xref: /openbmc/linux/fs/ext2/inode.c (revision 74ca4313)
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  * 	(sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  * 	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/writeback.h>
30 #include <linux/buffer_head.h>
31 #include <linux/mpage.h>
32 #include <linux/fiemap.h>
33 #include <linux/namei.h>
34 #include "ext2.h"
35 #include "acl.h"
36 #include "xip.h"
37 
38 static int __ext2_write_inode(struct inode *inode, int do_sync);
39 
40 /*
41  * Test whether an inode is a fast symlink.
42  */
43 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
44 {
45 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
46 		(inode->i_sb->s_blocksize >> 9) : 0;
47 
48 	return (S_ISLNK(inode->i_mode) &&
49 		inode->i_blocks - ea_blocks == 0);
50 }
51 
52 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
53 
54 static void ext2_write_failed(struct address_space *mapping, loff_t to)
55 {
56 	struct inode *inode = mapping->host;
57 
58 	if (to > inode->i_size) {
59 		truncate_pagecache(inode, to, inode->i_size);
60 		ext2_truncate_blocks(inode, inode->i_size);
61 	}
62 }
63 
64 /*
65  * Called at the last iput() if i_nlink is zero.
66  */
67 void ext2_evict_inode(struct inode * inode)
68 {
69 	struct ext2_block_alloc_info *rsv;
70 	int want_delete = 0;
71 
72 	if (!inode->i_nlink && !is_bad_inode(inode)) {
73 		want_delete = 1;
74 		dquot_initialize(inode);
75 	} else {
76 		dquot_drop(inode);
77 	}
78 
79 	truncate_inode_pages(&inode->i_data, 0);
80 
81 	if (want_delete) {
82 		/* set dtime */
83 		EXT2_I(inode)->i_dtime	= get_seconds();
84 		mark_inode_dirty(inode);
85 		__ext2_write_inode(inode, inode_needs_sync(inode));
86 		/* truncate to 0 */
87 		inode->i_size = 0;
88 		if (inode->i_blocks)
89 			ext2_truncate_blocks(inode, 0);
90 	}
91 
92 	invalidate_inode_buffers(inode);
93 	end_writeback(inode);
94 
95 	ext2_discard_reservation(inode);
96 	rsv = EXT2_I(inode)->i_block_alloc_info;
97 	EXT2_I(inode)->i_block_alloc_info = NULL;
98 	if (unlikely(rsv))
99 		kfree(rsv);
100 
101 	if (want_delete)
102 		ext2_free_inode(inode);
103 }
104 
105 typedef struct {
106 	__le32	*p;
107 	__le32	key;
108 	struct buffer_head *bh;
109 } Indirect;
110 
111 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
112 {
113 	p->key = *(p->p = v);
114 	p->bh = bh;
115 }
116 
117 static inline int verify_chain(Indirect *from, Indirect *to)
118 {
119 	while (from <= to && from->key == *from->p)
120 		from++;
121 	return (from > to);
122 }
123 
124 /**
125  *	ext2_block_to_path - parse the block number into array of offsets
126  *	@inode: inode in question (we are only interested in its superblock)
127  *	@i_block: block number to be parsed
128  *	@offsets: array to store the offsets in
129  *      @boundary: set this non-zero if the referred-to block is likely to be
130  *             followed (on disk) by an indirect block.
131  *	To store the locations of file's data ext2 uses a data structure common
132  *	for UNIX filesystems - tree of pointers anchored in the inode, with
133  *	data blocks at leaves and indirect blocks in intermediate nodes.
134  *	This function translates the block number into path in that tree -
135  *	return value is the path length and @offsets[n] is the offset of
136  *	pointer to (n+1)th node in the nth one. If @block is out of range
137  *	(negative or too large) warning is printed and zero returned.
138  *
139  *	Note: function doesn't find node addresses, so no IO is needed. All
140  *	we need to know is the capacity of indirect blocks (taken from the
141  *	inode->i_sb).
142  */
143 
144 /*
145  * Portability note: the last comparison (check that we fit into triple
146  * indirect block) is spelled differently, because otherwise on an
147  * architecture with 32-bit longs and 8Kb pages we might get into trouble
148  * if our filesystem had 8Kb blocks. We might use long long, but that would
149  * kill us on x86. Oh, well, at least the sign propagation does not matter -
150  * i_block would have to be negative in the very beginning, so we would not
151  * get there at all.
152  */
153 
154 static int ext2_block_to_path(struct inode *inode,
155 			long i_block, int offsets[4], int *boundary)
156 {
157 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
158 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
159 	const long direct_blocks = EXT2_NDIR_BLOCKS,
160 		indirect_blocks = ptrs,
161 		double_blocks = (1 << (ptrs_bits * 2));
162 	int n = 0;
163 	int final = 0;
164 
165 	if (i_block < 0) {
166 		ext2_msg(inode->i_sb, KERN_WARNING,
167 			"warning: %s: block < 0", __func__);
168 	} else if (i_block < direct_blocks) {
169 		offsets[n++] = i_block;
170 		final = direct_blocks;
171 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
172 		offsets[n++] = EXT2_IND_BLOCK;
173 		offsets[n++] = i_block;
174 		final = ptrs;
175 	} else if ((i_block -= indirect_blocks) < double_blocks) {
176 		offsets[n++] = EXT2_DIND_BLOCK;
177 		offsets[n++] = i_block >> ptrs_bits;
178 		offsets[n++] = i_block & (ptrs - 1);
179 		final = ptrs;
180 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
181 		offsets[n++] = EXT2_TIND_BLOCK;
182 		offsets[n++] = i_block >> (ptrs_bits * 2);
183 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
184 		offsets[n++] = i_block & (ptrs - 1);
185 		final = ptrs;
186 	} else {
187 		ext2_msg(inode->i_sb, KERN_WARNING,
188 			"warning: %s: block is too big", __func__);
189 	}
190 	if (boundary)
191 		*boundary = final - 1 - (i_block & (ptrs - 1));
192 
193 	return n;
194 }
195 
196 /**
197  *	ext2_get_branch - read the chain of indirect blocks leading to data
198  *	@inode: inode in question
199  *	@depth: depth of the chain (1 - direct pointer, etc.)
