1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext2/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Goal-directed block allocation by Stephen Tweedie 17 * (sct@dcs.ed.ac.uk), 1993, 1998 18 * Big-endian to little-endian byte-swapping/bitmaps by 19 * David S. Miller (davem@caip.rutgers.edu), 1995 20 * 64-bit file support on 64-bit platforms by Jakub Jelinek 21 * (jj@sunsite.ms.mff.cuni.cz) 22 * 23 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000 24 */ 25 26 #include <linux/time.h> 27 #include <linux/highuid.h> 28 #include <linux/pagemap.h> 29 #include <linux/dax.h> 30 #include <linux/blkdev.h> 31 #include <linux/quotaops.h> 32 #include <linux/writeback.h> 33 #include <linux/buffer_head.h> 34 #include <linux/mpage.h> 35 #include <linux/fiemap.h> 36 #include <linux/iomap.h> 37 #include <linux/namei.h> 38 #include <linux/uio.h> 39 #include <linux/dax.h> 40 #include "ext2.h" 41 #include "acl.h" 42 #include "xattr.h" 43 44 static int __ext2_write_inode(struct inode *inode, int do_sync); 45 46 /* 47 * Test whether an inode is a fast symlink. 48 */ 49 static inline int ext2_inode_is_fast_symlink(struct inode *inode) 50 { 51 int ea_blocks = EXT2_I(inode)->i_file_acl ? 52 (inode->i_sb->s_blocksize >> 9) : 0; 53 54 return (S_ISLNK(inode->i_mode) && 55 inode->i_blocks - ea_blocks == 0); 56 } 57 58 static void ext2_truncate_blocks(struct inode *inode, loff_t offset); 59 60 static void ext2_write_failed(struct address_space *mapping, loff_t to) 61 { 62 struct inode *inode = mapping->host; 63 64 if (to > inode->i_size) { 65 truncate_pagecache(inode, inode->i_size); 66 ext2_truncate_blocks(inode, inode->i_size); 67 } 68 } 69 70 /* 71 * Called at the last iput() if i_nlink is zero. 72 */ 73 void ext2_evict_inode(struct inode * inode) 74 { 75 struct ext2_block_alloc_info *rsv; 76 int want_delete = 0; 77 78 if (!inode->i_nlink && !is_bad_inode(inode)) { 79 want_delete = 1; 80 dquot_initialize(inode); 81 } else { 82 dquot_drop(inode); 83 } 84 85 truncate_inode_pages_final(&inode->i_data); 86 87 if (want_delete) { 88 sb_start_intwrite(inode->i_sb); 89 /* set dtime */ 90 EXT2_I(inode)->i_dtime = ktime_get_real_seconds(); 91 mark_inode_dirty(inode); 92 __ext2_write_inode(inode, inode_needs_sync(inode)); 93 /* truncate to 0 */ 94 inode->i_size = 0; 95 if (inode->i_blocks) 96 ext2_truncate_blocks(inode, 0); 97 ext2_xattr_delete_inode(inode); 98 } 99 100 invalidate_inode_buffers(inode); 101 clear_inode(inode); 102 103 ext2_discard_reservation(inode); 104 rsv = EXT2_I(inode)->i_block_alloc_info; 105 EXT2_I(inode)->i_block_alloc_info = NULL; 106 if (unlikely(rsv)) 107 kfree(rsv); 108 109 if (want_delete) { 110 ext2_free_inode(inode); 111 sb_end_intwrite(inode->i_sb); 112 } 113 } 114 115 typedef struct { 116 __le32 *p; 117 __le32 key; 118 struct buffer_head *bh; 119 } Indirect; 120 121 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 122 { 123 p->key = *(p->p = v); 124 p->bh = bh; 125 } 126 127 static inline int verify_chain(Indirect *from, Indirect *to) 128 { 129 while (from <= to && from->key == *from->p) 130 from++; 131 return (from > to); 132 } 133 134 /** 135 * ext2_block_to_path - parse the block number into array of offsets 136 * @inode: inode in question (we are only interested in its superblock) 137 * @i_block: block number to be parsed 138 * @offsets: array to store the offsets in 139 * @boundary: set this non-zero if the referred-to block is likely to be 140 * followed (on disk) by an indirect block. 141 * To store the locations of file's data ext2 uses a data structure common 142 * for UNIX filesystems - tree of pointers anchored in the inode, with 143 * data blocks at leaves and indirect blocks in intermediate nodes. 144 * This function translates the block number into path in that tree - 145 * return value is the path length and @offsets[n] is the offset of 146 * pointer to (n+1)th node in the nth one. If @block is out of range 147 * (negative or too large) warning is printed and zero returned. 148 * 149 * Note: function doesn't find node addresses, so no IO is needed. All 150 * we need to know is the capacity of indirect blocks (taken from the 151 * inode->i_sb). 152 */ 153 154 /* 155 * Portability note: the last comparison (check that we fit into triple 156 * indirect block) is spelled differently, because otherwise on an 157 * architecture with 32-bit longs and 8Kb pages we might get into trouble 158 * if our filesystem had 8Kb blocks. We might use long long, but that would 159 * kill us on x86. Oh, well, at least the sign propagation does not matter - 160 * i_block would have to be negative in the very beginning, so we would not 161 * get there at all. 162 */ 163 164 static int ext2_block_to_path(struct inode *inode, 165 long i_block, int offsets[4], int *boundary) 166 { 167 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb); 168 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb); 169 const long direct_blocks = EXT2_NDIR_BLOCKS, 170 indirect_blocks = ptrs, 171 double_blocks = (1 << (ptrs_bits * 2)); 172 int n = 0; 173 int final = 0; 174 175 if (i_block < 0) { 176 ext2_msg(inode->i_sb, KERN_WARNING, 177 "warning: %s: block < 0", __func__); 178 } else if (i_block < direct_blocks) { 179 offsets[n++] = i_block; 180 final = direct_blocks; 181 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 182 offsets[n++] = EXT2_IND_BLOCK; 183 offsets[n++] = i_block; 184 final = ptrs; 185 } else if ((i_block -= indirect_blocks) < double_blocks) { 186 offsets[n++] = EXT2_DIND_BLOCK; 187 offsets[n++] = i_block >> ptrs_bits; 188 offsets[n++] = i_block & (ptrs - 1); 189 final = ptrs; 190 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 191 offsets[n++] = EXT2_TIND_BLOCK; 192 offsets[n++] = i_block >> (ptrs_bits * 2); 193 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 194 offsets[n++] = i_block & (ptrs - 1); 195 final = ptrs; 196 } else { 197 ext2_msg(inode->i_sb, KERN_WARNING, 198 "warning: %s: block is too big", __func__); 199 } 200 if (boundary) 201 *boundary = final - 1 - (i_block & (ptrs - 1)); 202 203 return n; 204 } 205 206 /** 207 * ext2_get_branch - read the chain of indirect blocks leading to data 208 * @inode: inode in question 209 * @depth: depth of the chain (1 - direct pointer, etc.) 210 * @offsets: offsets of pointers in inode/indirect blocks 211 * @chain: place to store the result 212 * @err: here we store the error value 213 * 214 * Function fills the array of triples <key, p, bh> and returns %NULL 215 * if everything went OK or the pointer to the last filled triple 216 * (incomplete one) otherwise. Upon the return chain[i].key contains 217 * the number of (i+1)-th block in the chain (as it is stored in memory, 218 * i.e. little-endian 32-bit), chain[i].p contains the address of that 219 * number (it points into struct inode for i==0 and into the bh->b_data 220 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 221 * block for i>0 and NULL for i==0. In other words, it holds the block 222 * numbers of the chain, addresses they were taken from (and where we can 223 * verify that chain did not change) and buffer_heads hosting these 224 * numbers. 