:		given goal block relative to the allocation block group
422  * @group:		the current allocation block group
423  * @sb:			filesystem super block
424  *
425  * Test if the given goal block (group relative) is within the file's
426  * own block reservation window range.
427  *
428  * If the reservation window is outside the goal allocation group, return 0;
429  * grp_goal (given goal block) could be -1, which means no specific
430  * goal block. In this case, always return 1.
431  * If the goal block is within the reservation window, return 1;
432  * otherwise, return 0;
433  */
434 static int
435 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
436 			ext4_group_t group, struct super_block *sb)
437 {
438 	ext4_fsblk_t group_first_block, group_last_block;
439 
440 	group_first_block = ext4_group_first_block_no(sb, group);
441 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
442 
443 	if ((rsv->_rsv_start > group_last_block) ||
444 	    (rsv->_rsv_end < group_first_block))
445 		return 0;
446 	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
447 		|| (grp_goal + group_first_block > rsv->_rsv_end)))
448 		return 0;
449 	return 1;
450 }
451 
452 /**
453  * search_reserve_window()
454  * @rb_root:		root of reservation tree
455  * @goal:		target allocation block
456  *
457  * Find the reserved window which includes the goal, or the previous one
458  * if the goal is not in any window.
459  * Returns NULL if there are no windows or if all windows start after the goal.
460  */
461 static struct ext4_reserve_window_node *
462 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
463 {
464 	struct rb_node *n = root->rb_node;
465 	struct ext4_reserve_window_node *rsv;
466 
467 	if (!n)
468 		return NULL;
469 
470 	do {
471 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
472 
473 		if (goal < rsv->rsv_start)
474 			n = n->rb_left;
475 		else if (goal > rsv->rsv_end)
476 			n = n->rb_right;
477 		else
478 			return rsv;
479 	} while (n);
480 	/*
481 	 * We've fallen off the end of the tree: the goal wasn't inside
482 	 * any particular node.  OK, the previous node must be to one
483 	 * side of the interval containing the goal.  If it's the RHS,
484 	 * we need to back up one.
485 	 */
486 	if (rsv->rsv_start > goal) {
487 		n = rb_prev(&rsv->rsv_node);
488 		rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
489 	}
490 	return rsv;
491 }
492 
493 /**
494  * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
495  * @sb:			super block
496  * @rsv:		reservation window to add
497  *
498  * Must be called with rsv_lock hold.
499  */
500 void ext4_rsv_window_add(struct super_block *sb,
501 		    struct ext4_reserve_window_node *rsv)
502 {
503 	struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
504 	struct rb_node *node = &rsv->rsv_node;
505 	ext4_fsblk_t start = rsv->rsv_start;
506 
507 	struct rb_node ** p = &root->rb_node;
508 	struct rb_node * parent = NULL;
509 	struct ext4_reserve_window_node *this;
510 
511 	while (*p)
512 	{
513 		parent = *p;
514 		this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
515 
516 		if (start < this->rsv_start)
517 			p = &(*p)->rb_left;
518 		else if (start > this->rsv_end)
519 			p = &(*p)->rb_right;
520 		else {
521 			rsv_window_dump(root, 1);
522 			BUG();
523 		}
524 	}
525 
526 	rb_link_node(node, parent, p);
527 	rb_insert_color(node, root);
528 }
529 
530 /**
531  * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
532  * @sb:			super block
533  * @rsv:		reservation window to remove
534  *
535  * Mark the block reservation window as not allocated, and unlink it
536  * from the filesystem reservation window rb tree. Must be called with
537  * rsv_lock hold.
538  */
539 static void rsv_window_remove(struct super_block *sb,
540 			      struct ext4_reserve_window_node *rsv)
541 {
542 	rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
543 	rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
544 	rsv->rsv_alloc_hit = 0;
545 	rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
546 }
547 
548 /*
549  * rsv_is_empty() -- Check if the reservation window is allocated.
550  * @rsv:		given reservation window to check
551  *
552  * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
553  */
554 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
555 {
556 	/* a valid reservation end block could not be 0 */
557 	return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
558 }
559 
560 /**
561  * ext4_init_block_alloc_info()
562  * @inode:		file inode structure
563  *
564  * Allocate and initialize the	reservation window structure, and
565  * link the window to the ext4 inode structure at last
566  *
567  * The reservation window structure is only dynamically allocated
568  * and linked to ext4 inode the first time the open file
569  * needs a new block. So, before every ext4_new_block(s) call, for
570  * regular files, we should check whether the reservation window
571  * structure exists or not. In the latter case, this function is called.
572  * Fail to do so will result in block reservation being turned off for that
573  * open file.
574  *
575  * This function is called from ext4_get_blocks_handle(), also called
576  * when setting the reservation window size through ioctl before the file
577  * is open for write (needs block allocation).
578  *
579  * Needs down_write(i_data_sem) protection prior to call this function.
580  */
581 void ext4_init_block_alloc_info(struct inode *inode)
582 {
583 	struct ext4_inode_info *ei = EXT4_I(inode);
584 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
585 	struct super_block *sb = inode->i_sb;
586 
587 	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
588 	if (block_i) {
589 		struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
590 
591 		rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
592 		rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
593 
594 		/*
595 		 * if filesystem is mounted with NORESERVATION, the goal
596 		 * reservation window size is set to zero to indicate
597 		 * block reservation is off
598 		 */
599 		if (!test_opt(sb, RESERVATION))
600 			rsv->rsv_goal_size = 0;
601 		else
602 			rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
603 		rsv->rsv_alloc_hit = 0;
604 		block_i->last_alloc_logical_block = 0;
605 		block_i->last_alloc_physical_block = 0;
606 	}
607 	ei->i_block_alloc_info = block_i;
608 }
609 
610 /**
611  * ext4_discard_reservation()
612  * @inode:		inode
613  *
614  * Discard(free) block reservation window on last file close, or truncate
615  * or at last iput().
616  *
617  * It is being called in three cases:
618  *	ext4_release_file(): last writer close the file
619  *	ext4_clear_inode(): last iput(), when nobody link to this file.
620  *	ext4_truncate(): when the block indirect map is about to change.
621  *
622  */
623 void ext4_discard_reservation(struct inode *inode)
624 {
625 	struct ext4_inode_info *ei = EXT4_I(inode);
626 	struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
627 	struct ext4_reserve_window_node *rsv;
628 	spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
629 
630 	ext4_mb_discard_inode_preallocations(inode);
631 
632 	if (!block_i)
633 		return;
634 
635 	rsv = &block_i->rsv_window_node;
636 	if (!rsv_is_empty(&rsv->rsv_window)) {
637 		spin_lock(rsv_lock);
638 		if (!rsv_is_empty(&rsv->rsv_window))
639 			rsv_window_remove(inode->i_sb, rsv);
640 		spin_unlock(rsv_lock);
641 	}
642 }
643 
644 /**
645  * ext4_free_blocks_sb() -- Free given blocks and update quota
646  * @handle:			handle to this transaction
647  * @sb:				super block
648  * @block:			start physcial block to free
649  * @count:			number of blocks to free
650  * @pdquot_freed_blocks:	pointer to quota
651  */
652 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
653 			 ext4_fsblk_t block, unsigned long count,
654 			 unsigned long *pdquot_freed_blocks)
655 {
656 	struct buffer_head *bitmap_bh = NULL;
657 	struct buffer_head *gd_bh;
658 	ext4_group_t block_group;
659 	ext4_grpblk_t bit;
660 	unsigned long i;
661 	unsigned long overflow;
662 	struct ext4_group_desc * desc;
663 	struct ext4_super_block * es;
664 	struct ext4_sb_info *sbi;
665 	int err = 0, ret;
666 	ext4_grpblk_t group_freed;
667 
668 	*pdquot_freed_blocks = 0;
669 	sbi = EXT4_SB(sb);
670 	es = sbi->s_es;
671 	if (block < le32_to_cpu(es->s_first_data_block) ||
672 	    block + count < block ||
673 	    block + count > ext4_blocks_count(es)) {
674 		ext4_error (sb, "ext4_free_blocks",
675 			    "Freeing blocks not in datazone - "
676 			    "block = %llu, count = %lu", block, count);
677 		goto error_return;
678 	}
679 
680 	ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
681 
682 do_more:
683 	overflow = 0;
684 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
685 	/*
686 	 * Check to see if we are freeing blocks across a group
687 	 * boundary.
