xref: /openbmc/linux/fs/ext2/inode.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext2/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Goal-directed block allocation by Stephen Tweedie
17  * 	(sct@dcs.ed.ac.uk), 1993, 1998
18  *  Big-endian to little-endian byte-swapping/bitmaps by
19  *        David S. Miller (davem@caip.rutgers.edu), 1995
20  *  64-bit file support on 64-bit platforms by Jakub Jelinek
21  * 	(jj@sunsite.ms.mff.cuni.cz)
22  *
23  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24  */
25 
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/dax.h>
30 #include <linux/blkdev.h>
31 #include <linux/quotaops.h>
32 #include <linux/writeback.h>
33 #include <linux/buffer_head.h>
34 #include <linux/mpage.h>
35 #include <linux/fiemap.h>
36 #include <linux/iomap.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/dax.h>
40 #include "ext2.h"
41 #include "acl.h"
42 #include "xattr.h"
43 
44 static int __ext2_write_inode(struct inode *inode, int do_sync);
45 
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
50 {
51 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
52 		(inode->i_sb->s_blocksize >> 9) : 0;
53 
54 	return (S_ISLNK(inode->i_mode) &&
55 		inode->i_blocks - ea_blocks == 0);
56 }
57 
58 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
59 
60 static void ext2_write_failed(struct address_space *mapping, loff_t to)
61 {
62 	struct inode *inode = mapping->host;
63 
64 	if (to > inode->i_size) {
65 		truncate_pagecache(inode, inode->i_size);
66 		ext2_truncate_blocks(inode, inode->i_size);
67 	}
68 }
69 
70 /*
71  * Called at the last iput() if i_nlink is zero.
72  */
73 void ext2_evict_inode(struct inode * inode)
74 {
75 	struct ext2_block_alloc_info *rsv;
76 	int want_delete = 0;
77 
78 	if (!inode->i_nlink && !is_bad_inode(inode)) {
79 		want_delete = 1;
80 		dquot_initialize(inode);
81 	} else {
82 		dquot_drop(inode);
83 	}
84 
85 	truncate_inode_pages_final(&inode->i_data);
86 
87 	if (want_delete) {
88 		sb_start_intwrite(inode->i_sb);
89 		/* set dtime */
90 		EXT2_I(inode)->i_dtime	= ktime_get_real_seconds();
91 		mark_inode_dirty(inode);
92 		__ext2_write_inode(inode, inode_needs_sync(inode));
93 		/* truncate to 0 */
94 		inode->i_size = 0;
95 		if (inode->i_blocks)
96 			ext2_truncate_blocks(inode, 0);
97 		ext2_xattr_delete_inode(inode);
98 	}
99 
100 	invalidate_inode_buffers(inode);
101 	clear_inode(inode);
102 
103 	ext2_discard_reservation(inode);
104 	rsv = EXT2_I(inode)->i_block_alloc_info;
105 	EXT2_I(inode)->i_block_alloc_info = NULL;
106 	if (unlikely(rsv))
107 		kfree(rsv);
108 
109 	if (want_delete) {
110 		ext2_free_inode(inode);
111 		sb_end_intwrite(inode->i_sb);
112 	}
113 }
114 
115 typedef struct {
116 	__le32	*p;
117 	__le32	key;
118 	struct buffer_head *bh;
119 } Indirect;
120 
121 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
122 {
123 	p->key = *(p->p = v);
124 	p->bh = bh;
125 }
126 
127 static inline int verify_chain(Indirect *from, Indirect *to)
128 {
129 	while (from <= to && from->key == *from->p)
130 		from++;
131 	return (from > to);
132 }
133 
134 /**
135  *	ext2_block_to_path - parse the block number into array of offsets
136  *	@inode: inode in question (we are only interested in its superblock)
137  *	@i_block: block number to be parsed
138  *	@offsets: array to store the offsets in
139  *      @boundary: set this non-zero if the referred-to block is likely to be
140  *             followed (on disk) by an indirect block.
141  *	To store the locations of file's data ext2 uses a data structure common
142  *	for UNIX filesystems - tree of pointers anchored in the inode, with
143  *	data blocks at leaves and indirect blocks in intermediate nodes.
144  *	This function translates the block number into path in that tree -
145  *	return value is the path length and @offsets[n] is the offset of
146  *	pointer to (n+1)th node in the nth one. If @block is out of range
147  *	(negative or too large) warning is printed and zero returned.
148  *
149  *	Note: function doesn't find node addresses, so no IO is needed. All
150  *	we need to know is the capacity of indirect blocks (taken from the
151  *	inode->i_sb).
152  */
153 
154 /*
155  * Portability note: the last comparison (check that we fit into triple
156  * indirect block) is spelled differently, because otherwise on an
157  * architecture with 32-bit longs and 8Kb pages we might get into trouble
158  * if our filesystem had 8Kb blocks. We might use long long, but that would
159  * kill us on x86. Oh, well, at least the sign propagation does not matter -
160  * i_block would have to be negative in the very beginning, so we would not
161  * get there at all.
162  */
163 
164 static int ext2_block_to_path(struct inode *inode,
165 			long i_block, int offsets[4], int *boundary)
166 {
167 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
168 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
169 	const long direct_blocks = EXT2_NDIR_BLOCKS,
170 		indirect_blocks = ptrs,
171 		double_blocks = (1 << (ptrs_bits * 2));
172 	int n = 0;
173 	int final = 0;
174 
175 	if (i_block < 0) {
176 		ext2_msg(inode->i_sb, KERN_WARNING,
177 			"warning: %s: block < 0", __func__);
178 	} else if (i_block < direct_blocks) {
179 		offsets[n++] = i_block;
180 		final = direct_blocks;
181 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
182 		offsets[n++] = EXT2_IND_BLOCK;
183 		offsets[n++] = i_block;
184 		final = ptrs;
185 	} else if ((i_block -= indirect_blocks) < double_blocks) {
186 		offsets[n++] = EXT2_DIND_BLOCK;
187 		offsets[n++] = i_block >> ptrs_bits;
188 		offsets[n++] = i_block & (ptrs - 1);
189 		final = ptrs;
190 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
191 		offsets[n++] = EXT2_TIND_BLOCK;
192 		offsets[n++] = i_block >> (ptrs_bits * 2);
193 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
194 		offsets[n++] = i_block & (ptrs - 1);
195 		final = ptrs;
196 	} else {
197 		ext2_msg(inode->i_sb, KERN_WARNING,
198 			"warning: %s: block is too big", __func__);
199 	}
200 	if (boundary)
201 		*boundary = final - 1 - (i_block & (ptrs - 1));
202 
203 	return n;
204 }
205 
206 /**
207  *	ext2_get_branch - read the chain of indirect blocks leading to data
208  *	@inode: inode in question
209  *	@depth: depth of the chain (1 - direct pointer, etc.)
