1 /* 2 * linux/fs/ext2/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@dcs.ed.ac.uk), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/smp_lock.h> 26 #include <linux/time.h> 27 #include <linux/highuid.h> 28 #include <linux/pagemap.h> 29 #include <linux/quotaops.h> 30 #include <linux/module.h> 31 #include <linux/writeback.h> 32 #include <linux/buffer_head.h> 33 #include <linux/mpage.h> 34 #include "ext2.h" 35 #include "acl.h" 36 #include "xip.h" 37 38 MODULE_AUTHOR("Remy Card and others"); 39 MODULE_DESCRIPTION("Second Extended Filesystem"); 40 MODULE_LICENSE("GPL"); 41 42 static int ext2_update_inode(struct inode * inode, int do_sync); 43 44 /* 45 * Test whether an inode is a fast symlink. 46 */ 47 static inline int ext2_inode_is_fast_symlink(struct inode *inode) 48 { 49 int ea_blocks = EXT2_I(inode)->i_file_acl ? 50 (inode->i_sb->s_blocksize >> 9) : 0; 51 52 return (S_ISLNK(inode->i_mode) && 53 inode->i_blocks - ea_blocks == 0); 54 } 55 56 /* 57 * Called at the last iput() if i_nlink is zero. 58 */ 59 void ext2_delete_inode (struct inode * inode) 60 { 61 truncate_inode_pages(&inode->i_data, 0); 62 63 if (is_bad_inode(inode)) 64 goto no_delete; 65 EXT2_I(inode)->i_dtime = get_seconds(); 66 mark_inode_dirty(inode); 67 ext2_update_inode(inode, inode_needs_sync(inode)); 68 69 inode->i_size = 0; 70 if (inode->i_blocks) 71 ext2_truncate (inode); 72 ext2_free_inode (inode); 73 74 return; 75 no_delete: 76 clear_inode(inode); /* We must guarantee clearing of inode... */ 77 } 78 79 typedef struct { 80 __le32 *p; 81 __le32 key; 82 struct buffer_head *bh; 83 } Indirect; 84 85 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 86 { 87 p->key = *(p->p = v); 88 p->bh = bh; 89 } 90 91 static inline int verify_chain(Indirect *from, Indirect *to) 92 { 93 while (from <= to && from->key == *from->p) 94 from++; 95 return (from > to); 96 } 97 98 /** 99 * ext2_block_to_path - parse the block number into array of offsets 100 * @inode: inode in question (we are only interested in its superblock) 101 * @i_block: block number to be parsed 102 * @offsets: array to store the offsets in 103 * @boundary: set this non-zero if the referred-to block is likely to be 104 * followed (on disk) by an indirect block. 105 * To store the locations of file's data ext2 uses a data structure common 106 * for UNIX filesystems - tree of pointers anchored in the inode, with 107 * data blocks at leaves and indirect blocks in intermediate nodes. 108 * This function translates the block number into path in that tree - 109 * return value is the path length and @offsets[n] is the offset of 110 * pointer to (n+1)th node in the nth one. If @block is out of range 111 * (negative or too large) warning is printed and zero returned. 112 * 113 * Note: function doesn't find node addresses, so no IO is needed. All 114 * we need to know is the capacity of indirect blocks (taken from the 115 * inode->i_sb). 116 */ 117 118 /* 119 * Portability note: the last comparison (check that we fit into triple 120 * indirect block) is spelled differently, because otherwise on an 121 * architecture with 32-bit longs and 8Kb pages we might get into trouble 122 * if our filesystem had 8Kb blocks. We might use long long, but that would 123 * kill us on x86. Oh, well, at least the sign propagation does not matter - 124 * i_block would have to be negative in the very beginning, so we would not 125 * get there at all. 126 */ 127 128 static int ext2_block_to_path(struct inode *inode, 129 long i_block, int offsets[4], int *boundary) 130 { 131 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb); 132 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb); 133 const long direct_blocks = EXT2_NDIR_BLOCKS, 134 indirect_blocks = ptrs, 135 double_blocks = (1 << (ptrs_bits * 2)); 136 int n = 0; 137 int final = 0; 138 139 if (i_block < 0) { 140 ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0"); 141 } else if (i_block < direct_blocks) { 142 offsets[n++] = i_block; 143 final = direct_blocks; 144 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 145 offsets[n++] = EXT2_IND_BLOCK; 146 offsets[n++] = i_block; 147 final = ptrs; 148 } else if ((i_block -= indirect_blocks) < double_blocks) { 149 offsets[n++] = EXT2_DIND_BLOCK; 150 offsets[n++] = i_block >> ptrs_bits; 151 offsets[n++] = i_block & (ptrs - 1); 152 final = ptrs; 153 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 154 offsets[n++] = EXT2_TIND_BLOCK; 155 offsets[n++] = i_block >> (ptrs_bits * 2); 156 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 157 offsets[n++] = i_block & (ptrs - 1); 158 final = ptrs; 159 } else { 160 ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big"); 161 } 162 if (boundary) 163 *boundary = final - 1 - (i_block & (ptrs - 1)); 164 165 return n; 166 } 167 168 /** 169 * ext2_get_branch - read the chain of indirect blocks leading to data 170 * @inode: inode in question 171 * @depth: depth of the chain (1 - direct pointer, etc.) 172 * @offsets: offsets of pointers in inode/indirect blocks 173 * @chain: place to store the result 174 * @err: here we store the error value 175 * 176 * Function fills the array of triples <key, p, bh> and returns %NULL 177 * if everything went OK or the pointer to the last filled triple 178 * (incomplete one) otherwise. Upon the return chain[i].key contains 179 * the number of (i+1)-th block in the chain (as it is stored in memory, 180 * i.e. little-endian 32-bit), chain[i].p contains the address of that 181 * number (it points into struct inode for i==0 and into the bh->b_data 182 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 183 * block for i>0 and NULL for i==0. In other words, it holds the block 184 * numbers of the chain, addresses they were taken from (and where we can 185 * verify that chain did not change) and buffer_heads hosting these 186 * numbers. 