xref: /openbmc/linux/fs/ext2/inode.c (revision 643d1f7f)
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  * 	(sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  * 	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include "ext2.h"
35 #include "acl.h"
36 #include "xip.h"
37 
38 MODULE_AUTHOR("Remy Card and others");
39 MODULE_DESCRIPTION("Second Extended Filesystem");
40 MODULE_LICENSE("GPL");
41 
42 static int ext2_update_inode(struct inode * inode, int do_sync);
43 
44 /*
45  * Test whether an inode is a fast symlink.
46  */
47 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48 {
49 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
50 		(inode->i_sb->s_blocksize >> 9) : 0;
51 
52 	return (S_ISLNK(inode->i_mode) &&
53 		inode->i_blocks - ea_blocks == 0);
54 }
55 
56 /*
57  * Called at the last iput() if i_nlink is zero.
58  */
59 void ext2_delete_inode (struct inode * inode)
60 {
61 	truncate_inode_pages(&inode->i_data, 0);
62 
63 	if (is_bad_inode(inode))
64 		goto no_delete;
65 	EXT2_I(inode)->i_dtime	= get_seconds();
66 	mark_inode_dirty(inode);
67 	ext2_update_inode(inode, inode_needs_sync(inode));
68 
69 	inode->i_size = 0;
70 	if (inode->i_blocks)
71 		ext2_truncate (inode);
72 	ext2_free_inode (inode);
73 
74 	return;
75 no_delete:
76 	clear_inode(inode);	/* We must guarantee clearing of inode... */
77 }
78 
79 typedef struct {
80 	__le32	*p;
81 	__le32	key;
82 	struct buffer_head *bh;
83 } Indirect;
84 
85 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
86 {
87 	p->key = *(p->p = v);
88 	p->bh = bh;
89 }
90 
91 static inline int verify_chain(Indirect *from, Indirect *to)
92 {
93 	while (from <= to && from->key == *from->p)
94 		from++;
95 	return (from > to);
96 }
97 
98 /**
99  *	ext2_block_to_path - parse the block number into array of offsets
100  *	@inode: inode in question (we are only interested in its superblock)
101  *	@i_block: block number to be parsed
102  *	@offsets: array to store the offsets in
103  *      @boundary: set this non-zero if the referred-to block is likely to be
104  *             followed (on disk) by an indirect block.
105  *	To store the locations of file's data ext2 uses a data structure common
106  *	for UNIX filesystems - tree of pointers anchored in the inode, with
107  *	data blocks at leaves and indirect blocks in intermediate nodes.
108  *	This function translates the block number into path in that tree -
109  *	return value is the path length and @offsets[n] is the offset of
110  *	pointer to (n+1)th node in the nth one. If @block is out of range
111  *	(negative or too large) warning is printed and zero returned.
112  *
113  *	Note: function doesn't find node addresses, so no IO is needed. All
114  *	we need to know is the capacity of indirect blocks (taken from the
115  *	inode->i_sb).
116  */
117 
118 /*
119  * Portability note: the last comparison (check that we fit into triple
120  * indirect block) is spelled differently, because otherwise on an
121  * architecture with 32-bit longs and 8Kb pages we might get into trouble
122  * if our filesystem had 8Kb blocks. We might use long long, but that would
123  * kill us on x86. Oh, well, at least the sign propagation does not matter -
124  * i_block would have to be negative in the very beginning, so we would not
125  * get there at all.
126  */
127 
128 static int ext2_block_to_path(struct inode *inode,
129 			long i_block, int offsets[4], int *boundary)
130 {
131 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
132 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
133 	const long direct_blocks = EXT2_NDIR_BLOCKS,
134 		indirect_blocks = ptrs,
135 		double_blocks = (1 << (ptrs_bits * 2));
136 	int n = 0;
137 	int final = 0;
138 
139 	if (i_block < 0) {
140 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
141 	} else if (i_block < direct_blocks) {
142 		offsets[n++] = i_block;
143 		final = direct_blocks;
144 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
145 		offsets[n++] = EXT2_IND_BLOCK;
146 		offsets[n++] = i_block;
147 		final = ptrs;
148 	} else if ((i_block -= indirect_blocks) < double_blocks) {
149 		offsets[n++] = EXT2_DIND_BLOCK;
150 		offsets[n++] = i_block >> ptrs_bits;
151 		offsets[n++] = i_block & (ptrs - 1);
152 		final = ptrs;
153 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
154 		offsets[n++] = EXT2_TIND_BLOCK;
155 		offsets[n++] = i_block >> (ptrs_bits * 2);
156 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
157 		offsets[n++] = i_block & (ptrs - 1);
158 		final = ptrs;
159 	} else {
160 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
161 	}
162 	if (boundary)
163 		*boundary = final - 1 - (i_block & (ptrs - 1));
164 
165 	return n;
166 }
167 
168 /**
169  *	ext2_get_branch - read the chain of indirect blocks leading to data
170  *	@inode: inode in question
171  *	@depth: depth of the chain (1 - direct pointer, etc.)
172  *	@offsets: offsets of pointers in inode/indirect blocks
173  *	@chain: place to store the result
174  *	@err: here we store the error value
175  *
176  *	Function fills the array of triples <key, p, bh> and returns %NULL
177  *	if everything went OK or the pointer to the last filled triple
178  *	(incomplete one) otherwise. Upon the return chain[i].key contains
179  *	the number of (i+1)-th block in the chain (as it is stored in memory,
180  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
181  *	number (it points into struct inode for i==0 and into the bh->b_data
182  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
183  *	block for i>0 and NULL for i==0. In other words, it holds the block
184  *	numbers of the chain, addresses they were taken from (and where we can
185  *	verify that chain did not change) and buffer_heads hosting these
186  *	numbers.
187  *
188  *	Function stops when it stumbles upon zero pointer (absent block)
189  *		(pointer to last triple returned, *@err == 0)
190  *	or when it gets an IO error reading an indirect block
191  *		(ditto, *@err == -EIO)
192  *	or when it notices that chain had been changed while it was reading
193  *		(ditto, *@err == -EAGAIN)
194  *	or when it reads all @depth-1 indirect blocks successfully and finds
195  *	the whole chain, all way to the data (returns %NULL, *err == 0).