210  *	@offsets: offsets of pointers in inode/indirect blocks
211  *	@chain: place to store the result
212  *	@err: here we store the error value
213  *
214  *	Function fills the array of triples <key, p, bh> and returns %NULL
215  *	if everything went OK or the pointer to the last filled triple
216  *	(incomplete one) otherwise. Upon the return chain[i].key contains
217  *	the number of (i+1)-th block in the chain (as it is stored in memory,
218  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
219  *	number (it points into struct inode for i==0 and into the bh->b_data
220  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
221  *	block for i>0 and NULL for i==0. In other words, it holds the block
222  *	numbers of the chain, addresses they were taken from (and where we can
223  *	verify that chain did not change) and buffer_heads hosting these
224  *	numbers.
225  *
226  *	Function stops when it stumbles upon zero pointer (absent block)
227  *		(pointer to last triple returned, *@err == 0)
228  *	or when it gets an IO error reading an indirect block
229  *		(ditto, *@err == -EIO)
230  *	or when it notices that chain had been changed while it was reading
231  *		(ditto, *@err == -EAGAIN)
232  *	or when it reads all @depth-1 indirect blocks successfully and finds
233  *	the whole chain, all way to the data (returns %NULL, *err == 0).
234  */
235 static Indirect *ext2_get_branch(struct inode *inode,
236 				 int depth,
237 				 int *offsets,
238 				 Indirect chain[4],
239 				 int *err)
240 {
241 	struct super_block *sb = inode->i_sb;
242 	Indirect *p = chain;
243 	struct buffer_head *bh;
244 
245 	*err = 0;
246 	/* i_data is not going away, no lock needed */
247 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
248 	if (!p->key)
249 		goto no_block;
250 	while (--depth) {
251 		bh = sb_bread(sb, le32_to_cpu(p->key));
252 		if (!bh)
253 			goto failure;
254 		read_lock(&EXT2_I(inode)->i_meta_lock);
255 		if (!verify_chain(chain, p))
256 			goto changed;
257 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
258 		read_unlock(&EXT2_I(inode)->i_meta_lock);
259 		if (!p->key)
260 			goto no_block;
261 	}
262 	return NULL;
263 
264 changed:
265 	read_unlock(&EXT2_I(inode)->i_meta_lock);
266 	brelse(bh);
267 	*err = -EAGAIN;
268 	goto no_block;
269 failure:
270 	*err = -EIO;
271 no_block:
272 	return p;
273 }
274 
275 /**
276  *	ext2_find_near - find a place for allocation with sufficient locality
277  *	@inode: owner
278  *	@ind: descriptor of indirect block.
279  *
280  *	This function returns the preferred place for block allocation.
281  *	It is used when heuristic for sequential allocation fails.
282  *	Rules are:
283  *	  + if there is a block to the left of our position - allocate near it.
284  *	  + if pointer will live in indirect block - allocate near that block.
285  *	  + if pointer will live in inode - allocate in the same cylinder group.
286  *
287  * In the latter case we colour the starting block by the callers PID to
288  * prevent it from clashing with concurrent allocations for a different inode
289  * in the same block group.   The PID is used here so that functionally related
290  * files will be close-by on-disk.
291  *
292  *	Caller must make sure that @ind is valid and will stay that way.
293  */
294 
295 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
296 {
297 	struct ext2_inode_info *ei = EXT2_I(inode);
298 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
299 	__le32 *p;
300 	ext2_fsblk_t bg_start;
301 	ext2_fsblk_t colour;
302 
303 	/* Try to find previous block */
304 	for (p = ind->p - 1; p >= start; p--)
305 		if (*p)
306 			return le32_to_cpu(*p);
307 
308 	/* No such thing, so let's try location of indirect block */
309 	if (ind->bh)
310 		return ind->bh->b_blocknr;
311 
312 	/*
313 	 * It is going to be referred from inode itself? OK, just put it into
314 	 * the same cylinder group then.
315 	 */
316 	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
317 	colour = (current->pid % 16) *
318 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
319 	return bg_start + colour;
320 }
321 
322 /**
323  *	ext2_find_goal - find a preferred place for allocation.
324  *	@inode: owner
325  *	@block:  block we want
326  *	@partial: pointer to the last triple within a chain
327  *
328  *	Returns preferred place for a block (the goal).
329  */
330 
331 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
332 					  Indirect *partial)
333 {
334 	struct ext2_block_alloc_info *block_i;
335 
336 	block_i = EXT2_I(inode)->i_block_alloc_info;
337 
338 	/*
339 	 * try the heuristic for sequential allocation,
340 	 * failing that at least try to get decent locality.
341 	 */
342 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
343 		&& (block_i->last_alloc_physical_block != 0)) {
344 		return block_i->last_alloc_physical_block + 1;
345 	}
346 
347 	return ext2_find_near(inode, partial);
348 }
349 
350 /**
351  *	ext2_blks_to_allocate: Look up the block map and count the number
352  *	of direct blocks need to be allocated for the given branch.
353  *
354  * 	@branch: chain of indirect blocks
355  *	@k: number of blocks need for indirect blocks
356  *	@blks: number of data blocks to be mapped.
357  *	@blocks_to_boundary:  the offset in the indirect block
358  *
359  *	return the number of direct blocks to allocate.
360  */
361 static int
362 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
363 		int blocks_to_boundary)
364 {
365 	unsigned long count = 0;
366 
367 	/*
368 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
369 	 * then it's clear blocks on that path have not allocated
370 	 */
371 	if (k > 0) {
372 		/* right now don't hanel cross boundary allocation */
373 		if (blks < blocks_to_boundary + 1)
374 			count += blks;
375 		else
376 			count += blocks_to_boundary + 1;
377 		return count;
378 	}
379 
380 	count++;
381 	while (count < blks && count <= blocks_to_boundary
382 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
383 		count++;
384 	}
385 	return count;
386 }
387 
388 /**
389  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
390  *	@indirect_blks: the number of blocks need to allocate for indirect
391  *			blocks
392  *	@blks: the number of blocks need to allocate for direct blocks
393  *	@new_blocks: on return it will store the new block numbers for
394  *	the indirect blocks(if needed) and the first direct block,
395  */
396 static int ext2_alloc_blocks(struct inode *inode,
397 			ext2_fsblk_t goal, int indirect_blks, int blks,
398 			ext2_fsblk_t new_blocks[4], int *err)
399 {
400 	int target, i;
401 	unsigned long count = 0;
402 	int index = 0;
403 	ext2_fsblk_t current_block = 0;
404 	int ret = 0;
405 
406 	/*
407 	 * Here we try to allocate the requested multiple blocks at once,
408 	 * on a best-effort basis.
409 	 * To build a branch, we should allocate blocks for
410 	 * the indirect blocks(if not allocated yet), and at least
411 	 * the first direct block of this branch.  That's the
412 	 * minimum number of blocks need to allocate(required)
413 	 */
414 	target = blks + indirect_blks;
415 
416 	while (1) {
417 		count = target;
418 		/* allocating blocks for indirect blocks and direct blocks */
419 		current_block = ext2_new_blocks(inode,goal,&count,err);
420 		if (*err)
421 			goto failed_out;
422 
423 		target -= count;
424 		/* allocate blocks for indirect blocks */
425 		while (index < indirect_blks && count) {
426 			new_blocks[index++] = current_block++;
427 			count--;
428 		}
429 
430 		if (count > 0)
431 			break;
432 	}
433 
434 	/* save the new block number for the first direct block */
435 	new_blocks[index] = current_block;
436 
437 	/* total number of blocks allocated for direct blocks */
438 	ret = count;
439 	*err = 0;
440 	return ret;
441 failed_out:
442 	for (i = 0; i <index; i++)
443 		ext2_free_blocks(inode, new_blocks[i], 1);
444 	if (index)
445 		mark_inode_dirty(inode);
446 	return ret;
447 }
448 
449 /**
450  *	ext2_alloc_branch - allocate and set up a chain of blocks.
