xref: /openbmc/linux/fs/exec.c (revision fd589a8f)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_counter.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67 
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	insert ? list_add(&fmt->lh, &formats) :
79 		 list_add_tail(&fmt->lh, &formats);
80 	write_unlock(&binfmt_lock);
81 	return 0;
82 }
83 
84 EXPORT_SYMBOL(__register_binfmt);
85 
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 	write_lock(&binfmt_lock);
89 	list_del(&fmt->lh);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(unregister_binfmt);
94 
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 	module_put(fmt->module);
98 }
99 
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108 	struct file *file;
109 	char *tmp = getname(library);
110 	int error = PTR_ERR(tmp);
111 
112 	if (IS_ERR(tmp))
113 		goto out;
114 
115 	file = do_filp_open(AT_FDCWD, tmp,
116 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117 				MAY_READ | MAY_EXEC | MAY_OPEN);
118 	putname(tmp);
119 	error = PTR_ERR(file);
120 	if (IS_ERR(file))
121 		goto out;
122 
123 	error = -EINVAL;
124 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125 		goto exit;
126 
127 	error = -EACCES;
128 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129 		goto exit;
130 
131 	fsnotify_open(file->f_path.dentry);
132 
133 	error = -ENOEXEC;
134 	if(file->f_op) {
135 		struct linux_binfmt * fmt;
136 
137 		read_lock(&binfmt_lock);
138 		list_for_each_entry(fmt, &formats, lh) {
139 			if (!fmt->load_shlib)
140 				continue;
141 			if (!try_module_get(fmt->module))
142 				continue;
143 			read_unlock(&binfmt_lock);
144 			error = fmt->load_shlib(file);
145 			read_lock(&binfmt_lock);
146 			put_binfmt(fmt);
147 			if (error != -ENOEXEC)
148 				break;
149 		}
150 		read_unlock(&binfmt_lock);
151 	}
152 exit:
153 	fput(file);
154 out:
155   	return error;
156 }
157 
158 #ifdef CONFIG_MMU
159 
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 		int write)
162 {
163 	struct page *page;
164 	int ret;
165 
166 #ifdef CONFIG_STACK_GROWSUP
167 	if (write) {
168 		ret = expand_stack_downwards(bprm->vma, pos);
169 		if (ret < 0)
170 			return NULL;
171 	}
172 #endif
173 	ret = get_user_pages(current, bprm->mm, pos,
174 			1, write, 1, &page, NULL);
175 	if (ret <= 0)
176 		return NULL;
177 
178 	if (write) {
179 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 		struct rlimit *rlim;
181 
182 		/*
183 		 * We've historically supported up to 32 pages (ARG_MAX)
184 		 * of argument strings even with small stacks
185 		 */
186 		if (size <= ARG_MAX)
187 			return page;
188 
189 		/*
190 		 * Limit to 1/4-th the stack size for the argv+env strings.
191 		 * This ensures that:
192 		 *  - the remaining binfmt code will not run out of stack space,
193 		 *  - the program will have a reasonable amount of stack left
194 		 *    to work from.
195 		 */
196 		rlim = current->signal->rlim;
197 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
198 			put_page(page);
199 			return NULL;
200 		}
201 	}
202 
203 	return page;
204 }
205 
206 static void put_arg_page(struct page *page)
207 {
208 	put_page(page);
209 }
210 
211 static void free_arg_page(struct linux_binprm *bprm, int i)
212 {
213 }
214 
215 static void free_arg_pages(struct linux_binprm *bprm)
216 {
217 }
218 
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 		struct page *page)
221 {
222 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223 }
224 
225 static int __bprm_mm_init(struct linux_binprm *bprm)
226 {
227 	int err;
228 	struct vm_area_struct *vma = NULL;
229 	struct mm_struct *mm = bprm->mm;
230 
231 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 	if (!vma)
233 		return -ENOMEM;
234 
235 	down_write(&mm->mmap_sem);
236 	vma->vm_mm = mm;
237 
238 	/*
239 	 * Place the stack at the largest stack address the architecture
240 	 * supports. Later, we'll move this to an appropriate place. We don't
241 	 * use STACK_TOP because that can depend on attributes which aren't
242 	 * configured yet.