196  */
197 static Indirect *ext2_get_branch(struct inode *inode,
198 				 int depth,
199 				 int *offsets,
200 				 Indirect chain[4],
201 				 int *err)
202 {
203 	struct super_block *sb = inode->i_sb;
204 	Indirect *p = chain;
205 	struct buffer_head *bh;
206 
207 	*err = 0;
208 	/* i_data is not going away, no lock needed */
209 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
210 	if (!p->key)
211 		goto no_block;
212 	while (--depth) {
213 		bh = sb_bread(sb, le32_to_cpu(p->key));
214 		if (!bh)
215 			goto failure;
216 		read_lock(&EXT2_I(inode)->i_meta_lock);
217 		if (!verify_chain(chain, p))
218 			goto changed;
219 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
220 		read_unlock(&EXT2_I(inode)->i_meta_lock);
221 		if (!p->key)
222 			goto no_block;
223 	}
224 	return NULL;
225 
226 changed:
227 	read_unlock(&EXT2_I(inode)->i_meta_lock);
228 	brelse(bh);
229 	*err = -EAGAIN;
230 	goto no_block;
231 failure:
232 	*err = -EIO;
233 no_block:
234 	return p;
235 }
236 
237 /**
238  *	ext2_find_near - find a place for allocation with sufficient locality
239  *	@inode: owner
240  *	@ind: descriptor of indirect block.
241  *
242  *	This function returns the prefered place for block allocation.
243  *	It is used when heuristic for sequential allocation fails.
244  *	Rules are:
245  *	  + if there is a block to the left of our position - allocate near it.
246  *	  + if pointer will live in indirect block - allocate near that block.
247  *	  + if pointer will live in inode - allocate in the same cylinder group.
248  *
249  * In the latter case we colour the starting block by the callers PID to
250  * prevent it from clashing with concurrent allocations for a different inode
251  * in the same block group.   The PID is used here so that functionally related
252  * files will be close-by on-disk.
253  *
254  *	Caller must make sure that @ind is valid and will stay that way.
255  */
256 
257 static unsigned long ext2_find_near(struct inode *inode, Indirect *ind)
258 {
259 	struct ext2_inode_info *ei = EXT2_I(inode);
260 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
261 	__le32 *p;
262 	unsigned long bg_start;
263 	unsigned long colour;
264 
265 	/* Try to find previous block */
266 	for (p = ind->p - 1; p >= start; p--)
267 		if (*p)
268 			return le32_to_cpu(*p);
269 
270 	/* No such thing, so let's try location of indirect block */
271 	if (ind->bh)
272 		return ind->bh->b_blocknr;
273 
274 	/*
275 	 * It is going to be refered from inode itself? OK, just put it into
276 	 * the same cylinder group then.
277 	 */
278 	bg_start = (ei->i_block_group * EXT2_BLOCKS_PER_GROUP(inode->i_sb)) +
279 		le32_to_cpu(EXT2_SB(inode->i_sb)->s_es->s_first_data_block);
280 	colour = (current->pid % 16) *
281 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
282 	return bg_start + colour;
283 }
284 
285 /**
286  *	ext2_find_goal - find a prefered place for allocation.
287  *	@inode: owner
288  *	@block:  block we want
289  *	@chain:  chain of indirect blocks
290  *	@partial: pointer to the last triple within a chain
291  *
292  *	Returns preferred place for a block (the goal).
293  */
294 
295 static inline int ext2_find_goal(struct inode *inode,
296 				 long block,
297 				 Indirect chain[4],
298 				 Indirect *partial)
299 {
300 	struct ext2_block_alloc_info *block_i;
301 
302 	block_i = EXT2_I(inode)->i_block_alloc_info;
303 
304 	/*
305 	 * try the heuristic for sequential allocation,
306 	 * failing that at least try to get decent locality.
307 	 */
308 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
309 		&& (block_i->last_alloc_physical_block != 0)) {
310 		return block_i->last_alloc_physical_block + 1;
311 	}
312 
313 	return ext2_find_near(inode, partial);
314 }
315 
316 /**
317  *	ext2_blks_to_allocate: Look up the block map and count the number
318  *	of direct blocks need to be allocated for the given branch.
319  *
320  * 	@branch: chain of indirect blocks
321  *	@k: number of blocks need for indirect blocks
322  *	@blks: number of data blocks to be mapped.
323  *	@blocks_to_boundary:  the offset in the indirect block
324  *
325  *	return the total number of blocks to be allocate, including the
326  *	direct and indirect blocks.
327  */
328 static int
329 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
330 		int blocks_to_boundary)
331 {
332 	unsigned long count = 0;
333 
334 	/*
335 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
336 	 * then it's clear blocks on that path have not allocated
337 	 */
338 	if (k > 0) {
339 		/* right now don't hanel cross boundary allocation */
340 		if (blks < blocks_to_boundary + 1)
341 			count += blks;
342 		else
343 			count += blocks_to_boundary + 1;
344 		return count;
345 	}
346 
347 	count++;
348 	while (count < blks && count <= blocks_to_boundary
349 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
350 		count++;
351 	}
352 	return count;
353 }
354 
355 /**
356  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
357  *	@indirect_blks: the number of blocks need to allocate for indirect
358  *			blocks
359  *
360  *	@new_blocks: on return it will store the new block numbers for
361  *	the indirect blocks(if needed) and the first direct block,
362  *	@blks:	on return it will store the total number of allocated
363  *		direct blocks
364  */
365 static int ext2_alloc_blocks(struct inode *inode,
366 			ext2_fsblk_t goal, int indirect_blks, int blks,
367 			ext2_fsblk_t new_blocks[4], int *err)
368 {
369 	int target, i;
370 	unsigned long count = 0;
371 	int index = 0;
372 	ext2_fsblk_t current_block = 0;
373 	int ret = 0;
374 
375 	/*
376 	 * Here we try to allocate the requested multiple blocks at once,
377 	 * on a best-effort basis.
