1 /* 2 * linux/fs/ext2/balloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 10 * Big-endian to little-endian byte-swapping/bitmaps by 11 * David S. Miller (davem@caip.rutgers.edu), 1995 12 */ 13 14 #include "ext2.h" 15 #include <linux/quotaops.h> 16 #include <linux/sched.h> 17 #include <linux/buffer_head.h> 18 #include <linux/capability.h> 19 20 /* 21 * balloc.c contains the blocks allocation and deallocation routines 22 */ 23 24 /* 25 * The free blocks are managed by bitmaps. A file system contains several 26 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 27 * block for inodes, N blocks for the inode table and data blocks. 28 * 29 * The file system contains group descriptors which are located after the 30 * super block. Each descriptor contains the number of the bitmap block and 31 * the free blocks count in the block. The descriptors are loaded in memory 32 * when a file system is mounted (see ext2_fill_super). 33 */ 34 35 36 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) 37 38 struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb, 39 unsigned int block_group, 40 struct buffer_head ** bh) 41 { 42 unsigned long group_desc; 43 unsigned long offset; 44 struct ext2_group_desc * desc; 45 struct ext2_sb_info *sbi = EXT2_SB(sb); 46 47 if (block_group >= sbi->s_groups_count) { 48 ext2_error (sb, "ext2_get_group_desc", 49 "block_group >= groups_count - " 50 "block_group = %d, groups_count = %lu", 51 block_group, sbi->s_groups_count); 52 53 return NULL; 54 } 55 56 group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(sb); 57 offset = block_group & (EXT2_DESC_PER_BLOCK(sb) - 1); 58 if (!sbi->s_group_desc[group_desc]) { 59 ext2_error (sb, "ext2_get_group_desc", 60 "Group descriptor not loaded - " 61 "block_group = %d, group_desc = %lu, desc = %lu", 62 block_group, group_desc, offset); 63 return NULL; 64 } 65 66 desc = (struct ext2_group_desc *) sbi->s_group_desc[group_desc]->b_data; 67 if (bh) 68 *bh = sbi->s_group_desc[group_desc]; 69 return desc + offset; 70 } 71 72 static int ext2_valid_block_bitmap(struct super_block *sb, 73 struct ext2_group_desc *desc, 74 unsigned int block_group, 75 struct buffer_head *bh) 76 { 77 ext2_grpblk_t offset; 78 ext2_grpblk_t next_zero_bit; 79 ext2_fsblk_t bitmap_blk; 80 ext2_fsblk_t group_first_block; 81 82 group_first_block = ext2_group_first_block_no(sb, block_group); 83 84 /* check whether block bitmap block number is set */ 85 bitmap_blk = le32_to_cpu(desc->bg_block_bitmap); 86 offset = bitmap_blk - group_first_block; 87 if (!ext2_test_bit(offset, bh->b_data)) 88 /* bad block bitmap */ 89 goto err_out; 90 91 /* check whether the inode bitmap block number is set */ 92 bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap); 93 offset = bitmap_blk - group_first_block; 94 if (!ext2_test_bit(offset, bh->b_data)) 95 /* bad block bitmap */ 96 goto err_out; 97 98 /* check whether the inode table block number is set */ 99 bitmap_blk = le32_to_cpu(desc->bg_inode_table); 100 offset = bitmap_blk - group_first_block; 101 next_zero_bit = ext2_find_next_zero_bit(bh->b_data, 102 offset + EXT2_SB(sb)->s_itb_per_group, 103 offset); 104 if (next_zero_bit >= offset + EXT2_SB(sb)->s_itb_per_group) 105 /* good bitmap for inode tables */ 106 return 1; 107 108 err_out: 109 ext2_error(sb, __FUNCTION__, 110 "Invalid block bitmap - " 111 "block_group = %d, block = %lu", 112 block_group, bitmap_blk); 113 return 0; 114 } 115 116 /* 117 * Read the bitmap for a given block_group,and validate the 118 * bits for block/inode/inode tables are set in the bitmaps 119 * 120 * Return buffer_head on success or NULL in case of failure. 121 */ 122 static struct buffer_head * 123 read_block_bitmap(struct super_block *sb, unsigned int block_group) 124 { 125 struct ext2_group_desc * desc; 126 struct buffer_head * bh = NULL; 127 ext2_fsblk_t bitmap_blk; 128 129 desc = ext2_get_group_desc(sb, block_group, NULL); 130 if (!desc) 131 return NULL; 132 bitmap_blk = le32_to_cpu(desc->bg_block_bitmap); 133 bh = sb_getblk(sb, bitmap_blk); 134 if (unlikely(!bh)) { 135 ext2_error(sb, __FUNCTION__, 136 "Cannot read block bitmap - " 137 "block_group = %d, block_bitmap = %u", 138 block_group, le32_to_cpu(desc->bg_block_bitmap)); 139 return NULL; 140 } 141 if (likely(bh_uptodate_or_lock(bh))) 142 return bh; 143 144 if (bh_submit_read(bh) < 0) { 145 brelse(bh); 146 ext2_error(sb, __FUNCTION__, 147 "Cannot read block bitmap - " 148 "block_group = %d, block_bitmap = %u", 149 block_group, le32_to_cpu(desc->bg_block_bitmap)); 150 return NULL; 151 } 152 if (!ext2_valid_block_bitmap(sb, desc, block_group, bh)) { 153 brelse(bh); 154 return NULL; 155 } 156 157 return bh; 158 } 159 160 static void release_blocks(struct super_block *sb, int count) 161 { 162 if (count) { 163 struct ext2_sb_info *sbi = EXT2_SB(sb); 164 165 percpu_counter_add(&sbi->s_freeblocks_counter, count); 166 sb->s_dirt = 1; 167 } 168 } 169 170 static void group_adjust_blocks(struct super_block *sb, int group_no, 171 struct ext2_group_desc *desc, struct buffer_head *bh, int count) 172 { 173 if (count) { 174 struct ext2_sb_info *sbi = EXT2_SB(sb); 175 unsigned free_blocks; 176 177 spin_lock(sb_bgl_lock(sbi, group_no)); 178 free_blocks = le16_to_cpu(desc->bg_free_blocks_count); 179 desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count); 180 spin_unlock(sb_bgl_lock(sbi, group_no)); 181 sb->s_dirt = 1; 182 mark_buffer_dirty(bh); 183 } 184 } 185 186 /* 187 * The reservation window structure operations 188 * -------------------------------------------- 189 * Operations include: 190 * dump, find, add, remove, is_empty, find_next_reservable_window, etc. 191 * 192 * We use a red-black tree to represent per-filesystem reservation 193 * windows. 194 * 195 */ 196 197 /** 198 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map 199 * @rb_root: root of per-filesystem reservation rb tree 200 * @verbose: verbose mode 201 * @fn: function which wishes to dump the reservation map 202 * 203 * If verbose is turned on, it will print the whole block reservation 204 * windows(start, end). Otherwise, it will only print out the "bad" windows, 205 * those windows that overlap with their immediate neighbors. 