187 * 188 * Function stops when it stumbles upon zero pointer (absent block) 189 * (pointer to last triple returned, *@err == 0) 190 * or when it gets an IO error reading an indirect block 191 * (ditto, *@err == -EIO) 192 * or when it notices that chain had been changed while it was reading 193 * (ditto, *@err == -EAGAIN) 194 * or when it reads all @depth-1 indirect blocks successfully and finds 195 * the whole chain, all way to the data (returns %NULL, *err == 0). 196 */ 197 static Indirect *ext2_get_branch(struct inode *inode, 198 int depth, 199 int *offsets, 200 Indirect chain[4], 201 int *err) 202 { 203 struct super_block *sb = inode->i_sb; 204 Indirect *p = chain; 205 struct buffer_head *bh; 206 207 *err = 0; 208 /* i_data is not going away, no lock needed */ 209 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets); 210 if (!p->key) 211 goto no_block; 212 while (--depth) { 213 bh = sb_bread(sb, le32_to_cpu(p->key)); 214 if (!bh) 215 goto failure; 216 read_lock(&EXT2_I(inode)->i_meta_lock); 217 if (!verify_chain(chain, p)) 218 goto changed; 219 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 220 read_unlock(&EXT2_I(inode)->i_meta_lock); 221 if (!p->key) 222 goto no_block; 223 } 224 return NULL; 225 226 changed: 227 read_unlock(&EXT2_I(inode)->i_meta_lock); 228 brelse(bh); 229 *err = -EAGAIN; 230 goto no_block; 231 failure: 232 *err = -EIO; 233 no_block: 234 return p; 235 } 236 237 /** 238 * ext2_find_near - find a place for allocation with sufficient locality 239 * @inode: owner 240 * @ind: descriptor of indirect block. 241 * 242 * This function returns the prefered place for block allocation. 243 * It is used when heuristic for sequential allocation fails. 244 * Rules are: 245 * + if there is a block to the left of our position - allocate near it. 246 * + if pointer will live in indirect block - allocate near that block. 247 * + if pointer will live in inode - allocate in the same cylinder group. 248 * 249 * In the latter case we colour the starting block by the callers PID to 250 * prevent it from clashing with concurrent allocations for a different inode 251 * in the same block group. The PID is used here so that functionally related 252 * files will be close-by on-disk. 253 * 254 * Caller must make sure that @ind is valid and will stay that way. 255 */ 256 257 static unsigned long ext2_find_near(struct inode *inode, Indirect *ind) 258 { 259 struct ext2_inode_info *ei = EXT2_I(inode); 260 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 261 __le32 *p; 262 unsigned long bg_start; 263 unsigned long colour; 264 265 /* Try to find previous block */ 266 for (p = ind->p - 1; p >= start; p--) 267 if (*p) 268 return le32_to_cpu(*p); 269 270 /* No such thing, so let's try location of indirect block */ 271 if (ind->bh) 272 return ind->bh->b_blocknr; 273 274 /* 275 * It is going to be refered from inode itself? OK, just put it into 276 * the same cylinder group then. 277 */ 278 bg_start = (ei->i_block_group * EXT2_BLOCKS_PER_GROUP(inode->i_sb)) + 279 le32_to_cpu(EXT2_SB(inode->i_sb)->s_es->s_first_data_block); 280 colour = (current->pid % 16) * 281 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16); 282 return bg_start + colour; 283 } 284 285 /** 286 * ext2_find_goal - find a prefered place for allocation. 287 * @inode: owner 288 * @block: block we want 289 * @chain: chain of indirect blocks 290 * @partial: pointer to the last triple within a chain 291 * 292 * Returns preferred place for a block (the goal). 293 */ 294 295 static inline int ext2_find_goal(struct inode *inode, 296 long block, 297 Indirect chain[4], 298 Indirect *partial) 299 { 300 struct ext2_block_alloc_info *block_i; 301 302 block_i = EXT2_I(inode)->i_block_alloc_info; 303 304 /* 305 * try the heuristic for sequential allocation, 306 * failing that at least try to get decent locality. 307 */ 308 if (block_i && (block == block_i->last_alloc_logical_block + 1) 309 && (block_i->last_alloc_physical_block != 0)) { 310 return block_i->last_alloc_physical_block + 1; 311 } 312 313 return ext2_find_near(inode, partial); 314 } 315 316 /** 317 * ext2_blks_to_allocate: Look up the block map and count the number 318 * of direct blocks need to be allocated for the given branch. 319 * 320 * @branch: chain of indirect blocks 321 * @k: number of blocks need for indirect blocks 322 * @blks: number of data blocks to be mapped. 323 * @blocks_to_boundary: the offset in the indirect block 324 * 325 * return the total number of blocks to be allocate, including the 326 * direct and indirect blocks. 327 */ 328 static int 329 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks, 330 int blocks_to_boundary) 331 { 332 unsigned long count = 0; 333 334 /* 335 * Simple case, [t,d]Indirect block(s) has not allocated yet 336 * then it's clear blocks on that path have not allocated 337 */ 338 if (k > 0) { 339 /* right now don't hanel cross boundary allocation */ 340 if (blks < blocks_to_boundary + 1) 341 count += blks; 342 else 343 count += blocks_to_boundary + 1; 344 return count; 345 } 346 347 count++; 348 while (count < blks && count <= blocks_to_boundary 349 && le32_to_cpu(*(branch[0].p + count)) == 0) { 350 count++; 351 } 352 return count; 353 } 354 355 /** 356 * ext2_alloc_blocks: multiple allocate blocks needed for a branch 357 * @indirect_blks: the number of blocks need to allocate for indirect 358 * blocks 359 * 360 * @new_blocks: on return it will store the new block numbers for 361 * the indirect blocks(if needed) and the first direct block, 362 * @blks: on return it will store the total number of allocated 363 * direct blocks 364 */ 365 static int ext2_alloc_blocks(struct inode *inode, 366 ext2_fsblk_t goal, int indirect_blks, int blks, 367 ext2_fsblk_t new_blocks[4], int *err) 368 { 369 int target, i; 370 unsigned long count = 0; 371 int index = 0; 372 ext2_fsblk_t current_block = 0; 373 int ret = 0; 374 375 /* 376 * Here we try to allocate the requested multiple blocks at once, 377 * on a best-effort basis. 