200  *	@offsets: offsets of pointers in inode/indirect blocks
201  *	@chain: place to store the result
202  *	@err: here we store the error value
203  *
204  *	Function fills the array of triples <key, p, bh> and returns %NULL
205  *	if everything went OK or the pointer to the last filled triple
206  *	(incomplete one) otherwise. Upon the return chain[i].key contains
207  *	the number of (i+1)-th block in the chain (as it is stored in memory,
208  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
209  *	number (it points into struct inode for i==0 and into the bh->b_data
210  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
211  *	block for i>0 and NULL for i==0. In other words, it holds the block
212  *	numbers of the chain, addresses they were taken from (and where we can
213  *	verify that chain did not change) and buffer_heads hosting these
214  *	numbers.
215  *
216  *	Function stops when it stumbles upon zero pointer (absent block)
217  *		(pointer to last triple returned, *@err == 0)
218  *	or when it gets an IO error reading an indirect block
219  *		(ditto, *@err == -EIO)
220  *	or when it notices that chain had been changed while it was reading
221  *		(ditto, *@err == -EAGAIN)
222  *	or when it reads all @depth-1 indirect blocks successfully and finds
223  *	the whole chain, all way to the data (returns %NULL, *err == 0).
224  */
225 static Indirect *ext2_get_branch(struct inode *inode,
226 				 int depth,
227 				 int *offsets,
228 				 Indirect chain[4],
229 				 int *err)
230 {
231 	struct super_block *sb = inode->i_sb;
232 	Indirect *p = chain;
233 	struct buffer_head *bh;
234 
235 	*err = 0;
236 	/* i_data is not going away, no lock needed */
237 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
238 	if (!p->key)
239 		goto no_block;
240 	while (--depth) {
241 		bh = sb_bread(sb, le32_to_cpu(p->key));
242 		if (!bh)
243 			goto failure;
244 		read_lock(&EXT2_I(inode)->i_meta_lock);
245 		if (!verify_chain(chain, p))
246 			goto changed;
247 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
248 		read_unlock(&EXT2_I(inode)->i_meta_lock);
249 		if (!p->key)
250 			goto no_block;
251 	}
252 	return NULL;
253 
254 changed:
255 	read_unlock(&EXT2_I(inode)->i_meta_lock);
256 	brelse(bh);
257 	*err = -EAGAIN;
258 	goto no_block;
259 failure:
260 	*err = -EIO;
261 no_block:
262 	return p;
263 }
264 
265 /**
266  *	ext2_find_near - find a place for allocation with sufficient locality
267  *	@inode: owner
268  *	@ind: descriptor of indirect block.
269  *
270  *	This function returns the preferred place for block allocation.
271  *	It is used when heuristic for sequential allocation fails.
272  *	Rules are:
273  *	  + if there is a block to the left of our position - allocate near it.
274  *	  + if pointer will live in indirect block - allocate near that block.
275  *	  + if pointer will live in inode - allocate in the same cylinder group.
276  *
277  * In the latter case we colour the starting block by the callers PID to
278  * prevent it from clashing with concurrent allocations for a different inode
279  * in the same block group.   The PID is used here so that functionally related
280  * files will be close-by on-disk.
281  *
282  *	Caller must make sure that @ind is valid and will stay that way.
283  */
284 
285 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
286 {
287 	struct ext2_inode_info *ei = EXT2_I(inode);
288 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
289 	__le32 *p;
290 	ext2_fsblk_t bg_start;
291 	ext2_fsblk_t colour;
292 
293 	/* Try to find previous block */
294 	for (p = ind->p - 1; p >= start; p--)
295 		if (*p)
296 			return le32_to_cpu(*p);
297 
298 	/* No such thing, so let's try location of indirect block */
299 	if (ind->bh)
300 		return ind->bh->b_blocknr;
301 
302 	/*
303 	 * It is going to be referred from inode itself? OK, just put it into
304 	 * the same cylinder group then.
305 	 */
306 	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
307 	colour = (current->pid % 16) *
308 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
309 	return bg_start + colour;
310 }
311 
312 /**
313  *	ext2_find_goal - find a preferred place for allocation.
314  *	@inode: owner
315  *	@block:  block we want
316  *	@partial: pointer to the last triple within a chain
317  *
318  *	Returns preferred place for a block (the goal).
319  */
320 
321 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
322 					  Indirect *partial)
323 {
324 	struct ext2_block_alloc_info *block_i;
325 
326 	block_i = EXT2_I(inode)->i_block_alloc_info;
327 
328 	/*
329 	 * try the heuristic for sequential allocation,
330 	 * failing that at least try to get decent locality.
331 	 */
332 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
333 		&& (block_i->last_alloc_physical_block != 0)) {
334 		return block_i->last_alloc_physical_block + 1;
335 	}
336 
337 	return ext2_find_near(inode, partial);
338 }
339 
340 /**
341  *	ext2_blks_to_allocate: Look up the block map and count the number
342  *	of direct blocks need to be allocated for the given branch.
343  *
344  * 	@branch: chain of indirect blocks
345  *	@k: number of blocks need for indirect blocks
346  *	@blks: number of data blocks to be mapped.
347  *	@blocks_to_boundary:  the offset in the indirect block
348  *
349  *	return the total number of blocks to be allocate, including the
350  *	direct and indirect blocks.
351  */
352 static int
353 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
354 		int blocks_to_boundary)
355 {
356 	unsigned long count = 0;
357 
358 	/*
359 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
360 	 * then it's clear blocks on that path have not allocated
361 	 */
362 	if (k > 0) {
363 		/* right now don't hanel cross boundary allocation */
364 		if (blks < blocks_to_boundary + 1)
365 			count += blks;
366 		else
367 			count += blocks_to_boundary + 1;
368 		return count;
369 	}
370 
371 	count++;
372 	while (count < blks && count <= blocks_to_boundary
373 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
374 		count++;
375 	}
376 	return count;
377 }
378 
379 /**
380  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
381  *	@indirect_blks: the number of blocks need to allocate for indirect
382  *			blocks
383  *
384  *	@new_blocks: on return it will store the new block numbers for
385  *	the indirect blocks(if needed) and the first direct block,
386  *	@blks:	on return it will store the total number of allocated
387  *		direct blocks
388  */
389 static int ext2_alloc_blocks(struct inode *inode,
390 			ext2_fsblk_t goal, int indirect_blks, int blks,
391 			ext2_fsblk_t new_blocks[4], int *err)
392 {
393 	int target, i;
394 	unsigned long count = 0;
395 	int index = 0;
396 	ext2_fsblk_t current_block = 0;
397 	int ret = 0;
398 
399 	/*
400 	 * Here we try to allocate the requested multiple blocks at once,
401 	 * on a best-effort basis.