206 */ 207 #if 1 208 static void __rsv_window_dump(struct rb_root *root, int verbose, 209 const char *fn) 210 { 211 struct rb_node *n; 212 struct ext2_reserve_window_node *rsv, *prev; 213 int bad; 214 215 restart: 216 n = rb_first(root); 217 bad = 0; 218 prev = NULL; 219 220 printk("Block Allocation Reservation Windows Map (%s):\n", fn); 221 while (n) { 222 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 223 if (verbose) 224 printk("reservation window 0x%p " 225 "start: %lu, end: %lu\n", 226 rsv, rsv->rsv_start, rsv->rsv_end); 227 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { 228 printk("Bad reservation %p (start >= end)\n", 229 rsv); 230 bad = 1; 231 } 232 if (prev && prev->rsv_end >= rsv->rsv_start) { 233 printk("Bad reservation %p (prev->end >= start)\n", 234 rsv); 235 bad = 1; 236 } 237 if (bad) { 238 if (!verbose) { 239 printk("Restarting reservation walk in verbose mode\n"); 240 verbose = 1; 241 goto restart; 242 } 243 } 244 n = rb_next(n); 245 prev = rsv; 246 } 247 printk("Window map complete.\n"); 248 if (bad) 249 BUG(); 250 } 251 #define rsv_window_dump(root, verbose) \ 252 __rsv_window_dump((root), (verbose), __FUNCTION__) 253 #else 254 #define rsv_window_dump(root, verbose) do {} while (0) 255 #endif 256 257 /** 258 * goal_in_my_reservation() 259 * @rsv: inode's reservation window 260 * @grp_goal: given goal block relative to the allocation block group 261 * @group: the current allocation block group 262 * @sb: filesystem super block 263 * 264 * Test if the given goal block (group relative) is within the file's 265 * own block reservation window range. 266 * 267 * If the reservation window is outside the goal allocation group, return 0; 268 * grp_goal (given goal block) could be -1, which means no specific 269 * goal block. In this case, always return 1. 270 * If the goal block is within the reservation window, return 1; 271 * otherwise, return 0; 272 */ 273 static int 274 goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal, 275 unsigned int group, struct super_block * sb) 276 { 277 ext2_fsblk_t group_first_block, group_last_block; 278 279 group_first_block = ext2_group_first_block_no(sb, group); 280 group_last_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1; 281 282 if ((rsv->_rsv_start > group_last_block) || 283 (rsv->_rsv_end < group_first_block)) 284 return 0; 285 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start) 286 || (grp_goal + group_first_block > rsv->_rsv_end))) 287 return 0; 288 return 1; 289 } 290 291 /** 292 * search_reserve_window() 293 * @rb_root: root of reservation tree 294 * @goal: target allocation block 295 * 296 * Find the reserved window which includes the goal, or the previous one 297 * if the goal is not in any window. 298 * Returns NULL if there are no windows or if all windows start after the goal. 299 */ 300 static struct ext2_reserve_window_node * 301 search_reserve_window(struct rb_root *root, ext2_fsblk_t goal) 302 { 303 struct rb_node *n = root->rb_node; 304 struct ext2_reserve_window_node *rsv; 305 306 if (!n) 307 return NULL; 308 309 do { 310 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 311 312 if (goal < rsv->rsv_start) 313 n = n->rb_left; 314 else if (goal > rsv->rsv_end) 315 n = n->rb_right; 316 else 317 return rsv; 318 } while (n); 319 /* 320 * We've fallen off the end of the tree: the goal wasn't inside 321 * any particular node. OK, the previous node must be to one 322 * side of the interval containing the goal. If it's the RHS, 323 * we need to back up one. 324 */ 325 if (rsv->rsv_start > goal) { 326 n = rb_prev(&rsv->rsv_node); 327 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 328 } 329 return rsv; 330 } 331 332 /* 333 * ext2_rsv_window_add() -- Insert a window to the block reservation rb tree. 334 * @sb: super block 335 * @rsv: reservation window to add 336 * 337 * Must be called with rsv_lock held. 338 */ 339 void ext2_rsv_window_add(struct super_block *sb, 340 struct ext2_reserve_window_node *rsv) 341 { 342 struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root; 343 struct rb_node *node = &rsv->rsv_node; 344 ext2_fsblk_t start = rsv->rsv_start; 345 346 struct rb_node ** p = &root->rb_node; 347 struct rb_node * parent = NULL; 348 struct ext2_reserve_window_node *this; 349 350 while (*p) 351 { 352 parent = *p; 353 this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node); 354 355 if (start < this->rsv_start) 356 p = &(*p)->rb_left; 357 else if (start > this->rsv_end) 358 p = &(*p)->rb_right; 359 else { 360 rsv_window_dump(root, 1); 361 BUG(); 362 } 363 } 364 365 rb_link_node(node, parent, p); 366 rb_insert_color(node, root); 367 } 368 369 /** 370 * rsv_window_remove() -- unlink a window from the reservation rb tree 371 * @sb: super block 372 * @rsv: reservation window to remove 373 * 374 * Mark the block reservation window as not allocated, and unlink it 375 * from the filesystem reservation window rb tree. Must be called with 376 * rsv_lock held. 377 */ 378 static void rsv_window_remove(struct super_block *sb, 379 struct ext2_reserve_window_node *rsv) 380 { 381 rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 382 rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 383 rsv->rsv_alloc_hit = 0; 384 rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root); 385 } 386 387 /* 388 * rsv_is_empty() -- Check if the reservation window is allocated. 389 * @rsv: given reservation window to check 390 * 391 * returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED. 392 */ 393 static inline int rsv_is_empty(struct ext2_reserve_window *rsv) 394 { 395 /* a valid reservation end block could not be 0 */ 396 return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED); 397 } 398 399 /** 400 * ext2_init_block_alloc_info() 401 * @inode: file inode structure 402 * 403 * Allocate and initialize the reservation window structure, and 404 * link the window to the ext2 inode structure at last 405 * 406 * The reservation window structure is only dynamically allocated 407 * and linked to ext2 inode the first time the open file 408 * needs a new block. So, before every ext2_new_block(s) call, for 409 * regular files, we should check whether the reservation window 410 * structure exists or not. In the latter case, this function is called. 