xref: /openbmc/linux/fs/ext2/inode.c (revision 22246614)
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  * 	(sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  * 	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include "ext2.h"
35 #include "acl.h"
36 #include "xip.h"
37 
38 MODULE_AUTHOR("Remy Card and others");
39 MODULE_DESCRIPTION("Second Extended Filesystem");
40 MODULE_LICENSE("GPL");
41 
42 static int ext2_update_inode(struct inode * inode, int do_sync);
43 
44 /*
45  * Test whether an inode is a fast symlink.
46  */
47 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
48 {
49 	int ea_blocks = EXT2_I(inode)->i_file_acl ?
50 		(inode->i_sb->s_blocksize >> 9) : 0;
51 
52 	return (S_ISLNK(inode->i_mode) &&
53 		inode->i_blocks - ea_blocks == 0);
54 }
55 
56 /*
57  * Called at the last iput() if i_nlink is zero.
58  */
59 void ext2_delete_inode (struct inode * inode)
60 {
61 	truncate_inode_pages(&inode->i_data, 0);
62 
63 	if (is_bad_inode(inode))
64 		goto no_delete;
65 	EXT2_I(inode)->i_dtime	= get_seconds();
66 	mark_inode_dirty(inode);
67 	ext2_update_inode(inode, inode_needs_sync(inode));
68 
69 	inode->i_size = 0;
70 	if (inode->i_blocks)
71 		ext2_truncate (inode);
72 	ext2_free_inode (inode);
73 
74 	return;
75 no_delete:
76 	clear_inode(inode);	/* We must guarantee clearing of inode... */
77 }
78 
79 typedef struct {
80 	__le32	*p;
81 	__le32	key;
82 	struct buffer_head *bh;
83 } Indirect;
84 
85 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
86 {
87 	p->key = *(p->p = v);
88 	p->bh = bh;
89 }
90 
91 static inline int verify_chain(Indirect *from, Indirect *to)
92 {
93 	while (from <= to && from->key == *from->p)
94 		from++;
95 	return (from > to);
96 }
97 
98 /**
99  *	ext2_block_to_path - parse the block number into array of offsets
100  *	@inode: inode in question (we are only interested in its superblock)
101  *	@i_block: block number to be parsed
102  *	@offsets: array to store the offsets in
103  *      @boundary: set this non-zero if the referred-to block is likely to be
104  *             followed (on disk) by an indirect block.
105  *	To store the locations of file's data ext2 uses a data structure common
106  *	for UNIX filesystems - tree of pointers anchored in the inode, with
107  *	data blocks at leaves and indirect blocks in intermediate nodes.
108  *	This function translates the block number into path in that tree -
109  *	return value is the path length and @offsets[n] is the offset of
110  *	pointer to (n+1)th node in the nth one. If @block is out of range
111  *	(negative or too large) warning is printed and zero returned.
112  *
113  *	Note: function doesn't find node addresses, so no IO is needed. All
114  *	we need to know is the capacity of indirect blocks (taken from the
115  *	inode->i_sb).
116  */
117 
118 /*
119  * Portability note: the last comparison (check that we fit into triple
120  * indirect block) is spelled differently, because otherwise on an
121  * architecture with 32-bit longs and 8Kb pages we might get into trouble
122  * if our filesystem had 8Kb blocks. We might use long long, but that would
123  * kill us on x86. Oh, well, at least the sign propagation does not matter -
124  * i_block would have to be negative in the very beginning, so we would not
125  * get there at all.
126  */
127 
128 static int ext2_block_to_path(struct inode *inode,
129 			long i_block, int offsets[4], int *boundary)
130 {
131 	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
132 	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
133 	const long direct_blocks = EXT2_NDIR_BLOCKS,
134 		indirect_blocks = ptrs,
135 		double_blocks = (1 << (ptrs_bits * 2));
136 	int n = 0;
137 	int final = 0;
138 
139 	if (i_block < 0) {
140 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
141 	} else if (i_block < direct_blocks) {
142 		offsets[n++] = i_block;
143 		final = direct_blocks;
144 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
145 		offsets[n++] = EXT2_IND_BLOCK;
146 		offsets[n++] = i_block;
147 		final = ptrs;
148 	} else if ((i_block -= indirect_blocks) < double_blocks) {
149 		offsets[n++] = EXT2_DIND_BLOCK;
150 		offsets[n++] = i_block >> ptrs_bits;
151 		offsets[n++] = i_block & (ptrs - 1);
152 		final = ptrs;
153 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
154 		offsets[n++] = EXT2_TIND_BLOCK;
155 		offsets[n++] = i_block >> (ptrs_bits * 2);
156 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
157 		offsets[n++] = i_block & (ptrs - 1);
158 		final = ptrs;
159 	} else {
160 		ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
161 	}
162 	if (boundary)
163 		*boundary = final - 1 - (i_block & (ptrs - 1));
164 
165 	return n;
166 }
167 
168 /**
169  *	ext2_get_branch - read the chain of indirect blocks leading to data
170  *	@inode: inode in question
171  *	@depth: depth of the chain (1 - direct pointer, etc.)
172  *	@offsets: offsets of pointers in inode/indirect blocks
173  *	@chain: place to store the result
174  *	@err: here we store the error value
175  *
176  *	Function fills the array of triples <key, p, bh> and returns %NULL
177  *	if everything went OK or the pointer to the last filled triple
178  *	(incomplete one) otherwise. Upon the return chain[i].key contains
179  *	the number of (i+1)-th block in the chain (as it is stored in memory,
180  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
181  *	number (it points into struct inode for i==0 and into the bh->b_data
182  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
183  *	block for i>0 and NULL for i==0. In other words, it holds the block
184  *	numbers of the chain, addresses they were taken from (and where we can
185  *	verify that chain did not change) and buffer_heads hosting these
186  *	numbers.
187  *
188  *	Function stops when it stumbles upon zero pointer (absent block)
189  *		(pointer to last triple returned, *@err == 0)
190  *	or when it gets an IO error reading an indirect block
191  *		(ditto, *@err == -EIO)
192  *	or when it notices that chain had been changed while it was reading
193  *		(ditto, *@err == -EAGAIN)
194  *	or when it reads all @depth-1 indirect blocks successfully and finds
195  *	the whole chain, all way to the data (returns %NULL, *err == 0).