243 	 */
244 	vma->vm_end = STACK_TOP_MAX;
245 	vma->vm_start = vma->vm_end - PAGE_SIZE;
246 	vma->vm_flags = VM_STACK_FLAGS;
247 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
248 	err = insert_vm_struct(mm, vma);
249 	if (err)
250 		goto err;
251 
252 	mm->stack_vm = mm->total_vm = 1;
253 	up_write(&mm->mmap_sem);
254 	bprm->p = vma->vm_end - sizeof(void *);
255 	return 0;
256 err:
257 	up_write(&mm->mmap_sem);
258 	bprm->vma = NULL;
259 	kmem_cache_free(vm_area_cachep, vma);
260 	return err;
261 }
262 
263 static bool valid_arg_len(struct linux_binprm *bprm, long len)
264 {
265 	return len <= MAX_ARG_STRLEN;
266 }
267 
268 #else
269 
270 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
271 		int write)
272 {
273 	struct page *page;
274 
275 	page = bprm->page[pos / PAGE_SIZE];
276 	if (!page && write) {
277 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
278 		if (!page)
279 			return NULL;
280 		bprm->page[pos / PAGE_SIZE] = page;
281 	}
282 
283 	return page;
284 }
285 
286 static void put_arg_page(struct page *page)
287 {
288 }
289 
290 static void free_arg_page(struct linux_binprm *bprm, int i)
291 {
292 	if (bprm->page[i]) {
293 		__free_page(bprm->page[i]);
294 		bprm->page[i] = NULL;
295 	}
296 }
297 
298 static void free_arg_pages(struct linux_binprm *bprm)
299 {
300 	int i;
301 
302 	for (i = 0; i < MAX_ARG_PAGES; i++)
303 		free_arg_page(bprm, i);
304 }
305 
306 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
307 		struct page *page)
308 {
309 }
310 
311 static int __bprm_mm_init(struct linux_binprm *bprm)
312 {
313 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
314 	return 0;
315 }
316 
317 static bool valid_arg_len(struct linux_binprm *bprm, long len)
318 {
319 	return len <= bprm->p;
320 }
321 
322 #endif /* CONFIG_MMU */
323 
324 /*
325  * Create a new mm_struct and populate it with a temporary stack
326  * vm_area_struct.  We don't have enough context at this point to set the stack
327  * flags, permissions, and offset, so we use temporary values.  We'll update
328  * them later in setup_arg_pages().
329  */
330 int bprm_mm_init(struct linux_binprm *bprm)
331 {
332 	int err;
333 	struct mm_struct *mm = NULL;
334 
335 	bprm->mm = mm = mm_alloc();
336 	err = -ENOMEM;
337 	if (!mm)
338 		goto err;
339 
340 	err = init_new_context(current, mm);
341 	if (err)
342 		goto err;
343 
344 	err = __bprm_mm_init(bprm);
345 	if (err)
346 		goto err;
347 
348 	return 0;
349 
350 err:
351 	if (mm) {
352 		bprm->mm = NULL;
353 		mmdrop(mm);
354 	}
355 
356 	return err;
357 }
358 
359 /*
360  * count() counts the number of strings in array ARGV.
361  */
362 static int count(char __user * __user * argv, int max)
363 {
364 	int i = 0;
365 
366 	if (argv != NULL) {
367 		for (;;) {
368 			char __user * p;
369 
370 			if (get_user(p, argv))
371 				return -EFAULT;
372 			if (!p)
373 				break;
374 			argv++;
375 			if (i++ >= max)
376 				return -E2BIG;
377 			cond_resched();
378 		}
379 	}
380 	return i;
381 }
382 
383 /*
384  * 'copy_strings()' copies argument/environment strings from the old
385  * processes's memory to the new process's stack.  The call to get_user_pages()
386  * ensures the destination page is created and not swapped out.
