1 /* 2 * linux/fs/ext2/balloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 10 * Big-endian to little-endian byte-swapping/bitmaps by 11 * David S. Miller (davem@caip.rutgers.edu), 1995 12 */ 13 14 #include "ext2.h" 15 #include <linux/quotaops.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/buffer_head.h> 19 #include <linux/capability.h> 20 21 /* 22 * balloc.c contains the blocks allocation and deallocation routines 23 */ 24 25 /* 26 * The free blocks are managed by bitmaps. A file system contains several 27 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 28 * block for inodes, N blocks for the inode table and data blocks. 29 * 30 * The file system contains group descriptors which are located after the 31 * super block. Each descriptor contains the number of the bitmap block and 32 * the free blocks count in the block. The descriptors are loaded in memory 33 * when a file system is mounted (see ext2_fill_super). 34 */ 35 36 37 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) 38 39 struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb, 40 unsigned int block_group, 41 struct buffer_head ** bh) 42 { 43 unsigned long group_desc; 44 unsigned long offset; 45 struct ext2_group_desc * desc; 46 struct ext2_sb_info *sbi = EXT2_SB(sb); 47 48 if (block_group >= sbi->s_groups_count) { 49 ext2_error (sb, "ext2_get_group_desc", 50 "block_group >= groups_count - " 51 "block_group = %d, groups_count = %lu", 52 block_group, sbi->s_groups_count); 53 54 return NULL; 55 } 56 57 group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(sb); 58 offset = block_group & (EXT2_DESC_PER_BLOCK(sb) - 1); 59 if (!sbi->s_group_desc[group_desc]) { 60 ext2_error (sb, "ext2_get_group_desc", 61 "Group descriptor not loaded - " 62 "block_group = %d, group_desc = %lu, desc = %lu", 63 block_group, group_desc, offset); 64 return NULL; 65 } 66 67 desc = (struct ext2_group_desc *) sbi->s_group_desc[group_desc]->b_data; 68 if (bh) 69 *bh = sbi->s_group_desc[group_desc]; 70 return desc + offset; 71 } 72 73 static int ext2_valid_block_bitmap(struct super_block *sb, 74 struct ext2_group_desc *desc, 75 unsigned int block_group, 76 struct buffer_head *bh) 77 { 78 ext2_grpblk_t offset; 79 ext2_grpblk_t next_zero_bit; 80 ext2_fsblk_t bitmap_blk; 81 ext2_fsblk_t group_first_block; 82 83 group_first_block = ext2_group_first_block_no(sb, block_group); 84 85 /* check whether block bitmap block number is set */ 86 bitmap_blk = le32_to_cpu(desc->bg_block_bitmap); 87 offset = bitmap_blk - group_first_block; 88 if (!ext2_test_bit(offset, bh->b_data)) 89 /* bad block bitmap */ 90 goto err_out; 91 92 /* check whether the inode bitmap block number is set */ 93 bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap); 94 offset = bitmap_blk - group_first_block; 95 if (!ext2_test_bit(offset, bh->b_data)) 96 /* bad block bitmap */ 97 goto err_out; 98 99 /* check whether the inode table block number is set */ 100 bitmap_blk = le32_to_cpu(desc->bg_inode_table); 101 offset = bitmap_blk - group_first_block; 102 next_zero_bit = ext2_find_next_zero_bit(bh->b_data, 103 offset + EXT2_SB(sb)->s_itb_per_group, 104 offset); 105 if (next_zero_bit >= offset + EXT2_SB(sb)->s_itb_per_group) 106 /* good bitmap for inode tables */ 107 return 1; 108 109 err_out: 110 ext2_error(sb, __func__, 111 "Invalid block bitmap - " 112 "block_group = %d, block = %lu", 113 block_group, bitmap_blk); 114 return 0; 115 } 116 117 /* 118 * Read the bitmap for a given block_group,and validate the 119 * bits for block/inode/inode tables are set in the bitmaps 120 * 121 * Return buffer_head on success or NULL in case of failure. 122 */ 123 static struct buffer_head * 124 read_block_bitmap(struct super_block *sb, unsigned int block_group) 125 { 126 struct ext2_group_desc * desc; 127 struct buffer_head * bh = NULL; 128 ext2_fsblk_t bitmap_blk; 129 130 desc = ext2_get_group_desc(sb, block_group, NULL); 131 if (!desc) 132 return NULL; 133 bitmap_blk = le32_to_cpu(desc->bg_block_bitmap); 134 bh = sb_getblk(sb, bitmap_blk); 135 if (unlikely(!bh)) { 136 ext2_error(sb, __func__, 137 "Cannot read block bitmap - " 138 "block_group = %d, block_bitmap = %u", 139 block_group, le32_to_cpu(desc->bg_block_bitmap)); 140 return NULL; 141 } 142 if (likely(bh_uptodate_or_lock(bh))) 143 return bh; 144 145 if (bh_submit_read(bh) < 0) { 146 brelse(bh); 147 ext2_error(sb, __func__, 148 "Cannot read block bitmap - " 149 "block_group = %d, block_bitmap = %u", 150 block_group, le32_to_cpu(desc->bg_block_bitmap)); 151 return NULL; 152 } 153 154 ext2_valid_block_bitmap(sb, desc, block_group, bh); 155 /* 156 * file system mounted not to panic on error, continue with corrupt 157 * bitmap 158 */ 159 return bh; 160 } 161 162 static void release_blocks(struct super_block *sb, int count) 163 { 164 if (count) { 165 struct ext2_sb_info *sbi = EXT2_SB(sb); 166 167 percpu_counter_add(&sbi->s_freeblocks_counter, count); 168 } 169 } 170 171 static void group_adjust_blocks(struct super_block *sb, int group_no, 172 struct ext2_group_desc *desc, struct buffer_head *bh, int count) 173 { 174 if (count) { 175 struct ext2_sb_info *sbi = EXT2_SB(sb); 176 unsigned free_blocks; 177 178 spin_lock(sb_bgl_lock(sbi, group_no)); 179 free_blocks = le16_to_cpu(desc->bg_free_blocks_count); 180 desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count); 181 spin_unlock(sb_bgl_lock(sbi, group_no)); 182 mark_buffer_dirty(bh); 183 } 184 } 185 186 /* 187 * The reservation window structure operations 188 * -------------------------------------------- 189 * Operations include: 190 * dump, find, add, remove, is_empty, find_next_reservable_window, etc. 191 * 192 * We use a red-black tree to represent per-filesystem reservation 193 * windows. 194 * 195 */ 196 197 /** 198 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map 199 * @rb_root: root of per-filesystem reservation rb tree 200 * @verbose: verbose mode 201 * @fn: function which wishes to dump the reservation map 202 * 203 * If verbose is turned on, it will print the whole block reservation 204 * windows(start, end). Otherwise, it will only print out the "bad" windows, 205 * those windows that overlap with their immediate neighbors. 