xref: /openbmc/linux/fs/ext2/inode.c (revision a1e58bbd)
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  * 	(sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  * 	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include "ext2.h"
35 #include "acl.h"
36 #include "xip.h"
37 
38 MODULE_AUTHOR("Remy Card and others");
39 MODULE_DESCRIPTION("Second Extended Filesystem");
40 MODULE_LICENSE("GPL");
41 
42 static int ext2_update_inode(struct inode * inode, int do_sync);
43 
44 /*
45  * Test whether an inode is a fast symlink.
46  */
47 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48 {
49 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
50 		(inode->i_sb->s_blocksize >> 9) : 0;
51 
52 	return (S_ISLNK(inode->i_mode) &&
53 		inode->i_blocks - ea_blocks == 0);
54 }
55 
56 /*
57  * Called at the last iput() if i_nlink is zero.
58  */
59 void ext2_delete_inode (struct inode * inode)
60 {
61 	truncate_inode_pages(&inode->i_data, 0);
62 
63 	if (is_bad_inode(inode))
64 		goto no_delete;
65 	EXT2_I(inode)->i_dtime	= get_seconds();
66 	mark_inode_dirty(inode);
67 	ext2_update_inode(inode, inode_needs_sync(inode));
68 
69 	inode->i_size = 0;
70 	if (inode->i_blocks)
71 		ext2_truncate (inode);
72 	ext2_free_inode (inode);
73 
74 	return;
75 no_delete:
76 	clear_inode(inode);	/* We must guarantee clearing of inode... */
77 }
78 
79 typedef struct {
80 	__le32	*p;
81 	__le32	key;
82 	struct buffer_head *bh;
83 } Indirect;
84 
85 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
86 {
87 	p->key = *(p->p = v);
88 	p->bh = bh;
89 }
90 
91 static inline int verify_chain(Indirect *from, Indirect *to)
92 {
93 	while (from <= to && from->key == *from->p)
94 		from++;
95 	return (from > to);
96 }
97 
98 /**
99  *	ext2_block_to_path - parse the block number into array of offsets
100  *	@inode: inode in question (we are only interested in its superblock)
101  *	@i_block: block number to be parsed
102  *	@offsets: array to store the offsets in
103  *      @boundary: set this non-zero if the referred-to block is likely to be
104  *             followed (on disk) by an indirect block.
105  *	To store the locations of file's data ext2 uses a data structure common
106  *	for UNIX filesystems - tree of pointers anchored in the inode, with
107  *	data blocks at leaves and indirect blocks in intermediate nodes.
108  *	This function translates the block number into path in that tree -
109  *	return value is the path length and @offsets[n] is the offset of
110  *	pointer to (n+1)th node in the nth one. If @block is out of range
111  *	(negative or too large) warning is printed and zero returned.
112  *
113  *	Note: function doesn't find node addresses, so no IO is needed. All
114  *	we need to know is the capacity of indirect blocks (taken from the
115  *	inode->i_sb).
116  */
117 
118 /*
119  * Portability note: the last comparison (check that we fit into triple
120  * indirect block) is spelled differently, because otherwise on an
121  * architecture with 32-bit longs and 8Kb pages we might get into trouble
122  * if our filesystem had 8Kb blocks. We might use long long, but that would
123  * kill us on x86. Oh, well, at least the sign propagation does not matter -
124  * i_block would have to be negative in the very beginning, so we would not
125  * get there at all.
126  */
127 
128 static int ext2_block_to_path(struct inode *inode,
129 			long i_block, int offsets[4], int *boundary)
130 {
131 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
132 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
133 	const long direct_blocks = EXT2_NDIR_BLOCKS,
134 		indirect_blocks = ptrs,
135 		double_blocks = (1 << (ptrs_bits * 2));
136 	int n = 0;
137 	int final = 0;
138 
139 	if (i_block < 0) {
140 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
141 	} else if (i_block < direct_blocks) {
142 		offsets[n++] = i_block;
143 		final = direct_blocks;
144 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
145 		offsets[n++] = EXT2_IND_BLOCK;
146 		offsets[n++] = i_block;
147 		final = ptrs;
148 	} else if ((i_block -= indirect_blocks) < double_blocks) {
149 		offsets[n++] = EXT2_DIND_BLOCK;
150 		offsets[n++] = i_block >> ptrs_bits;
151 		offsets[n++] = i_block & (ptrs - 1);
152 		final = ptrs;
153 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
154 		offsets[n++] = EXT2_TIND_BLOCK;
155 		offsets[n++] = i_block >> (ptrs_bits * 2);
156 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
157 		offsets[n++] = i_block & (ptrs - 1);
158 		final = ptrs;
159 	} else {
160 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
161 	}
162 	if (boundary)
163 		*boundary = final - 1 - (i_block & (ptrs - 1));
164 
165 	return n;
166 }
167 
168 /**
169  *	ext2_get_branch - read the chain of indirect blocks leading to data
170  *	@inode: inode in question
171  *	@depth: depth of the chain (1 - direct pointer, etc.)
172  *	@offsets: offsets of pointers in inode/indirect blocks
173  *	@chain: place to store the result
174  *	@err: here we store the error value
175  *
176  *	Function fills the array of triples <key, p, bh> and returns %NULL
177  *	if everything went OK or the pointer to the last filled triple
178  *	(incomplete one) otherwise. Upon the return chain[i].key contains
179  *	the number of (i+1)-th block in the chain (as it is stored in memory,
180  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
181  *	number (it points into struct inode for i==0 and into the bh->b_data
182  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
183  *	block for i>0 and NULL for i==0. In other words, it holds the block
184  *	numbers of the chain, addresses they were taken from (and where we can
185  *	verify that chain did not change) and buffer_heads hosting these
186  *	numbers.
187  *
188  *	Function stops when it stumbles upon zero pointer (absent block)
189  *		(pointer to last triple returned, *@err == 0)
190  *	or when it gets an IO error reading an indirect block
191  *		(ditto, *@err == -EIO)
192  *	or when it notices that chain had been changed while it was reading
193  *		(ditto, *@err == -EAGAIN)
194  *	or when it reads all @depth-1 indirect blocks successfully and finds
195  *	the whole chain, all way to the data (returns %NULL, *err == 0).