378 	 * To build a branch, we should allocate blocks for
379 	 * the indirect blocks(if not allocated yet), and at least
380 	 * the first direct block of this branch.  That's the
381 	 * minimum number of blocks need to allocate(required)
382 	 */
383 	target = blks + indirect_blks;
384 
385 	while (1) {
386 		count = target;
387 		/* allocating blocks for indirect blocks and direct blocks */
388 		current_block = ext2_new_blocks(inode,goal,&count,err);
389 		if (*err)
390 			goto failed_out;
391 
392 		target -= count;
393 		/* allocate blocks for indirect blocks */
394 		while (index < indirect_blks && count) {
395 			new_blocks[index++] = current_block++;
396 			count--;
397 		}
398 
399 		if (count > 0)
400 			break;
401 	}
402 
403 	/* save the new block number for the first direct block */
404 	new_blocks[index] = current_block;
405 
406 	/* total number of blocks allocated for direct blocks */
407 	ret = count;
408 	*err = 0;
409 	return ret;
410 failed_out:
411 	for (i = 0; i <index; i++)
412 		ext2_free_blocks(inode, new_blocks[i], 1);
413 	return ret;
414 }
415 
416 /**
417  *	ext2_alloc_branch - allocate and set up a chain of blocks.
418  *	@inode: owner
419  *	@num: depth of the chain (number of blocks to allocate)
420  *	@offsets: offsets (in the blocks) to store the pointers to next.
421  *	@branch: place to store the chain in.
422  *
423  *	This function allocates @num blocks, zeroes out all but the last one,
424  *	links them into chain and (if we are synchronous) writes them to disk.
425  *	In other words, it prepares a branch that can be spliced onto the
426  *	inode. It stores the information about that chain in the branch[], in
427  *	the same format as ext2_get_branch() would do. We are calling it after
428  *	we had read the existing part of chain and partial points to the last
429  *	triple of that (one with zero ->key). Upon the exit we have the same
430  *	picture as after the successful ext2_get_block(), excpet that in one
431  *	place chain is disconnected - *branch->p is still zero (we did not
432  *	set the last link), but branch->key contains the number that should
433  *	be placed into *branch->p to fill that gap.
434  *
435  *	If allocation fails we free all blocks we've allocated (and forget
436  *	their buffer_heads) and return the error value the from failed
437  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
438  *	as described above and return 0.
439  */
440 
441 static int ext2_alloc_branch(struct inode *inode,
442 			int indirect_blks, int *blks, ext2_fsblk_t goal,
443 			int *offsets, Indirect *branch)
444 {
445 	int blocksize = inode->i_sb->s_blocksize;
446 	int i, n = 0;
447 	int err = 0;
448 	struct buffer_head *bh;
449 	int num;
450 	ext2_fsblk_t new_blocks[4];
451 	ext2_fsblk_t current_block;
452 
453 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
454 				*blks, new_blocks, &err);
455 	if (err)
456 		return err;
457 
458 	branch[0].key = cpu_to_le32(new_blocks[0]);
459 	/*
460 	 * metadata blocks and data blocks are allocated.
461 	 */
462 	for (n = 1; n <= indirect_blks;  n++) {
463 		/*
464 		 * Get buffer_head for parent block, zero it out
465 		 * and set the pointer to new one, then send
466 		 * parent to disk.
467 		 */
468 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
469 		branch[n].bh = bh;
470 		lock_buffer(bh);
471 		memset(bh->b_data, 0, blocksize);
472 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
473 		branch[n].key = cpu_to_le32(new_blocks[n]);
474 		*branch[n].p = branch[n].key;
475 		if ( n == indirect_blks) {
476 			current_block = new_blocks[n];
477 			/*
478 			 * End of chain, update the last new metablock of
479 			 * the chain to point to the new allocated
480 			 * data blocks numbers
481 			 */
482 			for (i=1; i < num; i++)
483 				*(branch[n].p + i) = cpu_to_le32(++current_block);
484 		}
485 		set_buffer_uptodate(bh);
486 		unlock_buffer(bh);
487 		mark_buffer_dirty_inode(bh, inode);
488 		/* We used to sync bh here if IS_SYNC(inode).
489 		 * But we now rely upon generic_osync_inode()
490 		 * and b_inode_buffers.  But not for directories.
491 		 */
492 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
493 			sync_dirty_buffer(bh);
494 	}
495 	*blks = num;
496 	return err;
497 }
498 
499 /**
500  * ext2_splice_branch - splice the allocated branch onto inode.
501  * @inode: owner
502  * @block: (logical) number of block we are adding
503  * @chain: chain of indirect blocks (with a missing link - see
504  *	ext2_alloc_branch)
505  * @where: location of missing link
506  * @num:   number of indirect blocks we are adding
507  * @blks:  number of direct blocks we are adding
508  *
509  * This function fills the missing link and does all housekeeping needed in
510  * inode (->i_blocks, etc.). In case of success we end up with the full
511  * chain to new block and return 0.