196  */
197 static Indirect *ext2_get_branch(struct inode *inode,
198 				 int depth,
199 				 int *offsets,
200 				 Indirect chain[4],
201 				 int *err)
202 {
203 	struct super_block *sb = inode->i_sb;
204 	Indirect *p = chain;
205 	struct buffer_head *bh;
206 
207 	*err = 0;
208 	/* i_data is not going away, no lock needed */
209 	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
210 	if (!p->key)
211 		goto no_block;
212 	while (--depth) {
213 		bh = sb_bread(sb, le32_to_cpu(p->key));
214 		if (!bh)
215 			goto failure;
216 		read_lock(&EXT2_I(inode)->i_meta_lock);
217 		if (!verify_chain(chain, p))
218 			goto changed;
219 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
220 		read_unlock(&EXT2_I(inode)->i_meta_lock);
221 		if (!p->key)
222 			goto no_block;
223 	}
224 	return NULL;
225 
226 changed:
227 	read_unlock(&EXT2_I(inode)->i_meta_lock);
228 	brelse(bh);
229 	*err = -EAGAIN;
230 	goto no_block;
231 failure:
232 	*err = -EIO;
233 no_block:
234 	return p;
235 }
236 
237 /**
238  *	ext2_find_near - find a place for allocation with sufficient locality
239  *	@inode: owner
240  *	@ind: descriptor of indirect block.
241  *
242  *	This function returns the preferred place for block allocation.
243  *	It is used when heuristic for sequential allocation fails.
244  *	Rules are:
245  *	  + if there is a block to the left of our position - allocate near it.
246  *	  + if pointer will live in indirect block - allocate near that block.
247  *	  + if pointer will live in inode - allocate in the same cylinder group.
248  *
249  * In the latter case we colour the starting block by the callers PID to
250  * prevent it from clashing with concurrent allocations for a different inode
251  * in the same block group.   The PID is used here so that functionally related
252  * files will be close-by on-disk.
253  *
254  *	Caller must make sure that @ind is valid and will stay that way.
255  */
256 
257 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
258 {
259 	struct ext2_inode_info *ei = EXT2_I(inode);
260 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
261 	__le32 *p;
262 	ext2_fsblk_t bg_start;
263 	ext2_fsblk_t colour;
264 
265 	/* Try to find previous block */
266 	for (p = ind->p - 1; p >= start; p--)
267 		if (*p)
268 			return le32_to_cpu(*p);
269 
270 	/* No such thing, so let's try location of indirect block */
271 	if (ind->bh)
272 		return ind->bh->b_blocknr;
273 
274 	/*
275 	 * It is going to be refered from inode itself? OK, just put it into
276 	 * the same cylinder group then.
277 	 */
278 	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
279 	colour = (current->pid % 16) *
280 			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
281 	return bg_start + colour;
282 }
283 
284 /**
285  *	ext2_find_goal - find a preferred place for allocation.
286  *	@inode: owner
287  *	@block:  block we want
288  *	@partial: pointer to the last triple within a chain
289  *
290  *	Returns preferred place for a block (the goal).
291  */
292 
293 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
294 					  Indirect *partial)
295 {
296 	struct ext2_block_alloc_info *block_i;
297 
298 	block_i = EXT2_I(inode)->i_block_alloc_info;
299 
300 	/*
301 	 * try the heuristic for sequential allocation,
302 	 * failing that at least try to get decent locality.
303 	 */
304 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
305 		&& (block_i->last_alloc_physical_block != 0)) {
306 		return block_i->last_alloc_physical_block + 1;
307 	}
308 
309 	return ext2_find_near(inode, partial);
310 }
311 
312 /**
313  *	ext2_blks_to_allocate: Look up the block map and count the number
314  *	of direct blocks need to be allocated for the given branch.
315  *
316  * 	@branch: chain of indirect blocks
317  *	@k: number of blocks need for indirect blocks
318  *	@blks: number of data blocks to be mapped.
319  *	@blocks_to_boundary:  the offset in the indirect block
320  *
321  *	return the total number of blocks to be allocate, including the
322  *	direct and indirect blocks.
323  */
324 static int
325 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
326 		int blocks_to_boundary)
327 {
328 	unsigned long count = 0;
329 
330 	/*
331 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
332 	 * then it's clear blocks on that path have not allocated
333 	 */
334 	if (k > 0) {
335 		/* right now don't hanel cross boundary allocation */
336 		if (blks < blocks_to_boundary + 1)
337 			count += blks;
338 		else
339 			count += blocks_to_boundary + 1;
340 		return count;
341 	}
342 
343 	count++;
344 	while (count < blks && count <= blocks_to_boundary
345 		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
346 		count++;
347 	}
348 	return count;
349 }
350 
351 /**
352  *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
353  *	@indirect_blks: the number of blocks need to allocate for indirect
354  *			blocks
355  *
356  *	@new_blocks: on return it will store the new block numbers for
357  *	the indirect blocks(if needed) and the first direct block,
358  *	@blks:	on return it will store the total number of allocated
359  *		direct blocks
360  */
361 static int ext2_alloc_blocks(struct inode *inode,
362 			ext2_fsblk_t goal, int indirect_blks, int blks,
363 			ext2_fsblk_t new_blocks[4], int *err)
364 {
365 	int target, i;
366 	unsigned long count = 0;
367 	int index = 0;
368 	ext2_fsblk_t current_block = 0;
369 	int ret = 0;
370 
371 	/*
372 	 * Here we try to allocate the requested multiple blocks at once,
373 	 * on a best-effort basis.