206 */ 207 #if 1 208 static void __rsv_window_dump(struct rb_root *root, int verbose, 209 const char *fn) 210 { 211 struct rb_node *n; 212 struct ext2_reserve_window_node *rsv, *prev; 213 int bad; 214 215 restart: 216 n = rb_first(root); 217 bad = 0; 218 prev = NULL; 219 220 printk("Block Allocation Reservation Windows Map (%s):\n", fn); 221 while (n) { 222 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 223 if (verbose) 224 printk("reservation window 0x%p " 225 "start: %lu, end: %lu\n", 226 rsv, rsv->rsv_start, rsv->rsv_end); 227 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { 228 printk("Bad reservation %p (start >= end)\n", 229 rsv); 230 bad = 1; 231 } 232 if (prev && prev->rsv_end >= rsv->rsv_start) { 233 printk("Bad reservation %p (prev->end >= start)\n", 234 rsv); 235 bad = 1; 236 } 237 if (bad) { 238 if (!verbose) { 239 printk("Restarting reservation walk in verbose mode\n"); 240 verbose = 1; 241 goto restart; 242 } 243 } 244 n = rb_next(n); 245 prev = rsv; 246 } 247 printk("Window map complete.\n"); 248 BUG_ON(bad); 249 } 250 #define rsv_window_dump(root, verbose) \ 251 __rsv_window_dump((root), (verbose), __func__) 252 #else 253 #define rsv_window_dump(root, verbose) do {} while (0) 254 #endif 255 256 /** 257 * goal_in_my_reservation() 258 * @rsv: inode's reservation window 259 * @grp_goal: given goal block relative to the allocation block group 260 * @group: the current allocation block group 261 * @sb: filesystem super block 262 * 263 * Test if the given goal block (group relative) is within the file's 264 * own block reservation window range. 265 * 266 * If the reservation window is outside the goal allocation group, return 0; 267 * grp_goal (given goal block) could be -1, which means no specific 268 * goal block. In this case, always return 1. 269 * If the goal block is within the reservation window, return 1; 270 * otherwise, return 0; 271 */ 272 static int 273 goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal, 274 unsigned int group, struct super_block * sb) 275 { 276 ext2_fsblk_t group_first_block, group_last_block; 277 278 group_first_block = ext2_group_first_block_no(sb, group); 279 group_last_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1; 280 281 if ((rsv->_rsv_start > group_last_block) || 282 (rsv->_rsv_end < group_first_block)) 283 return 0; 284 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start) 285 || (grp_goal + group_first_block > rsv->_rsv_end))) 286 return 0; 287 return 1; 288 } 289 290 /** 291 * search_reserve_window() 292 * @rb_root: root of reservation tree 293 * @goal: target allocation block 294 * 295 * Find the reserved window which includes the goal, or the previous one 296 * if the goal is not in any window. 297 * Returns NULL if there are no windows or if all windows start after the goal. 298 */ 299 static struct ext2_reserve_window_node * 300 search_reserve_window(struct rb_root *root, ext2_fsblk_t goal) 301 { 302 struct rb_node *n = root->rb_node; 303 struct ext2_reserve_window_node *rsv; 304 305 if (!n) 306 return NULL; 307 308 do { 309 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 310 311 if (goal < rsv->rsv_start) 312 n = n->rb_left; 313 else if (goal > rsv->rsv_end) 314 n = n->rb_right; 315 else 316 return rsv; 317 } while (n); 318 /* 319 * We've fallen off the end of the tree: the goal wasn't inside 320 * any particular node. OK, the previous node must be to one 321 * side of the interval containing the goal. If it's the RHS, 322 * we need to back up one. 323 */ 324 if (rsv->rsv_start > goal) { 325 n = rb_prev(&rsv->rsv_node); 326 rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node); 327 } 328 return rsv; 329 } 330 331 /* 332 * ext2_rsv_window_add() -- Insert a window to the block reservation rb tree. 333 * @sb: super block 334 * @rsv: reservation window to add 335 * 336 * Must be called with rsv_lock held. 337 */ 338 void ext2_rsv_window_add(struct super_block *sb, 339 struct ext2_reserve_window_node *rsv) 340 { 341 struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root; 342 struct rb_node *node = &rsv->rsv_node; 343 ext2_fsblk_t start = rsv->rsv_start; 344 345 struct rb_node ** p = &root->rb_node; 346 struct rb_node * parent = NULL; 347 struct ext2_reserve_window_node *this; 348 349 while (*p) 350 { 351 parent = *p; 352 this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node); 353 354 if (start < this->rsv_start) 355 p = &(*p)->rb_left; 356 else if (start > this->rsv_end) 357 p = &(*p)->rb_right; 358 else { 359 rsv_window_dump(root, 1); 360 BUG(); 361 } 362 } 363 364 rb_link_node(node, parent, p); 365 rb_insert_color(node, root); 366 } 367 368 /** 369 * rsv_window_remove() -- unlink a window from the reservation rb tree 370 * @sb: super block 371 * @rsv: reservation window to remove 372 * 373 * Mark the block reservation window as not allocated, and unlink it 374 * from the filesystem reservation window rb tree. Must be called with 375 * rsv_lock held. 376 */ 377 static void rsv_window_remove(struct super_block *sb, 378 struct ext2_reserve_window_node *rsv) 379 { 380 rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 381 rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 382 rsv->rsv_alloc_hit = 0; 383 rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root); 384 } 385 386 /* 387 * rsv_is_empty() -- Check if the reservation window is allocated. 388 * @rsv: given reservation window to check 389 * 390 * returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED. 391 */ 392 static inline int rsv_is_empty(struct ext2_reserve_window *rsv) 393 { 394 /* a valid reservation end block could not be 0 */ 395 return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED); 396 } 397 398 /** 399 * ext2_init_block_alloc_info() 400 * @inode: file inode structure 401 * 402 * Allocate and initialize the reservation window structure, and 403 * link the window to the ext2 inode structure at last 404 * 405 * The reservation window structure is only dynamically allocated 406 * and linked to ext2 inode the first time the open file 407 * needs a new block. So, before every ext2_new_block(s) call, for 408 * regular files, we should check whether the reservation window 409 * structure exists or not. In the latter case, this function is called. 