402 	 * To build a branch, we should allocate blocks for
403 	 * the indirect blocks(if not allocated yet), and at least
404 	 * the first direct block of this branch.  That's the
405 	 * minimum number of blocks need to allocate(required)
406 	 */
407 	target = blks + indirect_blks;
408 
409 	while (1) {
410 		count = target;
411 		/* allocating blocks for indirect blocks and direct blocks */
412 		current_block = ext2_new_blocks(inode,goal,&count,err);
413 		if (*err)
414 			goto failed_out;
415 
416 		target -= count;
417 		/* allocate blocks for indirect blocks */
418 		while (index < indirect_blks && count) {
419 			new_blocks[index++] = current_block++;
420 			count--;
421 		}
422 
423 		if (count > 0)
424 			break;
425 	}
426 
427 	/* save the new block number for the first direct block */
428 	new_blocks[index] = current_block;
429 
430 	/* total number of blocks allocated for direct blocks */
431 	ret = count;
432 	*err = 0;
433 	return ret;
434 failed_out:
435 	for (i = 0; i <index; i++)
436 		ext2_free_blocks(inode, new_blocks[i], 1);
437 	if (index)
438 		mark_inode_dirty(inode);
439 	return ret;
440 }
441 
442 /**
443  *	ext2_alloc_branch - allocate and set up a chain of blocks.
444  *	@inode: owner
445  *	@num: depth of the chain (number of blocks to allocate)
446  *	@offsets: offsets (in the blocks) to store the pointers to next.
447  *	@branch: place to store the chain in.
448  *
449  *	This function allocates @num blocks, zeroes out all but the last one,
450  *	links them into chain and (if we are synchronous) writes them to disk.
451  *	In other words, it prepares a branch that can be spliced onto the
452  *	inode. It stores the information about that chain in the branch[], in
453  *	the same format as ext2_get_branch() would do. We are calling it after
454  *	we had read the existing part of chain and partial points to the last
455  *	triple of that (one with zero ->key). Upon the exit we have the same
456  *	picture as after the successful ext2_get_block(), except that in one
457  *	place chain is disconnected - *branch->p is still zero (we did not
458  *	set the last link), but branch->key contains the number that should
459  *	be placed into *branch->p to fill that gap.
460  *
461  *	If allocation fails we free all blocks we've allocated (and forget
462  *	their buffer_heads) and return the error value the from failed
463  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
464  *	as described above and return 0.
465  */
466 
467 static int ext2_alloc_branch(struct inode *inode,
468 			int indirect_blks, int *blks, ext2_fsblk_t goal,
469 			int *offsets, Indirect *branch)
470 {
471 	int blocksize = inode->i_sb->s_blocksize;
472 	int i, n = 0;
473 	int err = 0;
474 	struct buffer_head *bh;
475 	int num;
476 	ext2_fsblk_t new_blocks[4];
477 	ext2_fsblk_t current_block;
478 
479 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
480 				*blks, new_blocks, &err);
481 	if (err)
482 		return err;
483 
484 	branch[0].key = cpu_to_le32(new_blocks[0]);
485 	/*
486 	 * metadata blocks and data blocks are allocated.
487 	 */
488 	for (n = 1; n <= indirect_blks;  n++) {
489 		/*
490 		 * Get buffer_head for parent block, zero it out
491 		 * and set the pointer to new one, then send
492 		 * parent to disk.
493 		 */
494 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
495 		branch[n].bh = bh;
496 		lock_buffer(bh);
497 		memset(bh->b_data, 0, blocksize);
498 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
499 		branch[n].key = cpu_to_le32(new_blocks[n]);
500 		*branch[n].p = branch[n].key;
501 		if ( n == indirect_blks) {
502 			current_block = new_blocks[n];
503 			/*
504 			 * End of chain, update the last new metablock of
505 			 * the chain to point to the new allocated
506 			 * data blocks numbers
507 			 */
508 			for (i=1; i < num; i++)
509 				*(branch[n].p + i) = cpu_to_le32(++current_block);
510 		}
511 		set_buffer_uptodate(bh);
512 		unlock_buffer(bh);
513 		mark_buffer_dirty_inode(bh, inode);
514 		/* We used to sync bh here if IS_SYNC(inode).
515 		 * But we now rely upon generic_write_sync()
516 		 * and b_inode_buffers.  But not for directories.
517 		 */
518 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
519 			sync_dirty_buffer(bh);
520 	}
521 	*blks = num;
522 	return err;
523 }
524 
525 /**
526  * ext2_splice_branch - splice the allocated branch onto inode.
527  * @inode: owner
528  * @block: (logical) number of block we are adding
529  * @where: location of missing link
530  * @num:   number of indirect blocks we are adding
531  * @blks:  number of direct blocks we are adding
532  *
533  * This function fills the missing link and does all housekeeping needed in
534  * inode (->i_blocks, etc.). In case of success we end up with the full
535  * chain to new block and return 0.
536  */
537 static void ext2_splice_branch(struct inode *inode,
538 			long block, Indirect *where, int num, int blks)
539 {
540 	int i;
541 	struct ext2_block_alloc_info *block_i;
542 	ext2_fsblk_t current_block;
543 
544 	block_i = EXT2_I(inode)->i_block_alloc_info;
545 
546 	/* XXX LOCKING probably should have i_meta_lock ?*/
547 	/* That's it */
548 
549 	*where->p = where->key;
550 
551 	/*
552 	 * Update the host buffer_head or inode to point to more just allocated
553 	 * direct blocks blocks
554 	 */
555 	if (num == 0 && blks > 1) {
556 		current_block = le32_to_cpu(where->key) + 1;
557 		for (i = 1; i < blks; i++)
558 			*(where->p + i ) = cpu_to_le32(current_block++);
559 	}
560 
561 	/*
562 	 * update the most recently allocated logical & physical block
563 	 * in i_block_alloc_info, to assist find the proper goal block for next
564 	 * allocation
565 	 */
566 	if (block_i) {
567 		block_i->last_alloc_logical_block = block + blks - 1;
568 		block_i->last_alloc_physical_block =
569 				le32_to_cpu(where[num].key) + blks - 1;
570 	}
571 
572 	/* We are done with atomic stuff, now do the rest of housekeeping */
573 
574 	/* had we spliced it onto indirect block? */
575 	if (where->bh)
576 		mark_buffer_dirty_inode(where->bh, inode);
577 
578 	inode->i_ctime = CURRENT_TIME_SEC;
579 	mark_inode_dirty(inode);
580 }
581 
582 /*
583  * Allocation strategy is simple: if we have to allocate something, we will
584  * have to go the whole way to leaf. So let's do it before attaching anything
585  * to tree, set linkage between the newborn blocks, write them if sync is
586  * required, recheck the path, free and repeat if check fails, otherwise
587  * set the last missing link (that will protect us from any truncate-generated
588  * removals - all blocks on the path are immune now) and possibly force the
589  * write on the parent block.