378 * To build a branch, we should allocate blocks for 379 * the indirect blocks(if not allocated yet), and at least 380 * the first direct block of this branch. That's the 381 * minimum number of blocks need to allocate(required) 382 */ 383 target = blks + indirect_blks; 384 385 while (1) { 386 count = target; 387 /* allocating blocks for indirect blocks and direct blocks */ 388 current_block = ext2_new_blocks(inode,goal,&count,err); 389 if (*err) 390 goto failed_out; 391 392 target -= count; 393 /* allocate blocks for indirect blocks */ 394 while (index < indirect_blks && count) { 395 new_blocks[index++] = current_block++; 396 count--; 397 } 398 399 if (count > 0) 400 break; 401 } 402 403 /* save the new block number for the first direct block */ 404 new_blocks[index] = current_block; 405 406 /* total number of blocks allocated for direct blocks */ 407 ret = count; 408 *err = 0; 409 return ret; 410 failed_out: 411 for (i = 0; i <index; i++) 412 ext2_free_blocks(inode, new_blocks[i], 1); 413 return ret; 414 } 415 416 /** 417 * ext2_alloc_branch - allocate and set up a chain of blocks. 418 * @inode: owner 419 * @num: depth of the chain (number of blocks to allocate) 420 * @offsets: offsets (in the blocks) to store the pointers to next. 421 * @branch: place to store the chain in. 422 * 423 * This function allocates @num blocks, zeroes out all but the last one, 424 * links them into chain and (if we are synchronous) writes them to disk. 425 * In other words, it prepares a branch that can be spliced onto the 426 * inode. It stores the information about that chain in the branch[], in 427 * the same format as ext2_get_branch() would do. We are calling it after 428 * we had read the existing part of chain and partial points to the last 429 * triple of that (one with zero ->key). Upon the exit we have the same 430 * picture as after the successful ext2_get_block(), excpet that in one 431 * place chain is disconnected - *branch->p is still zero (we did not 432 * set the last link), but branch->key contains the number that should 433 * be placed into *branch->p to fill that gap. 434 * 435 * If allocation fails we free all blocks we've allocated (and forget 436 * their buffer_heads) and return the error value the from failed 437 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain 438 * as described above and return 0. 439 */ 440 441 static int ext2_alloc_branch(struct inode *inode, 442 int indirect_blks, int *blks, ext2_fsblk_t goal, 443 int *offsets, Indirect *branch) 444 { 445 int blocksize = inode->i_sb->s_blocksize; 446 int i, n = 0; 447 int err = 0; 448 struct buffer_head *bh; 449 int num; 450 ext2_fsblk_t new_blocks[4]; 451 ext2_fsblk_t current_block; 452 453 num = ext2_alloc_blocks(inode, goal, indirect_blks, 454 *blks, new_blocks, &err); 455 if (err) 456 return err; 457 458 branch[0].key = cpu_to_le32(new_blocks[0]); 459 /* 460 * metadata blocks and data blocks are allocated. 461 */ 462 for (n = 1; n <= indirect_blks; n++) { 463 /* 464 * Get buffer_head for parent block, zero it out 465 * and set the pointer to new one, then send 466 * parent to disk. 467 */ 468 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 469 branch[n].bh = bh; 470 lock_buffer(bh); 471 memset(bh->b_data, 0, blocksize); 472 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 473 branch[n].key = cpu_to_le32(new_blocks[n]); 474 *branch[n].p = branch[n].key; 475 if ( n == indirect_blks) { 476 current_block = new_blocks[n]; 477 /* 478 * End of chain, update the last new metablock of 479 * the chain to point to the new allocated 480 * data blocks numbers 481 */ 482 for (i=1; i < num; i++) 483 *(branch[n].p + i) = cpu_to_le32(++current_block); 484 } 485 set_buffer_uptodate(bh); 486 unlock_buffer(bh); 487 mark_buffer_dirty_inode(bh, inode); 488 /* We used to sync bh here if IS_SYNC(inode). 489 * But we now rely upon generic_osync_inode() 490 * and b_inode_buffers. But not for directories. 491 */ 492 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 493 sync_dirty_buffer(bh); 494 } 495 *blks = num; 496 return err; 497 } 498 499 /** 500 * ext2_splice_branch - splice the allocated branch onto inode. 501 * @inode: owner 502 * @block: (logical) number of block we are adding 503 * @chain: chain of indirect blocks (with a missing link - see 504 * ext2_alloc_branch) 505 * @where: location of missing link 506 * @num: number of indirect blocks we are adding 507 * @blks: number of direct blocks we are adding 508 * 509 * This function fills the missing link and does all housekeeping needed in 510 * inode (->i_blocks, etc.). In case of success we end up with the full 511 * chain to new block and return 0. 512 */ 513 static void ext2_splice_branch(struct inode *inode, 514 long block, Indirect *where, int num, int blks) 515 { 516 int i; 517 struct ext2_block_alloc_info *block_i; 518 ext2_fsblk_t current_block; 519 520 block_i = EXT2_I(inode)->i_block_alloc_info; 521 522 /* XXX LOCKING probably should have i_meta_lock ?