374 	 * To build a branch, we should allocate blocks for
375 	 * the indirect blocks(if not allocated yet), and at least
376 	 * the first direct block of this branch.  That's the
377 	 * minimum number of blocks need to allocate(required)
378 	 */
379 	target = blks + indirect_blks;
380 
381 	while (1) {
382 		count = target;
383 		/* allocating blocks for indirect blocks and direct blocks */
384 		current_block = ext2_new_blocks(inode,goal,&count,err);
385 		if (*err)
386 			goto failed_out;
387 
388 		target -= count;
389 		/* allocate blocks for indirect blocks */
390 		while (index < indirect_blks && count) {
391 			new_blocks[index++] = current_block++;
392 			count--;
393 		}
394 
395 		if (count > 0)
396 			break;
397 	}
398 
399 	/* save the new block number for the first direct block */
400 	new_blocks[index] = current_block;
401 
402 	/* total number of blocks allocated for direct blocks */
403 	ret = count;
404 	*err = 0;
405 	return ret;
406 failed_out:
407 	for (i = 0; i <index; i++)
408 		ext2_free_blocks(inode, new_blocks[i], 1);
409 	return ret;
410 }
411 
412 /**
413  *	ext2_alloc_branch - allocate and set up a chain of blocks.
414  *	@inode: owner
415  *	@num: depth of the chain (number of blocks to allocate)
416  *	@offsets: offsets (in the blocks) to store the pointers to next.
417  *	@branch: place to store the chain in.
418  *
419  *	This function allocates @num blocks, zeroes out all but the last one,
420  *	links them into chain and (if we are synchronous) writes them to disk.
421  *	In other words, it prepares a branch that can be spliced onto the
422  *	inode. It stores the information about that chain in the branch[], in
423  *	the same format as ext2_get_branch() would do. We are calling it after
424  *	we had read the existing part of chain and partial points to the last
425  *	triple of that (one with zero ->key). Upon the exit we have the same
426  *	picture as after the successful ext2_get_block(), excpet that in one
427  *	place chain is disconnected - *branch->p is still zero (we did not
428  *	set the last link), but branch->key contains the number that should
429  *	be placed into *branch->p to fill that gap.
430  *
431  *	If allocation fails we free all blocks we've allocated (and forget
432  *	their buffer_heads) and return the error value the from failed
433  *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
434  *	as described above and return 0.
435  */
436 
437 static int ext2_alloc_branch(struct inode *inode,
438 			int indirect_blks, int *blks, ext2_fsblk_t goal,
439 			int *offsets, Indirect *branch)
440 {
441 	int blocksize = inode->i_sb->s_blocksize;
442 	int i, n = 0;
443 	int err = 0;
444 	struct buffer_head *bh;
445 	int num;
446 	ext2_fsblk_t new_blocks[4];
447 	ext2_fsblk_t current_block;
448 
449 	num = ext2_alloc_blocks(inode, goal, indirect_blks,
450 				*blks, new_blocks, &err);
451 	if (err)
452 		return err;
453 
454 	branch[0].key = cpu_to_le32(new_blocks[0]);
455 	/*
456 	 * metadata blocks and data blocks are allocated.
457 	 */
458 	for (n = 1; n <= indirect_blks;  n++) {
459 		/*
460 		 * Get buffer_head for parent block, zero it out
461 		 * and set the pointer to new one, then send
462 		 * parent to disk.
463 		 */
464 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
465 		branch[n].bh = bh;
466 		lock_buffer(bh);
467 		memset(bh->b_data, 0, blocksize);
468 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
469 		branch[n].key = cpu_to_le32(new_blocks[n]);
470 		*branch[n].p = branch[n].key;
471 		if ( n == indirect_blks) {
472 			current_block = new_blocks[n];
473 			/*
474 			 * End of chain, update the last new metablock of
475 			 * the chain to point to the new allocated
476 			 * data blocks numbers
477 			 */
478 			for (i=1; i < num; i++)
479 				*(branch[n].p + i) = cpu_to_le32(++current_block);
480 		}
481 		set_buffer_uptodate(bh);
482 		unlock_buffer(bh);
483 		mark_buffer_dirty_inode(bh, inode);
484 		/* We used to sync bh here if IS_SYNC(inode).
485 		 * But we now rely upon generic_osync_inode()
486 		 * and b_inode_buffers.  But not for directories.
487 		 */
488 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
489 			sync_dirty_buffer(bh);
490 	}
491 	*blks = num;
492 	return err;
493 }
494 
495 /**
496  * ext2_splice_branch - splice the allocated branch onto inode.
497  * @inode: owner
498  * @block: (logical) number of block we are adding
499  * @chain: chain of indirect blocks (with a missing link - see
500  *	ext2_alloc_branch)
501  * @where: location of missing link
502  * @num:   number of indirect blocks we are adding
503  * @blks:  number of direct blocks we are adding
504  *
505  * This function fills the missing link and does all housekeeping needed in
506  * inode (->i_blocks, etc.). In case of success we end up with the full
507  * chain to new block and return 0.
508  */
509 static void ext2_splice_branch(struct inode *inode,
510 			long block, Indirect *where, int num, int blks)
511 {
512 	int i;
513 	struct ext2_block_alloc_info *block_i;
514 	ext2_fsblk_t current_block;
515 
516 	block_i = EXT2_I(inode)->i_block_alloc_info;
517 
518 	/* XXX LOCKING probably should have i_meta_lock ?*/
519 	/* That's it */
520 
521 	*where->p = where->key;
522 
523 	/*
524 	 * Update the host buffer_head or inode to point to more just allocated
525 	 * direct blocks blocks
526 	 */
527 	if (num == 0 && blks > 1) {
528 		current_block = le32_to_cpu(where->key) + 1;
529 		for (i = 1; i < blks; i++)
530 			*(where->p + i ) = cpu_to_le32(current_block++);
531 	}
532 
533 	/*
534 	 * update the most recently allocated logical & physical block
535 	 * in i_block_alloc_info, to assist find the proper goal block for next
536 	 * allocation
537 	 */
538 	if (block_i) {
539 		block_i->last_alloc_logical_block = block + blks - 1;
540 		block_i->last_alloc_physical_block =
541 				le32_to_cpu(where[num].key) + blks - 1;
542 	}
543 
544 	/* We are done with atomic stuff, now do the rest of housekeeping */
545 
546 	/* had we spliced it onto indirect block? */
547 	if (where->bh)
548 		mark_buffer_dirty_inode(where->bh, inode);
549 
550 	inode->i_ctime = CURRENT_TIME_SEC;
551 	mark_inode_dirty(inode);
552 }
553 
554 /*
555  * Allocation strategy is simple: if we have to allocate something, we will
556  * have to go the whole way to leaf. So let's do it before attaching anything
557  * to tree, set linkage between the newborn blocks, write them if sync is
558  * required, recheck the path, free and repeat if check fails, otherwise
559  * set the last missing link (that will protect us from any truncate-generated
560  * removals - all blocks on the path are immune now) and possibly force the
561  * write on the parent block.