196  */
197 static Indirect *ext2_get_branch(struct inode *inode,
198 				 int depth,
199 				 int *offsets,
200 				 Indirect chain[4],
201 				 int *err)
202 {
203 	struct super_block *sb = inode->i_sb;
204 	Indirect *p = chain;
205 	struct buffer_head *bh;
206 
207 	*err = 0;
208 	/* i_data is not going away, no lock needed */
209 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
210 	if (!p->key)
211 		goto no_block;
212 	while (--depth) {
213 		bh = sb_bread(sb, le32_to_cpu(p->key));
214 		if (!bh)
215 			goto failure;
216 		read_lock(&EXT2_I(inode)->i_meta_lock);
217 		if (!verify_chain(chain, p))
218 			goto changed;
219 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
220 		read_unlock(&EXT2_I(inode)->i_meta_lock);
221 		if (!p->key)
222 			goto no_block;
223 	}
224 	return NULL;
225 
226 changed:
227 	read_unlock(&EXT2_I(inode)->i_meta_lock);
228 	brelse(bh);
229 	*err = -EAGAIN;
230 	goto no_block;
231 failure:
232 	*err = -EIO;
233 no_block:
234 	return p;
235 }
236 
237 /**
238  *	ext2_find_near - find a place for allocation with sufficient locality
239  *	@inode: owner
240  *	@ind: descriptor of indirect block.
241  *
242  *	This function returns the prefered place for block allocation.
243  *	It is used when heuristic for sequential allocation fails.
244  *	Rules are:
245  *	  + if there is a block to the left of our position - allocate near it.
246  *	  + if pointer will live in indirect block - allocate near that block.
247  *	  + if pointer will live in inode - allocate in the same cylinder group.
248  *
249  * In the latter case we colour the starting block by the callers PID to
250  * prevent it from clashing with concurrent allocations for a different inode
251  * in the same block group.   The PID is used here so that functionally related
252  * files will be close-by on-disk.
253  *
254  *	Caller must make sure that @ind is valid and will stay that way.
255  */
256 
257 static unsigned long ext2_find_near(struct inode *inode, Indirect *ind)
258 {
259 	struct ext2_inode_info *ei = EXT2_I(inode);
260 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
261 	__le32 *p;
262 	unsigned long bg_start;
263 	unsigned long colour;
264 
265 	/* Try to find previous block */
266 	for (p = ind->p - 1; p >= start; p--)
267 		if (*p)
268 			return le32_to_cpu(*p);
269 
270 	/* No such thing, so let's try location of indirect block */
271 	if (ind->bh)
272 		return ind->bh->b_blocknr;
273 
274 	/*
275 	 * It is going to be refered from inode itself? OK, just put it into
276 	 * the same cylinder group then.
277 	 */
278 	bg_start = (ei->i_block_group * EXT2_BLOCKS_PER_GROUP(inode->i_sb)) +
279 		le32_to_cpu(EXT2_SB(inode->i_sb)->s_es->s_first_data_block);
280 	colour = (current->pid % 16) *
281 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
282 	return bg_start + colour;
283 }
284 
285 /**
286  *	ext2_find_goal - find a prefered place for allocation.
287  *	@inode: owner
288  *	@block:  block we want
289  *	@partial: pointer to the last triple within a chain
290  *
291  *	Returns preferred place for a block (the goal).
292  */
293 
294 static inline int ext2_find_goal(struct inode *inode, long block,
295 				 Indirect *partial)
296 {
297 	struct ext2_block_alloc_info *block_i;
298 
299 	block_i = EXT2_I(inode)->i_block_alloc_info;
300 
301 	/*
302 	 * try the heuristic for sequential allocation,
303 	 * failing that at least try to get decent locality.
304 	 */
305 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
306 		&& (block_i->last_alloc_physical_block != 0)) {
307 		return block_i->last_alloc_physical_block + 1;
308 	}
309 
310 	return ext2_find_near(inode, partial);
311 }
312 
313 /**
314  *	ext2_blks_to_allocate: Look up the block map and count the number
315  *	of direct blocks need to be allocated for the given branch.
316  *
317  * 	@branch: chain of indirect blocks
318  *	@k: number of blocks need for indirect blocks
319  *	@blks: number of data blocks to be mapped.
320  *	@blocks_to_boundary:  the offset in the indirect block
321  *
322  *	return the total number of blocks to be allocate, including the
323  *	direct and indirect blocks.
324  */
325 static int
326 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
327 		int blocks_to_boundary)
328 {
329 	unsigned long count = 0;
330 
331 	/*
332 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
333 	 * then it's clear blocks on that path have not allocated
334 	 */
335 	if (k > 0) {
336 		/* right now don't hanel cross boundary allocation */
337 		if (blks < blocks_to_boundary + 1)
338 			count += blks;
339 		else
340 			count += blocks_to_boundary + 1;
341 		return count;
342 	}
343 
344 	count++;
345 	while (count < blks && count <= blocks_to_boundary
346 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
347 		count++;
348 	}
349 	return count;
350 }
351 
352 /**
353  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
354  *	@indirect_blks: the number of blocks need to allocate for indirect
355  *			blocks
356  *
357  *	@new_blocks: on return it will store the new block numbers for
358  *	the indirect blocks(if needed) and the first direct block,
359  *	@blks:	on return it will store the total number of allocated
360  *		direct blocks
361  */
362 static int ext2_alloc_blocks(struct inode *inode,
363 			ext2_fsblk_t goal, int indirect_blks, int blks,
364 			ext2_fsblk_t new_blocks[4], int *err)
365 {
366 	int target, i;
367 	unsigned long count = 0;
368 	int index = 0;
369 	ext2_fsblk_t current_block = 0;
370 	int ret = 0;
371 
372 	/*
373 	 * Here we try to allocate the requested multiple blocks at once,
374 	 * on a best-effort basis.