*/ 523 /* That's it */ 524 525 *where->p = where->key; 526 527 /* 528 * Update the host buffer_head or inode to point to more just allocated 529 * direct blocks blocks 530 */ 531 if (num == 0 && blks > 1) { 532 current_block = le32_to_cpu(where->key) + 1; 533 for (i = 1; i < blks; i++) 534 *(where->p + i ) = cpu_to_le32(current_block++); 535 } 536 537 /* 538 * update the most recently allocated logical & physical block 539 * in i_block_alloc_info, to assist find the proper goal block for next 540 * allocation 541 */ 542 if (block_i) { 543 block_i->last_alloc_logical_block = block + blks - 1; 544 block_i->last_alloc_physical_block = 545 le32_to_cpu(where[num].key) + blks - 1; 546 } 547 548 /* We are done with atomic stuff, now do the rest of housekeeping */ 549 550 /* had we spliced it onto indirect block? */ 551 if (where->bh) 552 mark_buffer_dirty_inode(where->bh, inode); 553 554 inode->i_ctime = CURRENT_TIME_SEC; 555 mark_inode_dirty(inode); 556 } 557 558 /* 559 * Allocation strategy is simple: if we have to allocate something, we will 560 * have to go the whole way to leaf. So let's do it before attaching anything 561 * to tree, set linkage between the newborn blocks, write them if sync is 562 * required, recheck the path, free and repeat if check fails, otherwise 563 * set the last missing link (that will protect us from any truncate-generated 564 * removals - all blocks on the path are immune now) and possibly force the 565 * write on the parent block. 566 * That has a nice additional property: no special recovery from the failed 567 * allocations is needed - we simply release blocks and do not touch anything 568 * reachable from inode. 569 * 570 * `handle' can be NULL if create == 0. 571 * 572 * The BKL may not be held on entry here. Be sure to take it early. 573 * return > 0, # of blocks mapped or allocated. 574 * return = 0, if plain lookup failed. 575 * return < 0, error case. 576 */ 577 static int ext2_get_blocks(struct inode *inode, 578 sector_t iblock, unsigned long maxblocks, 579 struct buffer_head *bh_result, 580 int create) 581 { 582 int err = -EIO; 583 int offsets[4]; 584 Indirect chain[4]; 585 Indirect *partial; 586 ext2_fsblk_t goal; 587 int indirect_blks; 588 int blocks_to_boundary = 0; 589 int depth; 590 struct ext2_inode_info *ei = EXT2_I(inode); 591 int count = 0; 592 ext2_fsblk_t first_block = 0; 593 594 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary); 595 596 if (depth == 0) 597 return (err); 598 reread: 599 partial = ext2_get_branch(inode, depth, offsets, chain, &err); 600 601 /* Simplest case - block found, no allocation needed */ 602 if (!partial) { 603 first_block = le32_to_cpu(chain[depth - 1].key); 604 clear_buffer_new(bh_result); /* What's this do? */ 605 count++; 606 /*map more blocks*/ 607 while (count < maxblocks && count <= blocks_to_boundary) { 608 ext2_fsblk_t blk; 609 610 if (!verify_chain(chain, partial)) { 611 /* 612 * Indirect block might be removed by 613 * truncate while we were reading it. 614 * Handling of that case: forget what we've 615 * got now, go to reread. 616 */ 617 count = 0; 618 goto changed; 619 } 620 blk = le32_to_cpu(*(chain[depth-1].p + count)); 621 if (blk == first_block + count) 622 count++; 623 else 624 break; 625 } 626 goto got_it; 627 } 628 629 /* Next simple case - plain lookup or failed read of indirect block */ 630 if (!create || err == -EIO) 631 goto cleanup; 632 633 mutex_lock(&ei->truncate_mutex); 634 635 /* 636 * Okay, we need to do block allocation. Lazily initialize the block 637 * allocation info here if necessary 638 */ 639 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 640 ext2_init_block_alloc_info(inode); 641 642 goal = ext2_find_goal(inode, iblock, chain, partial); 643 644 /* the number of blocks need to allocate for [d,t]indirect blocks */ 645 indirect_blks = (chain + depth) - partial - 1; 646 /* 647 * Next look up the indirect map to count the totoal number of 648 * direct blocks to allocate for this branch. 649 */ 650 count = ext2_blks_to_allocate(partial, indirect_blks, 651 maxblocks, blocks_to_boundary); 652 /* 653 * XXX ???? Block out ext2_truncate while we alter the tree 654 */ 655 err = ext2_alloc_branch(inode, indirect_blks, &count, goal, 656 offsets + (partial - chain), partial); 657 658 if (err) { 659 mutex_unlock(&ei->truncate_mutex); 660 goto cleanup; 661 } 662 663 if (ext2_use_xip(inode->i_sb)) { 664 /* 665 * we need to clear the block 666 */ 667 err = ext2_clear_xip_target (inode, 668 le32_to_cpu(chain[depth-1].key)); 669 if (err) { 670 mutex_unlock(&ei->truncate_mutex); 671 goto cleanup; 672 } 673 } 674 675 ext2_splice_branch(inode, iblock, partial, indirect_blks, count); 676 mutex_unlock(&ei->truncate_mutex); 677 set_buffer_new(bh_result); 678 got_it: 679 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 680 if (count > blocks_to_boundary) 681 set_buffer_boundary(bh_result); 682 err = count; 683 /* Clean up and exit */ 684 partial = chain + depth - 1; /* the whole chain */ 685 cleanup: 686 while (partial > chain) { 687 brelse(partial->bh); 688 partial--; 689 } 690 return err; 691 changed: 692 while (partial > chain) { 693 brelse(partial->bh); 694 partial--; 695 } 696 goto reread; 697 } 698 699 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) 700 { 701 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 702 int ret = ext2_get_blocks(inode, iblock, max_blocks, 703 bh_result, create); 704 if (ret > 0) { 705 bh_result->b_size = (ret << inode->i_blkbits); 706 ret = 0; 707 } 708 return ret; 709 710 } 711 712 static int ext2_writepage(struct page *page, struct writeback_control *wbc) 713 { 714 return block_write_full_page(page, ext2_get_block, wbc); 715 } 716 717 static int ext2_readpage(struct file *file, struct page *page) 718 { 719 return mpage_readpage(page, ext2_get_block); 720 } 721 722 static int 723 ext2_readpages(struct file *file, struct address_space *mapping, 724 struct list_head *pages, unsigned nr_pages) 725 { 726 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block); 727 } 728 729 int __ext2_write_begin(struct file *file, struct address_space *mapping, 730 loff_t pos, unsigned len, unsigned flags, 731 struct page **pagep, void **fsdata) 732 { 733 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 734 ext2_get_block); 735 } 736 737 static int 738 ext2_write_begin(struct file *file, struct address_space *mapping, 739 loff_t pos, unsigned len, unsigned flags, 740 struct page **pagep, void **fsdata) 741 { 742 *pagep = NULL; 743 return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata); 744 } 745 746 static int 747 ext2_nobh_write_begin(struct file *file, struct address_space *mapping, 748 loff_t pos, unsigned len, unsigned flags, 749 struct page **pagep, void **fsdata) 750 { 751 /* 752 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework 753 * directory handling code to pass around offsets rather than struct 754 * pages in order to make this work easily. 755 */ 756 return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 757 ext2_get_block); 758 } 759 760 static int ext2_nobh_writepage(struct page *page, 761 struct writeback_control *wbc) 762 { 763 return nobh_writepage(page, ext2_get_block, wbc); 764 } 765 766 static sector_t ext2_bmap(struct address_space *mapping, sector_t block) 767 { 768 return generic_block_bmap(mapping,block,ext2_get_block); 769 } 770 771 static ssize_t 772 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 773 loff_t offset, unsigned long nr_segs) 774 { 775 struct file *file = iocb->ki_filp; 776 struct inode *inode = file->f_mapping->host; 777 778 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 779 offset, nr_segs, ext2_get_block, NULL); 780 } 781 782 static int 783 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc) 784 { 785 return mpage_writepages(mapping, wbc, ext2_get_block); 786 } 787 788 const struct address_space_operations ext2_aops = { 789 .readpage = ext2_readpage, 790 .readpages = ext2_readpages, 791 .writepage = ext2_writepage, 792 .sync_page = block_sync_page, 793 .write_begin = ext2_write_begin, 794 .write_end = generic_write_end, 795 .bmap = ext2_bmap, 796 .direct_IO = ext2_direct_IO, 797 .writepages = ext2_writepages, 798 .migratepage = buffer_migrate_page, 799 }; 800 801 const struct address_space_operations ext2_aops_xip = { 802 .bmap = ext2_bmap, 803 .get_xip_page = ext2_get_xip_page, 804 }; 805 806 const struct address_space_operations ext2_nobh_aops = { 807 .readpage = ext2_readpage, 808 .readpages = ext2_readpages, 809 .writepage = ext2_nobh_writepage, 810 .sync_page = block_sync_page, 811 .write_begin = ext2_nobh_write_begin, 812 .write_end = nobh_write_end, 813 .bmap = ext2_bmap, 814 .direct_IO = ext2_direct_IO, 815 .writepages = ext2_writepages, 816 .migratepage = buffer_migrate_page, 817 }; 818 819 /* 820 * Probably it should be a library function... search for first non-zero word 821 * or memcmp with zero_page, whatever is better for particular architecture. 822 * Linus? 823 */ 824 static inline int all_zeroes(__le32 *p, __le32 *q) 825 { 826 while (p < q) 827 if (*p++) 828 return 0; 829 return 1; 830 } 831 832 /** 833 * ext2_find_shared - find the indirect blocks for partial truncation. 834 * @inode: inode in question 835 * @depth: depth of the affected branch 836 * @offsets: offsets of pointers in that branch (see ext2_block_to_path) 837 * @chain: place to store the pointers to partial indirect blocks 838 * @top: place to the (detached) top of branch 839 * 840 * This is a helper function used by ext2_truncate(). 841 * 842 * When we do truncate() we may have to clean the ends of several indirect 843 * blocks but leave the blocks themselves alive. Block is partially 844 * truncated if some data below the new i_size is refered from it (and 845 * it is on the path to the first completely truncated data block, indeed). 846 * We have to free the top of that path along with everything to the right 847 * of the path. Since no allocation past the truncation point is possible 848 * until ext2_truncate() finishes, we may safely do the latter, but top 849 * of branch may require special attention - pageout below the truncation 850 * point might try to populate it. 851 * 852 * We atomically detach the top of branch from the tree, store the block 853 * number of its root in *@top, pointers to buffer_heads of partially 854 * truncated blocks - in @chain[].bh and pointers to their last elements 855 * that should not be removed - in @chain[].p. Return value is the pointer 856 * to last filled element of @chain. 857 * 858 * The work left to caller to do the actual freeing of subtrees: 859 * a) free the subtree starting from *@top 860 * b) free the subtrees whose roots are stored in 861 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 862 * c) free the subtrees growing from the inode past the @chain[0].p 863 * (no partially truncated stuff there). 864 */ 865 866 static Indirect *ext2_find_shared(struct inode *inode, 867 int depth, 868 int offsets[4], 869 Indirect chain[4], 870 __le32 *top) 871 { 872 Indirect *partial, *p; 873 int k, err; 874 875 *top = 0; 876 for (k = depth; k > 1 && !offsets[k-1]; k--) 877 ; 878 partial = ext2_get_branch(inode, k, offsets, chain, &err); 879 if (!partial) 880 partial = chain + k-1; 881 /* 882 * If the branch acquired continuation since we've looked at it - 883 * fine, it should all survive and (new) top doesn't belong to us. 884 */ 885 write_lock(&EXT2_I(inode)->i_meta_lock); 886 if (!partial->key && *partial->p) { 887 write_unlock(&EXT2_I(inode)->i_meta_lock); 888 goto no_top; 889 } 890 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 891 ; 892 /* 893 * OK, we've found the last block that must survive. The rest of our 894 * branch should be detached before unlocking. However, if that rest 895 * of branch is all ours and does not grow immediately from the inode 896 * it's easier to cheat and just decrement partial->p. 897 */ 898 if (p == chain + k - 1 && p > chain) { 899 p->p--; 900 } else { 901 *top = *p->p; 902 *p->p = 0; 903 } 904 write_unlock(&EXT2_I(inode)->i_meta_lock); 905 906 while(partial > p) 907 { 908 brelse(partial->bh); 909 partial--; 910 } 911 no_top: 912 return partial; 913 } 914 915 /** 916 * ext2_free_data - free a list of data blocks 917 * @inode: inode we are dealing with 918 * @p: array of block numbers 919 * @q: points immediately past the end of array 920 * 921 * We are freeing all blocks refered from that array (numbers are 922 * stored as little-endian 32-bit) and updating @inode->i_blocks 923 * appropriately. 