387  */
388 static int copy_strings(int argc, char __user * __user * argv,
389 			struct linux_binprm *bprm)
390 {
391 	struct page *kmapped_page = NULL;
392 	char *kaddr = NULL;
393 	unsigned long kpos = 0;
394 	int ret;
395 
396 	while (argc-- > 0) {
397 		char __user *str;
398 		int len;
399 		unsigned long pos;
400 
401 		if (get_user(str, argv+argc) ||
402 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
403 			ret = -EFAULT;
404 			goto out;
405 		}
406 
407 		if (!valid_arg_len(bprm, len)) {
408 			ret = -E2BIG;
409 			goto out;
410 		}
411 
412 		/* We're going to work our way backwords. */
413 		pos = bprm->p;
414 		str += len;
415 		bprm->p -= len;
416 
417 		while (len > 0) {
418 			int offset, bytes_to_copy;
419 
420 			offset = pos % PAGE_SIZE;
421 			if (offset == 0)
422 				offset = PAGE_SIZE;
423 
424 			bytes_to_copy = offset;
425 			if (bytes_to_copy > len)
426 				bytes_to_copy = len;
427 
428 			offset -= bytes_to_copy;
429 			pos -= bytes_to_copy;
430 			str -= bytes_to_copy;
431 			len -= bytes_to_copy;
432 
433 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
434 				struct page *page;
435 
436 				page = get_arg_page(bprm, pos, 1);
437 				if (!page) {
438 					ret = -E2BIG;
439 					goto out;
440 				}
441 
442 				if (kmapped_page) {
443 					flush_kernel_dcache_page(kmapped_page);
444 					kunmap(kmapped_page);
445 					put_arg_page(kmapped_page);
446 				}
447 				kmapped_page = page;
448 				kaddr = kmap(kmapped_page);
449 				kpos = pos & PAGE_MASK;
450 				flush_arg_page(bprm, kpos, kmapped_page);
451 			}
452 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
453 				ret = -EFAULT;
454 				goto out;
455 			}
456 		}
457 	}
458 	ret = 0;
459 out:
460 	if (kmapped_page) {
461 		flush_kernel_dcache_page(kmapped_page);
462 		kunmap(kmapped_page);
463 		put_arg_page(kmapped_page);
464 	}
465 	return ret;
466 }
467 
468 /*
469  * Like copy_strings, but get argv and its values from kernel memory.
470  */
471 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
472 {
473 	int r;
474 	mm_segment_t oldfs = get_fs();
475 	set_fs(KERNEL_DS);
476 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
477 	set_fs(oldfs);
478 	return r;
479 }
480 EXPORT_SYMBOL(copy_strings_kernel);
481 
482 #ifdef CONFIG_MMU
483 
484 /*
485  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
486  * the binfmt code determines where the new stack should reside, we shift it to
487  * its final location.  The process proceeds as follows:
488  *
489  * 1) Use shift to calculate the new vma endpoints.
490  * 2) Extend vma to cover both the old and new ranges.  This ensures the
491  *    arguments passed to subsequent functions are consistent.
492  * 3) Move vma's page tables to the new range.
493  * 4) Free up any cleared pgd range.
494  * 5) Shrink the vma to cover only the new range.
495  */
496 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
497 {
498 	struct mm_struct *mm = vma->vm_mm;
499 	unsigned long old_start = vma->vm_start;
500 	unsigned long old_end = vma->vm_end;
501 	unsigned long length = old_end - old_start;
502 	unsigned long new_start = old_start - shift;
503 	unsigned long new_end = old_end - shift;
504 	struct mmu_gather *tlb;
505 
506 	BUG_ON(new_start > new_end);
507 
508 	/*
509 	 * ensure there are no vmas between where we want to go
510 	 * and where we are
511 	 */
512 	if (vma != find_vma(mm, new_start))
513 		return -EFAULT;
514 
515 	/*
516 	 * cover the whole range: [new_start, old_end)
517 	 */
518 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
519 
520 	/*
521 	 * move the page tables downwards, on failure we rely on
522 	 * process cleanup to remove whatever mess we made.