375 	 * To build a branch, we should allocate blocks for
376 	 * the indirect blocks(if not allocated yet), and at least
377 	 * the first direct block of this branch.  That's the
378 	 * minimum number of blocks need to allocate(required)
379 	 */
380 	target = blks + indirect_blks;
381 
382 	while (1) {
383 		count = target;
384 		/* allocating blocks for indirect blocks and direct blocks */
385 		current_block = ext2_new_blocks(inode,goal,&count,err);
386 		if (*err)
387 			goto failed_out;
388 
389 		target -= count;
390 		/* allocate blocks for indirect blocks */
391 		while (index < indirect_blks && count) {
392 			new_blocks[index++] = current_block++;
393 			count--;
394 		}
395 
396 		if (count > 0)
397 			break;
398 	}
399 
400 	/* save the new block number for the first direct block */
401 	new_blocks[index] = current_block;
402 
403 	/* total number of blocks allocated for direct blocks */
404 	ret = count;
405 	*err = 0;
406 	return ret;
407 failed_out:
408 	for (i = 0; i <index; i++)
409 		ext2_free_blocks(inode, new_blocks[i], 1);
410 	return ret;
411 }
412 
413 /**
414  *	ext2_alloc_branch - allocate and set up a chain of blocks.
415  *	@inode: owner
416  *	@num: depth of the chain (number of blocks to allocate)
417  *	@offsets: offsets (in the blocks) to store the pointers to next.
418  *	@branch: place to store the chain in.
419  *
420  *	This function allocates @num blocks, zeroes out all but the last one,
421  *	links them into chain and (if we are synchronous) writes them to disk.
422  *	In other words, it prepares a branch that can be spliced onto the
423  *	inode. It stores the information about that chain in the branch[], in
424  *	the same format as ext2_get_branch() would do. We are calling it after
425  *	we had read the existing part of chain and partial points to the last
426  *	triple of that (one with zero ->key). Upon the exit we have the same
427  *	picture as after the successful ext2_get_block(), excpet that in one
428  *	place chain is disconnected - *branch->p is still zero (we did not
429  *	set the last link), but branch->key contains the number that should
430  *	be placed into *branch->p to fill that gap.
431  *
432  *	If allocation fails we free all blocks we've allocated (and forget
433  *	their buffer_heads) and return the error value the from failed
434  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
435  *	as described above and return 0.
436  */
437 
438 static int ext2_alloc_branch(struct inode *inode,
439 			int indirect_blks, int *blks, ext2_fsblk_t goal,
440 			int *offsets, Indirect *branch)
441 {
442 	int blocksize = inode->i_sb->s_blocksize;
443 	int i, n = 0;
444 	int err = 0;
445 	struct buffer_head *bh;
446 	int num;
447 	ext2_fsblk_t new_blocks[4];
448 	ext2_fsblk_t current_block;
449 
450 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
451 				*blks, new_blocks, &err);
452 	if (err)
453 		return err;
454 
455 	branch[0].key = cpu_to_le32(new_blocks[0]);
456 	/*
457 	 * metadata blocks and data blocks are allocated.
458 	 */
459 	for (n = 1; n <= indirect_blks;  n++) {
460 		/*
461 		 * Get buffer_head for parent block, zero it out
462 		 * and set the pointer to new one, then send
463 		 * parent to disk.
464 		 */
465 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
466 		branch[n].bh = bh;
467 		lock_buffer(bh);
468 		memset(bh->b_data, 0, blocksize);
469 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
470 		branch[n].key = cpu_to_le32(new_blocks[n]);
471 		*branch[n].p = branch[n].key;
472 		if ( n == indirect_blks) {
473 			current_block = new_blocks[n];
474 			/*
475 			 * End of chain, update the last new metablock of
476 			 * the chain to point to the new allocated
477 			 * data blocks numbers
478 			 */
479 			for (i=1; i < num; i++)
480 				*(branch[n].p + i) = cpu_to_le32(++current_block);
481 		}
482 		set_buffer_uptodate(bh);
483 		unlock_buffer(bh);
484 		mark_buffer_dirty_inode(bh, inode);
485 		/* We used to sync bh here if IS_SYNC(inode).
486 		 * But we now rely upon generic_osync_inode()
487 		 * and b_inode_buffers.  But not for directories.
488 		 */
489 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
490 			sync_dirty_buffer(bh);
491 	}
492 	*blks = num;
493 	return err;
494 }
495 
496 /**
497  * ext2_splice_branch - splice the allocated branch onto inode.
498  * @inode: owner
499  * @block: (logical) number of block we are adding
500  * @chain: chain of indirect blocks (with a missing link - see
501  *	ext2_alloc_branch)
502  * @where: location of missing link
503  * @num:   number of indirect blocks we are adding
504  * @blks:  number of direct blocks we are adding
505  *
506  * This function fills the missing link and does all housekeeping needed in
507  * inode (->i_blocks, etc.). In case of success we end up with the full
508  * chain to new block and return 0.
509  */
510 static void ext2_splice_branch(struct inode *inode,
511 			long block, Indirect *where, int num, int blks)
512 {
513 	int i;
514 	struct ext2_block_alloc_info *block_i;
515 	ext2_fsblk_t current_block;
516 
517 	block_i = EXT2_I(inode)->i_block_alloc_info;
518 
519 	/* XXX LOCKING probably should have i_meta_lock ?*/
520 	/* That's it */
521 
522 	*where->p = where->key;
523 
524 	/*
525 	 * Update the host buffer_head or inode to point to more just allocated
526 	 * direct blocks blocks
527 	 */
528 	if (num == 0 && blks > 1) {
529 		current_block = le32_to_cpu(where->key) + 1;
530 		for (i = 1; i < blks; i++)
531 			*(where->p + i ) = cpu_to_le32(current_block++);
532 	}
533 
534 	/*
535 	 * update the most recently allocated logical & physical block
536 	 * in i_block_alloc_info, to assist find the proper goal block for next
537 	 * allocation
538 	 */
539 	if (block_i) {
540 		block_i->last_alloc_logical_block = block + blks - 1;
541 		block_i->last_alloc_physical_block =
542 				le32_to_cpu(where[num].key) + blks - 1;
543 	}
544 
545 	/* We are done with atomic stuff, now do the rest of housekeeping */
546 
547 	/* had we spliced it onto indirect block? */
548 	if (where->bh)
549 		mark_buffer_dirty_inode(where->bh, inode);
550 
551 	inode->i_ctime = CURRENT_TIME_SEC;
552 	mark_inode_dirty(inode);
553 }
554 
555 /*
556  * Allocation strategy is simple: if we have to allocate something, we will
557  * have to go the whole way to leaf. So let's do it before attaching anything
558  * to tree, set linkage between the newborn blocks, write them if sync is
559  * required, recheck the path, free and repeat if check fails, otherwise
560  * set the last missing link (that will protect us from any truncate-generated
561  * removals - all blocks on the path are immune now) and possibly force the
562  * write on the parent block.