451  *	@inode: owner
452  *	@indirect_blks: depth of the chain (number of blocks to allocate)
453  *	@blks: number of allocated direct blocks
454  *	@goal: preferred place for allocation
455  *	@offsets: offsets (in the blocks) to store the pointers to next.
456  *	@branch: place to store the chain in.
457  *
458  *	This function allocates @num blocks, zeroes out all but the last one,
459  *	links them into chain and (if we are synchronous) writes them to disk.
460  *	In other words, it prepares a branch that can be spliced onto the
461  *	inode. It stores the information about that chain in the branch[], in
462  *	the same format as ext2_get_branch() would do. We are calling it after
463  *	we had read the existing part of chain and partial points to the last
464  *	triple of that (one with zero ->key). Upon the exit we have the same
465  *	picture as after the successful ext2_get_block(), except that in one
466  *	place chain is disconnected - *branch->p is still zero (we did not
467  *	set the last link), but branch->key contains the number that should
468  *	be placed into *branch->p to fill that gap.
469  *
470  *	If allocation fails we free all blocks we've allocated (and forget
471  *	their buffer_heads) and return the error value the from failed
472  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
473  *	as described above and return 0.
474  */
475 
476 static int ext2_alloc_branch(struct inode *inode,
477 			int indirect_blks, int *blks, ext2_fsblk_t goal,
478 			int *offsets, Indirect *branch)
479 {
480 	int blocksize = inode->i_sb->s_blocksize;
481 	int i, n = 0;
482 	int err = 0;
483 	struct buffer_head *bh;
484 	int num;
485 	ext2_fsblk_t new_blocks[4];
486 	ext2_fsblk_t current_block;
487 
488 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
489 				*blks, new_blocks, &err);
490 	if (err)
491 		return err;
492 
493 	branch[0].key = cpu_to_le32(new_blocks[0]);
494 	/*
495 	 * metadata blocks and data blocks are allocated.
496 	 */
497 	for (n = 1; n <= indirect_blks;  n++) {
498 		/*
499 		 * Get buffer_head for parent block, zero it out
500 		 * and set the pointer to new one, then send
501 		 * parent to disk.
502 		 */
503 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
504 		if (unlikely(!bh)) {
505 			err = -ENOMEM;
506 			goto failed;
507 		}
508 		branch[n].bh = bh;
509 		lock_buffer(bh);
510 		memset(bh->b_data, 0, blocksize);
511 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
512 		branch[n].key = cpu_to_le32(new_blocks[n]);
513 		*branch[n].p = branch[n].key;
514 		if ( n == indirect_blks) {
515 			current_block = new_blocks[n];
516 			/*
517 			 * End of chain, update the last new metablock of
518 			 * the chain to point to the new allocated
519 			 * data blocks numbers
520 			 */
521 			for (i=1; i < num; i++)
522 				*(branch[n].p + i) = cpu_to_le32(++current_block);
523 		}
524 		set_buffer_uptodate(bh);
525 		unlock_buffer(bh);
526 		mark_buffer_dirty_inode(bh, inode);
527 		/* We used to sync bh here if IS_SYNC(inode).
528 		 * But we now rely upon generic_write_sync()
529 		 * and b_inode_buffers.  But not for directories.
530 		 */
531 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
532 			sync_dirty_buffer(bh);
533 	}
534 	*blks = num;
535 	return err;
536 
537 failed:
538 	for (i = 1; i < n; i++)
539 		bforget(branch[i].bh);
540 	for (i = 0; i < indirect_blks; i++)
541 		ext2_free_blocks(inode, new_blocks[i], 1);
542 	ext2_free_blocks(inode, new_blocks[i], num);
543 	return err;
544 }
545 
546 /**
547  * ext2_splice_branch - splice the allocated branch onto inode.
548  * @inode: owner
549  * @block: (logical) number of block we are adding
550  * @where: location of missing link
551  * @num:   number of indirect blocks we are adding
552  * @blks:  number of direct blocks we are adding
553  *
554  * This function fills the missing link and does all housekeeping needed in
555  * inode (->i_blocks, etc.). In case of success we end up with the full
556  * chain to new block and return 0.
557  */
558 static void ext2_splice_branch(struct inode *inode,
559 			long block, Indirect *where, int num, int blks)
560 {
561 	int i;
562 	struct ext2_block_alloc_info *block_i;
563 	ext2_fsblk_t current_block;
564 
565 	block_i = EXT2_I(inode)->i_block_alloc_info;
566 
567 	/* XXX LOCKING probably should have i_meta_lock ?*/
568 	/* That's it */
569 
570 	*where->p = where->key;
571 
572 	/*
573 	 * Update the host buffer_head or inode to point to more just allocated
574 	 * direct blocks blocks
575 	 */
576 	if (num == 0 && blks > 1) {
577 		current_block = le32_to_cpu(where->key) + 1;
578 		for (i = 1; i < blks; i++)
579 			*(where->p + i ) = cpu_to_le32(current_block++);
580 	}
581 
582 	/*
583 	 * update the most recently allocated logical & physical block
584 	 * in i_block_alloc_info, to assist find the proper goal block for next
585 	 * allocation
586 	 */
587 	if (block_i) {
588 		block_i->last_alloc_logical_block = block + blks - 1;
589 		block_i->last_alloc_physical_block =
590 				le32_to_cpu(where[num].key) + blks - 1;
591 	}
592 
593 	/* We are done with atomic stuff, now do the rest of housekeeping */
594 
595 	/* had we spliced it onto indirect block? */
596 	if (where->bh)
597 		mark_buffer_dirty_inode(where->bh, inode);
598 
599 	inode->i_ctime = current_time(inode);
600 	mark_inode_dirty(inode);
601 }
602 
603 /*
604  * Allocation strategy is simple: if we have to allocate something, we will
605  * have to go the whole way to leaf. So let's do it before attaching anything
606  * to tree, set linkage between the newborn blocks, write them if sync is
607  * required, recheck the path, free and repeat if check fails, otherwise
608  * set the last missing link (that will protect us from any truncate-generated
609  * removals - all blocks on the path are immune now) and possibly force the
610  * write on the parent block.
611  * That has a nice additional property: no special recovery from the failed
612  * allocations is needed - we simply release blocks and do not touch anything
613  * reachable from inode.
614  *
615  * `handle' can be NULL if create == 0.
616  *
617  * return > 0, # of blocks mapped or allocated.
618  * return = 0, if plain lookup failed.
619  * return < 0, error case.