688 	 */
689 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
690 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
691 		count -= overflow;
692 	}
693 	brelse(bitmap_bh);
694 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
695 	if (!bitmap_bh)
696 		goto error_return;
697 	desc = ext4_get_group_desc (sb, block_group, &gd_bh);
698 	if (!desc)
699 		goto error_return;
700 
701 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
702 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
703 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
704 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
705 		     sbi->s_itb_per_group)) {
706 		ext4_error (sb, "ext4_free_blocks",
707 			    "Freeing blocks in system zones - "
708 			    "Block = %llu, count = %lu",
709 			    block, count);
710 		goto error_return;
711 	}
712 
713 	/*
714 	 * We are about to start releasing blocks in the bitmap,
715 	 * so we need undo access.
716 	 */
717 	/* @@@ check errors */
718 	BUFFER_TRACE(bitmap_bh, "getting undo access");
719 	err = ext4_journal_get_undo_access(handle, bitmap_bh);
720 	if (err)
721 		goto error_return;
722 
723 	/*
724 	 * We are about to modify some metadata.  Call the journal APIs
725 	 * to unshare ->b_data if a currently-committing transaction is
726 	 * using it
727 	 */
728 	BUFFER_TRACE(gd_bh, "get_write_access");
729 	err = ext4_journal_get_write_access(handle, gd_bh);
730 	if (err)
731 		goto error_return;
732 
733 	jbd_lock_bh_state(bitmap_bh);
734 
735 	for (i = 0, group_freed = 0; i < count; i++) {
736 		/*
737 		 * An HJ special.  This is expensive...
738 		 */
739 #ifdef CONFIG_JBD2_DEBUG
740 		jbd_unlock_bh_state(bitmap_bh);
741 		{
742 			struct buffer_head *debug_bh;
743 			debug_bh = sb_find_get_block(sb, block + i);
744 			if (debug_bh) {
745 				BUFFER_TRACE(debug_bh, "Deleted!");
746 				if (!bh2jh(bitmap_bh)->b_committed_data)
747 					BUFFER_TRACE(debug_bh,
748 						"No commited data in bitmap");
749 				BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
750 				__brelse(debug_bh);
751 			}
752 		}
753 		jbd_lock_bh_state(bitmap_bh);
754 #endif
755 		if (need_resched()) {
756 			jbd_unlock_bh_state(bitmap_bh);
757 			cond_resched();
758 			jbd_lock_bh_state(bitmap_bh);
759 		}
760 		/* @@@ This prevents newly-allocated data from being
761 		 * freed and then reallocated within the same
762 		 * transaction.
763 		 *
764 		 * Ideally we would want to allow that to happen, but to
765 		 * do so requires making jbd2_journal_forget() capable of
766 		 * revoking the queued write of a data block, which
767 		 * implies blocking on the journal lock.  *forget()
768 		 * cannot block due to truncate races.
769 		 *
770 		 * Eventually we can fix this by making jbd2_journal_forget()
771 		 * return a status indicating whether or not it was able
772 		 * to revoke the buffer.  On successful revoke, it is
773 		 * safe not to set the allocation bit in the committed
774 		 * bitmap, because we know that there is no outstanding
775 		 * activity on the buffer any more and so it is safe to
776 		 * reallocate it.
777 		 */
778 		BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
779 		J_ASSERT_BH(bitmap_bh,
780 				bh2jh(bitmap_bh)->b_committed_data != NULL);
781 		ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
782 				bh2jh(bitmap_bh)->b_committed_data);
783 
784 		/*
785 		 * We clear the bit in the bitmap after setting the committed
786 		 * data bit, because this is the reverse order to that which
787 		 * the allocator uses.
788 		 */
789 		BUFFER_TRACE(bitmap_bh, "clear bit");
790 		if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
791 						bit + i, bitmap_bh->b_data)) {
792 			jbd_unlock_bh_state(bitmap_bh);
793 			ext4_error(sb, __func__,
794 				   "bit already cleared for block %llu",
795 				   (ext4_fsblk_t)(block + i));
796 			jbd_lock_bh_state(bitmap_bh);
797 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
798 		} else {
799 			group_freed++;
800 		}
801 	}
802 	jbd_unlock_bh_state(bitmap_bh);
803 
804 	spin_lock(sb_bgl_lock(sbi, block_group));
805 	le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
806 	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
807 	spin_unlock(sb_bgl_lock(sbi, block_group));
808 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
809 
810 	if (sbi->s_log_groups_per_flex) {
811 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
812 		spin_lock(sb_bgl_lock(sbi, flex_group));
813 		sbi->s_flex_groups[flex_group].free_blocks += count;
814 		spin_unlock(sb_bgl_lock(sbi, flex_group));
815 	}
816 
817 	/* We dirtied the bitmap block */
818 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
819 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
820 
821 	/* And the group descriptor block */
822 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
823 	ret = ext4_journal_dirty_metadata(handle, gd_bh);
824 	if (!err) err = ret;
825 	*pdquot_freed_blocks += group_freed;
826 
827 	if (overflow && !err) {
828 		block += count;
829 		count = overflow;
830 		goto do_more;
831 	}
832 	sb->s_dirt = 1;
833 error_return:
834 	brelse(bitmap_bh);
835 	ext4_std_error(sb, err);
836 	return;
837 }
838 
839 /**
840  * ext4_free_blocks() -- Free given blocks and update quota
841  * @handle:		handle for this transaction
842  * @inode:		inode
843  * @block:		start physical block to free
844  * @count:		number of blocks to count
845  * @metadata: 		Are these metadata blocks
846  */
847 void ext4_free_blocks(handle_t *handle, struct inode *inode,
848 			ext4_fsblk_t block, unsigned long count,
849 			int metadata)
850 {
851 	struct super_block * sb;
852 	unsigned long dquot_freed_blocks;
853 
854 	/* this isn't the right place to decide whether block is metadata
855 	 * inode.c/extents.c knows better, but for safety ... */
856 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
857 			ext4_should_journal_data(inode))
858 		metadata = 1;
859 
860 	sb = inode->i_sb;
861 
862 	if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
863 		ext4_free_blocks_sb(handle, sb, block, count,
864 						&dquot_freed_blocks);
865 	else
866 		ext4_mb_free_blocks(handle, inode, block, count,
867 						metadata, &dquot_freed_blocks);
868 	if (dquot_freed_blocks)
869 		DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
870 	return;
871 }
872 
873 /**
874  * ext4_test_allocatable()
875  * @nr:			given allocation block group
876  * @bh:			bufferhead contains the bitmap of the given block group
877  *
878  * For ext4 allocations, we must not reuse any blocks which are
879  * allocated in the bitmap buffer's "last committed data" copy.  This
880  * prevents deletes from freeing up the page for reuse until we have
881  * committed the delete transaction.
882  *
883  * If we didn't do this, then deleting something and reallocating it as
884  * data would allow the old block to be overwritten before the
885  * transaction committed (because we force data to disk before commit).
886  * This would lead to corruption if we crashed between overwriting the
887  * data and committing the delete.