512  */
513 static void ext2_splice_branch(struct inode *inode,
514 			long block, Indirect *where, int num, int blks)
515 {
516 	int i;
517 	struct ext2_block_alloc_info *block_i;
518 	ext2_fsblk_t current_block;
519 
520 	block_i = EXT2_I(inode)->i_block_alloc_info;
521 
522 	/* XXX LOCKING probably should have i_meta_lock ?*/
523 	/* That's it */
524 
525 	*where->p = where->key;
526 
527 	/*
528 	 * Update the host buffer_head or inode to point to more just allocated
529 	 * direct blocks blocks
530 	 */
531 	if (num == 0 && blks > 1) {
532 		current_block = le32_to_cpu(where->key) + 1;
533 		for (i = 1; i < blks; i++)
534 			*(where->p + i ) = cpu_to_le32(current_block++);
535 	}
536 
537 	/*
538 	 * update the most recently allocated logical & physical block
539 	 * in i_block_alloc_info, to assist find the proper goal block for next
540 	 * allocation
541 	 */
542 	if (block_i) {
543 		block_i->last_alloc_logical_block = block + blks - 1;
544 		block_i->last_alloc_physical_block =
545 				le32_to_cpu(where[num].key) + blks - 1;
546 	}
547 
548 	/* We are done with atomic stuff, now do the rest of housekeeping */
549 
550 	/* had we spliced it onto indirect block? */
551 	if (where->bh)
552 		mark_buffer_dirty_inode(where->bh, inode);
553 
554 	inode->i_ctime = CURRENT_TIME_SEC;
555 	mark_inode_dirty(inode);
556 }
557 
558 /*
559  * Allocation strategy is simple: if we have to allocate something, we will
560  * have to go the whole way to leaf. So let's do it before attaching anything
561  * to tree, set linkage between the newborn blocks, write them if sync is
562  * required, recheck the path, free and repeat if check fails, otherwise
563  * set the last missing link (that will protect us from any truncate-generated
564  * removals - all blocks on the path are immune now) and possibly force the
565  * write on the parent block.
566  * That has a nice additional property: no special recovery from the failed
567  * allocations is needed - we simply release blocks and do not touch anything
568  * reachable from inode.
569  *
570  * `handle' can be NULL if create == 0.
571  *
572  * The BKL may not be held on entry here.  Be sure to take it early.
573  * return > 0, # of blocks mapped or allocated.
574  * return = 0, if plain lookup failed.
575  * return < 0, error case.
576  */
577 static int ext2_get_blocks(struct inode *inode,
578 			   sector_t iblock, unsigned long maxblocks,
579 			   struct buffer_head *bh_result,
580 			   int create)
581 {
582 	int err = -EIO;
583 	int offsets[4];
584 	Indirect chain[4];
585 	Indirect *partial;
586 	ext2_fsblk_t goal;
587 	int indirect_blks;
588 	int blocks_to_boundary = 0;
589 	int depth;
590 	struct ext2_inode_info *ei = EXT2_I(inode);
591 	int count = 0;
592 	ext2_fsblk_t first_block = 0;
593 
594 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
595 
596 	if (depth == 0)
597 		return (err);
598 reread:
599 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
600 
601 	/* Simplest case - block found, no allocation needed */
602 	if (!partial) {
603 		first_block = le32_to_cpu(chain[depth - 1].key);
604 		clear_buffer_new(bh_result); /* What's this do? */
605 		count++;
606 		/*map more blocks*/
607 		while (count < maxblocks && count <= blocks_to_boundary) {
608 			ext2_fsblk_t blk;
609 
610 			if (!verify_chain(chain, partial)) {
611 				/*
612 				 * Indirect block might be removed by
613 				 * truncate while we were reading it.
614 				 * Handling of that case: forget what we've
615 				 * got now, go to reread.
616 				 */
617 				count = 0;
618 				goto changed;
619 			}
620 			blk = le32_to_cpu(*(chain[depth-1].p + count));
621 			if (blk == first_block + count)
622 				count++;
623 			else
624 				break;
625 		}
626 		goto got_it;
627 	}
628 
629 	/* Next simple case - plain lookup or failed read of indirect block */
630 	if (!create || err == -EIO)
631 		goto cleanup;
632 
633 	mutex_lock(&ei->truncate_mutex);
634 
635 	/*
636 	 * Okay, we need to do block allocation.  Lazily initialize the block
637 	 * allocation info here if necessary
638 	*/
639 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
640 		ext2_init_block_alloc_info(inode);
641 
642 	goal = ext2_find_goal(inode, iblock, chain, partial);
643 
644 	/* the number of blocks need to allocate for [d,t]indirect blocks */
645 	indirect_blks = (chain + depth) - partial - 1;
646 	/*
647 	 * Next look up the indirect map to count the totoal number of
648 	 * direct blocks to allocate for this branch.
649 	 */
650 	count = ext2_blks_to_allocate(partial, indirect_blks,
651 					maxblocks, blocks_to_boundary);
652 	/*
653 	 * XXX ???? Block out ext2_truncate while we alter the tree
654 	 */
655 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
656 				offsets + (partial - chain), partial);
657 
658 	if (err) {
659 		mutex_unlock(&ei->truncate_mutex);
660 		goto cleanup;
661 	}
662 
663 	if (ext2_use_xip(inode->i_sb)) {
664 		/*
665 		 * we need to clear the block
666 		 */
667 		err = ext2_clear_xip_target (inode,
668 			le32_to_cpu(chain[depth-1].key));
669 		if (err) {
670 			mutex_unlock(&ei->truncate_mutex);
671 			goto cleanup;
672 		}
673 	}
674 
675 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
676 	mutex_unlock(&ei->truncate_mutex);
677 	set_buffer_new(bh_result);
678 got_it:
679 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
680 	if (count > blocks_to_boundary)
681 		set_buffer_boundary(bh_result);
682 	err = count;
683 	/* Clean up and exit */
684 	partial = chain + depth - 1;	/* the whole chain */
685 cleanup:
686 	while (partial > chain) {
687 		brelse(partial->bh);
688 		partial--;
689 	}
690 	return err;
691 changed:
692 	while (partial > chain) {
693 		brelse(partial->bh);
694 		partial--;
695 	}
696 	goto reread;
697 }
698 
699 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
700 {
701 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
702 	int ret = ext2_get_blocks(inode, iblock, max_blocks,
703 			      bh_result, create);
704 	if (ret > 0) {
705 		bh_result->b_size = (ret << inode->i_blkbits);
706 		ret = 0;
707 	}
708 	return ret;
709 
710 }
711 
712 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
713 {
714 	return block_write_full_page(page, ext2_get_block, wbc);
715 }
716 
717 static int ext2_readpage(struct file *file, struct page *page)
718 {
719 	return mpage_readpage(page, ext2_get_block);
720 }
721 
722 static int
723 ext2_readpages(struct file *file, struct address_space *mapping,
724 		struct list_head *pages, unsigned nr_pages)
725 {
726 	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
727 }
728 
729 int __ext2_write_begin(struct file *file, struct address_space *mapping,
730 		loff_t pos, unsigned len, unsigned flags,
731 		struct page **pagep, void **fsdata)
732 {
733 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
734 							ext2_get_block);
735 }
736 
737 static int
738 ext2_write_begin(struct file *file, struct address_space *mapping,
739 		loff_t pos, unsigned len, unsigned flags,
740 		struct page **pagep, void **fsdata)
741 {
742 	*pagep = NULL;
743 	return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
744 }
745 
746 static int
747 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
748 		loff_t pos, unsigned len, unsigned flags,
749 		struct page **pagep, void **fsdata)
750 {
751 	/*
752 	 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
753 	 * directory handling code to pass around offsets rather than struct
754 	 * pages in order to make this work easily.