620  */
621 static int ext2_get_blocks(struct inode *inode,
622 			   sector_t iblock, unsigned long maxblocks,
623 			   u32 *bno, bool *new, bool *boundary,
624 			   int create)
625 {
626 	int err;
627 	int offsets[4];
628 	Indirect chain[4];
629 	Indirect *partial;
630 	ext2_fsblk_t goal;
631 	int indirect_blks;
632 	int blocks_to_boundary = 0;
633 	int depth;
634 	struct ext2_inode_info *ei = EXT2_I(inode);
635 	int count = 0;
636 	ext2_fsblk_t first_block = 0;
637 
638 	BUG_ON(maxblocks == 0);
639 
640 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
641 
642 	if (depth == 0)
643 		return -EIO;
644 
645 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
646 	/* Simplest case - block found, no allocation needed */
647 	if (!partial) {
648 		first_block = le32_to_cpu(chain[depth - 1].key);
649 		count++;
650 		/*map more blocks*/
651 		while (count < maxblocks && count <= blocks_to_boundary) {
652 			ext2_fsblk_t blk;
653 
654 			if (!verify_chain(chain, chain + depth - 1)) {
655 				/*
656 				 * Indirect block might be removed by
657 				 * truncate while we were reading it.
658 				 * Handling of that case: forget what we've
659 				 * got now, go to reread.
660 				 */
661 				err = -EAGAIN;
662 				count = 0;
663 				partial = chain + depth - 1;
664 				break;
665 			}
666 			blk = le32_to_cpu(*(chain[depth-1].p + count));
667 			if (blk == first_block + count)
668 				count++;
669 			else
670 				break;
671 		}
672 		if (err != -EAGAIN)
673 			goto got_it;
674 	}
675 
676 	/* Next simple case - plain lookup or failed read of indirect block */
677 	if (!create || err == -EIO)
678 		goto cleanup;
679 
680 	mutex_lock(&ei->truncate_mutex);
681 	/*
682 	 * If the indirect block is missing while we are reading
683 	 * the chain(ext2_get_branch() returns -EAGAIN err), or
684 	 * if the chain has been changed after we grab the semaphore,
685 	 * (either because another process truncated this branch, or
686 	 * another get_block allocated this branch) re-grab the chain to see if
687 	 * the request block has been allocated or not.
688 	 *
689 	 * Since we already block the truncate/other get_block
690 	 * at this point, we will have the current copy of the chain when we
691 	 * splice the branch into the tree.
692 	 */
693 	if (err == -EAGAIN || !verify_chain(chain, partial)) {
694 		while (partial > chain) {
695 			brelse(partial->bh);
696 			partial--;
697 		}
698 		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
699 		if (!partial) {
700 			count++;
701 			mutex_unlock(&ei->truncate_mutex);
702 			goto got_it;
703 		}
704 
705 		if (err) {
706 			mutex_unlock(&ei->truncate_mutex);
707 			goto cleanup;
708 		}
709 	}
710 
711 	/*
712 	 * Okay, we need to do block allocation.  Lazily initialize the block
713 	 * allocation info here if necessary
714 	*/
715 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
716 		ext2_init_block_alloc_info(inode);
717 
718 	goal = ext2_find_goal(inode, iblock, partial);
719 
720 	/* the number of blocks need to allocate for [d,t]indirect blocks */
721 	indirect_blks = (chain + depth) - partial - 1;
722 	/*
723 	 * Next look up the indirect map to count the total number of
724 	 * direct blocks to allocate for this branch.
725 	 */
726 	count = ext2_blks_to_allocate(partial, indirect_blks,
727 					maxblocks, blocks_to_boundary);
728 	/*
729 	 * XXX ???? Block out ext2_truncate while we alter the tree
730 	 */
731 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
732 				offsets + (partial - chain), partial);
733 
734 	if (err) {
735 		mutex_unlock(&ei->truncate_mutex);
736 		goto cleanup;
737 	}
738 
739 	if (IS_DAX(inode)) {
740 		/*
741 		 * We must unmap blocks before zeroing so that writeback cannot
742 		 * overwrite zeros with stale data from block device page cache.
743 		 */
744 		clean_bdev_aliases(inode->i_sb->s_bdev,
745 				   le32_to_cpu(chain[depth-1].key),
746 				   count);
747 		/*
748 		 * block must be initialised before we put it in the tree
749 		 * so that it's not found by another thread before it's
750 		 * initialised
751 		 */
752 		err = sb_issue_zeroout(inode->i_sb,
753 				le32_to_cpu(chain[depth-1].key), count,
754 				GFP_NOFS);
755 		if (err) {
756 			mutex_unlock(&ei->truncate_mutex);
757 			goto cleanup;
758 		}
759 	}
760 	*new = true;
761 
762 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
763 	mutex_unlock(&ei->truncate_mutex);
764 got_it:
765 	if (count > blocks_to_boundary)
766 		*boundary = true;
767 	err = count;
768 	/* Clean up and exit */
769 	partial = chain + depth - 1;	/* the whole chain */
770 cleanup:
771 	while (partial > chain) {
772 		brelse(partial->bh);
773 		partial--;
774 	}
775 	if (err > 0)
776 		*bno = le32_to_cpu(chain[depth-1].key);
777 	return err;
778 }
779 
780 int ext2_get_block(struct inode *inode, sector_t iblock,
781 		struct buffer_head *bh_result, int create)
782 {
783 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
784 	bool new = false, boundary = false;
785 	u32 bno;
786 	int ret;
787 
788 	ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
789 			create);
790 	if (ret <= 0)
791 		return ret;
792 
793 	map_bh(bh_result, inode->i_sb, bno);
794 	bh_result->b_size = (ret << inode->i_blkbits);
795 	if (new)
796 		set_buffer_new(bh_result);
797 	if (boundary)
798 		set_buffer_boundary(bh_result);
799 	return 0;
800 
801 }
802 
803 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
804 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
805 {
806 	unsigned int blkbits = inode->i_blkbits;
807 	unsigned long first_block = offset >> blkbits;
808 	unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
809 	struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
810 	bool new = false, boundary = false;
811 	u32 bno;
812 	int ret;
813 
814 	ret = ext2_get_blocks(inode, first_block, max_blocks,
815 			&bno, &new, &boundary, flags & IOMAP_WRITE);
816 	if (ret < 0)
817 		return ret;
818 
819 	iomap->flags = 0;
820 	iomap->offset = (u64)first_block << blkbits;
821 	if (flags & IOMAP_DAX)
822 		iomap->dax_dev = sbi->s_daxdev;
823 	else
824 		iomap->bdev = inode->i_sb->s_bdev;
825 
826 	if (ret == 0) {
827 		iomap->type = IOMAP_HOLE;
828 		iomap->addr = IOMAP_NULL_ADDR;
829 		iomap->length = 1 << blkbits;
830 	} else {
831 		iomap->type = IOMAP_MAPPED;
832 		iomap->addr = (u64)bno << blkbits;
833 		if (flags & IOMAP_DAX)
834 			iomap->addr += sbi->s_dax_part_off;
835 		iomap->length = (u64)ret << blkbits;
836 		iomap->flags |= IOMAP_F_MERGED;
837 	}
838 
839 	if (new)
840 		iomap->flags |= IOMAP_F_NEW;
841 	return 0;
842 }
843 
844 static int
845 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
846 		ssize_t written, unsigned flags, struct iomap *iomap)
847 {
848 	if (iomap->type == IOMAP_MAPPED &&