523 	 */
524 	if (length != move_page_tables(vma, old_start,
525 				       vma, new_start, length))
526 		return -ENOMEM;
527 
528 	lru_add_drain();
529 	tlb = tlb_gather_mmu(mm, 0);
530 	if (new_end > old_start) {
531 		/*
532 		 * when the old and new regions overlap clear from new_end.
533 		 */
534 		free_pgd_range(tlb, new_end, old_end, new_end,
535 			vma->vm_next ? vma->vm_next->vm_start : 0);
536 	} else {
537 		/*
538 		 * otherwise, clean from old_start; this is done to not touch
539 		 * the address space in [new_end, old_start) some architectures
540 		 * have constraints on va-space that make this illegal (IA64) -
541 		 * for the others its just a little faster.
542 		 */
543 		free_pgd_range(tlb, old_start, old_end, new_end,
544 			vma->vm_next ? vma->vm_next->vm_start : 0);
545 	}
546 	tlb_finish_mmu(tlb, new_end, old_end);
547 
548 	/*
549 	 * shrink the vma to just the new range.
550 	 */
551 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
552 
553 	return 0;
554 }
555 
556 #define EXTRA_STACK_VM_PAGES	20	/* random */
557 
558 /*
559  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
560  * the stack is optionally relocated, and some extra space is added.
561  */
562 int setup_arg_pages(struct linux_binprm *bprm,
563 		    unsigned long stack_top,
564 		    int executable_stack)
565 {
566 	unsigned long ret;
567 	unsigned long stack_shift;
568 	struct mm_struct *mm = current->mm;
569 	struct vm_area_struct *vma = bprm->vma;
570 	struct vm_area_struct *prev = NULL;
571 	unsigned long vm_flags;
572 	unsigned long stack_base;
573 
574 #ifdef CONFIG_STACK_GROWSUP
575 	/* Limit stack size to 1GB */
576 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
577 	if (stack_base > (1 << 30))
578 		stack_base = 1 << 30;
579 
580 	/* Make sure we didn't let the argument array grow too large. */
581 	if (vma->vm_end - vma->vm_start > stack_base)
582 		return -ENOMEM;
583 
584 	stack_base = PAGE_ALIGN(stack_top - stack_base);
585 
586 	stack_shift = vma->vm_start - stack_base;
587 	mm->arg_start = bprm->p - stack_shift;
588 	bprm->p = vma->vm_end - stack_shift;
589 #else
590 	stack_top = arch_align_stack(stack_top);
591 	stack_top = PAGE_ALIGN(stack_top);
592 	stack_shift = vma->vm_end - stack_top;
593 
594 	bprm->p -= stack_shift;
595 	mm->arg_start = bprm->p;
596 #endif
597 
598 	if (bprm->loader)
599 		bprm->loader -= stack_shift;
600 	bprm->exec -= stack_shift;
601 
602 	down_write(&mm->mmap_sem);
603 	vm_flags = VM_STACK_FLAGS;
604 
605 	/*
606 	 * Adjust stack execute permissions; explicitly enable for
607 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
608 	 * (arch default) otherwise.