755 	 */
756 	return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
757 							ext2_get_block);
758 }
759 
760 static int ext2_nobh_writepage(struct page *page,
761 			struct writeback_control *wbc)
762 {
763 	return nobh_writepage(page, ext2_get_block, wbc);
764 }
765 
766 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
767 {
768 	return generic_block_bmap(mapping,block,ext2_get_block);
769 }
770 
771 static ssize_t
772 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
773 			loff_t offset, unsigned long nr_segs)
774 {
775 	struct file *file = iocb->ki_filp;
776 	struct inode *inode = file->f_mapping->host;
777 
778 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
779 				offset, nr_segs, ext2_get_block, NULL);
780 }
781 
782 static int
783 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
784 {
785 	return mpage_writepages(mapping, wbc, ext2_get_block);
786 }
787 
788 const struct address_space_operations ext2_aops = {
789 	.readpage		= ext2_readpage,
790 	.readpages		= ext2_readpages,
791 	.writepage		= ext2_writepage,
792 	.sync_page		= block_sync_page,
793 	.write_begin		= ext2_write_begin,
794 	.write_end		= generic_write_end,
795 	.bmap			= ext2_bmap,
796 	.direct_IO		= ext2_direct_IO,
797 	.writepages		= ext2_writepages,
798 	.migratepage		= buffer_migrate_page,
799 };
800 
801 const struct address_space_operations ext2_aops_xip = {
802 	.bmap			= ext2_bmap,
803 	.get_xip_page		= ext2_get_xip_page,
804 };
805 
806 const struct address_space_operations ext2_nobh_aops = {
807 	.readpage		= ext2_readpage,
808 	.readpages		= ext2_readpages,
809 	.writepage		= ext2_nobh_writepage,
810 	.sync_page		= block_sync_page,
811 	.write_begin		= ext2_nobh_write_begin,
812 	.write_end		= nobh_write_end,
813 	.bmap			= ext2_bmap,
814 	.direct_IO		= ext2_direct_IO,
815 	.writepages		= ext2_writepages,
816 	.migratepage		= buffer_migrate_page,
817 };
818 
819 /*
820  * Probably it should be a library function... search for first non-zero word
821  * or memcmp with zero_page, whatever is better for particular architecture.
822  * Linus?
823  */
824 static inline int all_zeroes(__le32 *p, __le32 *q)
825 {
826 	while (p < q)
827 		if (*p++)
828 			return 0;
829 	return 1;
830 }
831 
832 /**
833  *	ext2_find_shared - find the indirect blocks for partial truncation.
834  *	@inode:	  inode in question
835  *	@depth:	  depth of the affected branch
836  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
837  *	@chain:	  place to store the pointers to partial indirect blocks
838  *	@top:	  place to the (detached) top of branch
839  *
840  *	This is a helper function used by ext2_truncate().
841  *
842  *	When we do truncate() we may have to clean the ends of several indirect
843  *	blocks but leave the blocks themselves alive. Block is partially
844  *	truncated if some data below the new i_size is refered from it (and
845  *	it is on the path to the first completely truncated data block, indeed).
846  *	We have to free the top of that path along with everything to the right
847  *	of the path. Since no allocation past the truncation point is possible
848  *	until ext2_truncate() finishes, we may safely do the latter, but top
849  *	of branch may require special attention - pageout below the truncation
850  *	point might try to populate it.
851  *
852  *	We atomically detach the top of branch from the tree, store the block
853  *	number of its root in *@top, pointers to buffer_heads of partially
854  *	truncated blocks - in @chain[].bh and pointers to their last elements
855  *	that should not be removed - in @chain[].p. Return value is the pointer
856  *	to last filled element of @chain.
857  *
858  *	The work left to caller to do the actual freeing of subtrees:
859  *		a) free the subtree starting from *@top
860  *		b) free the subtrees whose roots are stored in
861  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
862  *		c) free the subtrees growing from the inode past the @chain[0].p
863  *			(no partially truncated stuff there).
864  */
865 
866 static Indirect *ext2_find_shared(struct inode *inode,
867 				int depth,
868 				int offsets[4],
869 				Indirect chain[4],
870 				__le32 *top)
871 {
872 	Indirect *partial, *p;
873 	int k, err;
874 
875 	*top = 0;
876 	for (k = depth; k > 1 && !offsets[k-1]; k--)
877 		;
878 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
879 	if (!partial)
880 		partial = chain + k-1;
881 	/*
882 	 * If the branch acquired continuation since we've looked at it -
883 	 * fine, it should all survive and (new) top doesn't belong to us.
884 	 */
885 	write_lock(&EXT2_I(inode)->i_meta_lock);
886 	if (!partial->key && *partial->p) {
887 		write_unlock(&EXT2_I(inode)->i_meta_lock);
888 		goto no_top;
889 	}
890 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
891 		;
892 	/*
893 	 * OK, we've found the last block that must survive. The rest of our
894 	 * branch should be detached before unlocking. However, if that rest
895 	 * of branch is all ours and does not grow immediately from the inode
896 	 * it's easier to cheat and just decrement partial->p.