849 	    written < length &&
850 	    (flags & IOMAP_WRITE))
851 		ext2_write_failed(inode->i_mapping, offset + length);
852 	return 0;
853 }
854 
855 const struct iomap_ops ext2_iomap_ops = {
856 	.iomap_begin		= ext2_iomap_begin,
857 	.iomap_end		= ext2_iomap_end,
858 };
859 
860 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
861 		u64 start, u64 len)
862 {
863 	int ret;
864 
865 	inode_lock(inode);
866 	len = min_t(u64, len, i_size_read(inode));
867 	ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
868 	inode_unlock(inode);
869 
870 	return ret;
871 }
872 
873 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
874 {
875 	return block_write_full_page(page, ext2_get_block, wbc);
876 }
877 
878 static int ext2_readpage(struct file *file, struct page *page)
879 {
880 	return mpage_readpage(page, ext2_get_block);
881 }
882 
883 static void ext2_readahead(struct readahead_control *rac)
884 {
885 	mpage_readahead(rac, ext2_get_block);
886 }
887 
888 static int
889 ext2_write_begin(struct file *file, struct address_space *mapping,
890 		loff_t pos, unsigned len, unsigned flags,
891 		struct page **pagep, void **fsdata)
892 {
893 	int ret;
894 
895 	ret = block_write_begin(mapping, pos, len, flags, pagep,
896 				ext2_get_block);
897 	if (ret < 0)
898 		ext2_write_failed(mapping, pos + len);
899 	return ret;
900 }
901 
902 static int ext2_write_end(struct file *file, struct address_space *mapping,
903 			loff_t pos, unsigned len, unsigned copied,
904 			struct page *page, void *fsdata)
905 {
906 	int ret;
907 
908 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
909 	if (ret < len)
910 		ext2_write_failed(mapping, pos + len);
911 	return ret;
912 }
913 
914 static int
915 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
916 		loff_t pos, unsigned len, unsigned flags,
917 		struct page **pagep, void **fsdata)
918 {
919 	int ret;
920 
921 	ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
922 			       ext2_get_block);
923 	if (ret < 0)
924 		ext2_write_failed(mapping, pos + len);
925 	return ret;
926 }
927 
928 static int ext2_nobh_writepage(struct page *page,
929 			struct writeback_control *wbc)
930 {
931 	return nobh_writepage(page, ext2_get_block, wbc);
932 }
933 
934 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
935 {
936 	return generic_block_bmap(mapping,block,ext2_get_block);
937 }
938 
939 static ssize_t
940 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
941 {
942 	struct file *file = iocb->ki_filp;
943 	struct address_space *mapping = file->f_mapping;
944 	struct inode *inode = mapping->host;
945 	size_t count = iov_iter_count(iter);
946 	loff_t offset = iocb->ki_pos;
947 	ssize_t ret;
948 
949 	ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
950 	if (ret < 0 && iov_iter_rw(iter) == WRITE)
951 		ext2_write_failed(mapping, offset + count);
952 	return ret;
953 }
954 
955 static int
956 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
957 {
958 	return mpage_writepages(mapping, wbc, ext2_get_block);
959 }
960 
961 static int
962 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
963 {
964 	struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
965 
966 	return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
967 }
968 
969 const struct address_space_operations ext2_aops = {
970 	.dirty_folio		= block_dirty_folio,
971 	.invalidate_folio	= block_invalidate_folio,
972 	.readpage		= ext2_readpage,
973 	.readahead		= ext2_readahead,
974 	.writepage		= ext2_writepage,
975 	.write_begin		= ext2_write_begin,
976 	.write_end		= ext2_write_end,
977 	.bmap			= ext2_bmap,
978 	.direct_IO		= ext2_direct_IO,
979 	.writepages		= ext2_writepages,
980 	.migratepage		= buffer_migrate_page,
981 	.is_partially_uptodate	= block_is_partially_uptodate,
982 	.error_remove_page	= generic_error_remove_page,
983 };
984 
985 const struct address_space_operations ext2_nobh_aops = {
986 	.dirty_folio		= block_dirty_folio,
987 	.invalidate_folio	= block_invalidate_folio,
988 	.readpage		= ext2_readpage,
989 	.readahead		= ext2_readahead,
990 	.writepage		= ext2_nobh_writepage,
991 	.write_begin		= ext2_nobh_write_begin,
992 	.write_end		= nobh_write_end,
993 	.bmap			= ext2_bmap,
994 	.direct_IO		= ext2_direct_IO,
995 	.writepages		= ext2_writepages,
996 	.migratepage		= buffer_migrate_page,
997 	.error_remove_page	= generic_error_remove_page,
998 };
999 
1000 static const struct address_space_operations ext2_dax_aops = {
1001 	.writepages		= ext2_dax_writepages,
1002 	.direct_IO		= noop_direct_IO,
1003 	.dirty_folio		= noop_dirty_folio,
1004 };
1005 
1006 /*
1007  * Probably it should be a library function... search for first non-zero word
1008  * or memcmp with zero_page, whatever is better for particular architecture.
1009  * Linus?
1010  */
1011 static inline int all_zeroes(__le32 *p, __le32 *q)
1012 {
1013 	while (p < q)
1014 		if (*p++)
1015 			return 0;
1016 	return 1;
1017 }
1018 
1019 /**
1020  *	ext2_find_shared - find the indirect blocks for partial truncation.
1021  *	@inode:	  inode in question
1022  *	@depth:	  depth of the affected branch
1023  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
1024  *	@chain:	  place to store the pointers to partial indirect blocks
1025  *	@top:	  place to the (detached) top of branch
1026  *
1027  *	This is a helper function used by ext2_truncate().
1028  *
1029  *	When we do truncate() we may have to clean the ends of several indirect
1030  *	blocks but leave the blocks themselves alive. Block is partially
1031  *	truncated if some data below the new i_size is referred from it (and
1032  *	it is on the path to the first completely truncated data block, indeed).
1033  *	We have to free the top of that path along with everything to the right
1034  *	of the path. Since no allocation past the truncation point is possible
1035  *	until ext2_truncate() finishes, we may safely do the latter, but top
1036  *	of branch may require special attention - pageout below the truncation
1037  *	point might try to populate it.
1038  *
1039  *	We atomically detach the top of branch from the tree, store the block
1040  *	number of its root in *@top, pointers to buffer_heads of partially
1041  *	truncated blocks - in @chain[].bh and pointers to their last elements
1042  *	that should not be removed - in @chain[].p. Return value is the pointer
1043  *	to last filled element of @chain.
1044  *
1045  *	The work left to caller to do the actual freeing of subtrees:
1046  *		a) free the subtree starting from *@top
1047  *		b) free the subtrees whose roots are stored in
1048  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1049  *		c) free the subtrees growing from the inode past the @chain[0].p
1050  *			(no partially truncated stuff there).