411 * Fail to do so will result in block reservation being turned off for that 412 * open file. 413 * 414 * This function is called from ext2_get_blocks_handle(), also called 415 * when setting the reservation window size through ioctl before the file 416 * is open for write (needs block allocation). 417 * 418 * Needs truncate_mutex protection prior to calling this function. 419 */ 420 void ext2_init_block_alloc_info(struct inode *inode) 421 { 422 struct ext2_inode_info *ei = EXT2_I(inode); 423 struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info; 424 struct super_block *sb = inode->i_sb; 425 426 block_i = kmalloc(sizeof(*block_i), GFP_NOFS); 427 if (block_i) { 428 struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node; 429 430 rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 431 rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 432 433 /* 434 * if filesystem is mounted with NORESERVATION, the goal 435 * reservation window size is set to zero to indicate 436 * block reservation is off 437 */ 438 if (!test_opt(sb, RESERVATION)) 439 rsv->rsv_goal_size = 0; 440 else 441 rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS; 442 rsv->rsv_alloc_hit = 0; 443 block_i->last_alloc_logical_block = 0; 444 block_i->last_alloc_physical_block = 0; 445 } 446 ei->i_block_alloc_info = block_i; 447 } 448 449 /** 450 * ext2_discard_reservation() 451 * @inode: inode 452 * 453 * Discard(free) block reservation window on last file close, or truncate 454 * or at last iput(). 455 * 456 * It is being called in three cases: 457 * ext2_release_file(): last writer closes the file 458 * ext2_clear_inode(): last iput(), when nobody links to this file. 459 * ext2_truncate(): when the block indirect map is about to change. 460 */ 461 void ext2_discard_reservation(struct inode *inode) 462 { 463 struct ext2_inode_info *ei = EXT2_I(inode); 464 struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info; 465 struct ext2_reserve_window_node *rsv; 466 spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock; 467 468 if (!block_i) 469 return; 470 471 rsv = &block_i->rsv_window_node; 472 if (!rsv_is_empty(&rsv->rsv_window)) { 473 spin_lock(rsv_lock); 474 if (!rsv_is_empty(&rsv->rsv_window)) 475 rsv_window_remove(inode->i_sb, rsv); 476 spin_unlock(rsv_lock); 477 } 478 } 479 480 /** 481 * ext2_free_blocks_sb() -- Free given blocks and update quota and i_blocks 482 * @inode: inode 483 * @block: start physcial block to free 484 * @count: number of blocks to free 485 */ 486 void ext2_free_blocks (struct inode * inode, unsigned long block, 487 unsigned long count) 488 { 489 struct buffer_head *bitmap_bh = NULL; 490 struct buffer_head * bh2; 491 unsigned long block_group; 492 unsigned long bit; 493 unsigned long i; 494 unsigned long overflow; 495 struct super_block * sb = inode->i_sb; 496 struct ext2_sb_info * sbi = EXT2_SB(sb); 497 struct ext2_group_desc * desc; 498 struct ext2_super_block * es = sbi->s_es; 499 unsigned freed = 0, group_freed; 500 501 if (block < le32_to_cpu(es->s_first_data_block) || 502 block + count < block || 503 block + count > le32_to_cpu(es->s_blocks_count)) { 504 ext2_error (sb, "ext2_free_blocks", 505 "Freeing blocks not in datazone - " 506 "block = %lu, count = %lu", block, count); 507 goto error_return; 508 } 509 510 ext2_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1); 511 512 do_more: 513 overflow = 0; 514 block_group = (block - le32_to_cpu(es->s_first_data_block)) / 515 EXT2_BLOCKS_PER_GROUP(sb); 516 bit = (block - le32_to_cpu(es->s_first_data_block)) % 517 EXT2_BLOCKS_PER_GROUP(sb); 518 /* 519 * Check to see if we are freeing blocks across a group 520 * boundary. 521 */ 522 if (bit + count > EXT2_BLOCKS_PER_GROUP(sb)) { 523 overflow = bit + count - EXT2_BLOCKS_PER_GROUP(sb); 524 count -= overflow; 525 } 526 brelse(bitmap_bh); 527 bitmap_bh = read_block_bitmap(sb, block_group); 528 if (!bitmap_bh) 529 goto error_return; 530 531 desc = ext2_get_group_desc (sb, block_group, &bh2); 532 if (!desc) 533 goto error_return; 534 535 if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) || 536 in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) || 537 in_range (block, le32_to_cpu(desc->bg_inode_table), 538 sbi->s_itb_per_group) || 539 in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table), 540 sbi->s_itb_per_group)) { 541 ext2_error (sb, "ext2_free_blocks", 542 "Freeing blocks in system zones - " 543 "Block = %lu, count = %lu", 544 block, count); 545 goto error_return; 546 } 547 548 for (i = 0, group_freed = 0; i < count; i++) { 549 if (!ext2_clear_bit_atomic(sb_bgl_lock(sbi, block_group), 550 bit + i, bitmap_bh->b_data)) { 551 ext2_error(sb, __FUNCTION__, 552 "bit already cleared for block %lu", block + i); 553 } else { 554 group_freed++; 555 } 556 } 557 558 mark_buffer_dirty(bitmap_bh); 559 if (sb->s_flags & MS_SYNCHRONOUS) 560 sync_dirty_buffer(bitmap_bh); 561 562 group_adjust_blocks(sb, block_group, desc, bh2, group_freed); 563 freed += group_freed; 564 565 if (overflow) { 566 block += count; 567 count = overflow; 568 goto do_more; 569 } 570 error_return: 571 brelse(bitmap_bh); 572 release_blocks(sb, freed); 573 DQUOT_FREE_BLOCK(inode, freed); 574 } 575 576 /** 577 * bitmap_search_next_usable_block() 578 * @start: the starting block (group relative) of the search 579 * @bh: bufferhead contains the block group bitmap 580 * @maxblocks: the ending block (group relative) of the reservation 581 * 582 * The bitmap search --- search forward through the actual bitmap on disk until 583 * we find a bit free. 584 */ 585 static ext2_grpblk_t 586 bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh, 587 ext2_grpblk_t maxblocks) 588 { 589 ext2_grpblk_t next; 590 591 next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start); 592 if (next >= maxblocks) 593 return -1; 594 return next; 595 } 596 597 /** 598 * find_next_usable_block() 599 * @start: the starting block (group relative) to find next 600 * allocatable block in bitmap. 