563  * That has a nice additional property: no special recovery from the failed
564  * allocations is needed - we simply release blocks and do not touch anything
565  * reachable from inode.
566  *
567  * `handle' can be NULL if create == 0.
568  *
569  * return > 0, # of blocks mapped or allocated.
570  * return = 0, if plain lookup failed.
571  * return < 0, error case.
572  */
573 static int ext2_get_blocks(struct inode *inode,
574 			   sector_t iblock, unsigned long maxblocks,
575 			   struct buffer_head *bh_result,
576 			   int create)
577 {
578 	int err = -EIO;
579 	int offsets[4];
580 	Indirect chain[4];
581 	Indirect *partial;
582 	ext2_fsblk_t goal;
583 	int indirect_blks;
584 	int blocks_to_boundary = 0;
585 	int depth;
586 	struct ext2_inode_info *ei = EXT2_I(inode);
587 	int count = 0;
588 	ext2_fsblk_t first_block = 0;
589 
590 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
591 
592 	if (depth == 0)
593 		return (err);
594 reread:
595 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
596 
597 	/* Simplest case - block found, no allocation needed */
598 	if (!partial) {
599 		first_block = le32_to_cpu(chain[depth - 1].key);
600 		clear_buffer_new(bh_result); /* What's this do? */
601 		count++;
602 		/*map more blocks*/
603 		while (count < maxblocks && count <= blocks_to_boundary) {
604 			ext2_fsblk_t blk;
605 
606 			if (!verify_chain(chain, partial)) {
607 				/*
608 				 * Indirect block might be removed by
609 				 * truncate while we were reading it.
610 				 * Handling of that case: forget what we've
611 				 * got now, go to reread.
612 				 */
613 				count = 0;
614 				goto changed;
615 			}
616 			blk = le32_to_cpu(*(chain[depth-1].p + count));
617 			if (blk == first_block + count)
618 				count++;
619 			else
620 				break;
621 		}
622 		goto got_it;
623 	}
624 
625 	/* Next simple case - plain lookup or failed read of indirect block */
626 	if (!create || err == -EIO)
627 		goto cleanup;
628 
629 	mutex_lock(&ei->truncate_mutex);
630 
631 	/*
632 	 * Okay, we need to do block allocation.  Lazily initialize the block
633 	 * allocation info here if necessary
634 	*/
635 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
636 		ext2_init_block_alloc_info(inode);
637 
638 	goal = ext2_find_goal(inode, iblock, partial);
639 
640 	/* the number of blocks need to allocate for [d,t]indirect blocks */
641 	indirect_blks = (chain + depth) - partial - 1;
642 	/*
643 	 * Next look up the indirect map to count the totoal number of
644 	 * direct blocks to allocate for this branch.
645 	 */
646 	count = ext2_blks_to_allocate(partial, indirect_blks,
647 					maxblocks, blocks_to_boundary);
648 	/*
649 	 * XXX ???? Block out ext2_truncate while we alter the tree
650 	 */
651 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
652 				offsets + (partial - chain), partial);
653 
654 	if (err) {
655 		mutex_unlock(&ei->truncate_mutex);
656 		goto cleanup;
657 	}
658 
659 	if (ext2_use_xip(inode->i_sb)) {
660 		/*
661 		 * we need to clear the block
662 		 */
663 		err = ext2_clear_xip_target (inode,
664 			le32_to_cpu(chain[depth-1].key));
665 		if (err) {
666 			mutex_unlock(&ei->truncate_mutex);
667 			goto cleanup;
668 		}
669 	}
670 
671 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
672 	mutex_unlock(&ei->truncate_mutex);
673 	set_buffer_new(bh_result);
674 got_it:
675 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
676 	if (count > blocks_to_boundary)
677 		set_buffer_boundary(bh_result);
678 	err = count;
679 	/* Clean up and exit */
680 	partial = chain + depth - 1;	/* the whole chain */
681 cleanup:
682 	while (partial > chain) {
683 		brelse(partial->bh);
684 		partial--;
685 	}
686 	return err;
687 changed:
688 	while (partial > chain) {
689 		brelse(partial->bh);
690 		partial--;
691 	}
692 	goto reread;
693 }
694 
695 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
696 {
697 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
698 	int ret = ext2_get_blocks(inode, iblock, max_blocks,
699 			      bh_result, create);
700 	if (ret > 0) {
701 		bh_result->b_size = (ret << inode->i_blkbits);
702 		ret = 0;
703 	}
704 	return ret;
705 
706 }
707 
708 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
709 {
710 	return block_write_full_page(page, ext2_get_block, wbc);
711 }
712 
713 static int ext2_readpage(struct file *file, struct page *page)
714 {
715 	return mpage_readpage(page, ext2_get_block);
716 }
717 
718 static int
719 ext2_readpages(struct file *file, struct address_space *mapping,
720 		struct list_head *pages, unsigned nr_pages)
721 {
722 	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
723 }
724 
725 int __ext2_write_begin(struct file *file, struct address_space *mapping,
726 		loff_t pos, unsigned len, unsigned flags,
727 		struct page **pagep, void **fsdata)
728 {
729 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
730 							ext2_get_block);
731 }
732 
733 static int
734 ext2_write_begin(struct file *file, struct address_space *mapping,
735 		loff_t pos, unsigned len, unsigned flags,
736 		struct page **pagep, void **fsdata)
737 {
738 	*pagep = NULL;
739 	return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
740 }
741 
742 static int
743 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
744 		loff_t pos, unsigned len, unsigned flags,
745 		struct page **pagep, void **fsdata)
746 {
747 	/*
748 	 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
749 	 * directory handling code to pass around offsets rather than struct
750 	 * pages in order to make this work easily.