410 * Fail to do so will result in block reservation being turned off for that 411 * open file. 412 * 413 * This function is called from ext2_get_blocks_handle(), also called 414 * when setting the reservation window size through ioctl before the file 415 * is open for write (needs block allocation). 416 * 417 * Needs truncate_mutex protection prior to calling this function. 418 */ 419 void ext2_init_block_alloc_info(struct inode *inode) 420 { 421 struct ext2_inode_info *ei = EXT2_I(inode); 422 struct ext2_block_alloc_info *block_i; 423 struct super_block *sb = inode->i_sb; 424 425 block_i = kmalloc(sizeof(*block_i), GFP_NOFS); 426 if (block_i) { 427 struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node; 428 429 rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 430 rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; 431 432 /* 433 * if filesystem is mounted with NORESERVATION, the goal 434 * reservation window size is set to zero to indicate 435 * block reservation is off 436 */ 437 if (!test_opt(sb, RESERVATION)) 438 rsv->rsv_goal_size = 0; 439 else 440 rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS; 441 rsv->rsv_alloc_hit = 0; 442 block_i->last_alloc_logical_block = 0; 443 block_i->last_alloc_physical_block = 0; 444 } 445 ei->i_block_alloc_info = block_i; 446 } 447 448 /** 449 * ext2_discard_reservation() 450 * @inode: inode 451 * 452 * Discard(free) block reservation window on last file close, or truncate 453 * or at last iput(). 454 * 455 * It is being called in three cases: 456 * ext2_release_file(): last writer closes the file 457 * ext2_clear_inode(): last iput(), when nobody links to this file. 458 * ext2_truncate(): when the block indirect map is about to change. 459 */ 460 void ext2_discard_reservation(struct inode *inode) 461 { 462 struct ext2_inode_info *ei = EXT2_I(inode); 463 struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info; 464 struct ext2_reserve_window_node *rsv; 465 spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock; 466 467 if (!block_i) 468 return; 469 470 rsv = &block_i->rsv_window_node; 471 if (!rsv_is_empty(&rsv->rsv_window)) { 472 spin_lock(rsv_lock); 473 if (!rsv_is_empty(&rsv->rsv_window)) 474 rsv_window_remove(inode->i_sb, rsv); 475 spin_unlock(rsv_lock); 476 } 477 } 478 479 /** 480 * ext2_free_blocks() -- Free given blocks and update quota and i_blocks 481 * @inode: inode 482 * @block: start physcial block to free 483 * @count: number of blocks to free 484 */ 485 void ext2_free_blocks (struct inode * inode, unsigned long block, 486 unsigned long count) 487 { 488 struct buffer_head *bitmap_bh = NULL; 489 struct buffer_head * bh2; 490 unsigned long block_group; 491 unsigned long bit; 492 unsigned long i; 493 unsigned long overflow; 494 struct super_block * sb = inode->i_sb; 495 struct ext2_sb_info * sbi = EXT2_SB(sb); 496 struct ext2_group_desc * desc; 497 struct ext2_super_block * es = sbi->s_es; 498 unsigned freed = 0, group_freed; 499 500 if (block < le32_to_cpu(es->s_first_data_block) || 501 block + count < block || 502 block + count > le32_to_cpu(es->s_blocks_count)) { 503 ext2_error (sb, "ext2_free_blocks", 504 "Freeing blocks not in datazone - " 505 "block = %lu, count = %lu", block, count); 506 goto error_return; 507 } 508 509 ext2_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1); 510 511 do_more: 512 overflow = 0; 513 block_group = (block - le32_to_cpu(es->s_first_data_block)) / 514 EXT2_BLOCKS_PER_GROUP(sb); 515 bit = (block - le32_to_cpu(es->s_first_data_block)) % 516 EXT2_BLOCKS_PER_GROUP(sb); 517 /* 518 * Check to see if we are freeing blocks across a group 519 * boundary. 520 */ 521 if (bit + count > EXT2_BLOCKS_PER_GROUP(sb)) { 522 overflow = bit + count - EXT2_BLOCKS_PER_GROUP(sb); 523 count -= overflow; 524 } 525 brelse(bitmap_bh); 526 bitmap_bh = read_block_bitmap(sb, block_group); 527 if (!bitmap_bh) 528 goto error_return; 529 530 desc = ext2_get_group_desc (sb, block_group, &bh2); 531 if (!desc) 532 goto error_return; 533 534 if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) || 535 in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) || 536 in_range (block, le32_to_cpu(desc->bg_inode_table), 537 sbi->s_itb_per_group) || 538 in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table), 539 sbi->s_itb_per_group)) { 540 ext2_error (sb, "ext2_free_blocks", 541 "Freeing blocks in system zones - " 542 "Block = %lu, count = %lu", 543 block, count); 544 goto error_return; 545 } 546 547 for (i = 0, group_freed = 0; i < count; i++) { 548 if (!ext2_clear_bit_atomic(sb_bgl_lock(sbi, block_group), 549 bit + i, bitmap_bh->b_data)) { 550 ext2_error(sb, __func__, 551 "bit already cleared for block %lu", block + i); 552 } else { 553 group_freed++; 554 } 555 } 556 557 mark_buffer_dirty(bitmap_bh); 558 if (sb->s_flags & MS_SYNCHRONOUS) 559 sync_dirty_buffer(bitmap_bh); 560 561 group_adjust_blocks(sb, block_group, desc, bh2, group_freed); 562 freed += group_freed; 563 564 if (overflow) { 565 block += count; 566 count = overflow; 567 goto do_more; 568 } 569 error_return: 570 brelse(bitmap_bh); 571 release_blocks(sb, freed); 572 dquot_free_block_nodirty(inode, freed); 573 } 574 575 /** 576 * bitmap_search_next_usable_block() 577 * @start: the starting block (group relative) of the search 578 * @bh: bufferhead contains the block group bitmap 579 * @maxblocks: the ending block (group relative) of the reservation 580 * 581 * The bitmap search --- search forward through the actual bitmap on disk until 582 * we find a bit free. 583 */ 584 static ext2_grpblk_t 585 bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh, 586 ext2_grpblk_t maxblocks) 587 { 588 ext2_grpblk_t next; 589 590 next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start); 591 if (next >= maxblocks) 592 return -1; 593 return next; 594 } 595 596 /** 597 * find_next_usable_block() 598 * @start: the starting block (group relative) to find next 599 * allocatable block in bitmap. 