601 * @bh: bufferhead contains the block group bitmap 602 * @maxblocks: the ending block (group relative) for the search 603 * 604 * Find an allocatable block in a bitmap. We perform the "most 605 * appropriate allocation" algorithm of looking for a free block near 606 * the initial goal; then for a free byte somewhere in the bitmap; 607 * then for any free bit in the bitmap. 608 */ 609 static ext2_grpblk_t 610 find_next_usable_block(int start, struct buffer_head *bh, int maxblocks) 611 { 612 ext2_grpblk_t here, next; 613 char *p, *r; 614 615 if (start > 0) { 616 /* 617 * The goal was occupied; search forward for a free 618 * block within the next XX blocks. 619 * 620 * end_goal is more or less random, but it has to be 621 * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the 622 * next 64-bit boundary is simple.. 623 */ 624 ext2_grpblk_t end_goal = (start + 63) & ~63; 625 if (end_goal > maxblocks) 626 end_goal = maxblocks; 627 here = ext2_find_next_zero_bit(bh->b_data, end_goal, start); 628 if (here < end_goal) 629 return here; 630 ext2_debug("Bit not found near goal\n"); 631 } 632 633 here = start; 634 if (here < 0) 635 here = 0; 636 637 p = ((char *)bh->b_data) + (here >> 3); 638 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3)); 639 next = (r - ((char *)bh->b_data)) << 3; 640 641 if (next < maxblocks && next >= here) 642 return next; 643 644 here = bitmap_search_next_usable_block(here, bh, maxblocks); 645 return here; 646 } 647 648 /* 649 * ext2_try_to_allocate() 650 * @sb: superblock 651 * @handle: handle to this transaction 652 * @group: given allocation block group 653 * @bitmap_bh: bufferhead holds the block bitmap 654 * @grp_goal: given target block within the group 655 * @count: target number of blocks to allocate 656 * @my_rsv: reservation window 657 * 658 * Attempt to allocate blocks within a give range. Set the range of allocation 659 * first, then find the first free bit(s) from the bitmap (within the range), 660 * and at last, allocate the blocks by claiming the found free bit as allocated. 661 * 662 * To set the range of this allocation: 663 * if there is a reservation window, only try to allocate block(s) 664 * from the file's own reservation window; 665 * Otherwise, the allocation range starts from the give goal block, 666 * ends at the block group's last block. 667 * 668 * If we failed to allocate the desired block then we may end up crossing to a 669 * new bitmap. 670 */ 671 static int 672 ext2_try_to_allocate(struct super_block *sb, int group, 673 struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, 674 unsigned long *count, 675 struct ext2_reserve_window *my_rsv) 676 { 677 ext2_fsblk_t group_first_block; 678 ext2_grpblk_t start, end; 679 unsigned long num = 0; 680 681 /* we do allocation within the reservation window if we have a window */ 682 if (my_rsv) { 683 group_first_block = ext2_group_first_block_no(sb, group); 684 if (my_rsv->_rsv_start >= group_first_block) 685 start = my_rsv->_rsv_start - group_first_block; 686 else 687 /* reservation window cross group boundary */ 688 start = 0; 689 end = my_rsv->_rsv_end - group_first_block + 1; 690 if (end > EXT2_BLOCKS_PER_GROUP(sb)) 691 /* reservation window crosses group boundary */ 692 end = EXT2_BLOCKS_PER_GROUP(sb); 693 if ((start <= grp_goal) && (grp_goal < end)) 694 start = grp_goal; 695 else 696 grp_goal = -1; 697 } else { 698 if (grp_goal > 0) 699 start = grp_goal; 700 else 701 start = 0; 702 end = EXT2_BLOCKS_PER_GROUP(sb); 703 } 704 705 BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb)); 706 707 repeat: 708 if (grp_goal < 0) { 709 grp_goal = find_next_usable_block(start, bitmap_bh, end); 710 if (grp_goal < 0) 711 goto fail_access; 712 if (!my_rsv) { 713 int i; 714 715 for (i = 0; i < 7 && grp_goal > start && 716 !ext2_test_bit(grp_goal - 1, 717 bitmap_bh->b_data); 718 i++, grp_goal--) 719 ; 720 } 721 } 722 start = grp_goal; 723 724 if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), grp_goal, 725 bitmap_bh->b_data)) { 726 /* 727 * The block was allocated by another thread, or it was 728 * allocated and then freed by another thread 729 */ 730 start++; 731 grp_goal++; 732 if (start >= end) 733 goto fail_access; 734 goto repeat; 735 } 736 num++; 737 grp_goal++; 738 while (num < *count && grp_goal < end 739 && !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), 740 grp_goal, bitmap_bh->b_data)) { 741 num++; 742 grp_goal++; 743 } 744 *count = num; 745 return grp_goal - num; 746 fail_access: 747 *count = num; 748 return -1; 749 } 750 751 /** 752 * find_next_reservable_window(): 753 * find a reservable space within the given range. 754 * It does not allocate the reservation window for now: 755 * alloc_new_reservation() will do the work later. 756 * 757 * @search_head: the head of the searching list; 758 * This is not necessarily the list head of the whole filesystem 759 * 760 * We have both head and start_block to assist the search 761 * for the reservable space. The list starts from head, 762 * but we will shift to the place where start_block is, 763 * then start from there, when looking for a reservable space. 764 * 765 * @size: the target new reservation window size 766 * 767 * @group_first_block: the first block we consider to start 768 * the real search from 769 * 770 * @last_block: 771 * the maximum block number that our goal reservable space 772 * could start from. This is normally the last block in this 773 * group. The search will end when we found the start of next 774 * possible reservable space is out of this boundary. 775 * This could handle the cross boundary reservation window 776 * request. 777 * 778 * basically we search from the given range, rather than the whole 779 * reservation double linked list, (start_block, last_block) 780 * to find a free region that is of my size and has not 781 * been reserved. 