897 	 */
898 	if (p == chain + k - 1 && p > chain) {
899 		p->p--;
900 	} else {
901 		*top = *p->p;
902 		*p->p = 0;
903 	}
904 	write_unlock(&EXT2_I(inode)->i_meta_lock);
905 
906 	while(partial > p)
907 	{
908 		brelse(partial->bh);
909 		partial--;
910 	}
911 no_top:
912 	return partial;
913 }
914 
915 /**
916  *	ext2_free_data - free a list of data blocks
917  *	@inode:	inode we are dealing with
918  *	@p:	array of block numbers
919  *	@q:	points immediately past the end of array
920  *
921  *	We are freeing all blocks refered from that array (numbers are
922  *	stored as little-endian 32-bit) and updating @inode->i_blocks
923  *	appropriately.
924  */
925 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
926 {
927 	unsigned long block_to_free = 0, count = 0;
928 	unsigned long nr;
929 
930 	for ( ; p < q ; p++) {
931 		nr = le32_to_cpu(*p);
932 		if (nr) {
933 			*p = 0;
934 			/* accumulate blocks to free if they're contiguous */
935 			if (count == 0)
936 				goto free_this;
937 			else if (block_to_free == nr - count)
938 				count++;
939 			else {
940 				mark_inode_dirty(inode);
941 				ext2_free_blocks (inode, block_to_free, count);
942 			free_this:
943 				block_to_free = nr;
944 				count = 1;
945 			}
946 		}
947 	}
948 	if (count > 0) {
949 		mark_inode_dirty(inode);
950 		ext2_free_blocks (inode, block_to_free, count);
951 	}
952 }
953 
954 /**
955  *	ext2_free_branches - free an array of branches
956  *	@inode:	inode we are dealing with
957  *	@p:	array of block numbers
958  *	@q:	pointer immediately past the end of array
959  *	@depth:	depth of the branches to free
960  *
961  *	We are freeing all blocks refered from these branches (numbers are
962  *	stored as little-endian 32-bit) and updating @inode->i_blocks
963  *	appropriately.
964  */
965 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
966 {
967 	struct buffer_head * bh;
968 	unsigned long nr;
969 
970 	if (depth--) {
971 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
972 		for ( ; p < q ; p++) {
973 			nr = le32_to_cpu(*p);
974 			if (!nr)
975 				continue;
976 			*p = 0;
977 			bh = sb_bread(inode->i_sb, nr);
978 			/*
979 			 * A read failure? Report error and clear slot
980 			 * (should be rare).
981 			 */
982 			if (!bh) {
983 				ext2_error(inode->i_sb, "ext2_free_branches",
984 					"Read failure, inode=%ld, block=%ld",
985 					inode->i_ino, nr);
986 				continue;
987 			}
988 			ext2_free_branches(inode,
989 					   (__le32*)bh->b_data,
990 					   (__le32*)bh->b_data + addr_per_block,
991 					   depth);
992 			bforget(bh);
993 			ext2_free_blocks(inode, nr, 1);
994 			mark_inode_dirty(inode);
995 		}
996 	} else
997 		ext2_free_data(inode, p, q);
998 }
999 
1000 void ext2_truncate(struct inode *inode)
1001 {
1002 	__le32 *i_data = EXT2_I(inode)->i_data;
1003 	struct ext2_inode_info *ei = EXT2_I(inode);
1004 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1005 	int offsets[4];
1006 	Indirect chain[4];
1007 	Indirect *partial;
1008 	__le32 nr = 0;
1009 	int n;
1010 	long iblock;
1011 	unsigned blocksize;
1012 
1013 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1014 	    S_ISLNK(inode->i_mode)))
1015 		return;
1016 	if (ext2_inode_is_fast_symlink(inode))
1017 		return;
1018 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1019 		return;
1020 
1021 	blocksize = inode->i_sb->s_blocksize;
1022 	iblock = (inode->i_size + blocksize-1)
1023 					>> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1024 
1025 	if (mapping_is_xip(inode->i_mapping))
1026 		xip_truncate_page(inode->i_mapping, inode->i_size);
1027 	else if (test_opt(inode->i_sb, NOBH))
1028 		nobh_truncate_page(inode->i_mapping,
1029 				inode->i_size, ext2_get_block);
1030 	else
1031 		block_truncate_page(inode->i_mapping,
1032 				inode->i_size, ext2_get_block);
1033 
1034 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1035 	if (n == 0)
1036 		return;
1037 
1038 	/*
1039 	 * From here we block out all ext2_get_block() callers who want to
1040 	 * modify the block allocation tree.