924 */ 925 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q) 926 { 927 unsigned long block_to_free = 0, count = 0; 928 unsigned long nr; 929 930 for ( ; p < q ; p++) { 931 nr = le32_to_cpu(*p); 932 if (nr) { 933 *p = 0; 934 /* accumulate blocks to free if they're contiguous */ 935 if (count == 0) 936 goto free_this; 937 else if (block_to_free == nr - count) 938 count++; 939 else { 940 mark_inode_dirty(inode); 941 ext2_free_blocks (inode, block_to_free, count); 942 free_this: 943 block_to_free = nr; 944 count = 1; 945 } 946 } 947 } 948 if (count > 0) { 949 mark_inode_dirty(inode); 950 ext2_free_blocks (inode, block_to_free, count); 951 } 952 } 953 954 /** 955 * ext2_free_branches - free an array of branches 956 * @inode: inode we are dealing with 957 * @p: array of block numbers 958 * @q: pointer immediately past the end of array 959 * @depth: depth of the branches to free 960 * 961 * We are freeing all blocks refered from these branches (numbers are 962 * stored as little-endian 32-bit) and updating @inode->i_blocks 963 * appropriately. 964 */ 965 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth) 966 { 967 struct buffer_head * bh; 968 unsigned long nr; 969 970 if (depth--) { 971 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); 972 for ( ; p < q ; p++) { 973 nr = le32_to_cpu(*p); 974 if (!nr) 975 continue; 976 *p = 0; 977 bh = sb_bread(inode->i_sb, nr); 978 /* 979 * A read failure? Report error and clear slot 980 * (should be rare). 981 */ 982 if (!bh) { 983 ext2_error(inode->i_sb, "ext2_free_branches", 984 "Read failure, inode=%ld, block=%ld", 985 inode->i_ino, nr); 986 continue; 987 } 988 ext2_free_branches(inode, 989 (__le32*)bh->b_data, 990 (__le32*)bh->b_data + addr_per_block, 991 depth); 992 bforget(bh); 993 ext2_free_blocks(inode, nr, 1); 994 mark_inode_dirty(inode); 995 } 996 } else 997 ext2_free_data(inode, p, q); 998 } 999 1000 void ext2_truncate(struct inode *inode) 1001 { 1002 __le32 *i_data = EXT2_I(inode)->i_data; 1003 struct ext2_inode_info *ei = EXT2_I(inode); 1004 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); 1005 int offsets[4]; 1006 Indirect chain[4]; 1007 Indirect *partial; 1008 __le32 nr = 0; 1009 int n; 1010 long iblock; 1011 unsigned blocksize; 1012 1013 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1014 S_ISLNK(inode->i_mode))) 1015 return; 1016 if (ext2_inode_is_fast_symlink(inode)) 1017 return; 1018 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1019 return; 1020 1021 blocksize = inode->i_sb->s_blocksize; 1022 iblock = (inode->i_size + blocksize-1) 1023 >> EXT2_BLOCK_SIZE_BITS(inode->i_sb); 1024 1025 if (mapping_is_xip(inode->i_mapping)) 1026 xip_truncate_page(inode->i_mapping, inode->i_size); 1027 else if (test_opt(inode->i_sb, NOBH)) 1028 nobh_truncate_page(inode->i_mapping, 1029 inode->i_size, ext2_get_block); 1030 else 1031 block_truncate_page(inode->i_mapping, 1032 inode->i_size, ext2_get_block); 1033 1034 n = ext2_block_to_path(inode, iblock, offsets, NULL); 1035 if (n == 0) 1036 return; 1037 1038 /* 1039 * From here we block out all ext2_get_block() callers who want to 1040 * modify the block allocation tree. 1041 */ 1042 mutex_lock(&ei->truncate_mutex); 1043 1044 if (n == 1) { 1045 ext2_free_data(inode, i_data+offsets[0], 1046 i_data + EXT2_NDIR_BLOCKS); 1047 goto do_indirects; 1048 } 1049 1050 partial = ext2_find_shared(inode, n, offsets, chain, &nr); 1051 /* Kill the top of shared branch (already detached) */ 1052 if (nr) { 1053 if (partial == chain) 1054 mark_inode_dirty(inode); 1055 else 1056 mark_buffer_dirty_inode(partial->bh, inode); 1057 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial); 1058 } 1059 /* Clear the ends of indirect blocks on the shared branch */ 1060 while (partial > chain) { 1061 ext2_free_branches(inode, 1062 partial->p + 1, 1063 (__le32*)partial->bh->b_data+addr_per_block, 1064 (chain+n-1) - partial); 1065 mark_buffer_dirty_inode(partial->bh, inode); 1066 brelse (partial->bh); 1067 partial--; 1068 } 1069 do_indirects: 1070 /* Kill the remaining (whole) subtrees */ 1071 switch (offsets[0]) { 1072 default: 1073 nr = i_data[EXT2_IND_BLOCK]; 1074 if (nr) { 1075 i_data[EXT2_IND_BLOCK] = 0; 1076 mark_inode_dirty(inode); 1077 ext2_free_branches(inode, &nr, &nr+1, 1); 1078 } 1079 case EXT2_IND_BLOCK: 1080 nr = i_data[EXT2_DIND_BLOCK]; 1081 if (nr) { 1082 i_data[EXT2_DIND_BLOCK] = 0; 1083 mark_inode_dirty(inode); 1084 ext2_free_branches(inode, &nr, &nr+1, 2); 1085 } 1086 case EXT2_DIND_BLOCK: 1087 nr = i_data[EXT2_TIND_BLOCK]; 1088 if (nr) { 1089 i_data[EXT2_TIND_BLOCK] = 0; 1090 mark_inode_dirty(inode); 1091 ext2_free_branches(inode, &nr, &nr+1, 3); 1092 } 1093 case EXT2_TIND_BLOCK: 1094 ; 1095 } 1096 1097 ext2_discard_reservation(inode); 1098 1099 mutex_unlock(&ei->truncate_mutex); 1100 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; 1101 if (inode_needs_sync(inode)) { 1102 sync_mapping_buffers(inode->i_mapping); 