782 * 783 */ 784 static int find_next_reservable_window( 785 struct ext2_reserve_window_node *search_head, 786 struct ext2_reserve_window_node *my_rsv, 787 struct super_block * sb, 788 ext2_fsblk_t start_block, 789 ext2_fsblk_t last_block) 790 { 791 struct rb_node *next; 792 struct ext2_reserve_window_node *rsv, *prev; 793 ext2_fsblk_t cur; 794 int size = my_rsv->rsv_goal_size; 795 796 /* TODO: make the start of the reservation window byte-aligned */ 797 /* cur = *start_block & ~7;*/ 798 cur = start_block; 799 rsv = search_head; 800 if (!rsv) 801 return -1; 802 803 while (1) { 804 if (cur <= rsv->rsv_end) 805 cur = rsv->rsv_end + 1; 806 807 /* TODO? 808 * in the case we could not find a reservable space 809 * that is what is expected, during the re-search, we could 810 * remember what's the largest reservable space we could have 811 * and return that one. 812 * 813 * For now it will fail if we could not find the reservable 814 * space with expected-size (or more)... 815 */ 816 if (cur > last_block) 817 return -1; /* fail */ 818 819 prev = rsv; 820 next = rb_next(&rsv->rsv_node); 821 rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node); 822 823 /* 824 * Reached the last reservation, we can just append to the 825 * previous one. 826 */ 827 if (!next) 828 break; 829 830 if (cur + size <= rsv->rsv_start) { 831 /* 832 * Found a reserveable space big enough. We could 833 * have a reservation across the group boundary here 834 */ 835 break; 836 } 837 } 838 /* 839 * we come here either : 840 * when we reach the end of the whole list, 841 * and there is empty reservable space after last entry in the list. 842 * append it to the end of the list. 843 * 844 * or we found one reservable space in the middle of the list, 845 * return the reservation window that we could append to. 846 * succeed. 847 */ 848 849 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window))) 850 rsv_window_remove(sb, my_rsv); 851 852 /* 853 * Let's book the whole avaliable window for now. We will check the 854 * disk bitmap later and then, if there are free blocks then we adjust 855 * the window size if it's larger than requested. 856 * Otherwise, we will remove this node from the tree next time 857 * call find_next_reservable_window. 858 */ 859 my_rsv->rsv_start = cur; 860 my_rsv->rsv_end = cur + size - 1; 861 my_rsv->rsv_alloc_hit = 0; 862 863 if (prev != my_rsv) 864 ext2_rsv_window_add(sb, my_rsv); 865 866 return 0; 867 } 868 869 /** 870 * alloc_new_reservation()--allocate a new reservation window 871 * 872 * To make a new reservation, we search part of the filesystem 873 * reservation list (the list that inside the group). We try to 874 * allocate a new reservation window near the allocation goal, 875 * or the beginning of the group, if there is no goal. 876 * 877 * We first find a reservable space after the goal, then from 878 * there, we check the bitmap for the first free block after 879 * it. If there is no free block until the end of group, then the 880 * whole group is full, we failed. Otherwise, check if the free 881 * block is inside the expected reservable space, if so, we 882 * succeed. 883 * If the first free block is outside the reservable space, then 884 * start from the first free block, we search for next available 885 * space, and go on. 886 * 887 * on succeed, a new reservation will be found and inserted into the list 888 * It contains at least one free block, and it does not overlap with other 889 * reservation windows. 890 * 891 * failed: we failed to find a reservation window in this group 892 * 893 * @rsv: the reservation 894 * 895 * @grp_goal: The goal (group-relative). It is where the search for a 896 * free reservable space should start from. 897 * if we have a goal(goal >0 ), then start from there, 898 * no goal(goal = -1), we start from the first block 899 * of the group. 900 * 901 * @sb: the super block 902 * @group: the group we are trying to allocate in 903 * @bitmap_bh: the block group block bitmap 904 * 905 */ 906 static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv, 907 ext2_grpblk_t grp_goal, struct super_block *sb, 908 unsigned int group, struct buffer_head *bitmap_bh) 909 { 910 struct ext2_reserve_window_node *search_head; 911 ext2_fsblk_t group_first_block, group_end_block, start_block; 912 ext2_grpblk_t first_free_block; 913 struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root; 914 unsigned long size; 915 int ret; 916 spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; 917 918 group_first_block = ext2_group_first_block_no(sb, group); 919 group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1); 920 921 if (grp_goal < 0) 922 start_block = group_first_block; 923 else 924 start_block = grp_goal + group_first_block; 925 926 size = my_rsv->rsv_goal_size; 927 928 if (!rsv_is_empty(&my_rsv->rsv_window)) { 929 /* 930 * if the old reservation is cross group boundary 931 * and if the goal is inside the old reservation window, 932 * we will come here when we just failed to allocate from 933 * the first part of the window. We still have another part 934 * that belongs to the next group. In this case, there is no 935 * point to discard our window and try to allocate a new one 936 * in this group(which will fail). we should 937 * keep the reservation window, just simply move on. 938 * 939 * Maybe we could shift the start block of the reservation 940 * window to the first block of next group. 941 */ 942 943 if ((my_rsv->rsv_start <= group_end_block) && 944 (my_rsv->rsv_end > group_end_block) && 945 (start_block >= my_rsv->rsv_start)) 946 return -1; 947 948 if ((my_rsv->rsv_alloc_hit > 949 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { 950 /* 951 * if the previously allocation hit ratio is 952 * greater than 1/2, then we double the size of 953 * the reservation window the next time, 954 * otherwise we keep the same size window 955 */ 956 size = size * 2; 957 if (size > EXT2_MAX_RESERVE_BLOCKS) 958 size = EXT2_MAX_RESERVE_BLOCKS; 959 my_rsv->rsv_goal_size= size; 960 } 961 } 962 963 spin_lock(rsv_lock); 964 /* 965 * shift the search start to the window near the goal block 966 */ 967 search_head = search_reserve_window(fs_rsv_root, start_block); 968 969 /* 970 * find_next_reservable_window() simply finds a reservable window 971 * inside the given range(start_block, group_end_block). 