590  * That has a nice additional property: no special recovery from the failed
591  * allocations is needed - we simply release blocks and do not touch anything
592  * reachable from inode.
593  *
594  * `handle' can be NULL if create == 0.
595  *
596  * return > 0, # of blocks mapped or allocated.
597  * return = 0, if plain lookup failed.
598  * return < 0, error case.
599  */
600 static int ext2_get_blocks(struct inode *inode,
601 			   sector_t iblock, unsigned long maxblocks,
602 			   struct buffer_head *bh_result,
603 			   int create)
604 {
605 	int err = -EIO;
606 	int offsets[4];
607 	Indirect chain[4];
608 	Indirect *partial;
609 	ext2_fsblk_t goal;
610 	int indirect_blks;
611 	int blocks_to_boundary = 0;
612 	int depth;
613 	struct ext2_inode_info *ei = EXT2_I(inode);
614 	int count = 0;
615 	ext2_fsblk_t first_block = 0;
616 
617 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
618 
619 	if (depth == 0)
620 		return (err);
621 
622 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
623 	/* Simplest case - block found, no allocation needed */
624 	if (!partial) {
625 		first_block = le32_to_cpu(chain[depth - 1].key);
626 		clear_buffer_new(bh_result); /* What's this do? */
627 		count++;
628 		/*map more blocks*/
629 		while (count < maxblocks && count <= blocks_to_boundary) {
630 			ext2_fsblk_t blk;
631 
632 			if (!verify_chain(chain, chain + depth - 1)) {
633 				/*
634 				 * Indirect block might be removed by
635 				 * truncate while we were reading it.
636 				 * Handling of that case: forget what we've
637 				 * got now, go to reread.
638 				 */
639 				err = -EAGAIN;
640 				count = 0;
641 				break;
642 			}
643 			blk = le32_to_cpu(*(chain[depth-1].p + count));
644 			if (blk == first_block + count)
645 				count++;
646 			else
647 				break;
648 		}
649 		if (err != -EAGAIN)
650 			goto got_it;
651 	}
652 
653 	/* Next simple case - plain lookup or failed read of indirect block */
654 	if (!create || err == -EIO)
655 		goto cleanup;
656 
657 	mutex_lock(&ei->truncate_mutex);
658 	/*
659 	 * If the indirect block is missing while we are reading
660 	 * the chain(ext2_get_branch() returns -EAGAIN err), or
661 	 * if the chain has been changed after we grab the semaphore,
662 	 * (either because another process truncated this branch, or
663 	 * another get_block allocated this branch) re-grab the chain to see if
664 	 * the request block has been allocated or not.
665 	 *
666 	 * Since we already block the truncate/other get_block
667 	 * at this point, we will have the current copy of the chain when we
668 	 * splice the branch into the tree.
669 	 */
670 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
671 		while (partial > chain) {
672 			brelse(partial->bh);
673 			partial--;
674 		}
675 		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
676 		if (!partial) {
677 			count++;
678 			mutex_unlock(&ei->truncate_mutex);
679 			if (err)
680 				goto cleanup;
681 			clear_buffer_new(bh_result);
682 			goto got_it;
683 		}
684 	}
685 
686 	/*
687 	 * Okay, we need to do block allocation.  Lazily initialize the block
688 	 * allocation info here if necessary
689 	*/
690 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
691 		ext2_init_block_alloc_info(inode);
692 
693 	goal = ext2_find_goal(inode, iblock, partial);
694 
695 	/* the number of blocks need to allocate for [d,t]indirect blocks */
696 	indirect_blks = (chain + depth) - partial - 1;
697 	/*
698 	 * Next look up the indirect map to count the totoal number of
699 	 * direct blocks to allocate for this branch.
700 	 */
701 	count = ext2_blks_to_allocate(partial, indirect_blks,
702 					maxblocks, blocks_to_boundary);
703 	/*
704 	 * XXX ???? Block out ext2_truncate while we alter the tree
705 	 */
706 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
707 				offsets + (partial - chain), partial);
708 
709 	if (err) {
710 		mutex_unlock(&ei->truncate_mutex);
711 		goto cleanup;
712 	}
713 
714 	if (ext2_use_xip(inode->i_sb)) {
715 		/*
716 		 * we need to clear the block
717 		 */
718 		err = ext2_clear_xip_target (inode,
719 			le32_to_cpu(chain[depth-1].key));
720 		if (err) {
721 			mutex_unlock(&ei->truncate_mutex);
722 			goto cleanup;
723 		}
724 	}
725 
726 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
727 	mutex_unlock(&ei->truncate_mutex);
728 	set_buffer_new(bh_result);
729 got_it:
730 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
731 	if (count > blocks_to_boundary)
732 		set_buffer_boundary(bh_result);
733 	err = count;
734 	/* Clean up and exit */
735 	partial = chain + depth - 1;	/* the whole chain */
736 cleanup:
737 	while (partial > chain) {
738 		brelse(partial->bh);
739 		partial--;
740 	}
741 	return err;
742 }
743 
744 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
745 {
746 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
747 	int ret = ext2_get_blocks(inode, iblock, max_blocks,
748 			      bh_result, create);
749 	if (ret > 0) {
750 		bh_result->b_size = (ret << inode->i_blkbits);
751 		ret = 0;
752 	}
753 	return ret;
754 
755 }
756 
757 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
758 		u64 start, u64 len)
759 {
760 	return generic_block_fiemap(inode, fieinfo, start, len,
761 				    ext2_get_block);
762 }
763 
764 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
765 {
766 	return block_write_full_page(page, ext2_get_block, wbc);
767 }
768 
769 static int ext2_readpage(struct file *file, struct page *page)
770 {
771 	return mpage_readpage(page, ext2_get_block);
772 }
773 
774 static int
775 ext2_readpages(struct file *file, struct address_space *mapping,
776 		struct list_head *pages, unsigned nr_pages)
777 {
778 	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
779 }
780 
781 static int
782 ext2_write_begin(struct file *file, struct address_space *mapping,
783 		loff_t pos, unsigned len, unsigned flags,
784 		struct page **pagep, void **fsdata)
785 {
786 	int ret;
787 
788 	ret = block_write_begin(mapping, pos, len, flags, pagep,
789 				ext2_get_block);