1041 	 */
1042 	mutex_lock(&ei->truncate_mutex);
1043 
1044 	if (n == 1) {
1045 		ext2_free_data(inode, i_data+offsets[0],
1046 					i_data + EXT2_NDIR_BLOCKS);
1047 		goto do_indirects;
1048 	}
1049 
1050 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1051 	/* Kill the top of shared branch (already detached) */
1052 	if (nr) {
1053 		if (partial == chain)
1054 			mark_inode_dirty(inode);
1055 		else
1056 			mark_buffer_dirty_inode(partial->bh, inode);
1057 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1058 	}
1059 	/* Clear the ends of indirect blocks on the shared branch */
1060 	while (partial > chain) {
1061 		ext2_free_branches(inode,
1062 				   partial->p + 1,
1063 				   (__le32*)partial->bh->b_data+addr_per_block,
1064 				   (chain+n-1) - partial);
1065 		mark_buffer_dirty_inode(partial->bh, inode);
1066 		brelse (partial->bh);
1067 		partial--;
1068 	}
1069 do_indirects:
1070 	/* Kill the remaining (whole) subtrees */
1071 	switch (offsets[0]) {
1072 		default:
1073 			nr = i_data[EXT2_IND_BLOCK];
1074 			if (nr) {
1075 				i_data[EXT2_IND_BLOCK] = 0;
1076 				mark_inode_dirty(inode);
1077 				ext2_free_branches(inode, &nr, &nr+1, 1);
1078 			}
1079 		case EXT2_IND_BLOCK:
1080 			nr = i_data[EXT2_DIND_BLOCK];
1081 			if (nr) {
1082 				i_data[EXT2_DIND_BLOCK] = 0;
1083 				mark_inode_dirty(inode);
1084 				ext2_free_branches(inode, &nr, &nr+1, 2);
1085 			}
1086 		case EXT2_DIND_BLOCK:
1087 			nr = i_data[EXT2_TIND_BLOCK];
1088 			if (nr) {
1089 				i_data[EXT2_TIND_BLOCK] = 0;
1090 				mark_inode_dirty(inode);
1091 				ext2_free_branches(inode, &nr, &nr+1, 3);
1092 			}
1093 		case EXT2_TIND_BLOCK:
1094 			;
1095 	}
1096 
1097 	ext2_discard_reservation(inode);
1098 
1099 	mutex_unlock(&ei->truncate_mutex);
1100 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1101 	if (inode_needs_sync(inode)) {
1102 		sync_mapping_buffers(inode->i_mapping);
1103 		ext2_sync_inode (inode);
1104 	} else {
1105 		mark_inode_dirty(inode);
1106 	}
1107 }
1108 
1109 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1110 					struct buffer_head **p)
1111 {
1112 	struct buffer_head * bh;
1113 	unsigned long block_group;
1114 	unsigned long block;
1115 	unsigned long offset;
1116 	struct ext2_group_desc * gdp;
1117 
1118 	*p = NULL;
1119 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1120 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1121 		goto Einval;
1122 
1123 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1124 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1125 	if (!gdp)
1126 		goto Egdp;
1127 	/*
1128 	 * Figure out the offset within the block group inode table
1129 	 */
1130 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1131 	block = le32_to_cpu(gdp->bg_inode_table) +
1132 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1133 	if (!(bh = sb_bread(sb, block)))
1134 		goto Eio;
1135 
1136 	*p = bh;
1137 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1138 	return (struct ext2_inode *) (bh->b_data + offset);
1139 
1140 Einval:
1141 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1142 		   (unsigned long) ino);
1143 	return ERR_PTR(-EINVAL);
1144 Eio:
1145 	ext2_error(sb, "ext2_get_inode",
1146 		   "unable to read inode block - inode=%lu, block=%lu",
1147 		   (unsigned long) ino, block);
1148 Egdp:
1149 	return ERR_PTR(-EIO);
1150 }
1151 
1152 void ext2_set_inode_flags(struct inode *inode)
1153 {
1154 	unsigned int flags = EXT2_I(inode)->i_flags;
1155 
1156 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1157 	if (flags & EXT2_SYNC_FL)
1158 		inode->i_flags |= S_SYNC;
1159 	if (flags & EXT2_APPEND_FL)
1160 		inode->i_flags |= S_APPEND;
1161 	if (flags & EXT2_IMMUTABLE_FL)
1162 		inode->i_flags |= S_IMMUTABLE;
1163 	if (flags & EXT2_NOATIME_FL)
1164 		inode->i_flags |= S_NOATIME;
1165 	if (flags & EXT2_DIRSYNC_FL)
1166 		inode->i_flags |= S_DIRSYNC;
1167 }
1168 
1169 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1170 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1171 {
1172 	unsigned int flags = ei->vfs_inode.i_flags;
1173 
1174 	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1175 			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1176 	if (flags & S_SYNC)
1177 		ei->i_flags |= EXT2_SYNC_FL;
1178 	if (flags & S_APPEND)
1179 		ei->i_flags |= EXT2_APPEND_FL;
1180 	if (flags & S_IMMUTABLE)
1181 		ei->i_flags |= EXT2_IMMUTABLE_FL;
1182 	if (flags & S_NOATIME)
1183 		ei->i_flags |= EXT2_NOATIME_FL;
1184 	if (flags & S_DIRSYNC)
1185 		ei->i_flags |= EXT2_DIRSYNC_FL;
1186 }
1187 
1188 void ext2_read_inode (struct inode * inode)
1189 {
1190 	struct ext2_inode_info *ei = EXT2_I(inode);
1191 	ino_t ino = inode->i_ino;
1192 	struct buffer_head * bh;
1193 	struct ext2_inode * raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1194 	int n;
1195 
1196 #ifdef CONFIG_EXT2_FS_POSIX_ACL
1197 	ei->i_acl = EXT2_ACL_NOT_CACHED;
1198 	ei->i_default_acl = EXT2_ACL_NOT_CACHED;
1199 #endif
1200 	ei->i_block_alloc_info = NULL;
1201 
1202 	if (IS_ERR(raw_inode))
1203  		goto bad_inode;
1204 
1205 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1206 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1207 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1208 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1209 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1210 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1211 	}
1212 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1213 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1214 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1215 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1216 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1217 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1218 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1219 	/* We now have enough fields to check if the inode was active or not.