1103 ext2_sync_inode (inode); 1104 } else { 1105 mark_inode_dirty(inode); 1106 } 1107 } 1108 1109 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino, 1110 struct buffer_head **p) 1111 { 1112 struct buffer_head * bh; 1113 unsigned long block_group; 1114 unsigned long block; 1115 unsigned long offset; 1116 struct ext2_group_desc * gdp; 1117 1118 *p = NULL; 1119 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) || 1120 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count)) 1121 goto Einval; 1122 1123 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb); 1124 gdp = ext2_get_group_desc(sb, block_group, NULL); 1125 if (!gdp) 1126 goto Egdp; 1127 /* 1128 * Figure out the offset within the block group inode table 1129 */ 1130 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb); 1131 block = le32_to_cpu(gdp->bg_inode_table) + 1132 (offset >> EXT2_BLOCK_SIZE_BITS(sb)); 1133 if (!(bh = sb_bread(sb, block))) 1134 goto Eio; 1135 1136 *p = bh; 1137 offset &= (EXT2_BLOCK_SIZE(sb) - 1); 1138 return (struct ext2_inode *) (bh->b_data + offset); 1139 1140 Einval: 1141 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu", 1142 (unsigned long) ino); 1143 return ERR_PTR(-EINVAL); 1144 Eio: 1145 ext2_error(sb, "ext2_get_inode", 1146 "unable to read inode block - inode=%lu, block=%lu", 1147 (unsigned long) ino, block); 1148 Egdp: 1149 return ERR_PTR(-EIO); 1150 } 1151 1152 void ext2_set_inode_flags(struct inode *inode) 1153 { 1154 unsigned int flags = EXT2_I(inode)->i_flags; 1155 1156 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 1157 if (flags & EXT2_SYNC_FL) 1158 inode->i_flags |= S_SYNC; 1159 if (flags & EXT2_APPEND_FL) 1160 inode->i_flags |= S_APPEND; 1161 if (flags & EXT2_IMMUTABLE_FL) 1162 inode->i_flags |= S_IMMUTABLE; 1163 if (flags & EXT2_NOATIME_FL) 1164 inode->i_flags |= S_NOATIME; 1165 if (flags & EXT2_DIRSYNC_FL) 1166 inode->i_flags |= S_DIRSYNC; 1167 } 1168 1169 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */ 1170 void ext2_get_inode_flags(struct ext2_inode_info *ei) 1171 { 1172 unsigned int flags = ei->vfs_inode.i_flags; 1173 1174 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL| 1175 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL); 1176 if (flags & S_SYNC) 1177 ei->i_flags |= EXT2_SYNC_FL; 1178 if (flags & S_APPEND) 1179 ei->i_flags |= EXT2_APPEND_FL; 1180 if (flags & S_IMMUTABLE) 1181 ei->i_flags |= EXT2_IMMUTABLE_FL; 1182 if (flags & S_NOATIME) 1183 ei->i_flags |= EXT2_NOATIME_FL; 1184 if (flags & S_DIRSYNC) 1185 ei->i_flags |= EXT2_DIRSYNC_FL; 1186 } 1187 1188 void ext2_read_inode (struct inode * inode) 1189 { 1190 struct ext2_inode_info *ei = EXT2_I(inode); 1191 ino_t ino = inode->i_ino; 1192 struct buffer_head * bh; 1193 struct ext2_inode * raw_inode = ext2_get_inode(inode->i_sb, ino, &bh); 1194 int n; 1195 1196 #ifdef CONFIG_EXT2_FS_POSIX_ACL 1197 ei->i_acl = EXT2_ACL_NOT_CACHED; 1198 ei->i_default_acl = EXT2_ACL_NOT_CACHED; 1199 #endif 1200 ei->i_block_alloc_info = NULL; 1201 1202 if (IS_ERR(raw_inode)) 1203 goto bad_inode; 1204 1205 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 1206 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 1207 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 1208 if (!(test_opt (inode->i_sb, NO_UID32))) { 1209 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 1210 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 1211 } 1212 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 1213 inode->i_size = le32_to_cpu(raw_inode->i_size); 1214 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime); 1215 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime); 1216 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime); 1217 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0; 1218 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 1219 /* We now have enough fields to check if the inode was active or not. 1220 * This is needed because nfsd might try to access dead inodes 1221 * the test is that same one that e2fsck uses 1222 * NeilBrown 1999oct15 1223 */ 1224 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) { 1225 /* this inode is deleted */ 1226 brelse (bh); 1227 goto bad_inode; 1228 } 1229 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 1230 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 1231 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); 1232 ei->i_frag_no = raw_inode->i_frag; 1233 ei->i_frag_size = raw_inode->i_fsize; 1234 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 1235 ei->i_dir_acl = 0; 1236 if (S_ISREG(inode->i_mode)) 1237 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 1238 else 1239 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 1240 ei->i_dtime = 0; 1241 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 1242 ei->i_state = 0; 1243 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb); 1244 ei->i_dir_start_lookup = 0; 1245 1246 /* 1247 * NOTE! The in-memory inode i_data array is in little-endian order 1248 * even on big-endian machines: we do NOT byteswap the block numbers! 