972 * 973 * To make sure the reservation window has a free bit inside it, we 974 * need to check the bitmap after we found a reservable window. 975 */ 976 retry: 977 ret = find_next_reservable_window(search_head, my_rsv, sb, 978 start_block, group_end_block); 979 980 if (ret == -1) { 981 if (!rsv_is_empty(&my_rsv->rsv_window)) 982 rsv_window_remove(sb, my_rsv); 983 spin_unlock(rsv_lock); 984 return -1; 985 } 986 987 /* 988 * On success, find_next_reservable_window() returns the 989 * reservation window where there is a reservable space after it. 990 * Before we reserve this reservable space, we need 991 * to make sure there is at least a free block inside this region. 992 * 993 * Search the first free bit on the block bitmap. Search starts from 994 * the start block of the reservable space we just found. 995 */ 996 spin_unlock(rsv_lock); 997 first_free_block = bitmap_search_next_usable_block( 998 my_rsv->rsv_start - group_first_block, 999 bitmap_bh, group_end_block - group_first_block + 1); 1000 1001 if (first_free_block < 0) { 1002 /* 1003 * no free block left on the bitmap, no point 1004 * to reserve the space. return failed. 1005 */ 1006 spin_lock(rsv_lock); 1007 if (!rsv_is_empty(&my_rsv->rsv_window)) 1008 rsv_window_remove(sb, my_rsv); 1009 spin_unlock(rsv_lock); 1010 return -1; /* failed */ 1011 } 1012 1013 start_block = first_free_block + group_first_block; 1014 /* 1015 * check if the first free block is within the 1016 * free space we just reserved 1017 */ 1018 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end) 1019 return 0; /* success */ 1020 /* 1021 * if the first free bit we found is out of the reservable space 1022 * continue search for next reservable space, 1023 * start from where the free block is, 1024 * we also shift the list head to where we stopped last time 1025 */ 1026 search_head = my_rsv; 1027 spin_lock(rsv_lock); 1028 goto retry; 1029 } 1030 1031 /** 1032 * try_to_extend_reservation() 1033 * @my_rsv: given reservation window 1034 * @sb: super block 1035 * @size: the delta to extend 1036 * 1037 * Attempt to expand the reservation window large enough to have 1038 * required number of free blocks 1039 * 1040 * Since ext2_try_to_allocate() will always allocate blocks within 1041 * the reservation window range, if the window size is too small, 1042 * multiple blocks allocation has to stop at the end of the reservation 1043 * window. To make this more efficient, given the total number of 1044 * blocks needed and the current size of the window, we try to 1045 * expand the reservation window size if necessary on a best-effort 1046 * basis before ext2_new_blocks() tries to allocate blocks. 1047 */ 1048 static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv, 1049 struct super_block *sb, int size) 1050 { 1051 struct ext2_reserve_window_node *next_rsv; 1052 struct rb_node *next; 1053 spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; 1054 1055 if (!spin_trylock(rsv_lock)) 1056 return; 1057 1058 next = rb_next(&my_rsv->rsv_node); 1059 1060 if (!next) 1061 my_rsv->rsv_end += size; 1062 else { 1063 next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node); 1064 1065 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size) 1066 my_rsv->rsv_end += size; 1067 else 1068 my_rsv->rsv_end = next_rsv->rsv_start - 1; 1069 } 1070 spin_unlock(rsv_lock); 1071 } 1072 1073 /** 1074 * ext2_try_to_allocate_with_rsv() 1075 * @sb: superblock 1076 * @group: given allocation block group 1077 * @bitmap_bh: bufferhead holds the block bitmap 1078 * @grp_goal: given target block within the group 1079 * @count: target number of blocks to allocate 1080 * @my_rsv: reservation window 1081 * 1082 * This is the main function used to allocate a new block and its reservation 1083 * window. 1084 * 1085 * Each time when a new block allocation is need, first try to allocate from 1086 * its own reservation. If it does not have a reservation window, instead of 1087 * looking for a free bit on bitmap first, then look up the reservation list to 1088 * see if it is inside somebody else's reservation window, we try to allocate a 1089 * reservation window for it starting from the goal first. Then do the block 1090 * allocation within the reservation window. 1091 * 1092 * This will avoid keeping on searching the reservation list again and 1093 * again when somebody is looking for a free block (without 1094 * reservation), and there are lots of free blocks, but they are all 1095 * being reserved. 1096 * 1097 * We use a red-black tree for the per-filesystem reservation list. 1098 */ 1099 static ext2_grpblk_t 1100 ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group, 1101 struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, 1102 struct ext2_reserve_window_node * my_rsv, 1103 unsigned long *count) 1104 { 1105 ext2_fsblk_t group_first_block, group_last_block; 1106 ext2_grpblk_t ret = 0; 1107 unsigned long num = *count; 1108 1109 /* 1110 * we don't deal with reservation when 1111 * filesystem is mounted without reservation 1112 * or the file is not a regular file 1113 * or last attempt to allocate a block with reservation turned on failed 1114 */ 1115 if (my_rsv == NULL) { 1116 return ext2_try_to_allocate(sb, group, bitmap_bh, 1117 grp_goal, count, NULL); 1118 } 1119 /* 1120 * grp_goal is a group relative block number (if there is a goal) 1121 * 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb) 1122 * first block is a filesystem wide block number 1123 * first block is the block number of the first block in this group 1124 */ 1125 group_first_block = ext2_group_first_block_no(sb, group); 1126 group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1); 1127 1128 /* 1129 * Basically we will allocate a new block from inode's reservation 1130 * window. 1131 * 1132 * We need to allocate a new reservation window, if: 1133 * a) inode does not have a reservation window; or 1134 * b) last attempt to allocate a block from existing reservation 1135 * failed; or 1136 * c) we come here with a goal and with a reservation window 1137 * 1138 * We do not need to allocate a new reservation window if we come here 1139 * at the beginning with a goal and the goal is inside the window, or 1140 * we don't have a goal but already have a reservation window. 