751 	 */
752 	return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
753 							ext2_get_block);
754 }
755 
756 static int ext2_nobh_writepage(struct page *page,
757 			struct writeback_control *wbc)
758 {
759 	return nobh_writepage(page, ext2_get_block, wbc);
760 }
761 
762 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
763 {
764 	return generic_block_bmap(mapping,block,ext2_get_block);
765 }
766 
767 static ssize_t
768 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
769 			loff_t offset, unsigned long nr_segs)
770 {
771 	struct file *file = iocb->ki_filp;
772 	struct inode *inode = file->f_mapping->host;
773 
774 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
775 				offset, nr_segs, ext2_get_block, NULL);
776 }
777 
778 static int
779 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
780 {
781 	return mpage_writepages(mapping, wbc, ext2_get_block);
782 }
783 
784 const struct address_space_operations ext2_aops = {
785 	.readpage		= ext2_readpage,
786 	.readpages		= ext2_readpages,
787 	.writepage		= ext2_writepage,
788 	.sync_page		= block_sync_page,
789 	.write_begin		= ext2_write_begin,
790 	.write_end		= generic_write_end,
791 	.bmap			= ext2_bmap,
792 	.direct_IO		= ext2_direct_IO,
793 	.writepages		= ext2_writepages,
794 	.migratepage		= buffer_migrate_page,
795 };
796 
797 const struct address_space_operations ext2_aops_xip = {
798 	.bmap			= ext2_bmap,
799 	.get_xip_page		= ext2_get_xip_page,
800 };
801 
802 const struct address_space_operations ext2_nobh_aops = {
803 	.readpage		= ext2_readpage,
804 	.readpages		= ext2_readpages,
805 	.writepage		= ext2_nobh_writepage,
806 	.sync_page		= block_sync_page,
807 	.write_begin		= ext2_nobh_write_begin,
808 	.write_end		= nobh_write_end,
809 	.bmap			= ext2_bmap,
810 	.direct_IO		= ext2_direct_IO,
811 	.writepages		= ext2_writepages,
812 	.migratepage		= buffer_migrate_page,
813 };
814 
815 /*
816  * Probably it should be a library function... search for first non-zero word
817  * or memcmp with zero_page, whatever is better for particular architecture.
818  * Linus?
819  */
820 static inline int all_zeroes(__le32 *p, __le32 *q)
821 {
822 	while (p < q)
823 		if (*p++)
824 			return 0;
825 	return 1;
826 }
827 
828 /**
829  *	ext2_find_shared - find the indirect blocks for partial truncation.
830  *	@inode:	  inode in question
831  *	@depth:	  depth of the affected branch
832  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
833  *	@chain:	  place to store the pointers to partial indirect blocks
834  *	@top:	  place to the (detached) top of branch
835  *
836  *	This is a helper function used by ext2_truncate().
837  *
838  *	When we do truncate() we may have to clean the ends of several indirect
839  *	blocks but leave the blocks themselves alive. Block is partially
840  *	truncated if some data below the new i_size is refered from it (and
841  *	it is on the path to the first completely truncated data block, indeed).
842  *	We have to free the top of that path along with everything to the right
843  *	of the path. Since no allocation past the truncation point is possible
844  *	until ext2_truncate() finishes, we may safely do the latter, but top
845  *	of branch may require special attention - pageout below the truncation
846  *	point might try to populate it.
847  *
848  *	We atomically detach the top of branch from the tree, store the block
849  *	number of its root in *@top, pointers to buffer_heads of partially
850  *	truncated blocks - in @chain[].bh and pointers to their last elements
851  *	that should not be removed - in @chain[].p. Return value is the pointer
852  *	to last filled element of @chain.
853  *
854  *	The work left to caller to do the actual freeing of subtrees:
855  *		a) free the subtree starting from *@top
856  *		b) free the subtrees whose roots are stored in
857  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
858  *		c) free the subtrees growing from the inode past the @chain[0].p
859  *			(no partially truncated stuff there).
860  */
861 
862 static Indirect *ext2_find_shared(struct inode *inode,
863 				int depth,
864 				int offsets[4],
865 				Indirect chain[4],
866 				__le32 *top)
867 {
868 	Indirect *partial, *p;
869 	int k, err;
870 
871 	*top = 0;
872 	for (k = depth; k > 1 && !offsets[k-1]; k--)
873 		;
874 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
875 	if (!partial)
876 		partial = chain + k-1;
877 	/*
878 	 * If the branch acquired continuation since we've looked at it -
879 	 * fine, it should all survive and (new) top doesn't belong to us.
880 	 */
881 	write_lock(&EXT2_I(inode)->i_meta_lock);
882 	if (!partial->key && *partial->p) {
883 		write_unlock(&EXT2_I(inode)->i_meta_lock);
884 		goto no_top;
885 	}
886 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
887 		;
888 	/*
889 	 * OK, we've found the last block that must survive. The rest of our
890 	 * branch should be detached before unlocking. However, if that rest
891 	 * of branch is all ours and does not grow immediately from the inode
892 	 * it's easier to cheat and just decrement partial->p.