562  * That has a nice additional property: no special recovery from the failed
563  * allocations is needed - we simply release blocks and do not touch anything
564  * reachable from inode.
565  *
566  * `handle' can be NULL if create == 0.
567  *
568  * return > 0, # of blocks mapped or allocated.
569  * return = 0, if plain lookup failed.
570  * return < 0, error case.
571  */
572 static int ext2_get_blocks(struct inode *inode,
573 			   sector_t iblock, unsigned long maxblocks,
574 			   struct buffer_head *bh_result,
575 			   int create)
576 {
577 	int err = -EIO;
578 	int offsets[4];
579 	Indirect chain[4];
580 	Indirect *partial;
581 	ext2_fsblk_t goal;
582 	int indirect_blks;
583 	int blocks_to_boundary = 0;
584 	int depth;
585 	struct ext2_inode_info *ei = EXT2_I(inode);
586 	int count = 0;
587 	ext2_fsblk_t first_block = 0;
588 
589 	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
590 
591 	if (depth == 0)
592 		return (err);
593 reread:
594 	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
595 
596 	/* Simplest case - block found, no allocation needed */
597 	if (!partial) {
598 		first_block = le32_to_cpu(chain[depth - 1].key);
599 		clear_buffer_new(bh_result); /* What's this do? */
600 		count++;
601 		/*map more blocks*/
602 		while (count < maxblocks && count <= blocks_to_boundary) {
603 			ext2_fsblk_t blk;
604 
605 			if (!verify_chain(chain, partial)) {
606 				/*
607 				 * Indirect block might be removed by
608 				 * truncate while we were reading it.
609 				 * Handling of that case: forget what we've
610 				 * got now, go to reread.
611 				 */
612 				count = 0;
613 				goto changed;
614 			}
615 			blk = le32_to_cpu(*(chain[depth-1].p + count));
616 			if (blk == first_block + count)
617 				count++;
618 			else
619 				break;
620 		}
621 		goto got_it;
622 	}
623 
624 	/* Next simple case - plain lookup or failed read of indirect block */
625 	if (!create || err == -EIO)
626 		goto cleanup;
627 
628 	mutex_lock(&ei->truncate_mutex);
629 
630 	/*
631 	 * Okay, we need to do block allocation.  Lazily initialize the block
632 	 * allocation info here if necessary
633 	*/
634 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
635 		ext2_init_block_alloc_info(inode);
636 
637 	goal = ext2_find_goal(inode, iblock, partial);
638 
639 	/* the number of blocks need to allocate for [d,t]indirect blocks */
640 	indirect_blks = (chain + depth) - partial - 1;
641 	/*
642 	 * Next look up the indirect map to count the totoal number of
643 	 * direct blocks to allocate for this branch.
644 	 */
645 	count = ext2_blks_to_allocate(partial, indirect_blks,
646 					maxblocks, blocks_to_boundary);
647 	/*
648 	 * XXX ???? Block out ext2_truncate while we alter the tree
649 	 */
650 	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
651 				offsets + (partial - chain), partial);
652 
653 	if (err) {
654 		mutex_unlock(&ei->truncate_mutex);
655 		goto cleanup;
656 	}
657 
658 	if (ext2_use_xip(inode->i_sb)) {
659 		/*
660 		 * we need to clear the block
661 		 */
662 		err = ext2_clear_xip_target (inode,
663 			le32_to_cpu(chain[depth-1].key));
664 		if (err) {
665 			mutex_unlock(&ei->truncate_mutex);
666 			goto cleanup;
667 		}
668 	}
669 
670 	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
671 	mutex_unlock(&ei->truncate_mutex);
672 	set_buffer_new(bh_result);
673 got_it:
674 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
675 	if (count > blocks_to_boundary)
676 		set_buffer_boundary(bh_result);
677 	err = count;
678 	/* Clean up and exit */
679 	partial = chain + depth - 1;	/* the whole chain */
680 cleanup:
681 	while (partial > chain) {
682 		brelse(partial->bh);
683 		partial--;
684 	}
685 	return err;
686 changed:
687 	while (partial > chain) {
688 		brelse(partial->bh);
689 		partial--;
690 	}
691 	goto reread;
692 }
693 
694 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
695 {
696 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
697 	int ret = ext2_get_blocks(inode, iblock, max_blocks,
698 			      bh_result, create);
699 	if (ret > 0) {
700 		bh_result->b_size = (ret << inode->i_blkbits);
701 		ret = 0;
702 	}
703 	return ret;
704 
705 }
706 
707 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
708 {
709 	return block_write_full_page(page, ext2_get_block, wbc);
710 }
711 
712 static int ext2_readpage(struct file *file, struct page *page)
713 {
714 	return mpage_readpage(page, ext2_get_block);
715 }
716 
717 static int
718 ext2_readpages(struct file *file, struct address_space *mapping,
719 		struct list_head *pages, unsigned nr_pages)
720 {
721 	return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
722 }
723 
724 int __ext2_write_begin(struct file *file, struct address_space *mapping,
725 		loff_t pos, unsigned len, unsigned flags,
726 		struct page **pagep, void **fsdata)
727 {
728 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
729 							ext2_get_block);
730 }
731 
732 static int
733 ext2_write_begin(struct file *file, struct address_space *mapping,
734 		loff_t pos, unsigned len, unsigned flags,
735 		struct page **pagep, void **fsdata)
736 {
737 	*pagep = NULL;
738 	return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
739 }
740 
741 static int
742 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
743 		loff_t pos, unsigned len, unsigned flags,
744 		struct page **pagep, void **fsdata)
745 {
746 	/*
747 	 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
748 	 * directory handling code to pass around offsets rather than struct
749 	 * pages in order to make this work easily.