1141 * then we could go to allocate from the reservation window directly. 1142 */ 1143 while (1) { 1144 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) || 1145 !goal_in_my_reservation(&my_rsv->rsv_window, 1146 grp_goal, group, sb)) { 1147 if (my_rsv->rsv_goal_size < *count) 1148 my_rsv->rsv_goal_size = *count; 1149 ret = alloc_new_reservation(my_rsv, grp_goal, sb, 1150 group, bitmap_bh); 1151 if (ret < 0) 1152 break; /* failed */ 1153 1154 if (!goal_in_my_reservation(&my_rsv->rsv_window, 1155 grp_goal, group, sb)) 1156 grp_goal = -1; 1157 } else if (grp_goal >= 0) { 1158 int curr = my_rsv->rsv_end - 1159 (grp_goal + group_first_block) + 1; 1160 1161 if (curr < *count) 1162 try_to_extend_reservation(my_rsv, sb, 1163 *count - curr); 1164 } 1165 1166 if ((my_rsv->rsv_start > group_last_block) || 1167 (my_rsv->rsv_end < group_first_block)) { 1168 rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1); 1169 BUG(); 1170 } 1171 ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal, 1172 &num, &my_rsv->rsv_window); 1173 if (ret >= 0) { 1174 my_rsv->rsv_alloc_hit += num; 1175 *count = num; 1176 break; /* succeed */ 1177 } 1178 num = *count; 1179 } 1180 return ret; 1181 } 1182 1183 /** 1184 * ext2_has_free_blocks() 1185 * @sbi: in-core super block structure. 1186 * 1187 * Check if filesystem has at least 1 free block available for allocation. 1188 */ 1189 static int ext2_has_free_blocks(struct ext2_sb_info *sbi) 1190 { 1191 ext2_fsblk_t free_blocks, root_blocks; 1192 1193 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 1194 root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count); 1195 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && 1196 sbi->s_resuid != current->fsuid && 1197 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) { 1198 return 0; 1199 } 1200 return 1; 1201 } 1202 1203 /* 1204 * ext2_new_blocks() -- core block(s) allocation function 1205 * @inode: file inode 1206 * @goal: given target block(filesystem wide) 1207 * @count: target number of blocks to allocate 1208 * @errp: error code 1209 * 1210 * ext2_new_blocks uses a goal block to assist allocation. If the goal is 1211 * free, or there is a free block within 32 blocks of the goal, that block 1212 * is allocated. Otherwise a forward search is made for a free block; within 1213 * each block group the search first looks for an entire free byte in the block 1214 * bitmap, and then for any free bit if that fails. 1215 * This function also updates quota and i_blocks field. 1216 */ 1217 ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal, 1218 unsigned long *count, int *errp) 1219 { 1220 struct buffer_head *bitmap_bh = NULL; 1221 struct buffer_head *gdp_bh; 1222 int group_no; 1223 int goal_group; 1224 ext2_grpblk_t grp_target_blk; /* blockgroup relative goal block */ 1225 ext2_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/ 1226 ext2_fsblk_t ret_block; /* filesyetem-wide allocated block */ 1227 int bgi; /* blockgroup iteration index */ 1228 int performed_allocation = 0; 1229 ext2_grpblk_t free_blocks; /* number of free blocks in a group */ 1230 struct super_block *sb; 1231 struct ext2_group_desc *gdp; 1232 struct ext2_super_block *es; 1233 struct ext2_sb_info *sbi; 1234 struct ext2_reserve_window_node *my_rsv = NULL; 1235 struct ext2_block_alloc_info *block_i; 1236 unsigned short windowsz = 0; 1237 unsigned long ngroups; 1238 unsigned long num = *count; 1239 1240 *errp = -ENOSPC; 1241 sb = inode->i_sb; 1242 if (!sb) { 1243 printk("ext2_new_blocks: nonexistent device"); 1244 return 0; 1245 } 1246 1247 /* 1248 * Check quota for allocation of this block. 1249 */ 1250 if (DQUOT_ALLOC_BLOCK(inode, num)) { 1251 *errp = -EDQUOT; 1252 return 0; 1253 } 1254 1255 sbi = EXT2_SB(sb); 1256 es = EXT2_SB(sb)->s_es; 1257 ext2_debug("goal=%lu.\n", goal); 1258 /* 1259 * Allocate a block from reservation only when 1260 * filesystem is mounted with reservation(default,-o reservation), and 1261 * it's a regular file, and 1262 * the desired window size is greater than 0 (One could use ioctl 1263 * command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off 1264 * reservation on that particular file) 1265 */ 1266 block_i = EXT2_I(inode)->i_block_alloc_info; 1267 if (block_i) { 1268 windowsz = block_i->rsv_window_node.rsv_goal_size; 1269 if (windowsz > 0) 1270 my_rsv = &block_i->rsv_window_node; 1271 } 1272 1273 if (!ext2_has_free_blocks(sbi)) { 1274 *errp = -ENOSPC; 1275 goto out; 1276 } 1277 1278 /* 1279 * First, test whether the goal block is free. 1280 */ 1281 if (goal < le32_to_cpu(es->s_first_data_block) || 1282 goal >= le32_to_cpu(es->s_blocks_count)) 1283 goal = le32_to_cpu(es->s_first_data_block); 1284 group_no = (goal - le32_to_cpu(es->s_first_data_block)) / 1285 EXT2_BLOCKS_PER_GROUP(sb); 1286 goal_group = group_no; 1287 retry_alloc: 1288 gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); 1289 if (!gdp) 1290 goto io_error; 1291 1292 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1293 /* 1294 * if there is not enough free blocks to make a new resevation 1295 * turn off reservation for this allocation 1296 */ 1297 if (my_rsv && (free_blocks < windowsz) 1298 && (rsv_is_empty(&my_rsv->rsv_window))) 1299 my_rsv = NULL; 1300 1301 if (free_blocks > 0) { 1302 grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) % 1303 EXT2_BLOCKS_PER_GROUP(sb)); 1304 bitmap_bh = read_block_bitmap(sb, group_no); 1305 if (!bitmap_bh) 1306 goto io_error; 1307 grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, 1308 bitmap_bh, grp_target_blk, 1309 my_rsv, &num); 1310 if (grp_alloc_blk >= 0) 1311 goto allocated; 1312 } 1313 1314 ngroups = EXT2_SB(sb)->s_groups_count; 1315 smp_rmb(); 1316 1317 /* 1318 * Now search the rest of the groups. We assume that 1319 * group_no and gdp correctly point to the last group visited. 