600 * @bh: bufferhead contains the block group bitmap 601 * @maxblocks: the ending block (group relative) for the search 602 * 603 * Find an allocatable block in a bitmap. We perform the "most 604 * appropriate allocation" algorithm of looking for a free block near 605 * the initial goal; then for a free byte somewhere in the bitmap; 606 * then for any free bit in the bitmap. 607 */ 608 static ext2_grpblk_t 609 find_next_usable_block(int start, struct buffer_head *bh, int maxblocks) 610 { 611 ext2_grpblk_t here, next; 612 char *p, *r; 613 614 if (start > 0) { 615 /* 616 * The goal was occupied; search forward for a free 617 * block within the next XX blocks. 618 * 619 * end_goal is more or less random, but it has to be 620 * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the 621 * next 64-bit boundary is simple.. 622 */ 623 ext2_grpblk_t end_goal = (start + 63) & ~63; 624 if (end_goal > maxblocks) 625 end_goal = maxblocks; 626 here = ext2_find_next_zero_bit(bh->b_data, end_goal, start); 627 if (here < end_goal) 628 return here; 629 ext2_debug("Bit not found near goal\n"); 630 } 631 632 here = start; 633 if (here < 0) 634 here = 0; 635 636 p = ((char *)bh->b_data) + (here >> 3); 637 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3)); 638 next = (r - ((char *)bh->b_data)) << 3; 639 640 if (next < maxblocks && next >= here) 641 return next; 642 643 here = bitmap_search_next_usable_block(here, bh, maxblocks); 644 return here; 645 } 646 647 /** 648 * ext2_try_to_allocate() 649 * @sb: superblock 650 * @group: given allocation block group 651 * @bitmap_bh: bufferhead holds the block bitmap 652 * @grp_goal: given target block within the group 653 * @count: target number of blocks to allocate 654 * @my_rsv: reservation window 655 * 656 * Attempt to allocate blocks within a give range. Set the range of allocation 657 * first, then find the first free bit(s) from the bitmap (within the range), 658 * and at last, allocate the blocks by claiming the found free bit as allocated. 659 * 660 * To set the range of this allocation: 661 * if there is a reservation window, only try to allocate block(s) 662 * from the file's own reservation window; 663 * Otherwise, the allocation range starts from the give goal block, 664 * ends at the block group's last block. 665 * 666 * If we failed to allocate the desired block then we may end up crossing to a 667 * new bitmap. 668 */ 669 static int 670 ext2_try_to_allocate(struct super_block *sb, int group, 671 struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, 672 unsigned long *count, 673 struct ext2_reserve_window *my_rsv) 674 { 675 ext2_fsblk_t group_first_block; 676 ext2_grpblk_t start, end; 677 unsigned long num = 0; 678 679 /* we do allocation within the reservation window if we have a window */ 680 if (my_rsv) { 681 group_first_block = ext2_group_first_block_no(sb, group); 682 if (my_rsv->_rsv_start >= group_first_block) 683 start = my_rsv->_rsv_start - group_first_block; 684 else 685 /* reservation window cross group boundary */ 686 start = 0; 687 end = my_rsv->_rsv_end - group_first_block + 1; 688 if (end > EXT2_BLOCKS_PER_GROUP(sb)) 689 /* reservation window crosses group boundary */ 690 end = EXT2_BLOCKS_PER_GROUP(sb); 691 if ((start <= grp_goal) && (grp_goal < end)) 692 start = grp_goal; 693 else 694 grp_goal = -1; 695 } else { 696 if (grp_goal > 0) 697 start = grp_goal; 698 else 699 start = 0; 700 end = EXT2_BLOCKS_PER_GROUP(sb); 701 } 702 703 BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb)); 704 705 repeat: 706 if (grp_goal < 0) { 707 grp_goal = find_next_usable_block(start, bitmap_bh, end); 708 if (grp_goal < 0) 709 goto fail_access; 710 if (!my_rsv) { 711 int i; 712 713 for (i = 0; i < 7 && grp_goal > start && 714 !ext2_test_bit(grp_goal - 1, 715 bitmap_bh->b_data); 716 i++, grp_goal--) 717 ; 718 } 719 } 720 start = grp_goal; 721 722 if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), grp_goal, 723 bitmap_bh->b_data)) { 724 /* 725 * The block was allocated by another thread, or it was 726 * allocated and then freed by another thread 727 */ 728 start++; 729 grp_goal++; 730 if (start >= end) 731 goto fail_access; 732 goto repeat; 733 } 734 num++; 735 grp_goal++; 736 while (num < *count && grp_goal < end 737 && !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), 738 grp_goal, bitmap_bh->b_data)) { 739 num++; 740 grp_goal++; 741 } 742 *count = num; 743 return grp_goal - num; 744 fail_access: 745 *count = num; 746 return -1; 747 } 748 749 /** 750 * find_next_reservable_window(): 751 * find a reservable space within the given range. 752 * It does not allocate the reservation window for now: 753 * alloc_new_reservation() will do the work later. 754 * 755 * @search_head: the head of the searching list; 756 * This is not necessarily the list head of the whole filesystem 757 * 758 * We have both head and start_block to assist the search 759 * for the reservable space. The list starts from head, 760 * but we will shift to the place where start_block is, 761 * then start from there, when looking for a reservable space. 762 * 763 * @size: the target new reservation window size 764 * 765 * @group_first_block: the first block we consider to start 766 * the real search from 767 * 768 * @last_block: 769 * the maximum block number that our goal reservable space 770 * could start from. This is normally the last block in this 771 * group. The search will end when we found the start of next 772 * possible reservable space is out of this boundary. 773 * This could handle the cross boundary reservation window 774 * request. 775 * 776 * basically we search from the given range, rather than the whole 777 * reservation double linked list, (start_block, last_block) 778 * to find a free region that is of my size and has not 779 * been reserved. 