750 	 */
751 	return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
752 							ext2_get_block);
753 }
754 
755 static int ext2_nobh_writepage(struct page *page,
756 			struct writeback_control *wbc)
757 {
758 	return nobh_writepage(page, ext2_get_block, wbc);
759 }
760 
761 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
762 {
763 	return generic_block_bmap(mapping,block,ext2_get_block);
764 }
765 
766 static ssize_t
767 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
768 			loff_t offset, unsigned long nr_segs)
769 {
770 	struct file *file = iocb->ki_filp;
771 	struct inode *inode = file->f_mapping->host;
772 
773 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
774 				offset, nr_segs, ext2_get_block, NULL);
775 }
776 
777 static int
778 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
779 {
780 	return mpage_writepages(mapping, wbc, ext2_get_block);
781 }
782 
783 const struct address_space_operations ext2_aops = {
784 	.readpage		= ext2_readpage,
785 	.readpages		= ext2_readpages,
786 	.writepage		= ext2_writepage,
787 	.sync_page		= block_sync_page,
788 	.write_begin		= ext2_write_begin,
789 	.write_end		= generic_write_end,
790 	.bmap			= ext2_bmap,
791 	.direct_IO		= ext2_direct_IO,
792 	.writepages		= ext2_writepages,
793 	.migratepage		= buffer_migrate_page,
794 };
795 
796 const struct address_space_operations ext2_aops_xip = {
797 	.bmap			= ext2_bmap,
798 	.get_xip_mem		= ext2_get_xip_mem,
799 };
800 
801 const struct address_space_operations ext2_nobh_aops = {
802 	.readpage		= ext2_readpage,
803 	.readpages		= ext2_readpages,
804 	.writepage		= ext2_nobh_writepage,
805 	.sync_page		= block_sync_page,
806 	.write_begin		= ext2_nobh_write_begin,
807 	.write_end		= nobh_write_end,
808 	.bmap			= ext2_bmap,
809 	.direct_IO		= ext2_direct_IO,
810 	.writepages		= ext2_writepages,
811 	.migratepage		= buffer_migrate_page,
812 };
813 
814 /*
815  * Probably it should be a library function... search for first non-zero word
816  * or memcmp with zero_page, whatever is better for particular architecture.
817  * Linus?
818  */
819 static inline int all_zeroes(__le32 *p, __le32 *q)
820 {
821 	while (p < q)
822 		if (*p++)
823 			return 0;
824 	return 1;
825 }
826 
827 /**
828  *	ext2_find_shared - find the indirect blocks for partial truncation.
829  *	@inode:	  inode in question
830  *	@depth:	  depth of the affected branch
831  *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
832  *	@chain:	  place to store the pointers to partial indirect blocks
833  *	@top:	  place to the (detached) top of branch
834  *
835  *	This is a helper function used by ext2_truncate().
836  *
837  *	When we do truncate() we may have to clean the ends of several indirect
838  *	blocks but leave the blocks themselves alive. Block is partially
839  *	truncated if some data below the new i_size is refered from it (and
840  *	it is on the path to the first completely truncated data block, indeed).
841  *	We have to free the top of that path along with everything to the right
842  *	of the path. Since no allocation past the truncation point is possible
843  *	until ext2_truncate() finishes, we may safely do the latter, but top
844  *	of branch may require special attention - pageout below the truncation
845  *	point might try to populate it.
846  *
847  *	We atomically detach the top of branch from the tree, store the block
848  *	number of its root in *@top, pointers to buffer_heads of partially
849  *	truncated blocks - in @chain[].bh and pointers to their last elements
850  *	that should not be removed - in @chain[].p. Return value is the pointer
851  *	to last filled element of @chain.
852  *
853  *	The work left to caller to do the actual freeing of subtrees:
854  *		a) free the subtree starting from *@top
855  *		b) free the subtrees whose roots are stored in
856  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
857  *		c) free the subtrees growing from the inode past the @chain[0].p
858  *			(no partially truncated stuff there).
859  */
860 
861 static Indirect *ext2_find_shared(struct inode *inode,
862 				int depth,
863 				int offsets[4],
864 				Indirect chain[4],
865 				__le32 *top)
866 {
867 	Indirect *partial, *p;
868 	int k, err;
869 
870 	*top = 0;
871 	for (k = depth; k > 1 && !offsets[k-1]; k--)
872 		;
873 	partial = ext2_get_branch(inode, k, offsets, chain, &err);
874 	if (!partial)
875 		partial = chain + k-1;
876 	/*
877 	 * If the branch acquired continuation since we've looked at it -
878 	 * fine, it should all survive and (new) top doesn't belong to us.
879 	 */
880 	write_lock(&EXT2_I(inode)->i_meta_lock);
881 	if (!partial->key && *partial->p) {
882 		write_unlock(&EXT2_I(inode)->i_meta_lock);
883 		goto no_top;
884 	}
885 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
886 		;
887 	/*
888 	 * OK, we've found the last block that must survive. The rest of our
889 	 * branch should be detached before unlocking. However, if that rest
890 	 * of branch is all ours and does not grow immediately from the inode
891 	 * it's easier to cheat and just decrement partial->p.
892 	 */
893 	if (p == chain + k - 1 && p > chain) {
894 		p->p--;
895 	} else {
896 		*top = *p->p;
897 		*p->p = 0;
898 	}
899 	write_unlock(&EXT2_I(inode)->i_meta_lock);
900 
901 	while(partial > p)
902 	{
903 		brelse(partial->bh);
904 		partial--;
905 	}
906 no_top:
907 	return partial;
908 }
909 
910 /**
911  *	ext2_free_data - free a list of data blocks
912  *	@inode:	inode we are dealing with
913  *	@p:	array of block numbers
914  *	@q:	points immediately past the end of array
915  *
916  *	We are freeing all blocks refered from that array (numbers are
917  *	stored as little-endian 32-bit) and updating @inode->i_blocks
918  *	appropriately.