790 	if (ret < 0)
791 		ext2_write_failed(mapping, pos + len);
792 	return ret;
793 }
794 
795 static int ext2_write_end(struct file *file, struct address_space *mapping,
796 			loff_t pos, unsigned len, unsigned copied,
797 			struct page *page, void *fsdata)
798 {
799 	int ret;
800 
801 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
802 	if (ret < len)
803 		ext2_write_failed(mapping, pos + len);
804 	return ret;
805 }
806 
807 static int
808 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
809 		loff_t pos, unsigned len, unsigned flags,
810 		struct page **pagep, void **fsdata)
811 {
812 	int ret;
813 
814 	ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
815 			       ext2_get_block);
816 	if (ret < 0)
817 		ext2_write_failed(mapping, pos + len);
818 	return ret;
819 }
820 
821 static int ext2_nobh_writepage(struct page *page,
822 			struct writeback_control *wbc)
823 {
824 	return nobh_writepage(page, ext2_get_block, wbc);
825 }
826 
827 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
828 {
829 	return generic_block_bmap(mapping,block,ext2_get_block);
830 }
831 
832 static ssize_t
833 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
834 			loff_t offset, unsigned long nr_segs)
835 {
836 	struct file *file = iocb->ki_filp;
837 	struct address_space *mapping = file->f_mapping;
838 	struct inode *inode = mapping->host;
839 	ssize_t ret;
840 
841 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
842 				 ext2_get_block);
843 	if (ret < 0 && (rw & WRITE))
844 		ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
845 	return ret;
846 }
847 
848 static int
849 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
850 {
851 	return mpage_writepages(mapping, wbc, ext2_get_block);
852 }
853 
854 const struct address_space_operations ext2_aops = {
855 	.readpage		= ext2_readpage,
856 	.readpages		= ext2_readpages,
857 	.writepage		= ext2_writepage,
858 	.write_begin		= ext2_write_begin,
859 	.write_end		= ext2_write_end,
860 	.bmap			= ext2_bmap,
861 	.direct_IO		= ext2_direct_IO,
862 	.writepages		= ext2_writepages,
863 	.migratepage		= buffer_migrate_page,
864 	.is_partially_uptodate	= block_is_partially_uptodate,
865 	.error_remove_page	= generic_error_remove_page,
866 };
867 
868 const struct address_space_operations ext2_aops_xip = {
869 	.bmap			= ext2_bmap,
870 	.get_xip_mem		= ext2_get_xip_mem,
871 };
872 
873 const struct address_space_operations ext2_nobh_aops = {
874 	.readpage		= ext2_readpage,
875 	.readpages		= ext2_readpages,
876 	.writepage		= ext2_nobh_writepage,
877 	.write_begin		= ext2_nobh_write_begin,
878 	.write_end		= nobh_write_end,
879 	.bmap			= ext2_bmap,
880 	.direct_IO		= ext2_direct_IO,
881 	.writepages		= ext2_writepages,
882 	.migratepage		= buffer_migrate_page,
883 	.error_remove_page	= generic_error_remove_page,
884 };
885 
886 /*
887  * Probably it should be a library function... search for first non-zero word
888  * or memcmp with zero_page, whatever is better for particular architecture.
889  * Linus?
890  */
891 static inline int all_zeroes(__le32 *p, __le32 *q)
892 {
893 	while (p < q)
894 		if (*p++)
895 			return 0;
896 	return 1;
897 }
898 
899 /**
900  *	ext2_find_shared - find the indirect blocks for partial truncation.
901  *	@inode:	  inode in question
902  *	@depth:	  depth of the affected branch
903  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
904  *	@chain:	  place to store the pointers to partial indirect blocks
905  *	@top:	  place to the (detached) top of branch
906  *
907  *	This is a helper function used by ext2_truncate().
908  *
909  *	When we do truncate() we may have to clean the ends of several indirect
910  *	blocks but leave the blocks themselves alive. Block is partially
911  *	truncated if some data below the new i_size is referred from it (and
912  *	it is on the path to the first completely truncated data block, indeed).
913  *	We have to free the top of that path along with everything to the right
914  *	of the path. Since no allocation past the truncation point is possible
915  *	until ext2_truncate() finishes, we may safely do the latter, but top
916  *	of branch may require special attention - pageout below the truncation
917  *	point might try to populate it.
918  *
919  *	We atomically detach the top of branch from the tree, store the block
920  *	number of its root in *@top, pointers to buffer_heads of partially
921  *	truncated blocks - in @chain[].bh and pointers to their last elements
922  *	that should not be removed - in @chain[].p. Return value is the pointer
923  *	to last filled element of @chain.
924  *
925  *	The work left to caller to do the actual freeing of subtrees:
926  *		a) free the subtree starting from *@top
927  *		b) free the subtrees whose roots are stored in
928  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
929  *		c) free the subtrees growing from the inode past the @chain[0].p
930  *			(no partially truncated stuff there).
931  */
932 
933 static Indirect *ext2_find_shared(struct inode *inode,
934 				int depth,
935 				int offsets[4],
936 				Indirect chain[4],
937 				__le32 *top)
938 {
939 	Indirect *partial, *p;
940 	int k, err;
941 
942 	*top = 0;
943 	for (k = depth; k > 1 && !offsets[k-1]; k--)
944 		;
945 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
946 	if (!partial)
947 		partial = chain + k-1;
948 	/*
949 	 * If the branch acquired continuation since we've looked at it -
950 	 * fine, it should all survive and (new) top doesn't belong to us.
951 	 */
952 	write_lock(&EXT2_I(inode)->i_meta_lock);
953 	if (!partial->key && *partial->p) {
954 		write_unlock(&EXT2_I(inode)->i_meta_lock);
955 		goto no_top;
956 	}
957 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
958 		;
959 	/*
960 	 * OK, we've found the last block that must survive. The rest of our
961 	 * branch should be detached before unlocking. However, if that rest
962 	 * of branch is all ours and does not grow immediately from the inode
963 	 * it's easier to cheat and just decrement partial->p.