888  *
889  * @@@ We may want to make this allocation behaviour conditional on
890  * data-writes at some point, and disable it for metadata allocations or
891  * sync-data inodes.
892  */
893 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
894 {
895 	int ret;
896 	struct journal_head *jh = bh2jh(bh);
897 
898 	if (ext4_test_bit(nr, bh->b_data))
899 		return 0;
900 
901 	jbd_lock_bh_state(bh);
902 	if (!jh->b_committed_data)
903 		ret = 1;
904 	else
905 		ret = !ext4_test_bit(nr, jh->b_committed_data);
906 	jbd_unlock_bh_state(bh);
907 	return ret;
908 }
909 
910 /**
911  * bitmap_search_next_usable_block()
912  * @start:		the starting block (group relative) of the search
913  * @bh:			bufferhead contains the block group bitmap
914  * @maxblocks:		the ending block (group relative) of the reservation
915  *
916  * The bitmap search --- search forward alternately through the actual
917  * bitmap on disk and the last-committed copy in journal, until we find a
918  * bit free in both bitmaps.
919  */
920 static ext4_grpblk_t
921 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
922 					ext4_grpblk_t maxblocks)
923 {
924 	ext4_grpblk_t next;
925 	struct journal_head *jh = bh2jh(bh);
926 
927 	while (start < maxblocks) {
928 		next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
929 		if (next >= maxblocks)
930 			return -1;
931 		if (ext4_test_allocatable(next, bh))
932 			return next;
933 		jbd_lock_bh_state(bh);
934 		if (jh->b_committed_data)
935 			start = ext4_find_next_zero_bit(jh->b_committed_data,
936 							maxblocks, next);
937 		jbd_unlock_bh_state(bh);
938 	}
939 	return -1;
940 }
941 
942 /**
943  * find_next_usable_block()
944  * @start:		the starting block (group relative) to find next
945  *			allocatable block in bitmap.
946  * @bh:			bufferhead contains the block group bitmap
947  * @maxblocks:		the ending block (group relative) for the search
948  *
949  * Find an allocatable block in a bitmap.  We honor both the bitmap and
950  * its last-committed copy (if that exists), and perform the "most
951  * appropriate allocation" algorithm of looking for a free block near
952  * the initial goal; then for a free byte somewhere in the bitmap; then
953  * for any free bit in the bitmap.
954  */
955 static ext4_grpblk_t
956 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
957 			ext4_grpblk_t maxblocks)
958 {
959 	ext4_grpblk_t here, next;
960 	char *p, *r;
961 
962 	if (start > 0) {
963 		/*
964 		 * The goal was occupied; search forward for a free
965 		 * block within the next XX blocks.
966 		 *
967 		 * end_goal is more or less random, but it has to be
968 		 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
969 		 * next 64-bit boundary is simple..
970 		 */
971 		ext4_grpblk_t end_goal = (start + 63) & ~63;
972 		if (end_goal > maxblocks)
973 			end_goal = maxblocks;
974 		here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
975 		if (here < end_goal && ext4_test_allocatable(here, bh))
976 			return here;
977 		ext4_debug("Bit not found near goal\n");
978 	}
979 
980 	here = start;
981 	if (here < 0)
982 		here = 0;
983 
984 	p = ((char *)bh->b_data) + (here >> 3);
985 	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
986 	next = (r - ((char *)bh->b_data)) << 3;
987 
988 	if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
989 		return next;
990 
991 	/*
992 	 * The bitmap search --- search forward alternately through the actual
993 	 * bitmap and the last-committed copy until we find a bit free in
994 	 * both
995 	 */
996 	here = bitmap_search_next_usable_block(here, bh, maxblocks);
997 	return here;
998 }
999 
1000 /**
1001  * claim_block()
1002  * @block:		the free block (group relative) to allocate
1003  * @bh:			the bufferhead containts the block group bitmap
1004  *
1005  * We think we can allocate this block in this bitmap.  Try to set the bit.
1006  * If that succeeds then check that nobody has allocated and then freed the
1007  * block since we saw that is was not marked in b_committed_data.  If it _was_
1008  * allocated and freed then clear the bit in the bitmap again and return
1009  * zero (failure).
1010  */
1011 static inline int
1012 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
1013 {
1014 	struct journal_head *jh = bh2jh(bh);
1015 	int ret;
1016 
1017 	if (ext4_set_bit_atomic(lock, block, bh->b_data))
1018 		return 0;
1019 	jbd_lock_bh_state(bh);
1020 	if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
1021 		ext4_clear_bit_atomic(lock, block, bh->b_data);
1022 		ret = 0;
1023 	} else {
1024 		ret = 1;
1025 	}
1026 	jbd_unlock_bh_state(bh);
1027 	return ret;
1028 }
1029 
1030 /**
1031  * ext4_try_to_allocate()
1032  * @sb:			superblock
1033  * @handle:		handle to this transaction
1034  * @group:		given allocation block group
1035  * @bitmap_bh:		bufferhead holds the block bitmap
1036  * @grp_goal:		given target block within the group
1037  * @count:		target number of blocks to allocate
1038  * @my_rsv:		reservation window
1039  *
1040  * Attempt to allocate blocks within a give range. Set the range of allocation
1041  * first, then find the first free bit(s) from the bitmap (within the range),
1042  * and at last, allocate the blocks by claiming the found free bit as allocated.
1043  *
1044  * To set the range of this allocation:
1045  *	if there is a reservation window, only try to allocate block(s) from the
1046  *	file's own reservation window;
1047  *	Otherwise, the allocation range starts from the give goal block, ends at
1048  *	the block group's last block.
1049  *
1050  * If we failed to allocate the desired block then we may end up crossing to a
1051  * new bitmap.  In that case we must release write access to the old one via
1052  * ext4_journal_release_buffer(), else we'll run out of credits.
1053  */
1054 static ext4_grpblk_t
1055 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1056 			ext4_group_t group, struct buffer_head *bitmap_bh,
1057 			ext4_grpblk_t grp_goal, unsigned long *count,
1058 			struct ext4_reserve_window *my_rsv)
1059 {
1060 	ext4_fsblk_t group_first_block;
1061 	ext4_grpblk_t start, end;
1062 	unsigned long num = 0;
1063 
1064 	/* we do allocation within the reservation window if we have a window */
1065 	if (my_rsv) {
1066 		group_first_block = ext4_group_first_block_no(sb, group);
1067 		if (my_rsv->_rsv_start >= group_first_block)
1068 			start = my_rsv->_rsv_start - group_first_block;
1069 		else
1070 			/* reservation window cross group boundary */
1071 			start = 0;
1072 		end = my_rsv->_rsv_end - group_first_block + 1;
1073 		if (end > EXT4_BLOCKS_PER_GROUP(sb))
1074 			/* reservation window crosses group boundary */
1075 			end = EXT4_BLOCKS_PER_GROUP(sb);
1076 		if ((start <= grp_goal) && (grp_goal < end))
1077 			start = grp_goal;
1078 		else
1079 			grp_goal = -1;
1080 	} else {
1081 		if (grp_goal > 0)
1082 			start = grp_goal;
1083 		else
1084 			start = 0;
1085 		end = EXT4_BLOCKS_PER_GROUP(sb);
1086 	}
1087 
1088 	BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1089 
1090 repeat:
1091 	if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1092 		grp_goal = find_next_usable_block(start, bitmap_bh, end);
1093 		if (grp_goal < 0)
1094 			goto fail_access;
1095 		if (!my_rsv) {
1096 			int i;
1097 
1098 			for (i = 0; i < 7 && grp_goal > start &&
1099 					ext4_test_allocatable(grp_goal - 1,
1100 								bitmap_bh);
1101 					i++, grp_goal--)
1102 				;
1103 		}
1104 	}
1105 	start = grp_goal;
1106 
1107 	if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1108 		grp_goal, bitmap_bh)) {
1109 		/*
1110 		 * The block was allocated by another thread, or it was
1111 		 * allocated and then freed by another thread
1112 		 */
1113 		start++;
1114 		grp_goal++;
1115 		if (start >= end)
1116 			goto fail_access;
1117 		goto repeat;
1118 	}
1119 	num++;
1120 	grp_goal++;
1121 	while (num < *count && grp_goal < end
1122 		&& ext4_test_allocatable(grp_goal, bitmap_bh)
1123 		&& claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1124 				grp_goal, bitmap_bh)) {
1125 		num++;
1126 		grp_goal++;
1127 	}
1128 	*count = num;
1129 	return grp_goal - num;
1130 fail_access:
1131 	*count = num;
1132 	return -1;
1133 }
1134 
1135 /**
1136  *	find_next_reservable_window():
1137  *		find a reservable space within the given range.