919  */
920 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
921 {
922 	unsigned long block_to_free = 0, count = 0;
923 	unsigned long nr;
924 
925 	for ( ; p < q ; p++) {
926 		nr = le32_to_cpu(*p);
927 		if (nr) {
928 			*p = 0;
929 			/* accumulate blocks to free if they're contiguous */
930 			if (count == 0)
931 				goto free_this;
932 			else if (block_to_free == nr - count)
933 				count++;
934 			else {
935 				mark_inode_dirty(inode);
936 				ext2_free_blocks (inode, block_to_free, count);
937 			free_this:
938 				block_to_free = nr;
939 				count = 1;
940 			}
941 		}
942 	}
943 	if (count > 0) {
944 		mark_inode_dirty(inode);
945 		ext2_free_blocks (inode, block_to_free, count);
946 	}
947 }
948 
949 /**
950  *	ext2_free_branches - free an array of branches
951  *	@inode:	inode we are dealing with
952  *	@p:	array of block numbers
953  *	@q:	pointer immediately past the end of array
954  *	@depth:	depth of the branches to free
955  *
956  *	We are freeing all blocks refered from these branches (numbers are
957  *	stored as little-endian 32-bit) and updating @inode->i_blocks
958  *	appropriately.
959  */
960 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
961 {
962 	struct buffer_head * bh;
963 	unsigned long nr;
964 
965 	if (depth--) {
966 		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
967 		for ( ; p < q ; p++) {
968 			nr = le32_to_cpu(*p);
969 			if (!nr)
970 				continue;
971 			*p = 0;
972 			bh = sb_bread(inode->i_sb, nr);
973 			/*
974 			 * A read failure? Report error and clear slot
975 			 * (should be rare).
976 			 */
977 			if (!bh) {
978 				ext2_error(inode->i_sb, "ext2_free_branches",
979 					"Read failure, inode=%ld, block=%ld",
980 					inode->i_ino, nr);
981 				continue;
982 			}
983 			ext2_free_branches(inode,
984 					   (__le32*)bh->b_data,
985 					   (__le32*)bh->b_data + addr_per_block,
986 					   depth);
987 			bforget(bh);
988 			ext2_free_blocks(inode, nr, 1);
989 			mark_inode_dirty(inode);
990 		}
991 	} else
992 		ext2_free_data(inode, p, q);
993 }
994 
995 void ext2_truncate(struct inode *inode)
996 {
997 	__le32 *i_data = EXT2_I(inode)->i_data;
998 	struct ext2_inode_info *ei = EXT2_I(inode);
999 	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1000 	int offsets[4];
1001 	Indirect chain[4];
1002 	Indirect *partial;
1003 	__le32 nr = 0;
1004 	int n;
1005 	long iblock;
1006 	unsigned blocksize;
1007 
1008 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1009 	    S_ISLNK(inode->i_mode)))
1010 		return;
1011 	if (ext2_inode_is_fast_symlink(inode))
1012 		return;
1013 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1014 		return;
1015 
1016 	blocksize = inode->i_sb->s_blocksize;
1017 	iblock = (inode->i_size + blocksize-1)
1018 					>> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1019 
1020 	if (mapping_is_xip(inode->i_mapping))
1021 		xip_truncate_page(inode->i_mapping, inode->i_size);
1022 	else if (test_opt(inode->i_sb, NOBH))
1023 		nobh_truncate_page(inode->i_mapping,
1024 				inode->i_size, ext2_get_block);
1025 	else
1026 		block_truncate_page(inode->i_mapping,
1027 				inode->i_size, ext2_get_block);
1028 
1029 	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1030 	if (n == 0)
1031 		return;
1032 
1033 	/*
1034 	 * From here we block out all ext2_get_block() callers who want to
1035 	 * modify the block allocation tree.
1036 	 */
1037 	mutex_lock(&ei->truncate_mutex);
1038 
1039 	if (n == 1) {
1040 		ext2_free_data(inode, i_data+offsets[0],
1041 					i_data + EXT2_NDIR_BLOCKS);
1042 		goto do_indirects;
1043 	}
1044 
1045 	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1046 	/* Kill the top of shared branch (already detached) */
1047 	if (nr) {
1048 		if (partial == chain)
1049 			mark_inode_dirty(inode);
1050 		else
1051 			mark_buffer_dirty_inode(partial->bh, inode);
1052 		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1053 	}
1054 	/* Clear the ends of indirect blocks on the shared branch */
1055 	while (partial > chain) {
1056 		ext2_free_branches(inode,
1057 				   partial->p + 1,
1058 				   (__le32*)partial->bh->b_data+addr_per_block,
1059 				   (chain+n-1) - partial);
1060 		mark_buffer_dirty_inode(partial->bh, inode);
1061 		brelse (partial->bh);
1062 		partial--;
1063 	}
1064 do_indirects:
1065 	/* Kill the remaining (whole) subtrees */
1066 	switch (offsets[0]) {
1067 		default:
1068 			nr = i_data[EXT2_IND_BLOCK];
1069 			if (nr) {
1070 				i_data[EXT2_IND_BLOCK] = 0;
1071 				mark_inode_dirty(inode);
1072 				ext2_free_branches(inode, &nr, &nr+1, 1);
1073 			}
1074 		case EXT2_IND_BLOCK:
1075 			nr = i_data[EXT2_DIND_BLOCK];
1076 			if (nr) {
1077 				i_data[EXT2_DIND_BLOCK] = 0;
1078 				mark_inode_dirty(inode);
1079 				ext2_free_branches(inode, &nr, &nr+1, 2);
1080 			}
1081 		case EXT2_DIND_BLOCK:
1082 			nr = i_data[EXT2_TIND_BLOCK];
1083 			if (nr) {
1084 				i_data[EXT2_TIND_BLOCK] = 0;
1085 				mark_inode_dirty(inode);
1086 				ext2_free_branches(inode, &nr, &nr+1, 3);
1087 			}
1088 		case EXT2_TIND_BLOCK:
1089 			;
1090 	}
1091 
1092 	ext2_discard_reservation(inode);
1093 
1094 	mutex_unlock(&ei->truncate_mutex);
1095 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1096 	if (inode_needs_sync(inode)) {
1097 		sync_mapping_buffers(inode->i_mapping);
1098 		ext2_sync_inode (inode);
1099 	} else {
1100 		mark_inode_dirty(inode);