1249 */ 1250 for (n = 0; n < EXT2_N_BLOCKS; n++) 1251 ei->i_data[n] = raw_inode->i_block[n]; 1252 1253 if (S_ISREG(inode->i_mode)) { 1254 inode->i_op = &ext2_file_inode_operations; 1255 if (ext2_use_xip(inode->i_sb)) { 1256 inode->i_mapping->a_ops = &ext2_aops_xip; 1257 inode->i_fop = &ext2_xip_file_operations; 1258 } else if (test_opt(inode->i_sb, NOBH)) { 1259 inode->i_mapping->a_ops = &ext2_nobh_aops; 1260 inode->i_fop = &ext2_file_operations; 1261 } else { 1262 inode->i_mapping->a_ops = &ext2_aops; 1263 inode->i_fop = &ext2_file_operations; 1264 } 1265 } else if (S_ISDIR(inode->i_mode)) { 1266 inode->i_op = &ext2_dir_inode_operations; 1267 inode->i_fop = &ext2_dir_operations; 1268 if (test_opt(inode->i_sb, NOBH)) 1269 inode->i_mapping->a_ops = &ext2_nobh_aops; 1270 else 1271 inode->i_mapping->a_ops = &ext2_aops; 1272 } else if (S_ISLNK(inode->i_mode)) { 1273 if (ext2_inode_is_fast_symlink(inode)) 1274 inode->i_op = &ext2_fast_symlink_inode_operations; 1275 else { 1276 inode->i_op = &ext2_symlink_inode_operations; 1277 if (test_opt(inode->i_sb, NOBH)) 1278 inode->i_mapping->a_ops = &ext2_nobh_aops; 1279 else 1280 inode->i_mapping->a_ops = &ext2_aops; 1281 } 1282 } else { 1283 inode->i_op = &ext2_special_inode_operations; 1284 if (raw_inode->i_block[0]) 1285 init_special_inode(inode, inode->i_mode, 1286 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 1287 else 1288 init_special_inode(inode, inode->i_mode, 1289 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 1290 } 1291 brelse (bh); 1292 ext2_set_inode_flags(inode); 1293 return; 1294 1295 bad_inode: 1296 make_bad_inode(inode); 1297 return; 1298 } 1299 1300 static int ext2_update_inode(struct inode * inode, int do_sync) 1301 { 1302 struct ext2_inode_info *ei = EXT2_I(inode); 1303 struct super_block *sb = inode->i_sb; 1304 ino_t ino = inode->i_ino; 1305 uid_t uid = inode->i_uid; 1306 gid_t gid = inode->i_gid; 1307 struct buffer_head * bh; 1308 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh); 1309 int n; 1310 int err = 0; 1311 1312 if (IS_ERR(raw_inode)) 1313 return -EIO; 1314 1315 /* For fields not not tracking in the in-memory inode, 1316 * initialise them to zero for new inodes. */ 1317 if (ei->i_state & EXT2_STATE_NEW) 1318 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size); 1319 1320 ext2_get_inode_flags(ei); 1321 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 1322 if (!(test_opt(sb, NO_UID32))) { 1323 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid)); 1324 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid)); 1325 /* 1326 * Fix up interoperability with old kernels. Otherwise, old inodes get 1327 * re-used with the upper 16 bits of the uid/gid intact 1328 */ 1329 if (!ei->i_dtime) { 1330 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid)); 1331 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid)); 1332 } else { 1333 raw_inode->i_uid_high = 0; 1334 raw_inode->i_gid_high = 0; 1335 } 1336 } else { 1337 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid)); 1338 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid)); 1339 raw_inode->i_uid_high = 0; 1340 raw_inode->i_gid_high = 0; 1341 } 1342 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 1343 raw_inode->i_size = cpu_to_le32(inode->i_size); 1344 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); 1345 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); 1346 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); 1347 1348 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 1349 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 1350 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 1351 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); 1352 raw_inode->i_frag = ei->i_frag_no; 1353 raw_inode->i_fsize = ei->i_frag_size; 1354 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 1355 if (!S_ISREG(inode->i_mode)) 1356 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 1357 else { 1358 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32); 1359 if (inode->i_size > 0x7fffffffULL) { 1360 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb, 1361 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) || 1362 EXT2_SB(sb)->s_es->s_rev_level == 1363 cpu_to_le32(EXT2_GOOD_OLD_REV)) { 1364 /* If this is the first large file 1365 * created, add a flag to the superblock. 1366 */ 1367 lock_kernel(); 1368 ext2_update_dynamic_rev(sb); 1369 EXT2_SET_RO_COMPAT_FEATURE(sb, 1370 EXT2_FEATURE_RO_COMPAT_LARGE_FILE); 1371 unlock_kernel(); 1372 ext2_write_super(sb); 1373 } 1374 } 1375 } 1376 1377 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 1378 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1379 if (old_valid_dev(inode->i_rdev)) { 1380 raw_inode->i_block[0] = 1381 cpu_to_le32(old_encode_dev(inode->i_rdev)); 1382 raw_inode->i_block[1] = 0; 1383 } else { 1384 raw_inode->i_block[0] = 0; 1385 raw_inode->i_block[1] = 1386 cpu_to_le32(new_encode_dev(inode->i_rdev)); 1387 raw_inode->i_block[2] = 0; 1388 } 1389 } else for (n = 0; n < EXT2_N_BLOCKS; n++) 1390 raw_inode->i_block[n] = ei->i_data[n]; 1391 mark_buffer_dirty(bh); 1392 if (do_sync) { 1393 sync_dirty_buffer(bh); 1394 if (buffer_req(bh) && !buffer_uptodate(bh)) { 1395 printk ("IO error syncing ext2 inode [%s:%08lx]\n", 1396 sb->s_id, (unsigned long) ino); 1397 err = -EIO; 1398 } 1399 } 1400 ei->i_state &= ~EXT2_STATE_NEW; 1401 brelse (bh); 1402 return err; 1403 } 1404 1405 int ext2_write_inode(struct inode *inode, int wait) 1406 { 1407 return ext2_update_inode(inode, wait); 1408 } 1409 1410 int ext2_sync_inode(struct inode *inode) 1411 { 1412 struct writeback_control wbc = { 1413 .sync_mode = WB_SYNC_ALL, 1414 .nr_to_write = 0, /* sys_fsync did this */ 1415 }; 1416 return sync_inode(inode, &wbc); 1417 } 1418 1419 int ext2_setattr(struct dentry *dentry, struct iattr *iattr) 1420 { 1421 struct inode *inode = dentry->d_inode; 1422 int error; 1423 1424 error = inode_change_ok(inode, iattr); 1425 if (error) 1426 return error; 1427 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) || 1428 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) { 1429 error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0; 1430 if (error) 1431 return error; 1432 } 1433 error = inode_setattr(inode, iattr); 1434 if (!error && (iattr->ia_valid & ATTR_MODE)) 1435 error = ext2_acl_chmod(inode); 1436 return error; 1437 } 1438