1138  *		It does not allocate the reservation window for now:
1139  *		alloc_new_reservation() will do the work later.
1140  *
1141  *	@search_head: the head of the searching list;
1142  *		This is not necessarily the list head of the whole filesystem
1143  *
1144  *		We have both head and start_block to assist the search
1145  *		for the reservable space. The list starts from head,
1146  *		but we will shift to the place where start_block is,
1147  *		then start from there, when looking for a reservable space.
1148  *
1149  *	@size: the target new reservation window size
1150  *
1151  *	@group_first_block: the first block we consider to start
1152  *			the real search from
1153  *
1154  *	@last_block:
1155  *		the maximum block number that our goal reservable space
1156  *		could start from. This is normally the last block in this
1157  *		group. The search will end when we found the start of next
1158  *		possible reservable space is out of this boundary.
1159  *		This could handle the cross boundary reservation window
1160  *		request.
1161  *
1162  *	basically we search from the given range, rather than the whole
1163  *	reservation double linked list, (start_block, last_block)
1164  *	to find a free region that is of my size and has not
1165  *	been reserved.
1166  *
1167  */
1168 static int find_next_reservable_window(
1169 				struct ext4_reserve_window_node *search_head,
1170 				struct ext4_reserve_window_node *my_rsv,
1171 				struct super_block * sb,
1172 				ext4_fsblk_t start_block,
1173 				ext4_fsblk_t last_block)
1174 {
1175 	struct rb_node *next;
1176 	struct ext4_reserve_window_node *rsv, *prev;
1177 	ext4_fsblk_t cur;
1178 	int size = my_rsv->rsv_goal_size;
1179 
1180 	/* TODO: make the start of the reservation window byte-aligned */
1181 	/* cur = *start_block & ~7;*/
1182 	cur = start_block;
1183 	rsv = search_head;
1184 	if (!rsv)
1185 		return -1;
1186 
1187 	while (1) {
1188 		if (cur <= rsv->rsv_end)
1189 			cur = rsv->rsv_end + 1;
1190 
1191 		/* TODO?
1192 		 * in the case we could not find a reservable space
1193 		 * that is what is expected, during the re-search, we could
1194 		 * remember what's the largest reservable space we could have
1195 		 * and return that one.
1196 		 *
1197 		 * For now it will fail if we could not find the reservable
1198 		 * space with expected-size (or more)...
1199 		 */
1200 		if (cur > last_block)
1201 			return -1;		/* fail */
1202 
1203 		prev = rsv;
1204 		next = rb_next(&rsv->rsv_node);
1205 		rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1206 
1207 		/*
1208 		 * Reached the last reservation, we can just append to the
1209 		 * previous one.
1210 		 */
1211 		if (!next)
1212 			break;
1213 
1214 		if (cur + size <= rsv->rsv_start) {
1215 			/*
1216 			 * Found a reserveable space big enough.  We could
1217 			 * have a reservation across the group boundary here
1218 			 */
1219 			break;
1220 		}
1221 	}
1222 	/*
1223 	 * we come here either :
1224 	 * when we reach the end of the whole list,
1225 	 * and there is empty reservable space after last entry in the list.
1226 	 * append it to the end of the list.
1227 	 *
1228 	 * or we found one reservable space in the middle of the list,
1229 	 * return the reservation window that we could append to.
1230 	 * succeed.
1231 	 */
1232 
1233 	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1234 		rsv_window_remove(sb, my_rsv);
1235 
1236 	/*
1237 	 * Let's book the whole avaliable window for now.  We will check the
1238 	 * disk bitmap later and then, if there are free blocks then we adjust
1239 	 * the window size if it's larger than requested.
1240 	 * Otherwise, we will remove this node from the tree next time
1241 	 * call find_next_reservable_window.
1242 	 */
1243 	my_rsv->rsv_start = cur;
1244 	my_rsv->rsv_end = cur + size - 1;
1245 	my_rsv->rsv_alloc_hit = 0;
1246 
1247 	if (prev != my_rsv)
1248 		ext4_rsv_window_add(sb, my_rsv);
1249 
1250 	return 0;
1251 }
1252 
1253 /**
1254  *	alloc_new_reservation()--allocate a new reservation window
1255  *
1256  *		To make a new reservation, we search part of the filesystem
1257  *		reservation list (the list that inside the group). We try to
1258  *		allocate a new reservation window near the allocation goal,
1259  *		or the beginning of the group, if there is no goal.
1260  *
1261  *		We first find a reservable space after the goal, then from
1262  *		there, we check the bitmap for the first free block after
1263  *		it. If there is no free block until the end of group, then the
1264  *		whole group is full, we failed. Otherwise, check if the free
1265  *		block is inside the expected reservable space, if so, we
1266  *		succeed.
1267  *		If the first free block is outside the reservable space, then
1268  *		start from the first free block, we search for next available
1269  *		space, and go on.
1270  *
1271  *	on succeed, a new reservation will be found and inserted into the list
1272  *	It contains at least one free block, and it does not overlap with other
1273  *	reservation windows.
1274  *
1275  *	failed: we failed to find a reservation window in this group
1276  *
1277  *	@rsv: the reservation
1278  *
1279  *	@grp_goal: The goal (group-relative).  It is where the search for a
1280  *		free reservable space should start from.
1281  *		if we have a grp_goal(grp_goal >0 ), then start from there,
1282  *		no grp_goal(grp_goal = -1), we start from the first block
1283  *		of the group.
1284  *
1285  *	@sb: the super block
1286  *	@group: the group we are trying to allocate in
1287  *	@bitmap_bh: the block group block bitmap
1288  *
1289  */
1290 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1291 		ext4_grpblk_t grp_goal, struct super_block *sb,
1292 		ext4_group_t group, struct buffer_head *bitmap_bh)
1293 {
1294 	struct ext4_reserve_window_node *search_head;
1295 	ext4_fsblk_t group_first_block, group_end_block, start_block;
1296 	ext4_grpblk_t first_free_block;
1297 	struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1298 	unsigned long size;
1299 	int ret;
1300 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1301 
1302 	group_first_block = ext4_group_first_block_no(sb, group);
1303 	group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1304 
1305 	if (grp_goal < 0)
1306 		start_block = group_first_block;
1307 	else
1308 		start_block = grp_goal + group_first_block;
1309 
1310 	size = my_rsv->rsv_goal_size;
1311 
1312 	if (!rsv_is_empty(&my_rsv->rsv_window)) {
1313 		/*
1314 		 * if the old reservation is cross group boundary
1315 		 * and if the goal is inside the old reservation window,
1316 		 * we will come here when we just failed to allocate from
1317 		 * the first part of the window. We still have another part
1318 		 * that belongs to the next group. In this case, there is no
1319 		 * point to discard our window and try to allocate a new one
1320 		 * in this group(which will fail). we should
1321 		 * keep the reservation window, just simply move on.