609 	 */
610 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
611 		vm_flags |= VM_EXEC;
612 	else if (executable_stack == EXSTACK_DISABLE_X)
613 		vm_flags &= ~VM_EXEC;
614 	vm_flags |= mm->def_flags;
615 
616 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
617 			vm_flags);
618 	if (ret)
619 		goto out_unlock;
620 	BUG_ON(prev != vma);
621 
622 	/* Move stack pages down in memory. */
623 	if (stack_shift) {
624 		ret = shift_arg_pages(vma, stack_shift);
625 		if (ret) {
626 			up_write(&mm->mmap_sem);
627 			return ret;
628 		}
629 	}
630 
631 #ifdef CONFIG_STACK_GROWSUP
632 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
633 #else
634 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
635 #endif
636 	ret = expand_stack(vma, stack_base);
637 	if (ret)
638 		ret = -EFAULT;
639 
640 out_unlock:
641 	up_write(&mm->mmap_sem);
642 	return 0;
643 }
644 EXPORT_SYMBOL(setup_arg_pages);
645 
646 #endif /* CONFIG_MMU */
647 
648 struct file *open_exec(const char *name)
649 {
650 	struct file *file;
651 	int err;
652 
653 	file = do_filp_open(AT_FDCWD, name,
654 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
655 				MAY_EXEC | MAY_OPEN);
656 	if (IS_ERR(file))
657 		goto out;
658 
659 	err = -EACCES;
660 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
661 		goto exit;
662 
663 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
664 		goto exit;
665 
666 	fsnotify_open(file->f_path.dentry);
667 
668 	err = deny_write_access(file);
669 	if (err)
670 		goto exit;
671 
672 out:
673 	return file;
674 
675 exit:
676 	fput(file);
677 	return ERR_PTR(err);
678 }
679 EXPORT_SYMBOL(open_exec);
680 
681 int kernel_read(struct file *file, loff_t offset,
682 		char *addr, unsigned long count)
683 {
684 	mm_segment_t old_fs;
685 	loff_t pos = offset;
686 	int result;
687 
688 	old_fs = get_fs();
689 	set_fs(get_ds());
690 	/* The cast to a user pointer is valid due to the set_fs() */
691 	result = vfs_read(file, (void __user *)addr, count, &pos);
692 	set_fs(old_fs);
693 	return result;
694 }
695 
696 EXPORT_SYMBOL(kernel_read);
697 
698 static int exec_mmap(struct mm_struct *mm)
699 {
700 	struct task_struct *tsk;
701 	struct mm_struct * old_mm, *active_mm;
702 
703 	/* Notify parent that we're no longer interested in the old VM */
704 	tsk = current;
705 	old_mm = current->mm;
706 	mm_release(tsk, old_mm);
707 
708 	if (old_mm) {
709 		/*
710 		 * Make sure that if there is a core dump in progress
711 		 * for the old mm, we get out and die instead of going
712 		 * through with the exec.  We must hold mmap_sem around
713 		 * checking core_state and changing tsk->mm.
714 		 */
715 		down_read(&old_mm->mmap_sem);
716 		if (unlikely(old_mm->core_state)) {
717 			up_read(&old_mm->mmap_sem);
718 			return -EINTR;
719 		}
720 	}
721 	task_lock(tsk);
722 	active_mm = tsk->active_mm;
723 	tsk->mm = mm;
724 	tsk->active_mm = mm;
725 	activate_mm(active_mm, mm);
726 	task_unlock(tsk);
727 	arch_pick_mmap_layout(mm);
728 	if (old_mm) {
729 		up_read(&old_mm->mmap_sem);
730 		BUG_ON(active_mm != old_mm);
731 		mm_update_next_owner(old_mm);
732 		mmput(old_mm);
733 		return 0;
734 	}
735 	mmdrop(active_mm);
736 	return 0;
737 }
738 
739 /*
740  * This function makes sure the current process has its own signal table,
741  * so that flush_signal_handlers can later reset the handlers without
742  * disturbing other processes.  (Other processes might share the signal
743  * table via the CLONE_SIGHAND option to clone().)
744  */
745 static int de_thread(struct task_struct *tsk)
746 {
747 	struct signal_struct *sig = tsk->signal;
748 	struct sighand_struct *oldsighand = tsk->sighand;
749 	spinlock_t *lock = &oldsighand->siglock;
750 	int count;
751 
752 	if (thread_group_empty(tsk))
753 		goto no_thread_group;
754 
755 	/*
756 	 * Kill all other threads in the thread group.