780 * 781 */ 782 static int find_next_reservable_window( 783 struct ext2_reserve_window_node *search_head, 784 struct ext2_reserve_window_node *my_rsv, 785 struct super_block * sb, 786 ext2_fsblk_t start_block, 787 ext2_fsblk_t last_block) 788 { 789 struct rb_node *next; 790 struct ext2_reserve_window_node *rsv, *prev; 791 ext2_fsblk_t cur; 792 int size = my_rsv->rsv_goal_size; 793 794 /* TODO: make the start of the reservation window byte-aligned */ 795 /* cur = *start_block & ~7;*/ 796 cur = start_block; 797 rsv = search_head; 798 if (!rsv) 799 return -1; 800 801 while (1) { 802 if (cur <= rsv->rsv_end) 803 cur = rsv->rsv_end + 1; 804 805 /* TODO? 806 * in the case we could not find a reservable space 807 * that is what is expected, during the re-search, we could 808 * remember what's the largest reservable space we could have 809 * and return that one. 810 * 811 * For now it will fail if we could not find the reservable 812 * space with expected-size (or more)... 813 */ 814 if (cur > last_block) 815 return -1; /* fail */ 816 817 prev = rsv; 818 next = rb_next(&rsv->rsv_node); 819 rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node); 820 821 /* 822 * Reached the last reservation, we can just append to the 823 * previous one. 824 */ 825 if (!next) 826 break; 827 828 if (cur + size <= rsv->rsv_start) { 829 /* 830 * Found a reserveable space big enough. We could 831 * have a reservation across the group boundary here 832 */ 833 break; 834 } 835 } 836 /* 837 * we come here either : 838 * when we reach the end of the whole list, 839 * and there is empty reservable space after last entry in the list. 840 * append it to the end of the list. 841 * 842 * or we found one reservable space in the middle of the list, 843 * return the reservation window that we could append to. 844 * succeed. 845 */ 846 847 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window))) 848 rsv_window_remove(sb, my_rsv); 849 850 /* 851 * Let's book the whole available window for now. We will check the 852 * disk bitmap later and then, if there are free blocks then we adjust 853 * the window size if it's larger than requested. 854 * Otherwise, we will remove this node from the tree next time 855 * call find_next_reservable_window. 856 */ 857 my_rsv->rsv_start = cur; 858 my_rsv->rsv_end = cur + size - 1; 859 my_rsv->rsv_alloc_hit = 0; 860 861 if (prev != my_rsv) 862 ext2_rsv_window_add(sb, my_rsv); 863 864 return 0; 865 } 866 867 /** 868 * alloc_new_reservation()--allocate a new reservation window 869 * 870 * To make a new reservation, we search part of the filesystem 871 * reservation list (the list that inside the group). We try to 872 * allocate a new reservation window near the allocation goal, 873 * or the beginning of the group, if there is no goal. 874 * 875 * We first find a reservable space after the goal, then from 876 * there, we check the bitmap for the first free block after 877 * it. If there is no free block until the end of group, then the 878 * whole group is full, we failed. Otherwise, check if the free 879 * block is inside the expected reservable space, if so, we 880 * succeed. 881 * If the first free block is outside the reservable space, then 882 * start from the first free block, we search for next available 883 * space, and go on. 884 * 885 * on succeed, a new reservation will be found and inserted into the list 886 * It contains at least one free block, and it does not overlap with other 887 * reservation windows. 888 * 889 * failed: we failed to find a reservation window in this group 890 * 891 * @rsv: the reservation 892 * 893 * @grp_goal: The goal (group-relative). It is where the search for a 894 * free reservable space should start from. 895 * if we have a goal(goal >0 ), then start from there, 896 * no goal(goal = -1), we start from the first block 897 * of the group. 898 * 899 * @sb: the super block 900 * @group: the group we are trying to allocate in 901 * @bitmap_bh: the block group block bitmap 902 * 903 */ 904 static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv, 905 ext2_grpblk_t grp_goal, struct super_block *sb, 906 unsigned int group, struct buffer_head *bitmap_bh) 907 { 908 struct ext2_reserve_window_node *search_head; 909 ext2_fsblk_t group_first_block, group_end_block, start_block; 910 ext2_grpblk_t first_free_block; 911 struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root; 912 unsigned long size; 913 int ret; 914 spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; 915 916 group_first_block = ext2_group_first_block_no(sb, group); 917 group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1); 918 919 if (grp_goal < 0) 920 start_block = group_first_block; 921 else 922 start_block = grp_goal + group_first_block; 923 924 size = my_rsv->rsv_goal_size; 925 926 if (!rsv_is_empty(&my_rsv->rsv_window)) { 927 /* 928 * if the old reservation is cross group boundary 929 * and if the goal is inside the old reservation window, 930 * we will come here when we just failed to allocate from 931 * the first part of the window. We still have another part 932 * that belongs to the next group. In this case, there is no 933 * point to discard our window and try to allocate a new one 934 * in this group(which will fail). we should 935 * keep the reservation window, just simply move on. 936 * 937 * Maybe we could shift the start block of the reservation 938 * window to the first block of next group. 939 */ 940 941 if ((my_rsv->rsv_start <= group_end_block) && 942 (my_rsv->rsv_end > group_end_block) && 943 (start_block >= my_rsv->rsv_start)) 944 return -1; 945 946 if ((my_rsv->rsv_alloc_hit > 947 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { 948 /* 949 * if the previously allocation hit ratio is 950 * greater than 1/2, then we double the size of 951 * the reservation window the next time, 952 * otherwise we keep the same size window 953 */ 954 size = size * 2; 955 if (size > EXT2_MAX_RESERVE_BLOCKS) 956 size = EXT2_MAX_RESERVE_BLOCKS; 957 my_rsv->rsv_goal_size= size; 958 } 959 } 960 961 spin_lock(rsv_lock); 962 /* 963 * shift the search start to the window near the goal block 964 */ 965 search_head = search_reserve_window(fs_rsv_root, start_block); 966 967 /* 968 * find_next_reservable_window() simply finds a reservable window 969 * inside the given range(start_block, group_end_block). 970 * 971 * To make sure the reservation window has a free bit inside it, we 972 * need to check the bitmap after we found a reservable window. 