1322 		 *
1323 		 * Maybe we could shift the start block of the reservation
1324 		 * window to the first block of next group.
1325 		 */
1326 
1327 		if ((my_rsv->rsv_start <= group_end_block) &&
1328 				(my_rsv->rsv_end > group_end_block) &&
1329 				(start_block >= my_rsv->rsv_start))
1330 			return -1;
1331 
1332 		if ((my_rsv->rsv_alloc_hit >
1333 		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1334 			/*
1335 			 * if the previously allocation hit ratio is
1336 			 * greater than 1/2, then we double the size of
1337 			 * the reservation window the next time,
1338 			 * otherwise we keep the same size window
1339 			 */
1340 			size = size * 2;
1341 			if (size > EXT4_MAX_RESERVE_BLOCKS)
1342 				size = EXT4_MAX_RESERVE_BLOCKS;
1343 			my_rsv->rsv_goal_size= size;
1344 		}
1345 	}
1346 
1347 	spin_lock(rsv_lock);
1348 	/*
1349 	 * shift the search start to the window near the goal block
1350 	 */
1351 	search_head = search_reserve_window(fs_rsv_root, start_block);
1352 
1353 	/*
1354 	 * find_next_reservable_window() simply finds a reservable window
1355 	 * inside the given range(start_block, group_end_block).
1356 	 *
1357 	 * To make sure the reservation window has a free bit inside it, we
1358 	 * need to check the bitmap after we found a reservable window.
1359 	 */
1360 retry:
1361 	ret = find_next_reservable_window(search_head, my_rsv, sb,
1362 						start_block, group_end_block);
1363 
1364 	if (ret == -1) {
1365 		if (!rsv_is_empty(&my_rsv->rsv_window))
1366 			rsv_window_remove(sb, my_rsv);
1367 		spin_unlock(rsv_lock);
1368 		return -1;
1369 	}
1370 
1371 	/*
1372 	 * On success, find_next_reservable_window() returns the
1373 	 * reservation window where there is a reservable space after it.
1374 	 * Before we reserve this reservable space, we need
1375 	 * to make sure there is at least a free block inside this region.
1376 	 *
1377 	 * searching the first free bit on the block bitmap and copy of
1378 	 * last committed bitmap alternatively, until we found a allocatable
1379 	 * block. Search start from the start block of the reservable space
1380 	 * we just found.
1381 	 */
1382 	spin_unlock(rsv_lock);
1383 	first_free_block = bitmap_search_next_usable_block(
1384 			my_rsv->rsv_start - group_first_block,
1385 			bitmap_bh, group_end_block - group_first_block + 1);
1386 
1387 	if (first_free_block < 0) {
1388 		/*
1389 		 * no free block left on the bitmap, no point
1390 		 * to reserve the space. return failed.
1391 		 */
1392 		spin_lock(rsv_lock);
1393 		if (!rsv_is_empty(&my_rsv->rsv_window))
1394 			rsv_window_remove(sb, my_rsv);
1395 		spin_unlock(rsv_lock);
1396 		return -1;		/* failed */
1397 	}
1398 
1399 	start_block = first_free_block + group_first_block;
1400 	/*
1401 	 * check if the first free block is within the
1402 	 * free space we just reserved
1403 	 */
1404 	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1405 		return 0;		/* success */
1406 	/*
1407 	 * if the first free bit we found is out of the reservable space
1408 	 * continue search for next reservable space,
1409 	 * start from where the free block is,
1410 	 * we also shift the list head to where we stopped last time
1411 	 */
1412 	search_head = my_rsv;
1413 	spin_lock(rsv_lock);
1414 	goto retry;
1415 }
1416 
1417 /**
1418  * try_to_extend_reservation()
1419  * @my_rsv:		given reservation window
1420  * @sb:			super block
1421  * @size:		the delta to extend
1422  *
1423  * Attempt to expand the reservation window large enough to have
1424  * required number of free blocks
1425  *
1426  * Since ext4_try_to_allocate() will always allocate blocks within
1427  * the reservation window range, if the window size is too small,
1428  * multiple blocks allocation has to stop at the end of the reservation
1429  * window. To make this more efficient, given the total number of
1430  * blocks needed and the current size of the window, we try to
1431  * expand the reservation window size if necessary on a best-effort
1432  * basis before ext4_new_blocks() tries to allocate blocks,
1433  */
1434 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1435 			struct super_block *sb, int size)
1436 {
1437 	struct ext4_reserve_window_node *next_rsv;
1438 	struct rb_node *next;
1439 	spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1440 
1441 	if (!spin_trylock(rsv_lock))
1442 		return;
1443 
1444 	next = rb_next(&my_rsv->rsv_node);
1445 
1446 	if (!next)
1447 		my_rsv->rsv_end += size;
1448 	else {
1449 		next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1450 
1451 		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1452 			my_rsv->rsv_end += size;
1453 		else
1454 			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1455 	}
1456 	spin_unlock(rsv_lock);
1457 }
1458 
1459 /**
1460  * ext4_try_to_allocate_with_rsv()
1461  * @sb:			superblock
1462  * @handle:		handle to this transaction
1463  * @group:		given allocation block group
1464  * @bitmap_bh:		bufferhead holds the block bitmap
1465  * @grp_goal:		given target block within the group
1466  * @count:		target number of blocks to allocate
1467  * @my_rsv:		reservation window
1468  * @errp:		pointer to store the error code
1469  *
1470  * This is the main function used to allocate a new block and its reservation
1471  * window.
1472  *
1473  * Each time when a new block allocation is need, first try to allocate from
1474  * its own reservation.  If it does not have a reservation window, instead of
1475  * looking for a free bit on bitmap first, then look up the reservation list to
1476  * see if it is inside somebody else's reservation window, we try to allocate a
1477  * reservation window for it starting from the goal first. Then do the block
1478  * allocation within the reservation window.
1479  *
1480  * This will avoid keeping on searching the reservation list again and
1481  * again when somebody is looking for a free block (without
1482  * reservation), and there are lots of free blocks, but they are all
1483  * being reserved.
1484  *
1485  * We use a red-black tree for the per-filesystem reservation list.
1486  *
1487  */
1488 static ext4_grpblk_t
1489 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1490 			ext4_group_t group, struct buffer_head *bitmap_bh,
1491 			ext4_grpblk_t grp_goal,
1492 			struct ext4_reserve_window_node * my_rsv,
1493 			unsigned long *count, int *errp)
1494 {
1495 	ext4_fsblk_t group_first_block, group_last_block;
1496 	ext4_grpblk_t ret = 0;
1497 	int fatal;
1498 	unsigned long num = *count;
1499 
1500 	*errp = 0;
1501 
1502 	/*
1503 	 * Make sure we use undo access for the bitmap, because it is critical
1504 	 * that we do the frozen_data COW on bitmap buffers in all cases even
1505 	 * if the buffer is in BJ_Forget state in the committing transaction.
1506 	 */
1507 	BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1508 	fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1509 	if (fatal) {
1510 		*errp = fatal;
1511 		return -1;
1512 	}
1513 
1514 	/*
1515 	 * we don't deal with reservation when
1516 	 * filesystem is mounted without reservation
1517 	 * or the file is not a regular file
1518 	 * or last attempt to allocate a block with reservation turned on failed
1519 	 */
1520 	if (my_rsv == NULL ) {
1521 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1522 						grp_goal, count, NULL);
1523 		goto out;
1524 	}
1525 	/*
1526 	 * grp_goal is a group relative block number (if there is a goal)
1527 	 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1528 	 * first block is a filesystem wide block number
1529 	 * first block is the block number of the first block in this group
1530 	 */
1531 	group_first_block = ext4_group_first_block_no(sb, group);
1532 	group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1533 
1534 	/*
1535 	 * Basically we will allocate a new block from inode's reservation
1536 	 * window.