757 	 */
758 	spin_lock_irq(lock);
759 	if (signal_group_exit(sig)) {
760 		/*
761 		 * Another group action in progress, just
762 		 * return so that the signal is processed.
763 		 */
764 		spin_unlock_irq(lock);
765 		return -EAGAIN;
766 	}
767 	sig->group_exit_task = tsk;
768 	zap_other_threads(tsk);
769 
770 	/* Account for the thread group leader hanging around: */
771 	count = thread_group_leader(tsk) ? 1 : 2;
772 	sig->notify_count = count;
773 	while (atomic_read(&sig->count) > count) {
774 		__set_current_state(TASK_UNINTERRUPTIBLE);
775 		spin_unlock_irq(lock);
776 		schedule();
777 		spin_lock_irq(lock);
778 	}
779 	spin_unlock_irq(lock);
780 
781 	/*
782 	 * At this point all other threads have exited, all we have to
783 	 * do is to wait for the thread group leader to become inactive,
784 	 * and to assume its PID:
785 	 */
786 	if (!thread_group_leader(tsk)) {
787 		struct task_struct *leader = tsk->group_leader;
788 
789 		sig->notify_count = -1;	/* for exit_notify() */
790 		for (;;) {
791 			write_lock_irq(&tasklist_lock);
792 			if (likely(leader->exit_state))
793 				break;
794 			__set_current_state(TASK_UNINTERRUPTIBLE);
795 			write_unlock_irq(&tasklist_lock);
796 			schedule();
797 		}
798 
799 		/*
800 		 * The only record we have of the real-time age of a
801 		 * process, regardless of execs it's done, is start_time.
802 		 * All the past CPU time is accumulated in signal_struct
803 		 * from sister threads now dead.  But in this non-leader
804 		 * exec, nothing survives from the original leader thread,
805 		 * whose birth marks the true age of this process now.
806 		 * When we take on its identity by switching to its PID, we
807 		 * also take its birthdate (always earlier than our own).
808 		 */
809 		tsk->start_time = leader->start_time;
810 
811 		BUG_ON(!same_thread_group(leader, tsk));
812 		BUG_ON(has_group_leader_pid(tsk));
813 		/*
814 		 * An exec() starts a new thread group with the
815 		 * TGID of the previous thread group. Rehash the
816 		 * two threads with a switched PID, and release
817 		 * the former thread group leader:
818 		 */
819 
820 		/* Become a process group leader with the old leader's pid.
821 		 * The old leader becomes a thread of the this thread group.
822 		 * Note: The old leader also uses this pid until release_task
823 		 *       is called.  Odd but simple and correct.
824 		 */
825 		detach_pid(tsk, PIDTYPE_PID);
826 		tsk->pid = leader->pid;
827 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
828 		transfer_pid(leader, tsk, PIDTYPE_PGID);
829 		transfer_pid(leader, tsk, PIDTYPE_SID);
830 		list_replace_rcu(&leader->tasks, &tsk->tasks);
831 
832 		tsk->group_leader = tsk;
833 		leader->group_leader = tsk;
834 
835 		tsk->exit_signal = SIGCHLD;
836 
837 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
838 		leader->exit_state = EXIT_DEAD;
839 		write_unlock_irq(&tasklist_lock);
840 
841 		release_task(leader);
842 	}
843 
844 	sig->group_exit_task = NULL;
845 	sig->notify_count = 0;
846 
847 no_thread_group:
848 	exit_itimers(sig);
849 	flush_itimer_signals();
850 
851 	if (atomic_read(&oldsighand->count) != 1) {
852 		struct sighand_struct *newsighand;
853 		/*
854 		 * This ->sighand is shared with the CLONE_SIGHAND
855 		 * but not CLONE_THREAD task, switch to the new one.