973 */ 974 retry: 975 ret = find_next_reservable_window(search_head, my_rsv, sb, 976 start_block, group_end_block); 977 978 if (ret == -1) { 979 if (!rsv_is_empty(&my_rsv->rsv_window)) 980 rsv_window_remove(sb, my_rsv); 981 spin_unlock(rsv_lock); 982 return -1; 983 } 984 985 /* 986 * On success, find_next_reservable_window() returns the 987 * reservation window where there is a reservable space after it. 988 * Before we reserve this reservable space, we need 989 * to make sure there is at least a free block inside this region. 990 * 991 * Search the first free bit on the block bitmap. Search starts from 992 * the start block of the reservable space we just found. 993 */ 994 spin_unlock(rsv_lock); 995 first_free_block = bitmap_search_next_usable_block( 996 my_rsv->rsv_start - group_first_block, 997 bitmap_bh, group_end_block - group_first_block + 1); 998 999 if (first_free_block < 0) { 1000 /* 1001 * no free block left on the bitmap, no point 1002 * to reserve the space. return failed. 1003 */ 1004 spin_lock(rsv_lock); 1005 if (!rsv_is_empty(&my_rsv->rsv_window)) 1006 rsv_window_remove(sb, my_rsv); 1007 spin_unlock(rsv_lock); 1008 return -1; /* failed */ 1009 } 1010 1011 start_block = first_free_block + group_first_block; 1012 /* 1013 * check if the first free block is within the 1014 * free space we just reserved 1015 */ 1016 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end) 1017 return 0; /* success */ 1018 /* 1019 * if the first free bit we found is out of the reservable space 1020 * continue search for next reservable space, 1021 * start from where the free block is, 1022 * we also shift the list head to where we stopped last time 1023 */ 1024 search_head = my_rsv; 1025 spin_lock(rsv_lock); 1026 goto retry; 1027 } 1028 1029 /** 1030 * try_to_extend_reservation() 1031 * @my_rsv: given reservation window 1032 * @sb: super block 1033 * @size: the delta to extend 1034 * 1035 * Attempt to expand the reservation window large enough to have 1036 * required number of free blocks 1037 * 1038 * Since ext2_try_to_allocate() will always allocate blocks within 1039 * the reservation window range, if the window size is too small, 1040 * multiple blocks allocation has to stop at the end of the reservation 1041 * window. To make this more efficient, given the total number of 1042 * blocks needed and the current size of the window, we try to 1043 * expand the reservation window size if necessary on a best-effort 1044 * basis before ext2_new_blocks() tries to allocate blocks. 1045 */ 1046 static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv, 1047 struct super_block *sb, int size) 1048 { 1049 struct ext2_reserve_window_node *next_rsv; 1050 struct rb_node *next; 1051 spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock; 1052 1053 if (!spin_trylock(rsv_lock)) 1054 return; 1055 1056 next = rb_next(&my_rsv->rsv_node); 1057 1058 if (!next) 1059 my_rsv->rsv_end += size; 1060 else { 1061 next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node); 1062 1063 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size) 1064 my_rsv->rsv_end += size; 1065 else 1066 my_rsv->rsv_end = next_rsv->rsv_start - 1; 1067 } 1068 spin_unlock(rsv_lock); 1069 } 1070 1071 /** 1072 * ext2_try_to_allocate_with_rsv() 1073 * @sb: superblock 1074 * @group: given allocation block group 1075 * @bitmap_bh: bufferhead holds the block bitmap 1076 * @grp_goal: given target block within the group 1077 * @count: target number of blocks to allocate 1078 * @my_rsv: reservation window 1079 * 1080 * This is the main function used to allocate a new block and its reservation 1081 * window. 1082 * 1083 * Each time when a new block allocation is need, first try to allocate from 1084 * its own reservation. If it does not have a reservation window, instead of 1085 * looking for a free bit on bitmap first, then look up the reservation list to 1086 * see if it is inside somebody else's reservation window, we try to allocate a 1087 * reservation window for it starting from the goal first. Then do the block 1088 * allocation within the reservation window. 1089 * 1090 * This will avoid keeping on searching the reservation list again and 1091 * again when somebody is looking for a free block (without 1092 * reservation), and there are lots of free blocks, but they are all 1093 * being reserved. 1094 * 1095 * We use a red-black tree for the per-filesystem reservation list. 1096 */ 1097 static ext2_grpblk_t 1098 ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group, 1099 struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal, 1100 struct ext2_reserve_window_node * my_rsv, 1101 unsigned long *count) 1102 { 1103 ext2_fsblk_t group_first_block, group_last_block; 1104 ext2_grpblk_t ret = 0; 1105 unsigned long num = *count; 1106 1107 /* 1108 * we don't deal with reservation when 1109 * filesystem is mounted without reservation 1110 * or the file is not a regular file 1111 * or last attempt to allocate a block with reservation turned on failed 1112 */ 1113 if (my_rsv == NULL) { 1114 return ext2_try_to_allocate(sb, group, bitmap_bh, 1115 grp_goal, count, NULL); 1116 } 1117 /* 1118 * grp_goal is a group relative block number (if there is a goal) 1119 * 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb) 1120 * first block is a filesystem wide block number 1121 * first block is the block number of the first block in this group 1122 */ 1123 group_first_block = ext2_group_first_block_no(sb, group); 1124 group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1); 1125 1126 /* 1127 * Basically we will allocate a new block from inode's reservation 1128 * window. 1129 * 1130 * We need to allocate a new reservation window, if: 1131 * a) inode does not have a reservation window; or 1132 * b) last attempt to allocate a block from existing reservation 1133 * failed; or 1134 * c) we come here with a goal and with a reservation window 1135 * 1136 * We do not need to allocate a new reservation window if we come here 1137 * at the beginning with a goal and the goal is inside the window, or 1138 * we don't have a goal but already have a reservation window. 1139 * then we could go to allocate from the reservation window directly. 