893 	 */
894 	if (p == chain + k - 1 && p > chain) {
895 		p->p--;
896 	} else {
897 		*top = *p->p;
898 		*p->p = 0;
899 	}
900 	write_unlock(&EXT2_I(inode)->i_meta_lock);
901 
902 	while(partial > p)
903 	{
904 		brelse(partial->bh);
905 		partial--;
906 	}
907 no_top:
908 	return partial;
909 }
910 
911 /**
912  *	ext2_free_data - free a list of data blocks
913  *	@inode:	inode we are dealing with
914  *	@p:	array of block numbers
915  *	@q:	points immediately past the end of array
916  *
917  *	We are freeing all blocks refered from that array (numbers are
918  *	stored as little-endian 32-bit) and updating @inode->i_blocks
919  *	appropriately.
920  */
921 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
922 {
923 	unsigned long block_to_free = 0, count = 0;
924 	unsigned long nr;
925 
926 	for ( ; p < q ; p++) {
927 		nr = le32_to_cpu(*p);
928 		if (nr) {
929 			*p = 0;
930 			/* accumulate blocks to free if they're contiguous */
931 			if (count == 0)
932 				goto free_this;
933 			else if (block_to_free == nr - count)
934 				count++;
935 			else {
936 				mark_inode_dirty(inode);
937 				ext2_free_blocks (inode, block_to_free, count);
938 			free_this:
939 				block_to_free = nr;
940 				count = 1;
941 			}
942 		}
943 	}
944 	if (count > 0) {
945 		mark_inode_dirty(inode);
946 		ext2_free_blocks (inode, block_to_free, count);
947 	}
948 }
949 
950 /**
951  *	ext2_free_branches - free an array of branches
952  *	@inode:	inode we are dealing with
953  *	@p:	array of block numbers
954  *	@q:	pointer immediately past the end of array
955  *	@depth:	depth of the branches to free
956  *
957  *	We are freeing all blocks refered from these branches (numbers are
958  *	stored as little-endian 32-bit) and updating @inode->i_blocks
959  *	appropriately.
960  */
961 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
962 {
963 	struct buffer_head * bh;
964 	unsigned long nr;
965 
966 	if (depth--) {
967 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
968 		for ( ; p < q ; p++) {
969 			nr = le32_to_cpu(*p);
970 			if (!nr)
971 				continue;
972 			*p = 0;
973 			bh = sb_bread(inode->i_sb, nr);
974 			/*
975 			 * A read failure? Report error and clear slot
976 			 * (should be rare).
977 			 */
978 			if (!bh) {
979 				ext2_error(inode->i_sb, "ext2_free_branches",
980 					"Read failure, inode=%ld, block=%ld",
981 					inode->i_ino, nr);
982 				continue;
983 			}
984 			ext2_free_branches(inode,
985 					   (__le32*)bh->b_data,
986 					   (__le32*)bh->b_data + addr_per_block,
987 					   depth);
988 			bforget(bh);
989 			ext2_free_blocks(inode, nr, 1);
990 			mark_inode_dirty(inode);
991 		}
992 	} else
993 		ext2_free_data(inode, p, q);
994 }
995 
996 void ext2_truncate(struct inode *inode)
997 {
998 	__le32 *i_data = EXT2_I(inode)->i_data;
999 	struct ext2_inode_info *ei = EXT2_I(inode);
1000 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1001 	int offsets[4];
1002 	Indirect chain[4];
1003 	Indirect *partial;
1004 	__le32 nr = 0;
1005 	int n;
1006 	long iblock;
1007 	unsigned blocksize;
1008 
1009 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1010 	    S_ISLNK(inode->i_mode)))
1011 		return;
1012 	if (ext2_inode_is_fast_symlink(inode))
1013 		return;
1014 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1015 		return;
1016 
1017 	blocksize = inode->i_sb->s_blocksize;
1018 	iblock = (inode->i_size + blocksize-1)
1019 					>> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1020 
1021 	if (mapping_is_xip(inode->i_mapping))
1022 		xip_truncate_page(inode->i_mapping, inode->i_size);
1023 	else if (test_opt(inode->i_sb, NOBH))
1024 		nobh_truncate_page(inode->i_mapping,
1025 				inode->i_size, ext2_get_block);
1026 	else
1027 		block_truncate_page(inode->i_mapping,
1028 				inode->i_size, ext2_get_block);
1029 
1030 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1031 	if (n == 0)
1032 		return;
1033 
1034 	/*
1035 	 * From here we block out all ext2_get_block() callers who want to
1036 	 * modify the block allocation tree.