964 	 */
965 	if (p == chain + k - 1 && p > chain) {
966 		p->p--;
967 	} else {
968 		*top = *p->p;
969 		*p->p = 0;
970 	}
971 	write_unlock(&EXT2_I(inode)->i_meta_lock);
972 
973 	while(partial > p)
974 	{
975 		brelse(partial->bh);
976 		partial--;
977 	}
978 no_top:
979 	return partial;
980 }
981 
982 /**
983  *	ext2_free_data - free a list of data blocks
984  *	@inode:	inode we are dealing with
985  *	@p:	array of block numbers
986  *	@q:	points immediately past the end of array
987  *
988  *	We are freeing all blocks referred from that array (numbers are
989  *	stored as little-endian 32-bit) and updating @inode->i_blocks
990  *	appropriately.
991  */
992 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
993 {
994 	unsigned long block_to_free = 0, count = 0;
995 	unsigned long nr;
996 
997 	for ( ; p < q ; p++) {
998 		nr = le32_to_cpu(*p);
999 		if (nr) {
1000 			*p = 0;
1001 			/* accumulate blocks to free if they're contiguous */
1002 			if (count == 0)
1003 				goto free_this;
1004 			else if (block_to_free == nr - count)
1005 				count++;
1006 			else {
1007 				ext2_free_blocks (inode, block_to_free, count);
1008 				mark_inode_dirty(inode);
1009 			free_this:
1010 				block_to_free = nr;
1011 				count = 1;
1012 			}
1013 		}
1014 	}
1015 	if (count > 0) {
1016 		ext2_free_blocks (inode, block_to_free, count);
1017 		mark_inode_dirty(inode);
1018 	}
1019 }
1020 
1021 /**
1022  *	ext2_free_branches - free an array of branches
1023  *	@inode:	inode we are dealing with
1024  *	@p:	array of block numbers
1025  *	@q:	pointer immediately past the end of array
1026  *	@depth:	depth of the branches to free
1027  *
1028  *	We are freeing all blocks referred from these branches (numbers are
1029  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1030  *	appropriately.
1031  */
1032 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1033 {
1034 	struct buffer_head * bh;
1035 	unsigned long nr;
1036 
1037 	if (depth--) {
1038 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1039 		for ( ; p < q ; p++) {
1040 			nr = le32_to_cpu(*p);
1041 			if (!nr)
1042 				continue;
1043 			*p = 0;
1044 			bh = sb_bread(inode->i_sb, nr);
1045 			/*
1046 			 * A read failure? Report error and clear slot
1047 			 * (should be rare).
1048 			 */
1049 			if (!bh) {
1050 				ext2_error(inode->i_sb, "ext2_free_branches",
1051 					"Read failure, inode=%ld, block=%ld",
1052 					inode->i_ino, nr);
1053 				continue;
1054 			}
1055 			ext2_free_branches(inode,
1056 					   (__le32*)bh->b_data,
1057 					   (__le32*)bh->b_data + addr_per_block,
1058 					   depth);
1059 			bforget(bh);
1060 			ext2_free_blocks(inode, nr, 1);
1061 			mark_inode_dirty(inode);
1062 		}
1063 	} else
1064 		ext2_free_data(inode, p, q);
1065 }
1066 
1067 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1068 {
1069 	__le32 *i_data = EXT2_I(inode)->i_data;
1070 	struct ext2_inode_info *ei = EXT2_I(inode);
1071 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1072 	int offsets[4];
1073 	Indirect chain[4];
1074 	Indirect *partial;
1075 	__le32 nr = 0;
1076 	int n;
1077 	long iblock;
1078 	unsigned blocksize;
1079 	blocksize = inode->i_sb->s_blocksize;
1080 	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1081 
1082 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1083 	if (n == 0)
1084 		return;
1085 
1086 	/*
1087 	 * From here we block out all ext2_get_block() callers who want to
1088 	 * modify the block allocation tree.
1089 	 */
1090 	mutex_lock(&ei->truncate_mutex);
1091 
1092 	if (n == 1) {
1093 		ext2_free_data(inode, i_data+offsets[0],
1094 					i_data + EXT2_NDIR_BLOCKS);
1095 		goto do_indirects;
1096 	}
1097 
1098 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1099 	/* Kill the top of shared branch (already detached) */
1100 	if (nr) {
1101 		if (partial == chain)
1102 			mark_inode_dirty(inode);
1103 		else
1104 			mark_buffer_dirty_inode(partial->bh, inode);
1105 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1106 	}
1107 	/* Clear the ends of indirect blocks on the shared branch */
1108 	while (partial > chain) {
1109 		ext2_free_branches(inode,
1110 				   partial->p + 1,
1111 				   (__le32*)partial->bh->b_data+addr_per_block,
1112 				   (chain+n-1) - partial);
1113 		mark_buffer_dirty_inode(partial->bh, inode);
1114 		brelse (partial->bh);
1115 		partial--;
1116 	}
1117 do_indirects:
1118 	/* Kill the remaining (whole) subtrees */
1119 	switch (offsets[0]) {
1120 		default:
1121 			nr = i_data[EXT2_IND_BLOCK];
1122 			if (nr) {
1123 				i_data[EXT2_IND_BLOCK] = 0;
1124 				mark_inode_dirty(inode);
1125 				ext2_free_branches(inode, &nr, &nr+1, 1);
1126 			}
1127 		case EXT2_IND_BLOCK:
1128 			nr = i_data[EXT2_DIND_BLOCK];
1129 			if (nr) {
1130 				i_data[EXT2_DIND_BLOCK] = 0;
1131 				mark_inode_dirty(inode);
1132 				ext2_free_branches(inode, &nr, &nr+1, 2);
1133 			}
1134 		case EXT2_DIND_BLOCK:
1135 			nr = i_data[EXT2_TIND_BLOCK];
1136 			if (nr) {
1137 				i_data[EXT2_TIND_BLOCK] = 0;
1138 				mark_inode_dirty(inode);
1139 				ext2_free_branches(inode, &nr, &nr+1, 3);
1140 			}
1141 		case EXT2_TIND_BLOCK:
1142 			;
1143 	}
1144 
1145 	ext2_discard_reservation(inode);
1146 
1147 	mutex_unlock(&ei->truncate_mutex);
1148 }
1149 
1150 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1151 {
1152 	/*
1153 	 * XXX: it seems like a bug here that we don't allow
1154 	 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1155 	 * review and fix this.