1051  */
1052 
1053 static Indirect *ext2_find_shared(struct inode *inode,
1054 				int depth,
1055 				int offsets[4],
1056 				Indirect chain[4],
1057 				__le32 *top)
1058 {
1059 	Indirect *partial, *p;
1060 	int k, err;
1061 
1062 	*top = 0;
1063 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1064 		;
1065 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
1066 	if (!partial)
1067 		partial = chain + k-1;
1068 	/*
1069 	 * If the branch acquired continuation since we've looked at it -
1070 	 * fine, it should all survive and (new) top doesn't belong to us.
1071 	 */
1072 	write_lock(&EXT2_I(inode)->i_meta_lock);
1073 	if (!partial->key && *partial->p) {
1074 		write_unlock(&EXT2_I(inode)->i_meta_lock);
1075 		goto no_top;
1076 	}
1077 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1078 		;
1079 	/*
1080 	 * OK, we've found the last block that must survive. The rest of our
1081 	 * branch should be detached before unlocking. However, if that rest
1082 	 * of branch is all ours and does not grow immediately from the inode
1083 	 * it's easier to cheat and just decrement partial->p.
1084 	 */
1085 	if (p == chain + k - 1 && p > chain) {
1086 		p->p--;
1087 	} else {
1088 		*top = *p->p;
1089 		*p->p = 0;
1090 	}
1091 	write_unlock(&EXT2_I(inode)->i_meta_lock);
1092 
1093 	while(partial > p)
1094 	{
1095 		brelse(partial->bh);
1096 		partial--;
1097 	}
1098 no_top:
1099 	return partial;
1100 }
1101 
1102 /**
1103  *	ext2_free_data - free a list of data blocks
1104  *	@inode:	inode we are dealing with
1105  *	@p:	array of block numbers
1106  *	@q:	points immediately past the end of array
1107  *
1108  *	We are freeing all blocks referred from that array (numbers are
1109  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1110  *	appropriately.
1111  */
1112 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1113 {
1114 	unsigned long block_to_free = 0, count = 0;
1115 	unsigned long nr;
1116 
1117 	for ( ; p < q ; p++) {
1118 		nr = le32_to_cpu(*p);
1119 		if (nr) {
1120 			*p = 0;
1121 			/* accumulate blocks to free if they're contiguous */
1122 			if (count == 0)
1123 				goto free_this;
1124 			else if (block_to_free == nr - count)
1125 				count++;
1126 			else {
1127 				ext2_free_blocks (inode, block_to_free, count);
1128 				mark_inode_dirty(inode);
1129 			free_this:
1130 				block_to_free = nr;
1131 				count = 1;
1132 			}
1133 		}
1134 	}
1135 	if (count > 0) {
1136 		ext2_free_blocks (inode, block_to_free, count);
1137 		mark_inode_dirty(inode);
1138 	}
1139 }
1140 
1141 /**
1142  *	ext2_free_branches - free an array of branches
1143  *	@inode:	inode we are dealing with
1144  *	@p:	array of block numbers
1145  *	@q:	pointer immediately past the end of array
1146  *	@depth:	depth of the branches to free
1147  *
1148  *	We are freeing all blocks referred from these branches (numbers are
1149  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1150  *	appropriately.
1151  */
1152 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1153 {
1154 	struct buffer_head * bh;
1155 	unsigned long nr;
1156 
1157 	if (depth--) {
1158 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1159 		for ( ; p < q ; p++) {
1160 			nr = le32_to_cpu(*p);
1161 			if (!nr)
1162 				continue;
1163 			*p = 0;
1164 			bh = sb_bread(inode->i_sb, nr);
1165 			/*
1166 			 * A read failure? Report error and clear slot
1167 			 * (should be rare).
1168 			 */
1169 			if (!bh) {
1170 				ext2_error(inode->i_sb, "ext2_free_branches",
1171 					"Read failure, inode=%ld, block=%ld",
1172 					inode->i_ino, nr);
1173 				continue;
1174 			}
1175 			ext2_free_branches(inode,
1176 					   (__le32*)bh->b_data,
1177 					   (__le32*)bh->b_data + addr_per_block,
1178 					   depth);
1179 			bforget(bh);
1180 			ext2_free_blocks(inode, nr, 1);
1181 			mark_inode_dirty(inode);
1182 		}
1183 	} else
1184 		ext2_free_data(inode, p, q);
1185 }
1186 
1187 /* mapping->invalidate_lock must be held when calling this function */
1188 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1189 {
1190 	__le32 *i_data = EXT2_I(inode)->i_data;
1191 	struct ext2_inode_info *ei = EXT2_I(inode);
1192 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1193 	int offsets[4];
1194 	Indirect chain[4];
1195 	Indirect *partial;
1196 	__le32 nr = 0;
1197 	int n;
1198 	long iblock;
1199 	unsigned blocksize;
1200 	blocksize = inode->i_sb->s_blocksize;
1201 	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1202 
1203 #ifdef CONFIG_FS_DAX
1204 	WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1205 #endif
1206 
1207 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1208 	if (n == 0)
1209 		return;
1210 
1211 	/*
1212 	 * From here we block out all ext2_get_block() callers who want to
1213 	 * modify the block allocation tree.
1214 	 */
1215 	mutex_lock(&ei->truncate_mutex);
1216 
1217 	if (n == 1) {
1218 		ext2_free_data(inode, i_data+offsets[0],
1219 					i_data + EXT2_NDIR_BLOCKS);
1220 		goto do_indirects;
1221 	}
1222 
1223 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1224 	/* Kill the top of shared branch (already detached) */
1225 	if (nr) {
1226 		if (partial == chain)
1227 			mark_inode_dirty(inode);
1228 		else
1229 			mark_buffer_dirty_inode(partial->bh, inode);
1230 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1231 	}
1232 	/* Clear the ends of indirect blocks on the shared branch */
1233 	while (partial > chain) {
1234 		ext2_free_branches(inode,
1235 				   partial->p + 1,
1236 				   (__le32*)partial->bh->b_data+addr_per_block,
1237 				   (chain+n-1) - partial);
1238 		mark_buffer_dirty_inode(partial->bh, inode);
1239 		brelse (partial->bh);
1240 		partial--;
1241 	}
1242 do_indirects:
1243 	/* Kill the remaining (whole) subtrees */
1244 	switch (offsets[0]) {
1245 		default:
1246 			nr = i_data[EXT2_IND_BLOCK];
1247 			if (nr) {
1248 				i_data[EXT2_IND_BLOCK] = 0;
1249 				mark_inode_dirty(inode);
1250 				ext2_free_branches(inode, &nr, &nr+1, 1);
1251 			}
1252 			fallthrough;
1253 		case EXT2_IND_BLOCK:
1254 			nr = i_data[EXT2_DIND_BLOCK];
1255 			if (nr) {
1256 				i_data[EXT2_DIND_BLOCK] = 0;