1037 	 */
1038 	mutex_lock(&ei->truncate_mutex);
1039 
1040 	if (n == 1) {
1041 		ext2_free_data(inode, i_data+offsets[0],
1042 					i_data + EXT2_NDIR_BLOCKS);
1043 		goto do_indirects;
1044 	}
1045 
1046 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1047 	/* Kill the top of shared branch (already detached) */
1048 	if (nr) {
1049 		if (partial == chain)
1050 			mark_inode_dirty(inode);
1051 		else
1052 			mark_buffer_dirty_inode(partial->bh, inode);
1053 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1054 	}
1055 	/* Clear the ends of indirect blocks on the shared branch */
1056 	while (partial > chain) {
1057 		ext2_free_branches(inode,
1058 				   partial->p + 1,
1059 				   (__le32*)partial->bh->b_data+addr_per_block,
1060 				   (chain+n-1) - partial);
1061 		mark_buffer_dirty_inode(partial->bh, inode);
1062 		brelse (partial->bh);
1063 		partial--;
1064 	}
1065 do_indirects:
1066 	/* Kill the remaining (whole) subtrees */
1067 	switch (offsets[0]) {
1068 		default:
1069 			nr = i_data[EXT2_IND_BLOCK];
1070 			if (nr) {
1071 				i_data[EXT2_IND_BLOCK] = 0;
1072 				mark_inode_dirty(inode);
1073 				ext2_free_branches(inode, &nr, &nr+1, 1);
1074 			}
1075 		case EXT2_IND_BLOCK:
1076 			nr = i_data[EXT2_DIND_BLOCK];
1077 			if (nr) {
1078 				i_data[EXT2_DIND_BLOCK] = 0;
1079 				mark_inode_dirty(inode);
1080 				ext2_free_branches(inode, &nr, &nr+1, 2);
1081 			}
1082 		case EXT2_DIND_BLOCK:
1083 			nr = i_data[EXT2_TIND_BLOCK];
1084 			if (nr) {
1085 				i_data[EXT2_TIND_BLOCK] = 0;
1086 				mark_inode_dirty(inode);
1087 				ext2_free_branches(inode, &nr, &nr+1, 3);
1088 			}
1089 		case EXT2_TIND_BLOCK:
1090 			;
1091 	}
1092 
1093 	ext2_discard_reservation(inode);
1094 
1095 	mutex_unlock(&ei->truncate_mutex);
1096 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1097 	if (inode_needs_sync(inode)) {
1098 		sync_mapping_buffers(inode->i_mapping);
1099 		ext2_sync_inode (inode);
1100 	} else {
1101 		mark_inode_dirty(inode);
1102 	}
1103 }
1104 
1105 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1106 					struct buffer_head **p)
1107 {
1108 	struct buffer_head * bh;
1109 	unsigned long block_group;
1110 	unsigned long block;
1111 	unsigned long offset;
1112 	struct ext2_group_desc * gdp;
1113 
1114 	*p = NULL;
1115 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1116 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1117 		goto Einval;
1118 
1119 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1120 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1121 	if (!gdp)
1122 		goto Egdp;
1123 	/*
1124 	 * Figure out the offset within the block group inode table
1125 	 */
1126 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1127 	block = le32_to_cpu(gdp->bg_inode_table) +
1128 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1129 	if (!(bh = sb_bread(sb, block)))
1130 		goto Eio;
1131 
1132 	*p = bh;
1133 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1134 	return (struct ext2_inode *) (bh->b_data + offset);
1135 
1136 Einval:
1137 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1138 		   (unsigned long) ino);
1139 	return ERR_PTR(-EINVAL);
1140 Eio:
1141 	ext2_error(sb, "ext2_get_inode",
1142 		   "unable to read inode block - inode=%lu, block=%lu",
1143 		   (unsigned long) ino, block);
1144 Egdp:
1145 	return ERR_PTR(-EIO);
1146 }
1147 
1148 void ext2_set_inode_flags(struct inode *inode)
1149 {
1150 	unsigned int flags = EXT2_I(inode)->i_flags;
1151 
1152 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1153 	if (flags & EXT2_SYNC_FL)
1154 		inode->i_flags |= S_SYNC;
1155 	if (flags & EXT2_APPEND_FL)
1156 		inode->i_flags |= S_APPEND;
1157 	if (flags & EXT2_IMMUTABLE_FL)
1158 		inode->i_flags |= S_IMMUTABLE;
1159 	if (flags & EXT2_NOATIME_FL)
1160 		inode->i_flags |= S_NOATIME;
1161 	if (flags & EXT2_DIRSYNC_FL)
1162 		inode->i_flags |= S_DIRSYNC;
1163 }
1164 
1165 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1166 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1167 {
1168 	unsigned int flags = ei->vfs_inode.i_flags;
1169 
1170 	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1171 			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1172 	if (flags & S_SYNC)
1173 		ei->i_flags |= EXT2_SYNC_FL;
1174 	if (flags & S_APPEND)
1175 		ei->i_flags |= EXT2_APPEND_FL;
1176 	if (flags & S_IMMUTABLE)
1177 		ei->i_flags |= EXT2_IMMUTABLE_FL;
1178 	if (flags & S_NOATIME)
1179 		ei->i_flags |= EXT2_NOATIME_FL;
1180 	if (flags & S_DIRSYNC)
1181 		ei->i_flags |= EXT2_DIRSYNC_FL;
1182 }
1183 
1184 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1185 {
1186 	struct ext2_inode_info *ei;
1187 	struct buffer_head * bh;
1188 	struct ext2_inode *raw_inode;
1189 	struct inode *inode;
1190 	long ret = -EIO;
1191 	int n;
1192 
1193 	inode = iget_locked(sb, ino);
1194 	if (!inode)
1195 		return ERR_PTR(-ENOMEM);
1196 	if (!(inode->i_state & I_NEW))
1197 		return inode;
1198 
1199 	ei = EXT2_I(inode);
1200 #ifdef CONFIG_EXT2_FS_POSIX_ACL
1201 	ei->i_acl = EXT2_ACL_NOT_CACHED;
1202 	ei->i_default_acl = EXT2_ACL_NOT_CACHED;
1203 #endif
1204 	ei->i_block_alloc_info = NULL;
1205 
1206 	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1207 	if (IS_ERR(raw_inode)) {
1208 		ret = PTR_ERR(raw_inode);
1209  		goto bad_inode;
1210 	}
1211 
1212 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1213 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1214 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1215 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1216 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1217 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1218 	}
1219 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1220 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1221 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1222 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1223 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1224 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1225 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1226 	/* We now have enough fields to check if the inode was active or not.