225 * 226 * Function stops when it stumbles upon zero pointer (absent block) 227 * (pointer to last triple returned, *@err == 0) 228 * or when it gets an IO error reading an indirect block 229 * (ditto, *@err == -EIO) 230 * or when it notices that chain had been changed while it was reading 231 * (ditto, *@err == -EAGAIN) 232 * or when it reads all @depth-1 indirect blocks successfully and finds 233 * the whole chain, all way to the data (returns %NULL, *err == 0). 234 */ 235 static Indirect *ext2_get_branch(struct inode *inode, 236 int depth, 237 int *offsets, 238 Indirect chain[4], 239 int *err) 240 { 241 struct super_block *sb = inode->i_sb; 242 Indirect *p = chain; 243 struct buffer_head *bh; 244 245 *err = 0; 246 /* i_data is not going away, no lock needed */ 247 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets); 248 if (!p->key) 249 goto no_block; 250 while (--depth) { 251 bh = sb_bread(sb, le32_to_cpu(p->key)); 252 if (!bh) 253 goto failure; 254 read_lock(&EXT2_I(inode)->i_meta_lock); 255 if (!verify_chain(chain, p)) 256 goto changed; 257 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 258 read_unlock(&EXT2_I(inode)->i_meta_lock); 259 if (!p->key) 260 goto no_block; 261 } 262 return NULL; 263 264 changed: 265 read_unlock(&EXT2_I(inode)->i_meta_lock); 266 brelse(bh); 267 *err = -EAGAIN; 268 goto no_block; 269 failure: 270 *err = -EIO; 271 no_block: 272 return p; 273 } 274 275 /** 276 * ext2_find_near - find a place for allocation with sufficient locality 277 * @inode: owner 278 * @ind: descriptor of indirect block. 279 * 280 * This function returns the preferred place for block allocation. 281 * It is used when heuristic for sequential allocation fails. 282 * Rules are: 283 * + if there is a block to the left of our position - allocate near it. 284 * + if pointer will live in indirect block - allocate near that block. 285 * + if pointer will live in inode - allocate in the same cylinder group. 286 * 287 * In the latter case we colour the starting block by the callers PID to 288 * prevent it from clashing with concurrent allocations for a different inode 289 * in the same block group. The PID is used here so that functionally related 290 * files will be close-by on-disk. 291 * 292 * Caller must make sure that @ind is valid and will stay that way. 293 */ 294 295 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind) 296 { 297 struct ext2_inode_info *ei = EXT2_I(inode); 298 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 299 __le32 *p; 300 ext2_fsblk_t bg_start; 301 ext2_fsblk_t colour; 302 303 /* Try to find previous block */ 304 for (p = ind->p - 1; p >= start; p--) 305 if (*p) 306 return le32_to_cpu(*p); 307 308 /* No such thing, so let's try location of indirect block */ 309 if (ind->bh) 310 return ind->bh->b_blocknr; 311 312 /* 313 * It is going to be referred from inode itself? OK, just put it into 314 * the same cylinder group then. 315 */ 316 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group); 317 colour = (current->pid % 16) * 318 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16); 319 return bg_start + colour; 320 } 321 322 /** 323 * ext2_find_goal - find a preferred place for allocation. 324 * @inode: owner 325 * @block: block we want 326 * @partial: pointer to the last triple within a chain 327 * 328 * Returns preferred place for a block (the goal). 329 */ 330 331 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block, 332 Indirect *partial) 333 { 334 struct ext2_block_alloc_info *block_i; 335 336 block_i = EXT2_I(inode)->i_block_alloc_info; 337 338 /* 339 * try the heuristic for sequential allocation, 340 * failing that at least try to get decent locality. 341 */ 342 if (block_i && (block == block_i->last_alloc_logical_block + 1) 343 && (block_i->last_alloc_physical_block != 0)) { 344 return block_i->last_alloc_physical_block + 1; 345 } 346 347 return ext2_find_near(inode, partial); 348 } 349 350 /** 351 * ext2_blks_to_allocate: Look up the block map and count the number 352 * of direct blocks need to be allocated for the given branch. 353 * 354 * @branch: chain of indirect blocks 355 * @k: number of blocks need for indirect blocks 356 * @blks: number of data blocks to be mapped. 357 * @blocks_to_boundary: the offset in the indirect block 358 * 359 * return the number of direct blocks to allocate. 360 */ 361 static int 362 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks, 363 int blocks_to_boundary) 364 { 365 unsigned long count = 0; 366 367 /* 368 * Simple case, [t,d]Indirect block(s) has not allocated yet 369 * then it's clear blocks on that path have not allocated 370 */ 371 if (k > 0) { 372 /* right now don't hanel cross boundary allocation */ 373 if (blks < blocks_to_boundary + 1) 374 count += blks; 375 else 376 count += blocks_to_boundary + 1; 377 return count; 378 } 379 380 count++; 381 while (count < blks && count <= blocks_to_boundary 382 && le32_to_cpu(*(branch[0].p + count)) == 0) { 383 count++; 384 } 385 return count; 386 } 387 388 /** 389 * ext2_alloc_blocks: multiple allocate blocks needed for a branch 390 * @indirect_blks: the number of blocks need to allocate for indirect 391 * blocks 392 * @blks: the number of blocks need to allocate for direct blocks 393 * @new_blocks: on return it will store the new block numbers for 394 * the indirect blocks(if needed) and the first direct block, 395 */ 396 static int ext2_alloc_blocks(struct inode *inode, 397 ext2_fsblk_t goal, int indirect_blks, int blks, 398 ext2_fsblk_t new_blocks[4], int *err) 399 { 400 int target, i; 401 unsigned long count = 0; 402 int index = 0; 403 ext2_fsblk_t current_block = 0; 404 int ret = 0; 405 406 /* 407 * Here we try to allocate the requested multiple blocks at once, 408 * on a best-effort basis. 