1220 	 * This is needed because nfsd might try to access dead inodes
1221 	 * the test is that same one that e2fsck uses
1222 	 * NeilBrown 1999oct15
1223 	 */
1224 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1225 		/* this inode is deleted */
1226 		brelse (bh);
1227 		goto bad_inode;
1228 	}
1229 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1230 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1231 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1232 	ei->i_frag_no = raw_inode->i_frag;
1233 	ei->i_frag_size = raw_inode->i_fsize;
1234 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1235 	ei->i_dir_acl = 0;
1236 	if (S_ISREG(inode->i_mode))
1237 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1238 	else
1239 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1240 	ei->i_dtime = 0;
1241 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1242 	ei->i_state = 0;
1243 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1244 	ei->i_dir_start_lookup = 0;
1245 
1246 	/*
1247 	 * NOTE! The in-memory inode i_data array is in little-endian order
1248 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1249 	 */
1250 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1251 		ei->i_data[n] = raw_inode->i_block[n];
1252 
1253 	if (S_ISREG(inode->i_mode)) {
1254 		inode->i_op = &ext2_file_inode_operations;
1255 		if (ext2_use_xip(inode->i_sb)) {
1256 			inode->i_mapping->a_ops = &ext2_aops_xip;
1257 			inode->i_fop = &ext2_xip_file_operations;
1258 		} else if (test_opt(inode->i_sb, NOBH)) {
1259 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1260 			inode->i_fop = &ext2_file_operations;
1261 		} else {
1262 			inode->i_mapping->a_ops = &ext2_aops;
1263 			inode->i_fop = &ext2_file_operations;
1264 		}
1265 	} else if (S_ISDIR(inode->i_mode)) {
1266 		inode->i_op = &ext2_dir_inode_operations;
1267 		inode->i_fop = &ext2_dir_operations;
1268 		if (test_opt(inode->i_sb, NOBH))
1269 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1270 		else
1271 			inode->i_mapping->a_ops = &ext2_aops;
1272 	} else if (S_ISLNK(inode->i_mode)) {
1273 		if (ext2_inode_is_fast_symlink(inode))
1274 			inode->i_op = &ext2_fast_symlink_inode_operations;
1275 		else {
1276 			inode->i_op = &ext2_symlink_inode_operations;
1277 			if (test_opt(inode->i_sb, NOBH))
1278 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1279 			else
1280 				inode->i_mapping->a_ops = &ext2_aops;
1281 		}
1282 	} else {
1283 		inode->i_op = &ext2_special_inode_operations;
1284 		if (raw_inode->i_block[0])
1285 			init_special_inode(inode, inode->i_mode,
1286 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1287 		else
1288 			init_special_inode(inode, inode->i_mode,
1289 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1290 	}
1291 	brelse (bh);
1292 	ext2_set_inode_flags(inode);
1293 	return;
1294 
1295 bad_inode:
1296 	make_bad_inode(inode);
1297 	return;
1298 }
1299 
1300 static int ext2_update_inode(struct inode * inode, int do_sync)
1301 {
1302 	struct ext2_inode_info *ei = EXT2_I(inode);
1303 	struct super_block *sb = inode->i_sb;
1304 	ino_t ino = inode->i_ino;
1305 	uid_t uid = inode->i_uid;
1306 	gid_t gid = inode->i_gid;
1307 	struct buffer_head * bh;
1308 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1309 	int n;
1310 	int err = 0;
1311 
1312 	if (IS_ERR(raw_inode))
1313  		return -EIO;
1314 
1315 	/* For fields not not tracking in the in-memory inode,
1316 	 * initialise them to zero for new inodes. */
1317 	if (ei->i_state & EXT2_STATE_NEW)
1318 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1319 
1320 	ext2_get_inode_flags(ei);
1321 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1322 	if (!(test_opt(sb, NO_UID32))) {
1323 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1324 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1325 /*
1326  * Fix up interoperability with old kernels. Otherwise, old inodes get
1327  * re-used with the upper 16 bits of the uid/gid intact
1328  */
1329 		if (!ei->i_dtime) {
1330 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1331 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1332 		} else {
1333 			raw_inode->i_uid_high = 0;
1334 			raw_inode->i_gid_high = 0;
1335 		}
1336 	} else {
1337 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1338 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1339 		raw_inode->i_uid_high = 0;
1340 		raw_inode->i_gid_high = 0;
1341 	}
1342 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1343 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1344 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1345 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1346 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1347 
1348 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1349 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1350 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1351 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1352 	raw_inode->i_frag = ei->i_frag_no;
1353 	raw_inode->i_fsize = ei->i_frag_size;
1354 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1355 	if (!S_ISREG(inode->i_mode))
1356 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1357 	else {
1358 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1359 		if (inode->i_size > 0x7fffffffULL) {
1360 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1361 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1362 			    EXT2_SB(sb)->s_es->s_rev_level ==
1363 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1364 			       /* If this is the first large file
1365 				* created, add a flag to the superblock.
1366 				*/
1367 				lock_kernel();
1368 				ext2_update_dynamic_rev(sb);
1369 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1370 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1371 				unlock_kernel();
1372 				ext2_write_super(sb);
1373 			}
1374 		}
1375 	}
1376 
1377 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1378 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1379 		if (old_valid_dev(inode->i_rdev)) {
1380 			raw_inode->i_block[0] =
1381 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1382 			raw_inode->i_block[1] = 0;
1383 		} else {
1384 			raw_inode->i_block[0] = 0;
1385 			raw_inode->i_block[1] =
1386 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1387 			raw_inode->i_block[2] = 0;
1388 		}
1389 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1390 		raw_inode->i_block[n] = ei->i_data[n];
1391 	mark_buffer_dirty(bh);
1392 	if (do_sync) {
1393 		sync_dirty_buffer(bh);
1394 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1395 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1396 				sb->s_id, (unsigned long) ino);
1397 			err = -EIO;
1398 		}
1399 	}
1400 	ei->i_state &= ~EXT2_STATE_NEW;
1401 	brelse (bh);
1402 	return err;
1403 }
1404 
1405 int ext2_write_inode(struct inode *inode, int wait)
1406 {
1407 	return ext2_update_inode(inode, wait);
1408 }
1409 
1410 int ext2_sync_inode(struct inode *inode)
1411 {
1412 	struct writeback_control wbc = {
1413 		.sync_mode = WB_SYNC_ALL,
1414 		.nr_to_write = 0,	/* sys_fsync did this */
1415 	};
1416 	return sync_inode(inode, &wbc);
1417 }
1418 
1419 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1420 {
1421 	struct inode *inode = dentry->d_inode;
1422 	int error;
1423 
1424 	error = inode_change_ok(inode, iattr);
1425 	if (error)
1426 		return error;
1427 	if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1428 	    (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1429 		error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0;
1430 		if (error)
1431 			return error;
1432 	}
1433 	error = inode_setattr(inode, iattr);
1434 	if (!error && (iattr->ia_valid & ATTR_MODE))
1435 		error = ext2_acl_chmod(inode);
1436 	return error;
1437 }
1438