1140 */ 1141 while (1) { 1142 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) || 1143 !goal_in_my_reservation(&my_rsv->rsv_window, 1144 grp_goal, group, sb)) { 1145 if (my_rsv->rsv_goal_size < *count) 1146 my_rsv->rsv_goal_size = *count; 1147 ret = alloc_new_reservation(my_rsv, grp_goal, sb, 1148 group, bitmap_bh); 1149 if (ret < 0) 1150 break; /* failed */ 1151 1152 if (!goal_in_my_reservation(&my_rsv->rsv_window, 1153 grp_goal, group, sb)) 1154 grp_goal = -1; 1155 } else if (grp_goal >= 0) { 1156 int curr = my_rsv->rsv_end - 1157 (grp_goal + group_first_block) + 1; 1158 1159 if (curr < *count) 1160 try_to_extend_reservation(my_rsv, sb, 1161 *count - curr); 1162 } 1163 1164 if ((my_rsv->rsv_start > group_last_block) || 1165 (my_rsv->rsv_end < group_first_block)) { 1166 rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1); 1167 BUG(); 1168 } 1169 ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal, 1170 &num, &my_rsv->rsv_window); 1171 if (ret >= 0) { 1172 my_rsv->rsv_alloc_hit += num; 1173 *count = num; 1174 break; /* succeed */ 1175 } 1176 num = *count; 1177 } 1178 return ret; 1179 } 1180 1181 /** 1182 * ext2_has_free_blocks() 1183 * @sbi: in-core super block structure. 1184 * 1185 * Check if filesystem has at least 1 free block available for allocation. 1186 */ 1187 static int ext2_has_free_blocks(struct ext2_sb_info *sbi) 1188 { 1189 ext2_fsblk_t free_blocks, root_blocks; 1190 1191 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 1192 root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count); 1193 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && 1194 !uid_eq(sbi->s_resuid, current_fsuid()) && 1195 (gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) || 1196 !in_group_p (sbi->s_resgid))) { 1197 return 0; 1198 } 1199 return 1; 1200 } 1201 1202 /* 1203 * ext2_new_blocks() -- core block(s) allocation function 1204 * @inode: file inode 1205 * @goal: given target block(filesystem wide) 1206 * @count: target number of blocks to allocate 1207 * @errp: error code 1208 * 1209 * ext2_new_blocks uses a goal block to assist allocation. If the goal is 1210 * free, or there is a free block within 32 blocks of the goal, that block 1211 * is allocated. Otherwise a forward search is made for a free block; within 1212 * each block group the search first looks for an entire free byte in the block 1213 * bitmap, and then for any free bit if that fails. 1214 * This function also updates quota and i_blocks field. 1215 */ 1216 ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal, 1217 unsigned long *count, int *errp) 1218 { 1219 struct buffer_head *bitmap_bh = NULL; 1220 struct buffer_head *gdp_bh; 1221 int group_no; 1222 int goal_group; 1223 ext2_grpblk_t grp_target_blk; /* blockgroup relative goal block */ 1224 ext2_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/ 1225 ext2_fsblk_t ret_block; /* filesyetem-wide allocated block */ 1226 int bgi; /* blockgroup iteration index */ 1227 int performed_allocation = 0; 1228 ext2_grpblk_t free_blocks; /* number of free blocks in a group */ 1229 struct super_block *sb; 1230 struct ext2_group_desc *gdp; 1231 struct ext2_super_block *es; 1232 struct ext2_sb_info *sbi; 1233 struct ext2_reserve_window_node *my_rsv = NULL; 1234 struct ext2_block_alloc_info *block_i; 1235 unsigned short windowsz = 0; 1236 unsigned long ngroups; 1237 unsigned long num = *count; 1238 int ret; 1239 1240 *errp = -ENOSPC; 1241 sb = inode->i_sb; 1242 if (!sb) { 1243 printk("ext2_new_blocks: nonexistent device"); 1244 return 0; 1245 } 1246 1247 /* 1248 * Check quota for allocation of this block. 1249 */ 1250 ret = dquot_alloc_block(inode, num); 1251 if (ret) { 1252 *errp = ret; 1253 return 0; 1254 } 1255 1256 sbi = EXT2_SB(sb); 1257 es = EXT2_SB(sb)->s_es; 1258 ext2_debug("goal=%lu.\n", goal); 1259 /* 1260 * Allocate a block from reservation only when 1261 * filesystem is mounted with reservation(default,-o reservation), and 1262 * it's a regular file, and 1263 * the desired window size is greater than 0 (One could use ioctl 1264 * command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off 1265 * reservation on that particular file) 1266 */ 1267 block_i = EXT2_I(inode)->i_block_alloc_info; 1268 if (block_i) { 1269 windowsz = block_i->rsv_window_node.rsv_goal_size; 1270 if (windowsz > 0) 1271 my_rsv = &block_i->rsv_window_node; 1272 } 1273 1274 if (!ext2_has_free_blocks(sbi)) { 1275 *errp = -ENOSPC; 1276 goto out; 1277 } 1278 1279 /* 1280 * First, test whether the goal block is free. 1281 */ 1282 if (goal < le32_to_cpu(es->s_first_data_block) || 1283 goal >= le32_to_cpu(es->s_blocks_count)) 1284 goal = le32_to_cpu(es->s_first_data_block); 1285 group_no = (goal - le32_to_cpu(es->s_first_data_block)) / 1286 EXT2_BLOCKS_PER_GROUP(sb); 1287 goal_group = group_no; 1288 retry_alloc: 1289 gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); 1290 if (!gdp) 1291 goto io_error; 1292 1293 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1294 /* 1295 * if there is not enough free blocks to make a new resevation 1296 * turn off reservation for this allocation 1297 */ 1298 if (my_rsv && (free_blocks < windowsz) 1299 && (free_blocks > 0) 1300 && (rsv_is_empty(&my_rsv->rsv_window))) 1301 my_rsv = NULL; 1302 1303 if (free_blocks > 0) { 1304 grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) % 1305 EXT2_BLOCKS_PER_GROUP(sb)); 1306 bitmap_bh = read_block_bitmap(sb, group_no); 1307 if (!bitmap_bh) 1308 goto io_error; 1309 grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, 1310 bitmap_bh, grp_target_blk, 1311 my_rsv, &num); 1312 if (grp_alloc_blk >= 0) 1313 goto allocated; 1314 } 1315 1316 ngroups = EXT2_SB(sb)->s_groups_count; 1317 smp_rmb(); 1318 1319 /* 1320 * Now search the rest of the groups. We assume that 1321 * group_no and gdp correctly point to the last group visited. 