856 		 */
857 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
858 		if (!newsighand)
859 			return -ENOMEM;
860 
861 		atomic_set(&newsighand->count, 1);
862 		memcpy(newsighand->action, oldsighand->action,
863 		       sizeof(newsighand->action));
864 
865 		write_lock_irq(&tasklist_lock);
866 		spin_lock(&oldsighand->siglock);
867 		rcu_assign_pointer(tsk->sighand, newsighand);
868 		spin_unlock(&oldsighand->siglock);
869 		write_unlock_irq(&tasklist_lock);
870 
871 		__cleanup_sighand(oldsighand);
872 	}
873 
874 	BUG_ON(!thread_group_leader(tsk));
875 	return 0;
876 }
877 
878 /*
879  * These functions flushes out all traces of the currently running executable
880  * so that a new one can be started
881  */
882 static void flush_old_files(struct files_struct * files)
883 {
884 	long j = -1;
885 	struct fdtable *fdt;
886 
887 	spin_lock(&files->file_lock);
888 	for (;;) {
889 		unsigned long set, i;
890 
891 		j++;
892 		i = j * __NFDBITS;
893 		fdt = files_fdtable(files);
894 		if (i >= fdt->max_fds)
895 			break;
896 		set = fdt->close_on_exec->fds_bits[j];
897 		if (!set)
898 			continue;
899 		fdt->close_on_exec->fds_bits[j] = 0;
900 		spin_unlock(&files->file_lock);
901 		for ( ; set ; i++,set >>= 1) {
902 			if (set & 1) {
903 				sys_close(i);
904 			}
905 		}
906 		spin_lock(&files->file_lock);
907 
908 	}
909 	spin_unlock(&files->file_lock);
910 }
911 
912 char *get_task_comm(char *buf, struct task_struct *tsk)
913 {
914 	/* buf must be at least sizeof(tsk->comm) in size */
915 	task_lock(tsk);
916 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
917 	task_unlock(tsk);
918 	return buf;
919 }
920 
921 void set_task_comm(struct task_struct *tsk, char *buf)
922 {
923 	task_lock(tsk);
924 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
925 	task_unlock(tsk);
926 	perf_counter_comm(tsk);
927 }
928 
929 int flush_old_exec(struct linux_binprm * bprm)
930 {
931 	char * name;
932 	int i, ch, retval;
933 	char tcomm[sizeof(current->comm)];
934 
935 	/*
936 	 * Make sure we have a private signal table and that
937 	 * we are unassociated from the previous thread group.
938 	 */
939 	retval = de_thread(current);
940 	if (retval)
941 		goto out;
942 
943 	set_mm_exe_file(bprm->mm, bprm->file);
944 
945 	/*
946 	 * Release all of the old mmap stuff
947 	 */
948 	retval = exec_mmap(bprm->mm);
949 	if (retval)
950 		goto out;
951 
952 	bprm->mm = NULL;		/* We're using it now */
953 
954 	/* This is the point of no return */
955 	current->sas_ss_sp = current->sas_ss_size = 0;
956 
957 	if (current_euid() == current_uid() && current_egid() == current_gid())
958 		set_dumpable(current->mm, 1);
959 	else
960 		set_dumpable(current->mm, suid_dumpable);
961 
962 	name = bprm->filename;
963 
964 	/* Copies the binary name from after last slash */
965 	for (i=0; (ch = *(name++)) != '\0';) {
966 		if (ch == '/')
967 			i = 0; /* overwrite what we wrote */
968 		else
969 			if (i < (sizeof(tcomm) - 1))
970 				tcomm[i++] = ch;
971 	}
972 	tcomm[i] = '\0';
973 	set_task_comm(current, tcomm);
974 
975 	current->flags &= ~PF_RANDOMIZE;
976 	flush_thread();
977 
978 	/* Set the new mm task size. We have to do that late because it may
979 	 * depend on TIF_32BIT which is only updated in flush_thread() on