409 * To build a branch, we should allocate blocks for 410 * the indirect blocks(if not allocated yet), and at least 411 * the first direct block of this branch. That's the 412 * minimum number of blocks need to allocate(required) 413 */ 414 target = blks + indirect_blks; 415 416 while (1) { 417 count = target; 418 /* allocating blocks for indirect blocks and direct blocks */ 419 current_block = ext2_new_blocks(inode,goal,&count,err); 420 if (*err) 421 goto failed_out; 422 423 target -= count; 424 /* allocate blocks for indirect blocks */ 425 while (index < indirect_blks && count) { 426 new_blocks[index++] = current_block++; 427 count--; 428 } 429 430 if (count > 0) 431 break; 432 } 433 434 /* save the new block number for the first direct block */ 435 new_blocks[index] = current_block; 436 437 /* total number of blocks allocated for direct blocks */ 438 ret = count; 439 *err = 0; 440 return ret; 441 failed_out: 442 for (i = 0; i <index; i++) 443 ext2_free_blocks(inode, new_blocks[i], 1); 444 if (index) 445 mark_inode_dirty(inode); 446 return ret; 447 } 448 449 /** 450 * ext2_alloc_branch - allocate and set up a chain of blocks. 451 * @inode: owner 452 * @indirect_blks: depth of the chain (number of blocks to allocate) 453 * @blks: number of allocated direct blocks 454 * @goal: preferred place for allocation 455 * @offsets: offsets (in the blocks) to store the pointers to next. 456 * @branch: place to store the chain in. 457 * 458 * This function allocates @num blocks, zeroes out all but the last one, 459 * links them into chain and (if we are synchronous) writes them to disk. 460 * In other words, it prepares a branch that can be spliced onto the 461 * inode. It stores the information about that chain in the branch[], in 462 * the same format as ext2_get_branch() would do. We are calling it after 463 * we had read the existing part of chain and partial points to the last 464 * triple of that (one with zero ->key). Upon the exit we have the same 465 * picture as after the successful ext2_get_block(), except that in one 466 * place chain is disconnected - *branch->p is still zero (we did not 467 * set the last link), but branch->key contains the number that should 468 * be placed into *branch->p to fill that gap. 469 * 470 * If allocation fails we free all blocks we've allocated (and forget 471 * their buffer_heads) and return the error value the from failed 472 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain 473 * as described above and return 0. 474 */ 475 476 static int ext2_alloc_branch(struct inode *inode, 477 int indirect_blks, int *blks, ext2_fsblk_t goal, 478 int *offsets, Indirect *branch) 479 { 480 int blocksize = inode->i_sb->s_blocksize; 481 int i, n = 0; 482 int err = 0; 483 struct buffer_head *bh; 484 int num; 485 ext2_fsblk_t new_blocks[4]; 486 ext2_fsblk_t current_block; 487 488 num = ext2_alloc_blocks(inode, goal, indirect_blks, 489 *blks, new_blocks, &err); 490 if (err) 491 return err; 492 493 branch[0].key = cpu_to_le32(new_blocks[0]); 494 /* 495 * metadata blocks and data blocks are allocated. 496 */ 497 for (n = 1; n <= indirect_blks; n++) { 498 /* 499 * Get buffer_head for parent block, zero it out 500 * and set the pointer to new one, then send 501 * parent to disk. 502 */ 503 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 504 if (unlikely(!bh)) { 505 err = -ENOMEM; 506 goto failed; 507 } 508 branch[n].bh = bh; 509 lock_buffer(bh); 510 memset(bh->b_data, 0, blocksize); 511 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 512 branch[n].key = cpu_to_le32(new_blocks[n]); 513 *branch[n].p = branch[n].key; 514 if ( n == indirect_blks) { 515 current_block = new_blocks[n]; 516 /* 517 * End of chain, update the last new metablock of 518 * the chain to point to the new allocated 519 * data blocks numbers 520 */ 521 for (i=1; i < num; i++) 522 *(branch[n].p + i) = cpu_to_le32(++current_block); 523 } 524 set_buffer_uptodate(bh); 525 unlock_buffer(bh); 526 mark_buffer_dirty_inode(bh, inode); 527 /* We used to sync bh here if IS_SYNC(inode). 528 * But we now rely upon generic_write_sync() 529 * and b_inode_buffers. But not for directories. 530 */ 531 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 532 sync_dirty_buffer(bh); 533 } 534 *blks = num; 535 return err; 536 537 failed: 538 for (i = 1; i < n; i++) 539 bforget(branch[i].bh); 540 for (i = 0; i < indirect_blks; i++) 541 ext2_free_blocks(inode, new_blocks[i], 1); 542 ext2_free_blocks(inode, new_blocks[i], num); 543 return err; 544 } 545 546 /** 547 * ext2_splice_branch - splice the allocated branch onto inode. 548 * @inode: owner 549 * @block: (logical) number of block we are adding 550 * @where: location of missing link 551 * @num: number of indirect blocks we are adding 552 * @blks: number of direct blocks we are adding 553 * 554 * This function fills the missing link and does all housekeeping needed in 555 * inode (->i_blocks, etc.). In case of success we end up with the full 556 * chain to new block and return 0. 557 */ 558 static void ext2_splice_branch(struct inode *inode, 559 long block, Indirect *where, int num, int blks) 560 { 561 int i; 562 struct ext2_block_alloc_info *block_i; 563 ext2_fsblk_t current_block; 564 565 block_i = EXT2_I(inode)->i_block_alloc_info; 566 567 /* XXX LOCKING probably should have i_meta_lock ?*/ 568 /* That's it */ 569 570 *where->p = where->key; 571 572 /* 573 * Update the host buffer_head or inode to point to more just allocated 574 * direct blocks blocks 575 */ 576 if (num == 0 && blks > 1) { 577 current_block = le32_to_cpu(where->key) + 1; 578 for (i = 1; i < blks; i++) 579 *(where->p + i ) = cpu_to_le32(current_block++); 580 } 581 582 /* 583 * update the most recently allocated logical & physical block 584 * in i_block_alloc_info, to assist find the proper goal block for next 585 * allocation 586 */ 587 if (block_i) { 588 block_i->last_alloc_logical_block = block + blks - 1; 589 block_i->last_alloc_physical_block = 590 le32_to_cpu(where[num].key) + blks - 1; 591 } 592 593 /* We are done with atomic stuff, now do the rest of housekeeping */ 594 595 /* had we spliced it onto indirect block? */ 596 if (where->bh) 597 mark_buffer_dirty_inode(where->bh, inode); 598 599 inode->i_ctime = current_time(inode); 600 mark_inode_dirty(inode); 601 } 602 603 /* 604 * Allocation strategy is simple: if we have to allocate something, we will 605 * have to go the whole way to leaf. So let's do it before attaching anything 606 * to tree, set linkage between the newborn blocks, write them if sync is 607 * required, recheck the path, free and repeat if check fails, otherwise 608 * set the last missing link (that will protect us from any truncate-generated 609 * removals - all blocks on the path are immune now) and possibly force the 610 * write on the parent block. 611 * That has a nice additional property: no special recovery from the failed 612 * allocations is needed - we simply release blocks and do not touch anything 613 * reachable from inode. 614 * 615 * `handle' can be NULL if create == 0. 616 * 617 * return > 0, # of blocks mapped or allocated. 618 * return = 0, if plain lookup failed. 