1156 	 *
1157 	 * Also would be nice to be able to handle IO errors and such,
1158 	 * but that's probably too much to ask.
1159 	 */
1160 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1161 	    S_ISLNK(inode->i_mode)))
1162 		return;
1163 	if (ext2_inode_is_fast_symlink(inode))
1164 		return;
1165 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1166 		return;
1167 	__ext2_truncate_blocks(inode, offset);
1168 }
1169 
1170 static int ext2_setsize(struct inode *inode, loff_t newsize)
1171 {
1172 	int error;
1173 
1174 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1175 	    S_ISLNK(inode->i_mode)))
1176 		return -EINVAL;
1177 	if (ext2_inode_is_fast_symlink(inode))
1178 		return -EINVAL;
1179 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1180 		return -EPERM;
1181 
1182 	inode_dio_wait(inode);
1183 
1184 	if (mapping_is_xip(inode->i_mapping))
1185 		error = xip_truncate_page(inode->i_mapping, newsize);
1186 	else if (test_opt(inode->i_sb, NOBH))
1187 		error = nobh_truncate_page(inode->i_mapping,
1188 				newsize, ext2_get_block);
1189 	else
1190 		error = block_truncate_page(inode->i_mapping,
1191 				newsize, ext2_get_block);
1192 	if (error)
1193 		return error;
1194 
1195 	truncate_setsize(inode, newsize);
1196 	__ext2_truncate_blocks(inode, newsize);
1197 
1198 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1199 	if (inode_needs_sync(inode)) {
1200 		sync_mapping_buffers(inode->i_mapping);
1201 		sync_inode_metadata(inode, 1);
1202 	} else {
1203 		mark_inode_dirty(inode);
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1210 					struct buffer_head **p)
1211 {
1212 	struct buffer_head * bh;
1213 	unsigned long block_group;
1214 	unsigned long block;
1215 	unsigned long offset;
1216 	struct ext2_group_desc * gdp;
1217 
1218 	*p = NULL;
1219 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1220 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1221 		goto Einval;
1222 
1223 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1224 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1225 	if (!gdp)
1226 		goto Egdp;
1227 	/*
1228 	 * Figure out the offset within the block group inode table
1229 	 */
1230 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1231 	block = le32_to_cpu(gdp->bg_inode_table) +
1232 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1233 	if (!(bh = sb_bread(sb, block)))
1234 		goto Eio;
1235 
1236 	*p = bh;
1237 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1238 	return (struct ext2_inode *) (bh->b_data + offset);
1239 
1240 Einval:
1241 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1242 		   (unsigned long) ino);
1243 	return ERR_PTR(-EINVAL);
1244 Eio:
1245 	ext2_error(sb, "ext2_get_inode",
1246 		   "unable to read inode block - inode=%lu, block=%lu",
1247 		   (unsigned long) ino, block);
1248 Egdp:
1249 	return ERR_PTR(-EIO);
1250 }
1251 
1252 void ext2_set_inode_flags(struct inode *inode)
1253 {
1254 	unsigned int flags = EXT2_I(inode)->i_flags;
1255 
1256 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1257 	if (flags & EXT2_SYNC_FL)
1258 		inode->i_flags |= S_SYNC;
1259 	if (flags & EXT2_APPEND_FL)
1260 		inode->i_flags |= S_APPEND;
1261 	if (flags & EXT2_IMMUTABLE_FL)
1262 		inode->i_flags |= S_IMMUTABLE;
1263 	if (flags & EXT2_NOATIME_FL)
1264 		inode->i_flags |= S_NOATIME;
1265 	if (flags & EXT2_DIRSYNC_FL)
1266 		inode->i_flags |= S_DIRSYNC;
1267 }
1268 
1269 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1270 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1271 {
1272 	unsigned int flags = ei->vfs_inode.i_flags;
1273 
1274 	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1275 			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1276 	if (flags & S_SYNC)
1277 		ei->i_flags |= EXT2_SYNC_FL;
1278 	if (flags & S_APPEND)
1279 		ei->i_flags |= EXT2_APPEND_FL;
1280 	if (flags & S_IMMUTABLE)
1281 		ei->i_flags |= EXT2_IMMUTABLE_FL;
1282 	if (flags & S_NOATIME)
1283 		ei->i_flags |= EXT2_NOATIME_FL;
1284 	if (flags & S_DIRSYNC)
1285 		ei->i_flags |= EXT2_DIRSYNC_FL;
1286 }
1287 
1288 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1289 {
1290 	struct ext2_inode_info *ei;
1291 	struct buffer_head * bh;
1292 	struct ext2_inode *raw_inode;
1293 	struct inode *inode;
1294 	long ret = -EIO;
1295 	int n;
1296 	uid_t i_uid;
1297 	gid_t i_gid;
1298 
1299 	inode = iget_locked(sb, ino);
1300 	if (!inode)
1301 		return ERR_PTR(-ENOMEM);
1302 	if (!(inode->i_state & I_NEW))
1303 		return inode;
1304 
1305 	ei = EXT2_I(inode);
1306 	ei->i_block_alloc_info = NULL;
1307 
1308 	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1309 	if (IS_ERR(raw_inode)) {
1310 		ret = PTR_ERR(raw_inode);
1311  		goto bad_inode;
1312 	}
1313 
1314 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1315 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1316 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1317 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1318 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1319 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1320 	}
1321 	i_uid_write(inode, i_uid);
1322 	i_gid_write(inode, i_gid);
1323 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1324 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1325 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1326 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1327 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1328 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1329 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1330 	/* We now have enough fields to check if the inode was active or not.