1320 */ 1321 for (bgi = 0; bgi < ngroups; bgi++) { 1322 group_no++; 1323 if (group_no >= ngroups) 1324 group_no = 0; 1325 gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); 1326 if (!gdp) 1327 goto io_error; 1328 1329 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1330 /* 1331 * skip this group if the number of 1332 * free blocks is less than half of the reservation 1333 * window size. 1334 */ 1335 if (free_blocks <= (windowsz/2)) 1336 continue; 1337 1338 brelse(bitmap_bh); 1339 bitmap_bh = read_block_bitmap(sb, group_no); 1340 if (!bitmap_bh) 1341 goto io_error; 1342 /* 1343 * try to allocate block(s) from this group, without a goal(-1). 1344 */ 1345 grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, 1346 bitmap_bh, -1, my_rsv, &num); 1347 if (grp_alloc_blk >= 0) 1348 goto allocated; 1349 } 1350 /* 1351 * We may end up a bogus ealier ENOSPC error due to 1352 * filesystem is "full" of reservations, but 1353 * there maybe indeed free blocks avaliable on disk 1354 * In this case, we just forget about the reservations 1355 * just do block allocation as without reservations. 1356 */ 1357 if (my_rsv) { 1358 my_rsv = NULL; 1359 windowsz = 0; 1360 group_no = goal_group; 1361 goto retry_alloc; 1362 } 1363 /* No space left on the device */ 1364 *errp = -ENOSPC; 1365 goto out; 1366 1367 allocated: 1368 1369 ext2_debug("using block group %d(%d)\n", 1370 group_no, gdp->bg_free_blocks_count); 1371 1372 ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no); 1373 1374 if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) || 1375 in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) || 1376 in_range(ret_block, le32_to_cpu(gdp->bg_inode_table), 1377 EXT2_SB(sb)->s_itb_per_group) || 1378 in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table), 1379 EXT2_SB(sb)->s_itb_per_group)) { 1380 ext2_error(sb, "ext2_new_blocks", 1381 "Allocating block in system zone - " 1382 "blocks from "E2FSBLK", length %lu", 1383 ret_block, num); 1384 goto out; 1385 } 1386 1387 performed_allocation = 1; 1388 1389 if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) { 1390 ext2_error(sb, "ext2_new_blocks", 1391 "block("E2FSBLK") >= blocks count(%d) - " 1392 "block_group = %d, es == %p ", ret_block, 1393 le32_to_cpu(es->s_blocks_count), group_no, es); 1394 goto out; 1395 } 1396 1397 group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num); 1398 percpu_counter_sub(&sbi->s_freeblocks_counter, num); 1399 1400 mark_buffer_dirty(bitmap_bh); 1401 if (sb->s_flags & MS_SYNCHRONOUS) 1402 sync_dirty_buffer(bitmap_bh); 1403 1404 *errp = 0; 1405 brelse(bitmap_bh); 1406 DQUOT_FREE_BLOCK(inode, *count-num); 1407 *count = num; 1408 return ret_block; 1409 1410 io_error: 1411 *errp = -EIO; 1412 out: 1413 /* 1414 * Undo the block allocation 1415 */ 1416 if (!performed_allocation) 1417 DQUOT_FREE_BLOCK(inode, *count); 1418 brelse(bitmap_bh); 1419 return 0; 1420 } 1421 1422 ext2_fsblk_t ext2_new_block(struct inode *inode, unsigned long goal, int *errp) 1423 { 1424 unsigned long count = 1; 1425 1426 return ext2_new_blocks(inode, goal, &count, errp); 1427 } 1428 1429 #ifdef EXT2FS_DEBUG 1430 1431 static const int nibblemap[] = {4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0}; 1432 1433 unsigned long ext2_count_free (struct buffer_head * map, unsigned int numchars) 1434 { 1435 unsigned int i; 1436 unsigned long sum = 0; 1437 1438 if (!map) 1439 return (0); 1440 for (i = 0; i < numchars; i++) 1441 sum += nibblemap[map->b_data[i] & 0xf] + 1442 nibblemap[(map->b_data[i] >> 4) & 0xf]; 1443 return (sum); 1444 } 1445 1446 #endif /* EXT2FS_DEBUG */ 1447 1448 unsigned long ext2_count_free_blocks (struct super_block * sb) 1449 { 1450 struct ext2_group_desc * desc; 1451 unsigned long desc_count = 0; 1452 int i; 1453 #ifdef EXT2FS_DEBUG 1454 unsigned long bitmap_count, x; 1455 struct ext2_super_block *es; 1456 1457 es = EXT2_SB(sb)->s_es; 1458 desc_count = 0; 1459 bitmap_count = 0; 1460 desc = NULL; 1461 for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { 1462 struct buffer_head *bitmap_bh; 1463 desc = ext2_get_group_desc (sb, i, NULL); 1464 if (!desc) 1465 continue; 1466 desc_count += le16_to_cpu(desc->bg_free_blocks_count); 1467 bitmap_bh = read_block_bitmap(sb, i); 1468 if (!bitmap_bh) 1469 continue; 1470 1471 x = ext2_count_free(bitmap_bh, sb->s_blocksize); 1472 printk ("group %d: stored = %d, counted = %lu\n", 1473 i, le16_to_cpu(desc->bg_free_blocks_count), x); 1474 bitmap_count += x; 1475 brelse(bitmap_bh); 1476 } 1477 printk("ext2_count_free_blocks: stored = %lu, computed = %lu, %lu\n", 1478 (long)le32_to_cpu(es->s_free_blocks_count), 1479 desc_count, bitmap_count); 1480 return bitmap_count; 1481 #else 1482 for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { 1483 desc = ext2_get_group_desc (sb, i, NULL); 1484 if (!desc) 1485 continue; 1486 desc_count += le16_to_cpu(desc->bg_free_blocks_count); 1487 } 1488 return desc_count; 1489 #endif 1490 } 1491 1492 static inline int test_root(int a, int b) 1493 { 1494 int num = b; 1495 1496 while (a > num) 1497 num *= b; 1498 return num == a; 1499 } 1500 1501 static int ext2_group_sparse(int group) 1502 { 1503 if (group <= 1) 1504 return 1; 1505 return (test_root(group, 3) || test_root(group, 5) || 1506 test_root(group, 7)); 1507 } 1508 1509 /** 1510 * ext2_bg_has_super - number of blocks used by the superblock in group 1511 * @sb: superblock for filesystem 1512 * @group: group number to check 1513 * 1514 * Return the number of blocks used by the superblock (primary or backup) 1515 * in this group. Currently this will be only 0 or 1. 1516 */ 1517 int ext2_bg_has_super(struct super_block *sb, int group) 1518 { 1519 if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&& 1520 !ext2_group_sparse(group)) 1521 return 0; 1522 return 1; 1523 } 1524 1525 /** 1526 * ext2_bg_num_gdb - number of blocks used by the group table in group 1527 * @sb: superblock for filesystem 1528 * @group: group number to check 1529 * 1530 * Return the number of blocks used by the group descriptor table 1531 * (primary or backup) in this group. In the future there may be a 1532 * different number of descriptor blocks in each group. 1533 */ 1534 unsigned long ext2_bg_num_gdb(struct super_block *sb, int group) 1535 { 1536 return ext2_bg_has_super(sb, group) ? EXT2_SB(sb)->s_gdb_count : 0; 1537 } 1538 1539