1101 	}
1102 }
1103 
1104 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1105 					struct buffer_head **p)
1106 {
1107 	struct buffer_head * bh;
1108 	unsigned long block_group;
1109 	unsigned long block;
1110 	unsigned long offset;
1111 	struct ext2_group_desc * gdp;
1112 
1113 	*p = NULL;
1114 	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1115 	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1116 		goto Einval;
1117 
1118 	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1119 	gdp = ext2_get_group_desc(sb, block_group, NULL);
1120 	if (!gdp)
1121 		goto Egdp;
1122 	/*
1123 	 * Figure out the offset within the block group inode table
1124 	 */
1125 	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1126 	block = le32_to_cpu(gdp->bg_inode_table) +
1127 		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1128 	if (!(bh = sb_bread(sb, block)))
1129 		goto Eio;
1130 
1131 	*p = bh;
1132 	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1133 	return (struct ext2_inode *) (bh->b_data + offset);
1134 
1135 Einval:
1136 	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1137 		   (unsigned long) ino);
1138 	return ERR_PTR(-EINVAL);
1139 Eio:
1140 	ext2_error(sb, "ext2_get_inode",
1141 		   "unable to read inode block - inode=%lu, block=%lu",
1142 		   (unsigned long) ino, block);
1143 Egdp:
1144 	return ERR_PTR(-EIO);
1145 }
1146 
1147 void ext2_set_inode_flags(struct inode *inode)
1148 {
1149 	unsigned int flags = EXT2_I(inode)->i_flags;
1150 
1151 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1152 	if (flags & EXT2_SYNC_FL)
1153 		inode->i_flags |= S_SYNC;
1154 	if (flags & EXT2_APPEND_FL)
1155 		inode->i_flags |= S_APPEND;
1156 	if (flags & EXT2_IMMUTABLE_FL)
1157 		inode->i_flags |= S_IMMUTABLE;
1158 	if (flags & EXT2_NOATIME_FL)
1159 		inode->i_flags |= S_NOATIME;
1160 	if (flags & EXT2_DIRSYNC_FL)
1161 		inode->i_flags |= S_DIRSYNC;
1162 }
1163 
1164 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1165 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1166 {
1167 	unsigned int flags = ei->vfs_inode.i_flags;
1168 
1169 	ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1170 			EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1171 	if (flags & S_SYNC)
1172 		ei->i_flags |= EXT2_SYNC_FL;
1173 	if (flags & S_APPEND)
1174 		ei->i_flags |= EXT2_APPEND_FL;
1175 	if (flags & S_IMMUTABLE)
1176 		ei->i_flags |= EXT2_IMMUTABLE_FL;
1177 	if (flags & S_NOATIME)
1178 		ei->i_flags |= EXT2_NOATIME_FL;
1179 	if (flags & S_DIRSYNC)
1180 		ei->i_flags |= EXT2_DIRSYNC_FL;
1181 }
1182 
1183 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1184 {
1185 	struct ext2_inode_info *ei;
1186 	struct buffer_head * bh;
1187 	struct ext2_inode *raw_inode;
1188 	struct inode *inode;
1189 	long ret = -EIO;
1190 	int n;
1191 
1192 	inode = iget_locked(sb, ino);
1193 	if (!inode)
1194 		return ERR_PTR(-ENOMEM);
1195 	if (!(inode->i_state & I_NEW))
1196 		return inode;
1197 
1198 	ei = EXT2_I(inode);
1199 #ifdef CONFIG_EXT2_FS_POSIX_ACL
1200 	ei->i_acl = EXT2_ACL_NOT_CACHED;
1201 	ei->i_default_acl = EXT2_ACL_NOT_CACHED;
1202 #endif
1203 	ei->i_block_alloc_info = NULL;
1204 
1205 	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1206 	if (IS_ERR(raw_inode)) {
1207 		ret = PTR_ERR(raw_inode);
1208  		goto bad_inode;
1209 	}
1210 
1211 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1212 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1213 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1214 	if (!(test_opt (inode->i_sb, NO_UID32))) {
1215 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1216 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1217 	}
1218 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1219 	inode->i_size = le32_to_cpu(raw_inode->i_size);
1220 	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1221 	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1222 	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1223 	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1224 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1225 	/* We now have enough fields to check if the inode was active or not.
1226 	 * This is needed because nfsd might try to access dead inodes
1227 	 * the test is that same one that e2fsck uses
1228 	 * NeilBrown 1999oct15
1229 	 */
1230 	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1231 		/* this inode is deleted */
1232 		brelse (bh);
1233 		ret = -ESTALE;
1234 		goto bad_inode;
1235 	}
1236 	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1237 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1238 	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1239 	ei->i_frag_no = raw_inode->i_frag;
1240 	ei->i_frag_size = raw_inode->i_fsize;
1241 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1242 	ei->i_dir_acl = 0;
1243 	if (S_ISREG(inode->i_mode))
1244 		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1245 	else
1246 		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1247 	ei->i_dtime = 0;
1248 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1249 	ei->i_state = 0;
1250 	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1251 	ei->i_dir_start_lookup = 0;
1252 
1253 	/*
1254 	 * NOTE! The in-memory inode i_data array is in little-endian order
1255 	 * even on big-endian machines: we do NOT byteswap the block numbers!