619 * return < 0, error case. 620 */ 621 static int ext2_get_blocks(struct inode *inode, 622 sector_t iblock, unsigned long maxblocks, 623 u32 *bno, bool *new, bool *boundary, 624 int create) 625 { 626 int err; 627 int offsets[4]; 628 Indirect chain[4]; 629 Indirect *partial; 630 ext2_fsblk_t goal; 631 int indirect_blks; 632 int blocks_to_boundary = 0; 633 int depth; 634 struct ext2_inode_info *ei = EXT2_I(inode); 635 int count = 0; 636 ext2_fsblk_t first_block = 0; 637 638 BUG_ON(maxblocks == 0); 639 640 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary); 641 642 if (depth == 0) 643 return -EIO; 644 645 partial = ext2_get_branch(inode, depth, offsets, chain, &err); 646 /* Simplest case - block found, no allocation needed */ 647 if (!partial) { 648 first_block = le32_to_cpu(chain[depth - 1].key); 649 count++; 650 /*map more blocks*/ 651 while (count < maxblocks && count <= blocks_to_boundary) { 652 ext2_fsblk_t blk; 653 654 if (!verify_chain(chain, chain + depth - 1)) { 655 /* 656 * Indirect block might be removed by 657 * truncate while we were reading it. 658 * Handling of that case: forget what we've 659 * got now, go to reread. 660 */ 661 err = -EAGAIN; 662 count = 0; 663 partial = chain + depth - 1; 664 break; 665 } 666 blk = le32_to_cpu(*(chain[depth-1].p + count)); 667 if (blk == first_block + count) 668 count++; 669 else 670 break; 671 } 672 if (err != -EAGAIN) 673 goto got_it; 674 } 675 676 /* Next simple case - plain lookup or failed read of indirect block */ 677 if (!create || err == -EIO) 678 goto cleanup; 679 680 mutex_lock(&ei->truncate_mutex); 681 /* 682 * If the indirect block is missing while we are reading 683 * the chain(ext2_get_branch() returns -EAGAIN err), or 684 * if the chain has been changed after we grab the semaphore, 685 * (either because another process truncated this branch, or 686 * another get_block allocated this branch) re-grab the chain to see if 687 * the request block has been allocated or not. 688 * 689 * Since we already block the truncate/other get_block 690 * at this point, we will have the current copy of the chain when we 691 * splice the branch into the tree. 692 */ 693 if (err == -EAGAIN || !verify_chain(chain, partial)) { 694 while (partial > chain) { 695 brelse(partial->bh); 696 partial--; 697 } 698 partial = ext2_get_branch(inode, depth, offsets, chain, &err); 699 if (!partial) { 700 count++; 701 mutex_unlock(&ei->truncate_mutex); 702 goto got_it; 703 } 704 705 if (err) { 706 mutex_unlock(&ei->truncate_mutex); 707 goto cleanup; 708 } 709 } 710 711 /* 712 * Okay, we need to do block allocation. Lazily initialize the block 713 * allocation info here if necessary 714 */ 715 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 716 ext2_init_block_alloc_info(inode); 717 718 goal = ext2_find_goal(inode, iblock, partial); 719 720 /* the number of blocks need to allocate for [d,t]indirect blocks */ 721 indirect_blks = (chain + depth) - partial - 1; 722 /* 723 * Next look up the indirect map to count the total number of 724 * direct blocks to allocate for this branch. 725 */ 726 count = ext2_blks_to_allocate(partial, indirect_blks, 727 maxblocks, blocks_to_boundary); 728 /* 729 * XXX ???? Block out ext2_truncate while we alter the tree 730 */ 731 err = ext2_alloc_branch(inode, indirect_blks, &count, goal, 732 offsets + (partial - chain), partial); 733 734 if (err) { 735 mutex_unlock(&ei->truncate_mutex); 736 goto cleanup; 737 } 738 739 if (IS_DAX(inode)) { 740 /* 741 * We must unmap blocks before zeroing so that writeback cannot 742 * overwrite zeros with stale data from block device page cache. 743 */ 744 clean_bdev_aliases(inode->i_sb->s_bdev, 745 le32_to_cpu(chain[depth-1].key), 746 count); 747 /* 748 * block must be initialised before we put it in the tree 749 * so that it's not found by another thread before it's 750 * initialised 751 */ 752 err = sb_issue_zeroout(inode->i_sb, 753 le32_to_cpu(chain[depth-1].key), count, 754 GFP_NOFS); 755 if (err) { 756 mutex_unlock(&ei->truncate_mutex); 757 goto cleanup; 758 } 759 } 760 *new = true; 761 762 ext2_splice_branch(inode, iblock, partial, indirect_blks, count); 763 mutex_unlock(&ei->truncate_mutex); 764 got_it: 765 if (count > blocks_to_boundary) 766 *boundary = true; 767 err = count; 768 /* Clean up and exit */ 769 partial = chain + depth - 1; /* the whole chain */ 770 cleanup: 771 while (partial > chain) { 772 brelse(partial->bh); 773 partial--; 774 } 775 if (err > 0) 776 *bno = le32_to_cpu(chain[depth-1].key); 777 return err; 778 } 779 780 int ext2_get_block(struct inode *inode, sector_t iblock, 781 struct buffer_head *bh_result, int create) 782 { 783 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 784 bool new = false, boundary = false; 785 u32 bno; 786 int ret; 787 788 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary, 789 create); 790 if (ret <= 0) 791 return ret; 792 793 map_bh(bh_result, inode->i_sb, bno); 794 bh_result->b_size = (ret << inode->i_blkbits); 795 if (new) 796 set_buffer_new(bh_result); 797 if (boundary) 798 set_buffer_boundary(bh_result); 799 return 0; 800 801 } 802 803 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 804 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 805 { 806 unsigned int blkbits = inode->i_blkbits; 807 unsigned long first_block = offset >> blkbits; 808 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits; 809 struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb); 810 bool new = false, boundary = false; 811 u32 bno; 812 int ret; 813 814 ret = ext2_get_blocks(inode, first_block, max_blocks, 815 &bno, &new, &boundary, flags & IOMAP_WRITE); 816 if (ret < 0) 817 return ret; 818 819 iomap->flags = 0; 820 iomap->offset = (u64)first_block << blkbits; 821 if (flags & IOMAP_DAX) 822 iomap->dax_dev = sbi->s_daxdev; 823 else 824 iomap->bdev = inode->i_sb->s_bdev; 825 826 if (ret == 0) { 827 iomap->type = IOMAP_HOLE; 828 iomap->addr = IOMAP_NULL_ADDR; 829 iomap->length = 1 << blkbits; 830 } else { 831 iomap->type = IOMAP_MAPPED; 832 iomap->addr = (u64)bno << blkbits; 833 if (flags & IOMAP_DAX) 834 iomap->addr += sbi->s_dax_part_off; 835 iomap->length = (u64)ret << blkbits; 836 iomap->flags |= IOMAP_F_MERGED; 837 } 838 839 if (new) 840 iomap->flags |= IOMAP_F_NEW; 841 return 0; 842 } 843 844 static int 845 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length, 846 ssize_t written, unsigned flags, struct iomap *iomap) 847 { 848 if (iomap->type == IOMAP_MAPPED && 849 written < length && 850 (flags & IOMAP_WRITE)) 851 ext2_write_failed(inode->i_mapping, offset + length); 852 return 0; 853 } 854 855 const struct iomap_ops ext2_iomap_ops = { 856 .iomap_begin = ext2_iomap_begin, 857 .iomap_end = ext2_iomap_end, 858 }; 859 860 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 861 u64 start, u64 