1537 	 *
1538 	 * We need to allocate a new reservation window, if:
1539 	 * a) inode does not have a reservation window; or
1540 	 * b) last attempt to allocate a block from existing reservation
1541 	 *    failed; or
1542 	 * c) we come here with a goal and with a reservation window
1543 	 *
1544 	 * We do not need to allocate a new reservation window if we come here
1545 	 * at the beginning with a goal and the goal is inside the window, or
1546 	 * we don't have a goal but already have a reservation window.
1547 	 * then we could go to allocate from the reservation window directly.
1548 	 */
1549 	while (1) {
1550 		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1551 			!goal_in_my_reservation(&my_rsv->rsv_window,
1552 						grp_goal, group, sb)) {
1553 			if (my_rsv->rsv_goal_size < *count)
1554 				my_rsv->rsv_goal_size = *count;
1555 			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1556 							group, bitmap_bh);
1557 			if (ret < 0)
1558 				break;			/* failed */
1559 
1560 			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1561 							grp_goal, group, sb))
1562 				grp_goal = -1;
1563 		} else if (grp_goal >= 0) {
1564 			int curr = my_rsv->rsv_end -
1565 					(grp_goal + group_first_block) + 1;
1566 
1567 			if (curr < *count)
1568 				try_to_extend_reservation(my_rsv, sb,
1569 							*count - curr);
1570 		}
1571 
1572 		if ((my_rsv->rsv_start > group_last_block) ||
1573 				(my_rsv->rsv_end < group_first_block)) {
1574 			rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1575 			BUG();
1576 		}
1577 		ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1578 					   grp_goal, &num, &my_rsv->rsv_window);
1579 		if (ret >= 0) {
1580 			my_rsv->rsv_alloc_hit += num;
1581 			*count = num;
1582 			break;				/* succeed */
1583 		}
1584 		num = *count;
1585 	}
1586 out:
1587 	if (ret >= 0) {
1588 		BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1589 					"bitmap block");
1590 		fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1591 		if (fatal) {
1592 			*errp = fatal;
1593 			return -1;
1594 		}
1595 		return ret;
1596 	}
1597 
1598 	BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1599 	ext4_journal_release_buffer(handle, bitmap_bh);
1600 	return ret;
1601 }
1602 
1603 /**
1604  * ext4_has_free_blocks()
1605  * @sbi:	in-core super block structure.
1606  * @nblocks:	number of neeed blocks
1607  *
1608  * Check if filesystem has free blocks available for allocation.
1609  * Return the number of blocks avaible for allocation for this request
1610  * On success, return nblocks
1611  */
1612 ext4_fsblk_t ext4_has_free_blocks(struct ext4_sb_info *sbi,
1613 						ext4_fsblk_t nblocks)
1614 {
1615 	ext4_fsblk_t free_blocks;
1616 	ext4_fsblk_t root_blocks = 0;
1617 
1618 	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1619 
1620 	if (!capable(CAP_SYS_RESOURCE) &&
1621 		sbi->s_resuid != current->fsuid &&
1622 		(sbi->s_resgid == 0 || !in_group_p(sbi->s_resgid)))
1623 		root_blocks = ext4_r_blocks_count(sbi->s_es);
1624 #ifdef CONFIG_SMP
1625 	if (free_blocks - root_blocks < FBC_BATCH)
1626 		free_blocks =
1627 			percpu_counter_sum_and_set(&sbi->s_freeblocks_counter);
1628 #endif
1629 	if (free_blocks <= root_blocks)
1630 		/* we don't have free space */
1631 		return 0;
1632 	if (free_blocks - root_blocks < nblocks)
1633 		return free_blocks - root_blocks;
1634 	return nblocks;
1635  }
1636 
1637 
1638 /**
1639  * ext4_should_retry_alloc()
1640  * @sb:			super block
1641  * @retries		number of attemps has been made
1642  *
1643  * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1644  * it is profitable to retry the operation, this function will wait
1645  * for the current or commiting transaction to complete, and then
1646  * return TRUE.
1647  *
1648  * if the total number of retries exceed three times, return FALSE.
1649  */
1650 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1651 {
1652 	if (!ext4_has_free_blocks(EXT4_SB(sb), 1) || (*retries)++ > 3)
1653 		return 0;
1654 
1655 	jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1656 
1657 	return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1658 }
1659 
1660 /**
1661  * ext4_old_new_blocks() -- core block bitmap based block allocation function
1662  *
1663  * @handle:		handle to this transaction
1664  * @inode:		file inode
1665  * @goal:		given target block(filesystem wide)
1666  * @count:		target number of blocks to allocate
1667  * @errp:		error code
1668  *
1669  * ext4_old_new_blocks uses a goal block to assist allocation and look up
1670  * the block bitmap directly to do block allocation.  It tries to
1671  * allocate block(s) from the block group contains the goal block first. If
1672  * that fails, it will try to allocate block(s) from other block groups
1673  * without any specific goal block.
1674  *
1675  * This function is called when -o nomballoc mount option is enabled
1676  *
1677  */
1678 ext4_fsblk_t ext4_old_new_blocks(handle_t *handle, struct inode *inode,
1679 			ext4_fsblk_t goal, unsigned long *count, int *errp)
1680 {
1681 	struct buffer_head *bitmap_bh = NULL;
1682 	struct buffer_head *gdp_bh;
1683 	ext4_group_t group_no;
1684 	ext4_group_t goal_group;
1685 	ext4_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1686 	ext4_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1687 	ext4_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1688 	ext4_group_t bgi;			/* blockgroup iteration index */
1689 	int fatal = 0, err;
1690 	int performed_allocation = 0;
1691 	ext4_grpblk_t free_blocks;	/* number of free blocks in a group */
1692 	struct super_block *sb;
1693 	struct ext4_group_desc *gdp;
1694 	struct ext4_super_block *es;
1695 	struct ext4_sb_info *sbi;
1696 	struct ext4_reserve_window_node *my_rsv = NULL;
1697 	struct ext4_block_alloc_info *block_i;
1698 	unsigned short windowsz = 0;
1699 	ext4_group_t ngroups;
1700 	unsigned long num = *count;
1701 
1702 	sb = inode->i_sb;
1703 	if (!sb) {
1704 		*errp = -ENODEV;
1705 		printk("ext4_new_block: nonexistent device");
1706 		return 0;
1707 	}
1708 
1709 	sbi = EXT4_SB(sb);
1710 	if (!EXT4_I(inode)->i_delalloc_reserved_flag) {
1711 		/*
1712 		 * With delalloc we already reserved the blocks
1713 		 */
1714 		*count = ext4_has_free_blocks(sbi, *count);
1715 	}
1716 	if (*count == 0) {
1717 		*errp = -ENOSPC;
1718 		return 0;	/*return with ENOSPC error */
1719 	}
1720 	num = *count;
1721 
1722 	/*
1723 	 * Check quota for allocation of this block.
1724 	 */
1725 	if (DQUOT_ALLOC_BLOCK(inode, num)) {
1726 		*errp = -EDQUOT;
1727 		return 0;
1728 	}
1729 
1730 	sbi = EXT4_SB(sb);
1731 	es = EXT4_SB(sb)->s_es;
1732 	ext4_debug("goal=%llu.\n", goal);
1733 	/*
1734 	 * Allocate a block from reservation only when
1735 	 * filesystem is mounted with reservation(default,-o reservation), and
1736 	 * it's a regular file, and
1737 	 * the desired window size is greater than 0 (One could use ioctl
1738 	 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1739 	 * reservation on that particular file)
1740 	 */
1741 	block_i = EXT4_I(inode)->i_block_alloc_info;
1742 	if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1743 		my_rsv = &block_i->rsv_window_node;
1744 
1745 	/*
1746 	 * First, test whether the goal block is free.