1227 	 * This is needed because nfsd might try to access dead inodes
1228 	 * the test is that same one that e2fsck uses
1229 	 * NeilBrown 1999oct15
1230 	 */
1231 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1232 		/* this inode is deleted */
1233 		brelse (bh);
1234 		ret = -ESTALE;
1235 		goto bad_inode;
1236 	}
1237 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1238 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1239 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1240 	ei->i_frag_no = raw_inode->i_frag;
1241 	ei->i_frag_size = raw_inode->i_fsize;
1242 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1243 	ei->i_dir_acl = 0;
1244 	if (S_ISREG(inode->i_mode))
1245 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1246 	else
1247 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1248 	ei->i_dtime = 0;
1249 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1250 	ei->i_state = 0;
1251 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1252 	ei->i_dir_start_lookup = 0;
1253 
1254 	/*
1255 	 * NOTE! The in-memory inode i_data array is in little-endian order
1256 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1257 	 */
1258 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1259 		ei->i_data[n] = raw_inode->i_block[n];
1260 
1261 	if (S_ISREG(inode->i_mode)) {
1262 		inode->i_op = &ext2_file_inode_operations;
1263 		if (ext2_use_xip(inode->i_sb)) {
1264 			inode->i_mapping->a_ops = &ext2_aops_xip;
1265 			inode->i_fop = &ext2_xip_file_operations;
1266 		} else if (test_opt(inode->i_sb, NOBH)) {
1267 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1268 			inode->i_fop = &ext2_file_operations;
1269 		} else {
1270 			inode->i_mapping->a_ops = &ext2_aops;
1271 			inode->i_fop = &ext2_file_operations;
1272 		}
1273 	} else if (S_ISDIR(inode->i_mode)) {
1274 		inode->i_op = &ext2_dir_inode_operations;
1275 		inode->i_fop = &ext2_dir_operations;
1276 		if (test_opt(inode->i_sb, NOBH))
1277 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1278 		else
1279 			inode->i_mapping->a_ops = &ext2_aops;
1280 	} else if (S_ISLNK(inode->i_mode)) {
1281 		if (ext2_inode_is_fast_symlink(inode))
1282 			inode->i_op = &ext2_fast_symlink_inode_operations;
1283 		else {
1284 			inode->i_op = &ext2_symlink_inode_operations;
1285 			if (test_opt(inode->i_sb, NOBH))
1286 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1287 			else
1288 				inode->i_mapping->a_ops = &ext2_aops;
1289 		}
1290 	} else {
1291 		inode->i_op = &ext2_special_inode_operations;
1292 		if (raw_inode->i_block[0])
1293 			init_special_inode(inode, inode->i_mode,
1294 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1295 		else
1296 			init_special_inode(inode, inode->i_mode,
1297 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1298 	}
1299 	brelse (bh);
1300 	ext2_set_inode_flags(inode);
1301 	unlock_new_inode(inode);
1302 	return inode;
1303 
1304 bad_inode:
1305 	iget_failed(inode);
1306 	return ERR_PTR(ret);
1307 }
1308 
1309 static int ext2_update_inode(struct inode * inode, int do_sync)
1310 {
1311 	struct ext2_inode_info *ei = EXT2_I(inode);
1312 	struct super_block *sb = inode->i_sb;
1313 	ino_t ino = inode->i_ino;
1314 	uid_t uid = inode->i_uid;
1315 	gid_t gid = inode->i_gid;
1316 	struct buffer_head * bh;
1317 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1318 	int n;
1319 	int err = 0;
1320 
1321 	if (IS_ERR(raw_inode))
1322  		return -EIO;
1323 
1324 	/* For fields not not tracking in the in-memory inode,
1325 	 * initialise them to zero for new inodes. */
1326 	if (ei->i_state & EXT2_STATE_NEW)
1327 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1328 
1329 	ext2_get_inode_flags(ei);
1330 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1331 	if (!(test_opt(sb, NO_UID32))) {
1332 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1333 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1334 /*
1335  * Fix up interoperability with old kernels. Otherwise, old inodes get
1336  * re-used with the upper 16 bits of the uid/gid intact
1337  */
1338 		if (!ei->i_dtime) {
1339 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1340 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1341 		} else {
1342 			raw_inode->i_uid_high = 0;
1343 			raw_inode->i_gid_high = 0;
1344 		}
1345 	} else {
1346 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1347 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1348 		raw_inode->i_uid_high = 0;
1349 		raw_inode->i_gid_high = 0;
1350 	}
1351 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1352 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1353 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1354 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1355 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1356 
1357 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1358 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1359 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1360 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1361 	raw_inode->i_frag = ei->i_frag_no;
1362 	raw_inode->i_fsize = ei->i_frag_size;
1363 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1364 	if (!S_ISREG(inode->i_mode))
1365 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1366 	else {
1367 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1368 		if (inode->i_size > 0x7fffffffULL) {
1369 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1370 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1371 			    EXT2_SB(sb)->s_es->s_rev_level ==
1372 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1373 			       /* If this is the first large file
1374 				* created, add a flag to the superblock.
1375 				*/
1376 				lock_kernel();
1377 				ext2_update_dynamic_rev(sb);
1378 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1379 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1380 				unlock_kernel();
1381 				ext2_write_super(sb);
1382 			}
1383 		}
1384 	}
1385 
1386 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1387 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1388 		if (old_valid_dev(inode->i_rdev)) {
1389 			raw_inode->i_block[0] =
1390 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1391 			raw_inode->i_block[1] = 0;
1392 		} else {
1393 			raw_inode->i_block[0] = 0;
1394 			raw_inode->i_block[1] =
1395 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1396 			raw_inode->i_block[2] = 0;
1397 		}
1398 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1399 		raw_inode->i_block[n] = ei->i_data[n];
1400 	mark_buffer_dirty(bh);
1401 	if (do_sync) {
1402 		sync_dirty_buffer(bh);
1403 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1404 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1405 				sb->s_id, (unsigned long) ino);
1406 			err = -EIO;
1407 		}
1408 	}
1409 	ei->i_state &= ~EXT2_STATE_NEW;
1410 	brelse (bh);
1411 	return err;
1412 }
1413 
1414 int ext2_write_inode(struct inode *inode, int wait)
1415 {
1416 	return ext2_update_inode(inode, wait);
1417 }
1418 
1419 int ext2_sync_inode(struct inode *inode)
1420 {
1421 	struct writeback_control wbc = {
1422 		.sync_mode = WB_SYNC_ALL,
1423 		.nr_to_write = 0,	/* sys_fsync did this */
1424 	};
1425 	return sync_inode(inode, &wbc);
1426 }
1427 
1428 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1429 {
1430 	struct inode *inode = dentry->d_inode;
1431 	int error;
1432 
1433 	error = inode_change_ok(inode, iattr);
1434 	if (error)
1435 		return error;
1436 	if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1437 	    (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1438 		error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0;
1439 		if (error)
1440 			return error;
1441 	}
1442 	error = inode_setattr(inode, iattr);
1443 	if (!error && (iattr->ia_valid & ATTR_MODE))
1444 		error = ext2_acl_chmod(inode);
1445 	return error;
1446 }
1447