len) 862 { 863 int ret; 864 865 inode_lock(inode); 866 len = min_t(u64, len, i_size_read(inode)); 867 ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops); 868 inode_unlock(inode); 869 870 return ret; 871 } 872 873 static int ext2_writepage(struct page *page, struct writeback_control *wbc) 874 { 875 return block_write_full_page(page, ext2_get_block, wbc); 876 } 877 878 static int ext2_readpage(struct file *file, struct page *page) 879 { 880 return mpage_readpage(page, ext2_get_block); 881 } 882 883 static void ext2_readahead(struct readahead_control *rac) 884 { 885 mpage_readahead(rac, ext2_get_block); 886 } 887 888 static int 889 ext2_write_begin(struct file *file, struct address_space *mapping, 890 loff_t pos, unsigned len, unsigned flags, 891 struct page **pagep, void **fsdata) 892 { 893 int ret; 894 895 ret = block_write_begin(mapping, pos, len, flags, pagep, 896 ext2_get_block); 897 if (ret < 0) 898 ext2_write_failed(mapping, pos + len); 899 return ret; 900 } 901 902 static int ext2_write_end(struct file *file, struct address_space *mapping, 903 loff_t pos, unsigned len, unsigned copied, 904 struct page *page, void *fsdata) 905 { 906 int ret; 907 908 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 909 if (ret < len) 910 ext2_write_failed(mapping, pos + len); 911 return ret; 912 } 913 914 static int 915 ext2_nobh_write_begin(struct file *file, struct address_space *mapping, 916 loff_t pos, unsigned len, unsigned flags, 917 struct page **pagep, void **fsdata) 918 { 919 int ret; 920 921 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata, 922 ext2_get_block); 923 if (ret < 0) 924 ext2_write_failed(mapping, pos + len); 925 return ret; 926 } 927 928 static int ext2_nobh_writepage(struct page *page, 929 struct writeback_control *wbc) 930 { 931 return nobh_writepage(page, ext2_get_block, wbc); 932 } 933 934 static sector_t ext2_bmap(struct address_space *mapping, sector_t block) 935 { 936 return generic_block_bmap(mapping,block,ext2_get_block); 937 } 938 939 static ssize_t 940 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 941 { 942 struct file *file = iocb->ki_filp; 943 struct address_space *mapping = file->f_mapping; 944 struct inode *inode = mapping->host; 945 size_t count = iov_iter_count(iter); 946 loff_t offset = iocb->ki_pos; 947 ssize_t ret; 948 949 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block); 950 if (ret < 0 && iov_iter_rw(iter) == WRITE) 951 ext2_write_failed(mapping, offset + count); 952 return ret; 953 } 954 955 static int 956 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc) 957 { 958 return mpage_writepages(mapping, wbc, ext2_get_block); 959 } 960 961 static int 962 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc) 963 { 964 struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb); 965 966 return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 967 } 968 969 const struct address_space_operations ext2_aops = { 970 .set_page_dirty = __set_page_dirty_buffers, 971 .readpage = ext2_readpage, 972 .readahead = ext2_readahead, 973 .writepage = ext2_writepage, 974 .write_begin = ext2_write_begin, 975 .write_end = ext2_write_end, 976 .bmap = ext2_bmap, 977 .direct_IO = ext2_direct_IO, 978 .writepages = ext2_writepages, 979 .migratepage = buffer_migrate_page, 980 .is_partially_uptodate = block_is_partially_uptodate, 981 .error_remove_page = generic_error_remove_page, 982 }; 983 984 const struct address_space_operations ext2_nobh_aops = { 985 .set_page_dirty = __set_page_dirty_buffers, 986 .readpage = ext2_readpage, 987 .readahead = ext2_readahead, 988 .writepage = ext2_nobh_writepage, 989 .write_begin = ext2_nobh_write_begin, 990 .write_end = nobh_write_end, 991 .bmap = ext2_bmap, 992 .direct_IO = ext2_direct_IO, 993 .writepages = ext2_writepages, 994 .migratepage = buffer_migrate_page, 995 .error_remove_page = generic_error_remove_page, 996 }; 997 998 static const struct address_space_operations ext2_dax_aops = { 999 .writepages = ext2_dax_writepages, 1000 .direct_IO = noop_direct_IO, 1001 .set_page_dirty = __set_page_dirty_no_writeback, 1002 .invalidatepage = noop_invalidatepage, 1003 }; 1004 1005 /* 1006 * Probably it should be a library function... search for first non-zero word 1007 * or memcmp with zero_page, whatever is better for particular architecture. 1008 * Linus? 1009 */ 1010 static inline int all_zeroes(__le32 *p, __le32 *q) 1011 { 1012 while (p < q) 1013 if (*p++) 1014 return 0; 1015 return 1; 1016 } 1017 1018 /** 1019 * ext2_find_shared - find the indirect blocks for partial truncation. 1020 * @inode: inode in question 1021 * @depth: depth of the affected branch 1022 * @offsets: offsets of pointers in that branch (see ext2_block_to_path) 1023 * @chain: place to store the pointers to partial indirect blocks 1024 * @top: place to the (detached) top of branch 1025 * 1026 * This is a helper function used by ext2_truncate(). 1027 * 1028 * When we do truncate() we may have to clean the ends of several indirect 1029 * blocks but leave the blocks themselves alive. Block is partially 1030 * truncated if some data below the new i_size is referred from it (and 1031 * it is on the path to the first completely truncated data block, indeed). 1032 * We have to free the top of that path along with everything to the right 1033 * of the path. Since no allocation past the truncation point is possible 1034 * until ext2_truncate() finishes, we may safely do the latter, but top 1035 * of branch may require special attention - pageout below the truncation 1036 * point might try to populate it. 1037 * 1038 * We atomically detach the top of branch from the tree, store the block 1039 * number of its root in *@top, pointers to buffer_heads of partially 1040 * truncated blocks - in @chain[].bh and pointers to their last elements 1041 * that should not be removed - in @chain[].p. Return value is the pointer 1042 * to last filled element of @chain. 1043 * 1044 * The work left to caller to do the actual freeing of subtrees: 1045 * a) free the subtree starting from *@top 1046 * b) free the subtrees whose roots are stored in 1047 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 1048 * c) free the subtrees growing from the inode past the @chain[0].p 1049 * (no partially truncated stuff there). 