1747 	 */
1748 	if (goal < le32_to_cpu(es->s_first_data_block) ||
1749 	    goal >= ext4_blocks_count(es))
1750 		goal = le32_to_cpu(es->s_first_data_block);
1751 	ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1752 	goal_group = group_no;
1753 retry_alloc:
1754 	gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1755 	if (!gdp)
1756 		goto io_error;
1757 
1758 	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1759 	/*
1760 	 * if there is not enough free blocks to make a new resevation
1761 	 * turn off reservation for this allocation
1762 	 */
1763 	if (my_rsv && (free_blocks < windowsz)
1764 		&& (rsv_is_empty(&my_rsv->rsv_window)))
1765 		my_rsv = NULL;
1766 
1767 	if (free_blocks > 0) {
1768 		bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1769 		if (!bitmap_bh)
1770 			goto io_error;
1771 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1772 					group_no, bitmap_bh, grp_target_blk,
1773 					my_rsv,	&num, &fatal);
1774 		if (fatal)
1775 			goto out;
1776 		if (grp_alloc_blk >= 0)
1777 			goto allocated;
1778 	}
1779 
1780 	ngroups = EXT4_SB(sb)->s_groups_count;
1781 	smp_rmb();
1782 
1783 	/*
1784 	 * Now search the rest of the groups.  We assume that
1785 	 * group_no and gdp correctly point to the last group visited.
1786 	 */
1787 	for (bgi = 0; bgi < ngroups; bgi++) {
1788 		group_no++;
1789 		if (group_no >= ngroups)
1790 			group_no = 0;
1791 		gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1792 		if (!gdp)
1793 			goto io_error;
1794 		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1795 		/*
1796 		 * skip this group if the number of
1797 		 * free blocks is less than half of the reservation
1798 		 * window size.
1799 		 */
1800 		if (free_blocks <= (windowsz/2))
1801 			continue;
1802 
1803 		brelse(bitmap_bh);
1804 		bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1805 		if (!bitmap_bh)
1806 			goto io_error;
1807 		/*
1808 		 * try to allocate block(s) from this group, without a goal(-1).
1809 		 */
1810 		grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1811 					group_no, bitmap_bh, -1, my_rsv,
1812 					&num, &fatal);
1813 		if (fatal)
1814 			goto out;
1815 		if (grp_alloc_blk >= 0)
1816 			goto allocated;
1817 	}
1818 	/*
1819 	 * We may end up a bogus ealier ENOSPC error due to
1820 	 * filesystem is "full" of reservations, but
1821 	 * there maybe indeed free blocks avaliable on disk
1822 	 * In this case, we just forget about the reservations
1823 	 * just do block allocation as without reservations.
1824 	 */
1825 	if (my_rsv) {
1826 		my_rsv = NULL;
1827 		windowsz = 0;
1828 		group_no = goal_group;
1829 		goto retry_alloc;
1830 	}
1831 	/* No space left on the device */
1832 	*errp = -ENOSPC;
1833 	goto out;
1834 
1835 allocated:
1836 
1837 	ext4_debug("using block group %lu(%d)\n",
1838 			group_no, gdp->bg_free_blocks_count);
1839 
1840 	BUFFER_TRACE(gdp_bh, "get_write_access");
1841 	fatal = ext4_journal_get_write_access(handle, gdp_bh);
1842 	if (fatal)
1843 		goto out;
1844 
1845 	ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1846 
1847 	if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1848 	    in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1849 	    in_range(ret_block, ext4_inode_table(sb, gdp),
1850 		     EXT4_SB(sb)->s_itb_per_group) ||
1851 	    in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1852 		     EXT4_SB(sb)->s_itb_per_group)) {
1853 		ext4_error(sb, "ext4_new_block",
1854 			    "Allocating block in system zone - "
1855 			    "blocks from %llu, length %lu",
1856 			     ret_block, num);
1857 		/*
1858 		 * claim_block marked the blocks we allocated
1859 		 * as in use. So we may want to selectively
1860 		 * mark some of the blocks as free
1861 		 */
1862 		goto retry_alloc;
1863 	}
1864 
1865 	performed_allocation = 1;
1866 
1867 #ifdef CONFIG_JBD2_DEBUG
1868 	{
1869 		struct buffer_head *debug_bh;
1870 
1871 		/* Record bitmap buffer state in the newly allocated block */
1872 		debug_bh = sb_find_get_block(sb, ret_block);
1873 		if (debug_bh) {
1874 			BUFFER_TRACE(debug_bh, "state when allocated");
1875 			BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1876 			brelse(debug_bh);
1877 		}
1878 	}
1879 	jbd_lock_bh_state(bitmap_bh);
1880 	spin_lock(sb_bgl_lock(sbi, group_no));
1881 	if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1882 		int i;
1883 
1884 		for (i = 0; i < num; i++) {
1885 			if (ext4_test_bit(grp_alloc_blk+i,
1886 					bh2jh(bitmap_bh)->b_committed_data)) {
1887 				printk("%s: block was unexpectedly set in "
1888 					"b_committed_data\n", __func__);
1889 			}
1890 		}
1891 	}
1892 	ext4_debug("found bit %d\n", grp_alloc_blk);
1893 	spin_unlock(sb_bgl_lock(sbi, group_no));
1894 	jbd_unlock_bh_state(bitmap_bh);
1895 #endif
1896 
1897 	if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1898 		ext4_error(sb, "ext4_new_block",
1899 			    "block(%llu) >= blocks count(%llu) - "
1900 			    "block_group = %lu, es == %p ", ret_block,
1901 			ext4_blocks_count(es), group_no, es);
1902 		goto out;
1903 	}
1904 
1905 	/*
1906 	 * It is up to the caller to add the new buffer to a journal
1907 	 * list of some description.  We don't know in advance whether
1908 	 * the caller wants to use it as metadata or data.