1322 */ 1323 for (bgi = 0; bgi < ngroups; bgi++) { 1324 group_no++; 1325 if (group_no >= ngroups) 1326 group_no = 0; 1327 gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); 1328 if (!gdp) 1329 goto io_error; 1330 1331 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); 1332 /* 1333 * skip this group (and avoid loading bitmap) if there 1334 * are no free blocks 1335 */ 1336 if (!free_blocks) 1337 continue; 1338 /* 1339 * skip this group if the number of 1340 * free blocks is less than half of the reservation 1341 * window size. 1342 */ 1343 if (my_rsv && (free_blocks <= (windowsz/2))) 1344 continue; 1345 1346 brelse(bitmap_bh); 1347 bitmap_bh = read_block_bitmap(sb, group_no); 1348 if (!bitmap_bh) 1349 goto io_error; 1350 /* 1351 * try to allocate block(s) from this group, without a goal(-1). 1352 */ 1353 grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no, 1354 bitmap_bh, -1, my_rsv, &num); 1355 if (grp_alloc_blk >= 0) 1356 goto allocated; 1357 } 1358 /* 1359 * We may end up a bogus earlier ENOSPC error due to 1360 * filesystem is "full" of reservations, but 1361 * there maybe indeed free blocks available on disk 1362 * In this case, we just forget about the reservations 1363 * just do block allocation as without reservations. 1364 */ 1365 if (my_rsv) { 1366 my_rsv = NULL; 1367 windowsz = 0; 1368 group_no = goal_group; 1369 goto retry_alloc; 1370 } 1371 /* No space left on the device */ 1372 *errp = -ENOSPC; 1373 goto out; 1374 1375 allocated: 1376 1377 ext2_debug("using block group %d(%d)\n", 1378 group_no, gdp->bg_free_blocks_count); 1379 1380 ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no); 1381 1382 if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) || 1383 in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) || 1384 in_range(ret_block, le32_to_cpu(gdp->bg_inode_table), 1385 EXT2_SB(sb)->s_itb_per_group) || 1386 in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table), 1387 EXT2_SB(sb)->s_itb_per_group)) { 1388 ext2_error(sb, "ext2_new_blocks", 1389 "Allocating block in system zone - " 1390 "blocks from "E2FSBLK", length %lu", 1391 ret_block, num); 1392 /* 1393 * ext2_try_to_allocate marked the blocks we allocated as in 1394 * use. So we may want to selectively mark some of the blocks 1395 * as free 1396 */ 1397 goto retry_alloc; 1398 } 1399 1400 performed_allocation = 1; 1401 1402 if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) { 1403 ext2_error(sb, "ext2_new_blocks", 1404 "block("E2FSBLK") >= blocks count(%d) - " 1405 "block_group = %d, es == %p ", ret_block, 1406 le32_to_cpu(es->s_blocks_count), group_no, es); 1407 goto out; 1408 } 1409 1410 group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num); 1411 percpu_counter_sub(&sbi->s_freeblocks_counter, num); 1412 1413 mark_buffer_dirty(bitmap_bh); 1414 if (sb->s_flags & MS_SYNCHRONOUS) 1415 sync_dirty_buffer(bitmap_bh); 1416 1417 *errp = 0; 1418 brelse(bitmap_bh); 1419 dquot_free_block_nodirty(inode, *count-num); 1420 mark_inode_dirty(inode); 1421 *count = num; 1422 return ret_block; 1423 1424 io_error: 1425 *errp = -EIO; 1426 out: 1427 /* 1428 * Undo the block allocation 1429 */ 1430 if (!performed_allocation) { 1431 dquot_free_block_nodirty(inode, *count); 1432 mark_inode_dirty(inode); 1433 } 1434 brelse(bitmap_bh); 1435 return 0; 1436 } 1437 1438 ext2_fsblk_t ext2_new_block(struct inode *inode, unsigned long goal, int *errp) 1439 { 1440 unsigned long count = 1; 1441 1442 return ext2_new_blocks(inode, goal, &count, errp); 1443 } 1444 1445 #ifdef EXT2FS_DEBUG 1446 1447 unsigned long ext2_count_free(struct buffer_head *map, unsigned int numchars) 1448 { 1449 return numchars * BITS_PER_BYTE - memweight(map->b_data, numchars); 1450 } 1451 1452 #endif /* EXT2FS_DEBUG */ 1453 1454 unsigned long ext2_count_free_blocks (struct super_block * sb) 1455 { 1456 struct ext2_group_desc * desc; 1457 unsigned long desc_count = 0; 1458 int i; 1459 #ifdef EXT2FS_DEBUG 1460 unsigned long bitmap_count, x; 1461 struct ext2_super_block *es; 1462 1463 es = EXT2_SB(sb)->s_es; 1464 desc_count = 0; 1465 bitmap_count = 0; 1466 desc = NULL; 1467 for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { 1468 struct buffer_head *bitmap_bh; 1469 desc = ext2_get_group_desc (sb, i, NULL); 1470 if (!desc) 1471 continue; 1472 desc_count += le16_to_cpu(desc->bg_free_blocks_count); 1473 bitmap_bh = read_block_bitmap(sb, i); 1474 if (!bitmap_bh) 1475 continue; 1476 1477 x = ext2_count_free(bitmap_bh, sb->s_blocksize); 1478 printk ("group %d: stored = %d, counted = %lu\n", 1479 i, le16_to_cpu(desc->bg_free_blocks_count), x); 1480 bitmap_count += x; 1481 brelse(bitmap_bh); 1482 } 1483 printk("ext2_count_free_blocks: stored = %lu, computed = %lu, %lu\n", 1484 (long)le32_to_cpu(es->s_free_blocks_count), 1485 desc_count, bitmap_count); 1486 return bitmap_count; 1487 #else 1488 for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) { 1489 desc = ext2_get_group_desc (sb, i, NULL); 1490 if (!desc) 1491 continue; 1492 desc_count += le16_to_cpu(desc->bg_free_blocks_count); 1493 } 1494 return desc_count; 1495 #endif 1496 } 1497 1498 static inline int test_root(int a, int b) 1499 { 1500 int num = b; 1501 1502 while (a > num) 1503 num *= b; 1504 return num == a; 1505 } 1506 1507 static int ext2_group_sparse(int group) 1508 { 1509 if (group <= 1) 1510 return 1; 1511 return (test_root(group, 3) || test_root(group, 5) || 1512 test_root(group, 7)); 1513 } 1514 1515 /** 1516 * ext2_bg_has_super - number of blocks used by the superblock in group 1517 * @sb: superblock for filesystem 1518 * @group: group number to check 1519 * 1520 * Return the number of blocks used by the superblock (primary or backup) 1521 * in this group. Currently this will be only 0 or 1. 1522 */ 1523 int ext2_bg_has_super(struct super_block *sb, int group) 1524 { 1525 if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&& 1526 !ext2_group_sparse(group)) 1527 return 0; 1528 return 1; 1529 } 1530 1531 /** 1532 * ext2_bg_num_gdb - number of blocks used by the group table in group 1533 * @sb: superblock for filesystem 1534 * @group: group number to check 1535 * 1536 * Return the number of blocks used by the group descriptor table 1537 * (primary or backup) in this group. In the future there may be a 1538 * different number of descriptor blocks in each group. 1539 */ 1540 unsigned long ext2_bg_num_gdb(struct super_block *sb, int group) 1541 { 1542 return ext2_bg_has_super(sb, group) ? EXT2_SB(sb)->s_gdb_count : 0; 1543 } 1544 1545