1050 */ 1051 1052 static Indirect *ext2_find_shared(struct inode *inode, 1053 int depth, 1054 int offsets[4], 1055 Indirect chain[4], 1056 __le32 *top) 1057 { 1058 Indirect *partial, *p; 1059 int k, err; 1060 1061 *top = 0; 1062 for (k = depth; k > 1 && !offsets[k-1]; k--) 1063 ; 1064 partial = ext2_get_branch(inode, k, offsets, chain, &err); 1065 if (!partial) 1066 partial = chain + k-1; 1067 /* 1068 * If the branch acquired continuation since we've looked at it - 1069 * fine, it should all survive and (new) top doesn't belong to us. 1070 */ 1071 write_lock(&EXT2_I(inode)->i_meta_lock); 1072 if (!partial->key && *partial->p) { 1073 write_unlock(&EXT2_I(inode)->i_meta_lock); 1074 goto no_top; 1075 } 1076 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 1077 ; 1078 /* 1079 * OK, we've found the last block that must survive. The rest of our 1080 * branch should be detached before unlocking. However, if that rest 1081 * of branch is all ours and does not grow immediately from the inode 1082 * it's easier to cheat and just decrement partial->p. 1083 */ 1084 if (p == chain + k - 1 && p > chain) { 1085 p->p--; 1086 } else { 1087 *top = *p->p; 1088 *p->p = 0; 1089 } 1090 write_unlock(&EXT2_I(inode)->i_meta_lock); 1091 1092 while(partial > p) 1093 { 1094 brelse(partial->bh); 1095 partial--; 1096 } 1097 no_top: 1098 return partial; 1099 } 1100 1101 /** 1102 * ext2_free_data - free a list of data blocks 1103 * @inode: inode we are dealing with 1104 * @p: array of block numbers 1105 * @q: points immediately past the end of array 1106 * 1107 * We are freeing all blocks referred from that array (numbers are 1108 * stored as little-endian 32-bit) and updating @inode->i_blocks 1109 * appropriately. 1110 */ 1111 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q) 1112 { 1113 unsigned long block_to_free = 0, count = 0; 1114 unsigned long nr; 1115 1116 for ( ; p < q ; p++) { 1117 nr = le32_to_cpu(*p); 1118 if (nr) { 1119 *p = 0; 1120 /* accumulate blocks to free if they're contiguous */ 1121 if (count == 0) 1122 goto free_this; 1123 else if (block_to_free == nr - count) 1124 count++; 1125 else { 1126 ext2_free_blocks (inode, block_to_free, count); 1127 mark_inode_dirty(inode); 1128 free_this: 1129 block_to_free = nr; 1130 count = 1; 1131 } 1132 } 1133 } 1134 if (count > 0) { 1135 ext2_free_blocks (inode, block_to_free, count); 1136 mark_inode_dirty(inode); 1137 } 1138 } 1139 1140 /** 1141 * ext2_free_branches - free an array of branches 1142 * @inode: inode we are dealing with 1143 * @p: array of block numbers 1144 * @q: pointer immediately past the end of array 1145 * @depth: depth of the branches to free 1146 * 1147 * We are freeing all blocks referred from these branches (numbers are 1148 * stored as little-endian 32-bit) and updating @inode->i_blocks 1149 * appropriately. 1150 */ 1151 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth) 1152 { 1153 struct buffer_head * bh; 1154 unsigned long nr; 1155 1156 if (depth--) { 1157 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); 1158 for ( ; p < q ; p++) { 1159 nr = le32_to_cpu(*p); 1160 if (!nr) 1161 continue; 1162 *p = 0; 1163 bh = sb_bread(inode->i_sb, nr); 1164 /* 1165 * A read failure? Report error and clear slot 1166 * (should be rare). 1167 */ 1168 if (!bh) { 1169 ext2_error(inode->i_sb, "ext2_free_branches", 1170 "Read failure, inode=%ld, block=%ld", 1171 inode->i_ino, nr); 1172 continue; 1173 } 1174 ext2_free_branches(inode, 1175 (__le32*)bh->b_data, 1176 (__le32*)bh->b_data + addr_per_block, 1177 depth); 1178 bforget(bh); 1179 ext2_free_blocks(inode, nr, 1); 1180 mark_inode_dirty(inode); 1181 } 1182 } else 1183 ext2_free_data(inode, p, q); 1184 } 1185 1186 /* mapping->invalidate_lock must be held when calling this function */ 1187 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset) 1188 { 1189 __le32 *i_data = EXT2_I(inode)->i_data; 1190 struct ext2_inode_info *ei = EXT2_I(inode); 1191 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); 1192 int offsets[4]; 1193 Indirect chain[4]; 1194 Indirect *partial; 1195 __le32 nr = 0; 1196 int n; 1197 long iblock; 1198 unsigned blocksize; 1199 blocksize = inode->i_sb->s_blocksize; 1200 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb); 1201 1202 #ifdef CONFIG_FS_DAX 1203 WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)); 1204 #endif 1205 1206 n = ext2_block_to_path(inode, iblock, offsets, NULL); 1207 if (n == 0) 1208 return; 1209 1210 /* 1211 * From here we block out all ext2_get_block() callers who want to 1212 * modify the block allocation tree. 1213 */ 1214 mutex_lock(&ei->truncate_mutex); 1215 1216 if (n == 1) { 1217 ext2_free_data(inode, i_data+offsets[0], 1218 i_data + EXT2_NDIR_BLOCKS); 1219 goto do_indirects; 1220 } 1221 1222 partial = ext2_find_shared(inode, n, offsets, chain, &nr); 1223 /* Kill the top of shared branch (already detached) */ 1224 if (nr) { 1225 if (partial == chain) 1226 mark_inode_dirty(inode); 1227 else 1228 mark_buffer_dirty_inode(partial->bh, inode); 1229 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial); 1230 } 1231 /* Clear the ends of indirect blocks on the shared branch */ 1232 while (partial > chain) { 1233 ext2_free_branches(inode, 1234 partial->p + 1, 1235 (__le32*)partial->bh->b_data+addr_per_block, 1236 (chain+n-1) - partial); 1237 mark_buffer_dirty_inode(partial->bh, inode); 1238 brelse (partial->bh); 1239 partial--; 1240 } 1241 do_indirects: 1242 /* Kill the remaining (whole) subtrees */ 1243 switch (offsets[0]) { 1244 default: 1245 nr = i_data[EXT2_IND_BLOCK]; 1246 if (nr) { 1247 i_data[EXT2_IND_BLOCK] = 0; 1248 mark_inode_dirty(inode); 1249 ext2_free_branches(inode, &nr, &nr+1, 1); 1250 } 1251 fallthrough; 1252 case EXT2_IND_BLOCK: 1253 nr = i_data[EXT2_DIND_BLOCK]; 1254 if (nr) { 1255 i_data[EXT2_DIND_BLOCK] = 0; 1256 mark_inode_dirty(inode); 1257 ext2_free_branches(inode, &nr, &nr+1, 2); 1258 } 1259 fallthrough; 1260 case EXT2_DIND_BLOCK: 1261 nr = i_data[EXT2_TIND_BLOCK]; 1262 if (nr) { 1263 i_data[EXT2_TIND_BLOCK] = 0; 1264 mark_inode_dirty(inode); 1265 ext2_free_branches(inode, &nr, &nr+1, 3); 1266 } 1267 break; 1268 case EXT2_TIND_BLOCK: 1269 ; 1270 } 1271 1272 ext2_discard_reservation(inode); 1273 1274 mutex_unlock(&ei->truncate_mutex); 1275 } 1276 1277 static void ext2_truncate_blocks(struct inode *inode, loff_t offset) 1278 { 1279 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1280 S_ISLNK(inode->i_mode))) 1281 return; 1282 if (ext2_inode_is_fast_symlink(inode)) 1283 return; 1284 1285 filemap_invalidate_lock(inode->i_mapping); 1286 __ext2_truncate_blocks(inode, offset); 1287 filemap_invalidate_unlock(inode->i_mapping); 1288 } 1289 1290 static int ext2_setsize(struct inode *inode, loff_t newsize) 1291 { 1292 int error; 1293 1294 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1295 S_ISLNK(inode->i_mode))) 1296 return -EINVAL; 1297 if (ext2_inode_is_fast_symlink(inode)) 1298 return -EINVAL; 1299 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1300 return -EPERM; 1301 1302 inode_dio_wait(inode); 1303 1304 if (IS_DAX(inode)) { 1305 error = dax_zero_range(inode, newsize, 1306 PAGE_ALIGN(newsize) - newsize, NULL, 