1257 				mark_inode_dirty(inode);
1258 				ext2_free_branches(inode, &nr, &nr+1, 2);
1259 			}
1260 			fallthrough;
1261 		case EXT2_DIND_BLOCK:
1262 			nr = i_data[EXT2_TIND_BLOCK];
1263 			if (nr) {
1264 				i_data[EXT2_TIND_BLOCK] = 0;
1265 				mark_inode_dirty(inode);
1266 				ext2_free_branches(inode, &nr, &nr+1, 3);
1267 			}
1268 			break;
1269 		case EXT2_TIND_BLOCK:
1270 			;
1271 	}
1272 
1273 	ext2_discard_reservation(inode);
1274 
1275 	mutex_unlock(&ei->truncate_mutex);
1276 }
1277 
1278 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1279 {
1280 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1281 	    S_ISLNK(inode->i_mode)))
1282 		return;
1283 	if (ext2_inode_is_fast_symlink(inode))
1284 		return;
1285 
1286 	filemap_invalidate_lock(inode->i_mapping);
1287 	__ext2_truncate_blocks(inode, offset);
1288 	filemap_invalidate_unlock(inode->i_mapping);
1289 }
1290 
1291 static int ext2_setsize(struct inode *inode, loff_t newsize)
1292 {
1293 	int error;
1294 
1295 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1296 	    S_ISLNK(inode->i_mode)))
1297 		return -EINVAL;
1298 	if (ext2_inode_is_fast_symlink(inode))
1299 		return -EINVAL;
1300 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1301 		return -EPERM;
1302 
1303 	inode_dio_wait(inode);
1304 
1305 	if (IS_DAX(inode)) {
1306 		error = dax_zero_range(inode, newsize,
1307 				       PAGE_ALIGN(newsize) - newsize, NULL,
1308 				       &ext2_iomap_ops);
1309 	} else if (test_opt(inode->i_sb, NOBH))
1310 		error = nobh_truncate_page(inode->i_mapping,
1311 				newsize, ext2_get_block);
1312 	else
1313 		error = block_truncate_page(inode->i_mapping,
1314 				newsize, ext2_get_block);
1315 	if (error)
1316 		return error;
1317 
1318 	filemap_invalidate_lock(inode->i_mapping);
1319 	truncate_setsize(inode, newsize);
1320 	__ext2_truncate_blocks(inode, newsize);
1321 	filemap_invalidate_unlock(inode->i_mapping);
1322 
1323 	inode->i_mtime = inode->i_ctime = current_time(inode);
1324 	if (inode_needs_sync(inode)) {
1325 		sync_mapping_buffers(inode->i_mapping);
1326 		sync_inode_metadata(inode, 1);
1327 	} else {
1328 		mark_inode_dirty(inode);
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1335 					struct buffer_head **p)
1336 {
1337 	struct buffer_head * bh;
1338 	unsigned long block_group;
1339 	unsigned long block;
1340 	unsigned long offset;
1341 	struct ext2_group_desc * gdp;
1342 
1343 	*p = NULL;
1344 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1345 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1346 		goto Einval;
1347 
1348 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1349 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1350 	if (!gdp)
1351 		goto Egdp;
1352 	/*
1353 	 * Figure out the offset within the block group inode table
1354 	 */
1355 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1356 	block = le32_to_cpu(gdp->bg_inode_table) +
1357 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1358 	if (!(bh = sb_bread(sb, block)))
1359 		goto Eio;
1360 
1361 	*p = bh;
1362 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1363 	return (struct ext2_inode *) (bh->b_data + offset);
1364 
1365 Einval:
1366 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1367 		   (unsigned long) ino);
1368 	return ERR_PTR(-EINVAL);
1369 Eio:
1370 	ext2_error(sb, "ext2_get_inode",
1371 		   "unable to read inode block - inode=%lu, block=%lu",
1372 		   (unsigned long) ino, block);
1373 Egdp:
1374 	return ERR_PTR(-EIO);
1375 }
1376 
1377 void ext2_set_inode_flags(struct inode *inode)
1378 {
1379 	unsigned int flags = EXT2_I(inode)->i_flags;
1380 
1381 	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1382 				S_DIRSYNC | S_DAX);
1383 	if (flags & EXT2_SYNC_FL)
1384 		inode->i_flags |= S_SYNC;
1385 	if (flags & EXT2_APPEND_FL)
1386 		inode->i_flags |= S_APPEND;
1387 	if (flags & EXT2_IMMUTABLE_FL)
1388 		inode->i_flags |= S_IMMUTABLE;
1389 	if (flags & EXT2_NOATIME_FL)
1390 		inode->i_flags |= S_NOATIME;
1391 	if (flags & EXT2_DIRSYNC_FL)
1392 		inode->i_flags |= S_DIRSYNC;
1393 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1394 		inode->i_flags |= S_DAX;
1395 }
1396 
1397 void ext2_set_file_ops(struct inode *inode)
1398 {
1399 	inode->i_op = &ext2_file_inode_operations;
1400 	inode->i_fop = &ext2_file_operations;
1401 	if (IS_DAX(inode))
1402 		inode->i_mapping->a_ops = &ext2_dax_aops;
1403 	else if (test_opt(inode->i_sb, NOBH))
1404 		inode->i_mapping->a_ops = &ext2_nobh_aops;
1405 	else
1406 		inode->i_mapping->a_ops = &ext2_aops;
1407 }
1408 
1409 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1410 {
1411 	struct ext2_inode_info *ei;
1412 	struct buffer_head * bh = NULL;
1413 	struct ext2_inode *raw_inode;
1414 	struct inode *inode;
1415 	long ret = -EIO;
1416 	int n;
1417 	uid_t i_uid;
1418 	gid_t i_gid;
1419 
1420 	inode = iget_locked(sb, ino);
1421 	if (!inode)
1422 		return ERR_PTR(-ENOMEM);
1423 	if (!(inode->i_state & I_NEW))
1424 		return inode;
1425 
1426 	ei = EXT2_I(inode);
1427 	ei->i_block_alloc_info = NULL;
1428 
1429 	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1430 	if (IS_ERR(raw_inode)) {
1431 		ret = PTR_ERR(raw_inode);
1432  		goto bad_inode;
1433 	}
1434 
1435 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1436 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1437 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1438 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1439 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1440 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1441 	}
1442 	i_uid_write(inode, i_uid);
1443 	i_gid_write(inode, i_gid);
1444 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1445 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1446 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1447 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1448 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1449 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1450 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1451 	/* We now have enough fields to check if the inode was active or not.