1331 	 * This is needed because nfsd might try to access dead inodes
1332 	 * the test is that same one that e2fsck uses
1333 	 * NeilBrown 1999oct15
1334 	 */
1335 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1336 		/* this inode is deleted */
1337 		brelse (bh);
1338 		ret = -ESTALE;
1339 		goto bad_inode;
1340 	}
1341 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1342 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1343 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1344 	ei->i_frag_no = raw_inode->i_frag;
1345 	ei->i_frag_size = raw_inode->i_fsize;
1346 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1347 	ei->i_dir_acl = 0;
1348 	if (S_ISREG(inode->i_mode))
1349 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1350 	else
1351 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1352 	ei->i_dtime = 0;
1353 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1354 	ei->i_state = 0;
1355 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1356 	ei->i_dir_start_lookup = 0;
1357 
1358 	/*
1359 	 * NOTE! The in-memory inode i_data array is in little-endian order
1360 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1361 	 */
1362 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1363 		ei->i_data[n] = raw_inode->i_block[n];
1364 
1365 	if (S_ISREG(inode->i_mode)) {
1366 		inode->i_op = &ext2_file_inode_operations;
1367 		if (ext2_use_xip(inode->i_sb)) {
1368 			inode->i_mapping->a_ops = &ext2_aops_xip;
1369 			inode->i_fop = &ext2_xip_file_operations;
1370 		} else if (test_opt(inode->i_sb, NOBH)) {
1371 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1372 			inode->i_fop = &ext2_file_operations;
1373 		} else {
1374 			inode->i_mapping->a_ops = &ext2_aops;
1375 			inode->i_fop = &ext2_file_operations;
1376 		}
1377 	} else if (S_ISDIR(inode->i_mode)) {
1378 		inode->i_op = &ext2_dir_inode_operations;
1379 		inode->i_fop = &ext2_dir_operations;
1380 		if (test_opt(inode->i_sb, NOBH))
1381 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1382 		else
1383 			inode->i_mapping->a_ops = &ext2_aops;
1384 	} else if (S_ISLNK(inode->i_mode)) {
1385 		if (ext2_inode_is_fast_symlink(inode)) {
1386 			inode->i_op = &ext2_fast_symlink_inode_operations;
1387 			nd_terminate_link(ei->i_data, inode->i_size,
1388 				sizeof(ei->i_data) - 1);
1389 		} else {
1390 			inode->i_op = &ext2_symlink_inode_operations;
1391 			if (test_opt(inode->i_sb, NOBH))
1392 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1393 			else
1394 				inode->i_mapping->a_ops = &ext2_aops;
1395 		}
1396 	} else {
1397 		inode->i_op = &ext2_special_inode_operations;
1398 		if (raw_inode->i_block[0])
1399 			init_special_inode(inode, inode->i_mode,
1400 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1401 		else
1402 			init_special_inode(inode, inode->i_mode,
1403 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1404 	}
1405 	brelse (bh);
1406 	ext2_set_inode_flags(inode);
1407 	unlock_new_inode(inode);
1408 	return inode;
1409 
1410 bad_inode:
1411 	iget_failed(inode);
1412 	return ERR_PTR(ret);
1413 }
1414 
1415 static int __ext2_write_inode(struct inode *inode, int do_sync)
1416 {
1417 	struct ext2_inode_info *ei = EXT2_I(inode);
1418 	struct super_block *sb = inode->i_sb;
1419 	ino_t ino = inode->i_ino;
1420 	uid_t uid = i_uid_read(inode);
1421 	gid_t gid = i_gid_read(inode);
1422 	struct buffer_head * bh;
1423 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1424 	int n;
1425 	int err = 0;
1426 
1427 	if (IS_ERR(raw_inode))
1428  		return -EIO;
1429 
1430 	/* For fields not not tracking in the in-memory inode,
1431 	 * initialise them to zero for new inodes. */
1432 	if (ei->i_state & EXT2_STATE_NEW)
1433 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1434 
1435 	ext2_get_inode_flags(ei);
1436 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1437 	if (!(test_opt(sb, NO_UID32))) {
1438 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1439 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1440 /*
1441  * Fix up interoperability with old kernels. Otherwise, old inodes get
1442  * re-used with the upper 16 bits of the uid/gid intact
1443  */
1444 		if (!ei->i_dtime) {
1445 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1446 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1447 		} else {
1448 			raw_inode->i_uid_high = 0;
1449 			raw_inode->i_gid_high = 0;
1450 		}
1451 	} else {
1452 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1453 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1454 		raw_inode->i_uid_high = 0;
1455 		raw_inode->i_gid_high = 0;
1456 	}
1457 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1458 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1459 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1460 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1461 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1462 
1463 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1464 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1465 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1466 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1467 	raw_inode->i_frag = ei->i_frag_no;
1468 	raw_inode->i_fsize = ei->i_frag_size;
1469 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1470 	if (!S_ISREG(inode->i_mode))
1471 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1472 	else {
1473 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1474 		if (inode->i_size > 0x7fffffffULL) {
1475 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1476 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1477 			    EXT2_SB(sb)->s_es->s_rev_level ==
1478 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1479 			       /* If this is the first large file
1480 				* created, add a flag to the superblock.
1481 				*/
1482 				spin_lock(&EXT2_SB(sb)->s_lock);
1483 				ext2_update_dynamic_rev(sb);
1484 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1485 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1486 				spin_unlock(&EXT2_SB(sb)->s_lock);
1487 				ext2_write_super(sb);
1488 			}
1489 		}
1490 	}
1491 
1492 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1493 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1494 		if (old_valid_dev(inode->i_rdev)) {
1495 			raw_inode->i_block[0] =
1496 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1497 			raw_inode->i_block[1] = 0;
1498 		} else {
1499 			raw_inode->i_block[0] = 0;
1500 			raw_inode->i_block[1] =
1501 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1502 			raw_inode->i_block[2] = 0;
1503 		}
1504 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1505 		raw_inode->i_block[n] = ei->i_data[n];
1506 	mark_buffer_dirty(bh);
1507 	if (do_sync) {
1508 		sync_dirty_buffer(bh);
1509 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1510 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1511 				sb->s_id, (unsigned long) ino);
1512 			err = -EIO;
1513 		}
1514 	}
1515 	ei->i_state &= ~EXT2_STATE_NEW;
1516 	brelse (bh);
1517 	return err;
1518 }
1519 
1520 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1521 {
1522 	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1523 }
1524 
1525 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1526 {
1527 	struct inode *inode = dentry->d_inode;
1528 	int error;
1529 
1530 	error = inode_change_ok(inode, iattr);
1531 	if (error)
1532 		return error;
1533 
1534 	if (is_quota_modification(inode, iattr))
1535 		dquot_initialize(inode);
1536 	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1537 	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1538 		error = dquot_transfer(inode, iattr);
1539 		if (error)
1540 			return error;
1541 	}
1542 	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1543 		error = ext2_setsize(inode, iattr->ia_size);
1544 		if (error)
1545 			return error;
1546 	}
1547 	setattr_copy(inode, iattr);
1548 	if (iattr->ia_valid & ATTR_MODE)
1549 		error = ext2_acl_chmod(inode);
1550 	mark_inode_dirty(inode);
1551 
1552 	return error;
1553 }
1554