1307 &ext2_iomap_ops); 1308 } else if (test_opt(inode->i_sb, NOBH)) 1309 error = nobh_truncate_page(inode->i_mapping, 1310 newsize, ext2_get_block); 1311 else 1312 error = block_truncate_page(inode->i_mapping, 1313 newsize, ext2_get_block); 1314 if (error) 1315 return error; 1316 1317 filemap_invalidate_lock(inode->i_mapping); 1318 truncate_setsize(inode, newsize); 1319 __ext2_truncate_blocks(inode, newsize); 1320 filemap_invalidate_unlock(inode->i_mapping); 1321 1322 inode->i_mtime = inode->i_ctime = current_time(inode); 1323 if (inode_needs_sync(inode)) { 1324 sync_mapping_buffers(inode->i_mapping); 1325 sync_inode_metadata(inode, 1); 1326 } else { 1327 mark_inode_dirty(inode); 1328 } 1329 1330 return 0; 1331 } 1332 1333 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino, 1334 struct buffer_head **p) 1335 { 1336 struct buffer_head * bh; 1337 unsigned long block_group; 1338 unsigned long block; 1339 unsigned long offset; 1340 struct ext2_group_desc * gdp; 1341 1342 *p = NULL; 1343 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) || 1344 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count)) 1345 goto Einval; 1346 1347 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb); 1348 gdp = ext2_get_group_desc(sb, block_group, NULL); 1349 if (!gdp) 1350 goto Egdp; 1351 /* 1352 * Figure out the offset within the block group inode table 1353 */ 1354 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb); 1355 block = le32_to_cpu(gdp->bg_inode_table) + 1356 (offset >> EXT2_BLOCK_SIZE_BITS(sb)); 1357 if (!(bh = sb_bread(sb, block))) 1358 goto Eio; 1359 1360 *p = bh; 1361 offset &= (EXT2_BLOCK_SIZE(sb) - 1); 1362 return (struct ext2_inode *) (bh->b_data + offset); 1363 1364 Einval: 1365 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu", 1366 (unsigned long) ino); 1367 return ERR_PTR(-EINVAL); 1368 Eio: 1369 ext2_error(sb, "ext2_get_inode", 1370 "unable to read inode block - inode=%lu, block=%lu", 1371 (unsigned long) ino, block); 1372 Egdp: 1373 return ERR_PTR(-EIO); 1374 } 1375 1376 void ext2_set_inode_flags(struct inode *inode) 1377 { 1378 unsigned int flags = EXT2_I(inode)->i_flags; 1379 1380 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | 1381 S_DIRSYNC | S_DAX); 1382 if (flags & EXT2_SYNC_FL) 1383 inode->i_flags |= S_SYNC; 1384 if (flags & EXT2_APPEND_FL) 1385 inode->i_flags |= S_APPEND; 1386 if (flags & EXT2_IMMUTABLE_FL) 1387 inode->i_flags |= S_IMMUTABLE; 1388 if (flags & EXT2_NOATIME_FL) 1389 inode->i_flags |= S_NOATIME; 1390 if (flags & EXT2_DIRSYNC_FL) 1391 inode->i_flags |= S_DIRSYNC; 1392 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode)) 1393 inode->i_flags |= S_DAX; 1394 } 1395 1396 void ext2_set_file_ops(struct inode *inode) 1397 { 1398 inode->i_op = &ext2_file_inode_operations; 1399 inode->i_fop = &ext2_file_operations; 1400 if (IS_DAX(inode)) 1401 inode->i_mapping->a_ops = &ext2_dax_aops; 1402 else if (test_opt(inode->i_sb, NOBH)) 1403 inode->i_mapping->a_ops = &ext2_nobh_aops; 1404 else 1405 inode->i_mapping->a_ops = &ext2_aops; 1406 } 1407 1408 struct inode *ext2_iget (struct super_block *sb, unsigned long ino) 1409 { 1410 struct ext2_inode_info *ei; 1411 struct buffer_head * bh = NULL; 1412 struct ext2_inode *raw_inode; 1413 struct inode *inode; 1414 long ret = -EIO; 1415 int n; 1416 uid_t i_uid; 1417 gid_t i_gid; 1418 1419 inode = iget_locked(sb, ino); 1420 if (!inode) 1421 return ERR_PTR(-ENOMEM); 1422 if (!(inode->i_state & I_NEW)) 1423 return inode; 1424 1425 ei = EXT2_I(inode); 1426 ei->i_block_alloc_info = NULL; 1427 1428 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh); 1429 if (IS_ERR(raw_inode)) { 1430 ret = PTR_ERR(raw_inode); 1431 goto bad_inode; 1432 } 1433 1434 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 1435 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 1436 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 1437 if (!(test_opt (inode->i_sb, NO_UID32))) { 1438 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 1439 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 1440 } 1441 i_uid_write(inode, i_uid); 1442 i_gid_write(inode, i_gid); 1443 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 1444 inode->i_size = le32_to_cpu(raw_inode->i_size); 1445 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime); 1446 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime); 1447 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime); 1448 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0; 1449 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 1450 /* We now have enough fields to check if the inode was active or not. 1451 * This is needed because nfsd might try to access dead inodes 1452 * the test is that same one that e2fsck uses 1453 * NeilBrown 1999oct15 1454 */ 1455 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) { 1456 /* this inode is deleted */ 1457 ret = -ESTALE; 1458 goto bad_inode; 1459 } 1460 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 1461 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 1462 ext2_set_inode_flags(inode); 1463 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); 1464 ei->i_frag_no = raw_inode->i_frag; 1465 ei->i_frag_size = raw_inode->i_fsize; 1466 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 1467 ei->i_dir_acl = 0; 1468 1469 if (ei->i_file_acl && 1470 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) { 1471 ext2_error(sb, "ext2_iget", "bad extended attribute block %u", 1472 ei->i_file_acl); 1473 ret = -EFSCORRUPTED; 1474 goto bad_inode; 1475 } 1476 1477 if (S_ISREG(inode->i_mode)) 1478 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 1479 else 1480 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 1481 if (i_size_read(inode) < 0) { 1482 ret = -EFSCORRUPTED; 1483 goto bad_inode; 1484 } 1485 ei->i_dtime = 0; 1486 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 1487 ei->i_state = 0; 1488 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb); 1489 ei->i_dir_start_lookup = 0; 1490 1491 /* 1492 * NOTE! The in-memory inode i_data array is in little-endian order 1493 * even on big-endian machines: we do NOT byteswap the block numbers! 