1452 	 * This is needed because nfsd might try to access dead inodes
1453 	 * the test is that same one that e2fsck uses
1454 	 * NeilBrown 1999oct15
1455 	 */
1456 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1457 		/* this inode is deleted */
1458 		ret = -ESTALE;
1459 		goto bad_inode;
1460 	}
1461 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1462 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1463 	ext2_set_inode_flags(inode);
1464 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1465 	ei->i_frag_no = raw_inode->i_frag;
1466 	ei->i_frag_size = raw_inode->i_fsize;
1467 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1468 	ei->i_dir_acl = 0;
1469 
1470 	if (ei->i_file_acl &&
1471 	    !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1472 		ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1473 			   ei->i_file_acl);
1474 		ret = -EFSCORRUPTED;
1475 		goto bad_inode;
1476 	}
1477 
1478 	if (S_ISREG(inode->i_mode))
1479 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1480 	else
1481 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1482 	if (i_size_read(inode) < 0) {
1483 		ret = -EFSCORRUPTED;
1484 		goto bad_inode;
1485 	}
1486 	ei->i_dtime = 0;
1487 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1488 	ei->i_state = 0;
1489 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1490 	ei->i_dir_start_lookup = 0;
1491 
1492 	/*
1493 	 * NOTE! The in-memory inode i_data array is in little-endian order
1494 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1495 	 */
1496 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1497 		ei->i_data[n] = raw_inode->i_block[n];
1498 
1499 	if (S_ISREG(inode->i_mode)) {
1500 		ext2_set_file_ops(inode);
1501 	} else if (S_ISDIR(inode->i_mode)) {
1502 		inode->i_op = &ext2_dir_inode_operations;
1503 		inode->i_fop = &ext2_dir_operations;
1504 		if (test_opt(inode->i_sb, NOBH))
1505 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1506 		else
1507 			inode->i_mapping->a_ops = &ext2_aops;
1508 	} else if (S_ISLNK(inode->i_mode)) {
1509 		if (ext2_inode_is_fast_symlink(inode)) {
1510 			inode->i_link = (char *)ei->i_data;
1511 			inode->i_op = &ext2_fast_symlink_inode_operations;
1512 			nd_terminate_link(ei->i_data, inode->i_size,
1513 				sizeof(ei->i_data) - 1);
1514 		} else {
1515 			inode->i_op = &ext2_symlink_inode_operations;
1516 			inode_nohighmem(inode);
1517 			if (test_opt(inode->i_sb, NOBH))
1518 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1519 			else
1520 				inode->i_mapping->a_ops = &ext2_aops;
1521 		}
1522 	} else {
1523 		inode->i_op = &ext2_special_inode_operations;
1524 		if (raw_inode->i_block[0])
1525 			init_special_inode(inode, inode->i_mode,
1526 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1527 		else
1528 			init_special_inode(inode, inode->i_mode,
1529 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1530 	}
1531 	brelse (bh);
1532 	unlock_new_inode(inode);
1533 	return inode;
1534 
1535 bad_inode:
1536 	brelse(bh);
1537 	iget_failed(inode);
1538 	return ERR_PTR(ret);
1539 }
1540 
1541 static int __ext2_write_inode(struct inode *inode, int do_sync)
1542 {
1543 	struct ext2_inode_info *ei = EXT2_I(inode);
1544 	struct super_block *sb = inode->i_sb;
1545 	ino_t ino = inode->i_ino;
1546 	uid_t uid = i_uid_read(inode);
1547 	gid_t gid = i_gid_read(inode);
1548 	struct buffer_head * bh;
1549 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1550 	int n;
1551 	int err = 0;
1552 
1553 	if (IS_ERR(raw_inode))
1554  		return -EIO;
1555 
1556 	/* For fields not not tracking in the in-memory inode,
1557 	 * initialise them to zero for new inodes. */
1558 	if (ei->i_state & EXT2_STATE_NEW)
1559 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1560 
1561 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1562 	if (!(test_opt(sb, NO_UID32))) {
1563 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1564 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1565 /*
1566  * Fix up interoperability with old kernels. Otherwise, old inodes get
1567  * re-used with the upper 16 bits of the uid/gid intact
1568  */
1569 		if (!ei->i_dtime) {
1570 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1571 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1572 		} else {
1573 			raw_inode->i_uid_high = 0;
1574 			raw_inode->i_gid_high = 0;
1575 		}
1576 	} else {
1577 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1578 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1579 		raw_inode->i_uid_high = 0;
1580 		raw_inode->i_gid_high = 0;
1581 	}
1582 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1583 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1584 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1585 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1586 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1587 
1588 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1589 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1590 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1591 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1592 	raw_inode->i_frag = ei->i_frag_no;
1593 	raw_inode->i_fsize = ei->i_frag_size;
1594 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1595 	if (!S_ISREG(inode->i_mode))
1596 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1597 	else {
1598 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1599 		if (inode->i_size > 0x7fffffffULL) {
1600 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1601 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1602 			    EXT2_SB(sb)->s_es->s_rev_level ==
1603 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1604 			       /* If this is the first large file
1605 				* created, add a flag to the superblock.
1606 				*/
1607 				spin_lock(&EXT2_SB(sb)->s_lock);
1608 				ext2_update_dynamic_rev(sb);
1609 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1610 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1611 				spin_unlock(&EXT2_SB(sb)->s_lock);
1612 				ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1613 			}
1614 		}
1615 	}
1616 
1617 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1618 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1619 		if (old_valid_dev(inode->i_rdev)) {
1620 			raw_inode->i_block[0] =
1621 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1622 			raw_inode->i_block[1] = 0;
1623 		} else {
1624 			raw_inode->i_block[0] = 0;
1625 			raw_inode->i_block[1] =
1626 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1627 			raw_inode->i_block[2] = 0;
1628 		}
1629 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1630 		raw_inode->i_block[n] = ei->i_data[n];
1631 	mark_buffer_dirty(bh);
1632 	if (do_sync) {
1633 		sync_dirty_buffer(bh);
1634 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1635 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1636 				sb->s_id, (unsigned long) ino);
1637 			err = -EIO;
1638 		}
1639 	}
1640 	ei->i_state &= ~EXT2_STATE_NEW;
1641 	brelse (bh);
1642 	return err;
1643 }
1644 
1645 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1646 {
1647 	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1648 }
1649 
1650 int ext2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1651 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1652 {
1653 	struct inode *inode = d_inode(path->dentry);
1654 	struct ext2_inode_info *ei = EXT2_I(inode);
1655 	unsigned int flags;
1656 
1657 	flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1658 	if (flags & EXT2_APPEND_FL)
1659 		stat->attributes |= STATX_ATTR_APPEND;
1660 	if (flags & EXT2_COMPR_FL)
1661 		stat->attributes |= STATX_ATTR_COMPRESSED;
1662 	if (flags & EXT2_IMMUTABLE_FL)
1663 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1664 	if (flags & EXT2_NODUMP_FL)
1665 		stat->attributes |= STATX_ATTR_NODUMP;
1666 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1667 			STATX_ATTR_COMPRESSED |
1668 			STATX_ATTR_ENCRYPTED |
1669 			STATX_ATTR_IMMUTABLE |
1670 			STATX_ATTR_NODUMP);
1671 
1672 	generic_fillattr(&init_user_ns, inode, stat);
1673 	return 0;
1674 }
1675 
1676 int ext2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1677 		 struct iattr *iattr)
1678 {
1679 	struct inode *inode = d_inode(dentry);
1680 	int error;
1681 
1682 	error = setattr_prepare(&init_user_ns, dentry, iattr);
1683 	if (error)
1684 		return error;
1685 
1686 	if (is_quota_modification(inode, iattr)) {
1687 		error = dquot_initialize(inode);
1688 		if (error)
1689 			return error;
1690 	}
1691 	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1692 	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1693 		error = dquot_transfer(inode, iattr);
1694 		if (error)
1695 			return error;
1696 	}
1697 	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1698 		error = ext2_setsize(inode, iattr->ia_size);
1699 		if (error)
1700 			return error;
1701 	}
1702 	setattr_copy(&init_user_ns, inode, iattr);
1703 	if (iattr->ia_valid & ATTR_MODE)
1704 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1705 	mark_inode_dirty(inode);
1706 
1707 	return error;
1708 }
1709