1256 	 */
1257 	for (n = 0; n < EXT2_N_BLOCKS; n++)
1258 		ei->i_data[n] = raw_inode->i_block[n];
1259 
1260 	if (S_ISREG(inode->i_mode)) {
1261 		inode->i_op = &ext2_file_inode_operations;
1262 		if (ext2_use_xip(inode->i_sb)) {
1263 			inode->i_mapping->a_ops = &ext2_aops_xip;
1264 			inode->i_fop = &ext2_xip_file_operations;
1265 		} else if (test_opt(inode->i_sb, NOBH)) {
1266 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1267 			inode->i_fop = &ext2_file_operations;
1268 		} else {
1269 			inode->i_mapping->a_ops = &ext2_aops;
1270 			inode->i_fop = &ext2_file_operations;
1271 		}
1272 	} else if (S_ISDIR(inode->i_mode)) {
1273 		inode->i_op = &ext2_dir_inode_operations;
1274 		inode->i_fop = &ext2_dir_operations;
1275 		if (test_opt(inode->i_sb, NOBH))
1276 			inode->i_mapping->a_ops = &ext2_nobh_aops;
1277 		else
1278 			inode->i_mapping->a_ops = &ext2_aops;
1279 	} else if (S_ISLNK(inode->i_mode)) {
1280 		if (ext2_inode_is_fast_symlink(inode))
1281 			inode->i_op = &ext2_fast_symlink_inode_operations;
1282 		else {
1283 			inode->i_op = &ext2_symlink_inode_operations;
1284 			if (test_opt(inode->i_sb, NOBH))
1285 				inode->i_mapping->a_ops = &ext2_nobh_aops;
1286 			else
1287 				inode->i_mapping->a_ops = &ext2_aops;
1288 		}
1289 	} else {
1290 		inode->i_op = &ext2_special_inode_operations;
1291 		if (raw_inode->i_block[0])
1292 			init_special_inode(inode, inode->i_mode,
1293 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1294 		else
1295 			init_special_inode(inode, inode->i_mode,
1296 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1297 	}
1298 	brelse (bh);
1299 	ext2_set_inode_flags(inode);
1300 	unlock_new_inode(inode);
1301 	return inode;
1302 
1303 bad_inode:
1304 	iget_failed(inode);
1305 	return ERR_PTR(ret);
1306 }
1307 
1308 static int ext2_update_inode(struct inode * inode, int do_sync)
1309 {
1310 	struct ext2_inode_info *ei = EXT2_I(inode);
1311 	struct super_block *sb = inode->i_sb;
1312 	ino_t ino = inode->i_ino;
1313 	uid_t uid = inode->i_uid;
1314 	gid_t gid = inode->i_gid;
1315 	struct buffer_head * bh;
1316 	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1317 	int n;
1318 	int err = 0;
1319 
1320 	if (IS_ERR(raw_inode))
1321  		return -EIO;
1322 
1323 	/* For fields not not tracking in the in-memory inode,
1324 	 * initialise them to zero for new inodes. */
1325 	if (ei->i_state & EXT2_STATE_NEW)
1326 		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1327 
1328 	ext2_get_inode_flags(ei);
1329 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1330 	if (!(test_opt(sb, NO_UID32))) {
1331 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1332 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1333 /*
1334  * Fix up interoperability with old kernels. Otherwise, old inodes get
1335  * re-used with the upper 16 bits of the uid/gid intact
1336  */
1337 		if (!ei->i_dtime) {
1338 			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1339 			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1340 		} else {
1341 			raw_inode->i_uid_high = 0;
1342 			raw_inode->i_gid_high = 0;
1343 		}
1344 	} else {
1345 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1346 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1347 		raw_inode->i_uid_high = 0;
1348 		raw_inode->i_gid_high = 0;
1349 	}
1350 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1351 	raw_inode->i_size = cpu_to_le32(inode->i_size);
1352 	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1353 	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1354 	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1355 
1356 	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1357 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1358 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1359 	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1360 	raw_inode->i_frag = ei->i_frag_no;
1361 	raw_inode->i_fsize = ei->i_frag_size;
1362 	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1363 	if (!S_ISREG(inode->i_mode))
1364 		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1365 	else {
1366 		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1367 		if (inode->i_size > 0x7fffffffULL) {
1368 			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1369 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1370 			    EXT2_SB(sb)->s_es->s_rev_level ==
1371 					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1372 			       /* If this is the first large file
1373 				* created, add a flag to the superblock.
1374 				*/
1375 				lock_kernel();
1376 				ext2_update_dynamic_rev(sb);
1377 				EXT2_SET_RO_COMPAT_FEATURE(sb,
1378 					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1379 				unlock_kernel();
1380 				ext2_write_super(sb);
1381 			}
1382 		}
1383 	}
1384 
1385 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1386 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1387 		if (old_valid_dev(inode->i_rdev)) {
1388 			raw_inode->i_block[0] =
1389 				cpu_to_le32(old_encode_dev(inode->i_rdev));
1390 			raw_inode->i_block[1] = 0;
1391 		} else {
1392 			raw_inode->i_block[0] = 0;
1393 			raw_inode->i_block[1] =
1394 				cpu_to_le32(new_encode_dev(inode->i_rdev));
1395 			raw_inode->i_block[2] = 0;
1396 		}
1397 	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1398 		raw_inode->i_block[n] = ei->i_data[n];
1399 	mark_buffer_dirty(bh);
1400 	if (do_sync) {
1401 		sync_dirty_buffer(bh);
1402 		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1403 			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1404 				sb->s_id, (unsigned long) ino);
1405 			err = -EIO;
1406 		}
1407 	}
1408 	ei->i_state &= ~EXT2_STATE_NEW;
1409 	brelse (bh);
1410 	return err;
1411 }
1412 
1413 int ext2_write_inode(struct inode *inode, int wait)
1414 {
1415 	return ext2_update_inode(inode, wait);
1416 }
1417 
1418 int ext2_sync_inode(struct inode *inode)
1419 {
1420 	struct writeback_control wbc = {
1421 		.sync_mode = WB_SYNC_ALL,
1422 		.nr_to_write = 0,	/* sys_fsync did this */
1423 	};
1424 	return sync_inode(inode, &wbc);
1425 }
1426 
1427 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1428 {
1429 	struct inode *inode = dentry->d_inode;
1430 	int error;
1431 
1432 	error = inode_change_ok(inode, iattr);
1433 	if (error)
1434 		return error;
1435 	if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1436 	    (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1437 		error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0;
1438 		if (error)
1439 			return error;
1440 	}
1441 	error = inode_setattr(inode, iattr);
1442 	if (!error && (iattr->ia_valid & ATTR_MODE))
1443 		error = ext2_acl_chmod(inode);
1444 	return error;
1445 }
1446