1494 */ 1495 for (n = 0; n < EXT2_N_BLOCKS; n++) 1496 ei->i_data[n] = raw_inode->i_block[n]; 1497 1498 if (S_ISREG(inode->i_mode)) { 1499 ext2_set_file_ops(inode); 1500 } else if (S_ISDIR(inode->i_mode)) { 1501 inode->i_op = &ext2_dir_inode_operations; 1502 inode->i_fop = &ext2_dir_operations; 1503 if (test_opt(inode->i_sb, NOBH)) 1504 inode->i_mapping->a_ops = &ext2_nobh_aops; 1505 else 1506 inode->i_mapping->a_ops = &ext2_aops; 1507 } else if (S_ISLNK(inode->i_mode)) { 1508 if (ext2_inode_is_fast_symlink(inode)) { 1509 inode->i_link = (char *)ei->i_data; 1510 inode->i_op = &ext2_fast_symlink_inode_operations; 1511 nd_terminate_link(ei->i_data, inode->i_size, 1512 sizeof(ei->i_data) - 1); 1513 } else { 1514 inode->i_op = &ext2_symlink_inode_operations; 1515 inode_nohighmem(inode); 1516 if (test_opt(inode->i_sb, NOBH)) 1517 inode->i_mapping->a_ops = &ext2_nobh_aops; 1518 else 1519 inode->i_mapping->a_ops = &ext2_aops; 1520 } 1521 } else { 1522 inode->i_op = &ext2_special_inode_operations; 1523 if (raw_inode->i_block[0]) 1524 init_special_inode(inode, inode->i_mode, 1525 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 1526 else 1527 init_special_inode(inode, inode->i_mode, 1528 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 1529 } 1530 brelse (bh); 1531 unlock_new_inode(inode); 1532 return inode; 1533 1534 bad_inode: 1535 brelse(bh); 1536 iget_failed(inode); 1537 return ERR_PTR(ret); 1538 } 1539 1540 static int __ext2_write_inode(struct inode *inode, int do_sync) 1541 { 1542 struct ext2_inode_info *ei = EXT2_I(inode); 1543 struct super_block *sb = inode->i_sb; 1544 ino_t ino = inode->i_ino; 1545 uid_t uid = i_uid_read(inode); 1546 gid_t gid = i_gid_read(inode); 1547 struct buffer_head * bh; 1548 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh); 1549 int n; 1550 int err = 0; 1551 1552 if (IS_ERR(raw_inode)) 1553 return -EIO; 1554 1555 /* For fields not not tracking in the in-memory inode, 1556 * initialise them to zero for new inodes. */ 1557 if (ei->i_state & EXT2_STATE_NEW) 1558 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size); 1559 1560 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 1561 if (!(test_opt(sb, NO_UID32))) { 1562 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid)); 1563 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid)); 1564 /* 1565 * Fix up interoperability with old kernels. Otherwise, old inodes get 1566 * re-used with the upper 16 bits of the uid/gid intact 1567 */ 1568 if (!ei->i_dtime) { 1569 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid)); 1570 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid)); 1571 } else { 1572 raw_inode->i_uid_high = 0; 1573 raw_inode->i_gid_high = 0; 1574 } 1575 } else { 1576 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid)); 1577 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid)); 1578 raw_inode->i_uid_high = 0; 1579 raw_inode->i_gid_high = 0; 1580 } 1581 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 1582 raw_inode->i_size = cpu_to_le32(inode->i_size); 1583 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); 1584 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); 1585 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); 1586 1587 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 1588 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 1589 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 1590 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); 1591 raw_inode->i_frag = ei->i_frag_no; 1592 raw_inode->i_fsize = ei->i_frag_size; 1593 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 1594 if (!S_ISREG(inode->i_mode)) 1595 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 1596 else { 1597 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32); 1598 if (inode->i_size > 0x7fffffffULL) { 1599 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb, 1600 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) || 1601 EXT2_SB(sb)->s_es->s_rev_level == 1602 cpu_to_le32(EXT2_GOOD_OLD_REV)) { 1603 /* If this is the first large file 1604 * created, add a flag to the superblock. 1605 */ 1606 spin_lock(&EXT2_SB(sb)->s_lock); 1607 ext2_update_dynamic_rev(sb); 1608 EXT2_SET_RO_COMPAT_FEATURE(sb, 1609 EXT2_FEATURE_RO_COMPAT_LARGE_FILE); 1610 spin_unlock(&EXT2_SB(sb)->s_lock); 1611 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1); 1612 } 1613 } 1614 } 1615 1616 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 1617 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1618 if (old_valid_dev(inode->i_rdev)) { 1619 raw_inode->i_block[0] = 1620 cpu_to_le32(old_encode_dev(inode->i_rdev)); 1621 raw_inode->i_block[1] = 0; 1622 } else { 1623 raw_inode->i_block[0] = 0; 1624 raw_inode->i_block[1] = 1625 cpu_to_le32(new_encode_dev(inode->i_rdev)); 1626 raw_inode->i_block[2] = 0; 1627 } 1628 } else for (n = 0; n < EXT2_N_BLOCKS; n++) 1629 raw_inode->i_block[n] = ei->i_data[n]; 1630 mark_buffer_dirty(bh); 1631 if (do_sync) { 1632 sync_dirty_buffer(bh); 1633 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1634 printk ("IO error syncing ext2 inode [%s:%08lx]\n", 1635 sb->s_id, (unsigned long) ino); 1636 err = -EIO; 1637 } 1638 } 1639 ei->i_state &= ~EXT2_STATE_NEW; 1640 brelse (bh); 1641 return err; 1642 } 1643 1644 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc) 1645 { 1646 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1647 } 1648 1649 int ext2_getattr(struct user_namespace *mnt_userns, const struct path *path, 1650 struct kstat *stat, u32 request_mask, unsigned int query_flags) 1651 { 1652 struct inode *inode = d_inode(path->dentry); 1653 struct ext2_inode_info *ei = EXT2_I(inode); 1654 unsigned int flags; 1655 1656 flags = ei->i_flags & EXT2_FL_USER_VISIBLE; 1657 if (flags & EXT2_APPEND_FL) 1658 stat->attributes |= STATX_ATTR_APPEND; 1659 if (flags & EXT2_COMPR_FL) 1660 stat->attributes |= STATX_ATTR_COMPRESSED; 1661 if (flags & EXT2_IMMUTABLE_FL) 1662 stat->attributes |= STATX_ATTR_IMMUTABLE; 1663 if (flags & EXT2_NODUMP_FL) 1664 stat->attributes |= STATX_ATTR_NODUMP; 1665 stat->attributes_mask |= (STATX_ATTR_APPEND | 1666 STATX_ATTR_COMPRESSED | 1667 STATX_ATTR_ENCRYPTED | 1668 STATX_ATTR_IMMUTABLE | 1669 STATX_ATTR_NODUMP); 1670 1671 generic_fillattr(&init_user_ns, inode, stat); 1672 return 0; 1673 } 1674 1675 int ext2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 1676 struct iattr *iattr) 1677 { 1678 struct inode *inode = d_inode(dentry); 1679 int error; 1680 1681 error = setattr_prepare(&init_user_ns, dentry, iattr); 1682 if (error) 1683 return error; 1684 1685 if (is_quota_modification(inode, iattr)) { 1686 error = dquot_initialize(inode); 1687 if (error) 1688 return error; 1689 } 1690 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) || 1691 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) { 1692 error = dquot_transfer(inode, iattr); 1693 if (error) 1694 return error; 1695 } 1696 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) { 1697 error = ext2_setsize(inode, iattr->ia_size); 1698 if (error) 1699 return error; 1700 } 1701 setattr_copy(&init_user_ns, inode, iattr); 1702 if (iattr->ia_valid & ATTR_MODE) 1703 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1704 mark_inode_dirty(inode); 1705 1706 return error; 1707 } 1708