1909 	 */
1910 	spin_lock(sb_bgl_lock(sbi, group_no));
1911 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1912 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1913 	le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1914 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1915 	spin_unlock(sb_bgl_lock(sbi, group_no));
1916 	if (!EXT4_I(inode)->i_delalloc_reserved_flag)
1917 		percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1918 
1919 	if (sbi->s_log_groups_per_flex) {
1920 		ext4_group_t flex_group = ext4_flex_group(sbi, group_no);
1921 		spin_lock(sb_bgl_lock(sbi, flex_group));
1922 		sbi->s_flex_groups[flex_group].free_blocks -= num;
1923 		spin_unlock(sb_bgl_lock(sbi, flex_group));
1924 	}
1925 
1926 	BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1927 	err = ext4_journal_dirty_metadata(handle, gdp_bh);
1928 	if (!fatal)
1929 		fatal = err;
1930 
1931 	sb->s_dirt = 1;
1932 	if (fatal)
1933 		goto out;
1934 
1935 	*errp = 0;
1936 	brelse(bitmap_bh);
1937 	DQUOT_FREE_BLOCK(inode, *count-num);
1938 	*count = num;
1939 	return ret_block;
1940 
1941 io_error:
1942 	*errp = -EIO;
1943 out:
1944 	if (fatal) {
1945 		*errp = fatal;
1946 		ext4_std_error(sb, fatal);
1947 	}
1948 	/*
1949 	 * Undo the block allocation
1950 	 */
1951 	if (!performed_allocation)
1952 		DQUOT_FREE_BLOCK(inode, *count);
1953 	brelse(bitmap_bh);
1954 	return 0;
1955 }
1956 
1957 #define EXT4_META_BLOCK 0x1
1958 
1959 static ext4_fsblk_t do_blk_alloc(handle_t *handle, struct inode *inode,
1960 				ext4_lblk_t iblock, ext4_fsblk_t goal,
1961 				unsigned long *count, int *errp, int flags)
1962 {
1963 	struct ext4_allocation_request ar;
1964 	ext4_fsblk_t ret;
1965 
1966 	if (!test_opt(inode->i_sb, MBALLOC)) {
1967 		return ext4_old_new_blocks(handle, inode, goal, count, errp);
1968 	}
1969 
1970 	memset(&ar, 0, sizeof(ar));
1971 	/* Fill with neighbour allocated blocks */
1972 
1973 	ar.inode = inode;
1974 	ar.goal = goal;
1975 	ar.len = *count;
1976 	ar.logical = iblock;
1977 
1978 	if (S_ISREG(inode->i_mode) && !(flags & EXT4_META_BLOCK))
1979 		/* enable in-core preallocation for data block allocation */
1980 		ar.flags = EXT4_MB_HINT_DATA;
1981 	else
1982 		/* disable in-core preallocation for non-regular files */
1983 		ar.flags = 0;
1984 
1985 	ret = ext4_mb_new_blocks(handle, &ar, errp);
1986 	*count = ar.len;
1987 	return ret;
1988 }
1989 
1990 /*
1991  * ext4_new_meta_blocks() -- allocate block for meta data (indexing) blocks
1992  *
1993  * @handle:             handle to this transaction
1994  * @inode:              file inode
1995  * @goal:               given target block(filesystem wide)
1996  * @count:		total number of blocks need
1997  * @errp:               error code
1998  *
1999  * Return 1st allocated block numberon success, *count stores total account
2000  * error stores in errp pointer
2001  */
2002 ext4_fsblk_t ext4_new_meta_blocks(handle_t *handle, struct inode *inode,
2003 		ext4_fsblk_t goal, unsigned long *count, int *errp)
2004 {
2005 	ext4_fsblk_t ret;
2006 	ret = do_blk_alloc(handle, inode, 0, goal,
2007 				count, errp, EXT4_META_BLOCK);
2008 	/*
2009 	 * Account for the allocated meta blocks
2010 	 */
2011 	if (!(*errp)) {
2012 		spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2013 		EXT4_I(inode)->i_allocated_meta_blocks += *count;
2014 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2015 	}
2016 	return ret;
2017 }
2018 
2019 /*
2020  * ext4_new_meta_block() -- allocate block for meta data (indexing) blocks
2021  *
2022  * @handle:             handle to this transaction
2023  * @inode:              file inode
2024  * @goal:               given target block(filesystem wide)
2025  * @errp:               error code
2026  *
2027  * Return allocated block number on success
2028  */
2029 ext4_fsblk_t ext4_new_meta_block(handle_t *handle, struct inode *inode,
2030 		ext4_fsblk_t goal, int *errp)
2031 {
2032 	unsigned long count = 1;
2033 	return ext4_new_meta_blocks(handle, inode, goal, &count, errp);
2034 }
2035 
2036 /*
2037  * ext4_new_blocks() -- allocate data blocks
2038  *
2039  * @handle:             handle to this transaction
2040  * @inode:              file inode
2041  * @goal:               given target block(filesystem wide)
2042  * @count:		total number of blocks need
2043  * @errp:               error code
2044  *
2045  * Return 1st allocated block numberon success, *count stores total account
2046  * error stores in errp pointer
2047  */
2048 
2049 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
2050 				ext4_lblk_t iblock, ext4_fsblk_t goal,
2051 				unsigned long *count, int *errp)
2052 {
2053 	return do_blk_alloc(handle, inode, iblock, goal, count, errp, 0);
2054 }
2055 
2056 /**
2057  * ext4_count_free_blocks() -- count filesystem free blocks
2058  * @sb:		superblock
2059  *
2060  * Adds up the number of free blocks from each block group.
2061  */
2062 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
2063 {
2064 	ext4_fsblk_t desc_count;
2065 	struct ext4_group_desc *gdp;
2066 	ext4_group_t i;
2067 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2068 #ifdef EXT4FS_DEBUG
2069 	struct ext4_super_block *es;
2070 	ext4_fsblk_t bitmap_count;
2071 	unsigned long x;
2072 	struct buffer_head *bitmap_bh = NULL;
2073 
2074 	es = EXT4_SB(sb)->s_es;
2075 	desc_count = 0;
2076 	bitmap_count = 0;
2077 	gdp = NULL;
2078 
2079 	smp_rmb();
2080 	for (i = 0; i < ngroups; i++) {
2081 		gdp = ext4_get_group_desc(sb, i, NULL);
2082 		if (!gdp)
2083 			continue;
2084 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2085 		brelse(bitmap_bh);
2086 		bitmap_bh = ext4_read_block_bitmap(sb, i);
2087 		if (bitmap_bh == NULL)
2088 			continue;
2089 
2090 		x = ext4_count_free(bitmap_bh, sb->s_blocksize);
2091 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
2092 			i, le16_to_cpu(gdp->bg_free_blocks_count), x);
2093 		bitmap_count += x;
2094 	}
2095 	brelse(bitmap_bh);
2096 	printk("ext4_count_free_blocks: stored = %llu"
2097 		", computed = %llu, %llu\n",
2098 		ext4_free_blocks_count(es),
2099 		desc_count, bitmap_count);
2100 	return bitmap_count;
2101 #else
2102 	desc_count = 0;
2103 	smp_rmb();
2104 	for (i = 0; i < ngroups; i++) {
2105 		gdp = ext4_get_group_desc(sb, i, NULL);
2106 		if (!gdp)
2107 			continue;
2108 		desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2109 	}
2110 
2111 	return desc_count;
2112 #endif
2113 }
2114 
2115 static inline int test_root(ext4_group_t a, int b)
2116 {
2117 	int num = b;
2118 
2119 	while (a > num)
2120 		num *= b;
2121 	return num == a;
2122 }
2123 
2124 static int ext4_group_sparse(ext4_group_t group)
2125 {
2126 	if (group <= 1)
2127 		return 1;
2128 	if (!(group & 1))
2129 		return 0;
2130 	return (test_root(group, 7) || test_root(group, 5) ||
2131 		test_root(group, 3));
2132 }
2133 
2134 /**
2135  *	ext4_bg_has_super - number of blocks used by the superblock in group
2136  *	@sb: superblock for filesystem
2137  *	@group: group number to check
2138  *
2139  *	Return the number of blocks used by the superblock (primary or backup)
2140  *	in this group.  Currently this will be only 0 or 1.
2141  */
2142 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
2143 {
2144 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2145 				EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
2146 			!ext4_group_sparse(group))
2147 		return 0;
2148 	return 1;
2149 }
2150 
2151 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2152 					ext4_group_t group)
2153 {
2154 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2155 	ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2156 	ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2157 
2158 	if (group == first || group == first + 1 || group == last)
2159 		return 1;
2160 	return 0;
2161 }
2162 
2163 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2164 					ext4_group_t group)
2165 {
2166 	return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2167 }
2168 
2169 /**
2170  *	ext4_bg_num_gdb - number of blocks used by the group table in group
2171  *	@sb: superblock for filesystem
2172  *	@group: group number to check
2173  *
2174  *	Return the number of blocks used by the group descriptor table
2175  *	(primary or backup) in this group.  In the future there may be a
2176  *	different number of descriptor blocks in each group.
2177  */
2178 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2179 {
2180 	unsigned long first_meta_bg =
2181 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2182 	unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2183 
2184 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2185 			metagroup < first_meta_bg)
2186 		return ext4_bg_num_gdb_nometa(sb,group);
2187 
2188 	return ext4_bg_num_gdb_meta(sb,group);
2189 
2190 }
2191