980 	 * some architectures like powerpc
981 	 */
982 	current->mm->task_size = TASK_SIZE;
983 
984 	/* install the new credentials */
985 	if (bprm->cred->uid != current_euid() ||
986 	    bprm->cred->gid != current_egid()) {
987 		current->pdeath_signal = 0;
988 	} else if (file_permission(bprm->file, MAY_READ) ||
989 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
990 		set_dumpable(current->mm, suid_dumpable);
991 	}
992 
993 	current->personality &= ~bprm->per_clear;
994 
995 	/*
996 	 * Flush performance counters when crossing a
997 	 * security domain:
998 	 */
999 	if (!get_dumpable(current->mm))
1000 		perf_counter_exit_task(current);
1001 
1002 	/* An exec changes our domain. We are no longer part of the thread
1003 	   group */
1004 
1005 	current->self_exec_id++;
1006 
1007 	flush_signal_handlers(current, 0);
1008 	flush_old_files(current->files);
1009 
1010 	return 0;
1011 
1012 out:
1013 	return retval;
1014 }
1015 
1016 EXPORT_SYMBOL(flush_old_exec);
1017 
1018 /*
1019  * Prepare credentials and lock ->cred_guard_mutex.
1020  * install_exec_creds() commits the new creds and drops the lock.
1021  * Or, if exec fails before, free_bprm() should release ->cred and
1022  * and unlock.
1023  */
1024 int prepare_bprm_creds(struct linux_binprm *bprm)
1025 {
1026 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1027 		return -ERESTARTNOINTR;
1028 
1029 	bprm->cred = prepare_exec_creds();
1030 	if (likely(bprm->cred))
1031 		return 0;
1032 
1033 	mutex_unlock(&current->cred_guard_mutex);
1034 	return -ENOMEM;
1035 }
1036 
1037 void free_bprm(struct linux_binprm *bprm)
1038 {
1039 	free_arg_pages(bprm);
1040 	if (bprm->cred) {
1041 		mutex_unlock(&current->cred_guard_mutex);
1042 		abort_creds(bprm->cred);
1043 	}
1044 	kfree(bprm);
1045 }
1046 
1047 /*
1048  * install the new credentials for this executable
1049  */
1050 void install_exec_creds(struct linux_binprm *bprm)
1051 {
1052 	security_bprm_committing_creds(bprm);
1053 
1054 	commit_creds(bprm->cred);
1055 	bprm->cred = NULL;
1056 	/*
1057 	 * cred_guard_mutex must be held at least to this point to prevent
1058 	 * ptrace_attach() from altering our determination of the task's
1059 	 * credentials; any time after this it may be unlocked.
1060 	 */
1061 	security_bprm_committed_creds(bprm);
1062 	mutex_unlock(&current->cred_guard_mutex);
1063 }
1064 EXPORT_SYMBOL(install_exec_creds);
1065 
1066 /*
1067  * determine how safe it is to execute the proposed program
1068  * - the caller must hold current->cred_guard_mutex to protect against
1069  *   PTRACE_ATTACH
1070  */
1071 int check_unsafe_exec(struct linux_binprm *bprm)
1072 {
1073 	struct task_struct *p = current, *t;
1074 	unsigned n_fs;
1075 	int res = 0;
1076 
1077 	bprm->unsafe = tracehook_unsafe_exec(p);
1078 
1079 	n_fs = 1;
1080 	write_lock(&p->fs->lock);
1081 	rcu_read_lock();
1082 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1083 		if (t->fs == p->fs)
1084 			n_fs++;
1085 	}
1086 	rcu_read_unlock();
1087 
1088 	if (p->fs->users > n_fs) {
1089 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1090 	} else {
1091 		res = -EAGAIN;
1092 		if (!p->fs->in_exec) {
1093 			p->fs->in_exec = 1;
1094 			res = 1;
1095 		}
1096 	}
1097 	write_unlock(&p->fs->lock);
1098 
1099 	return res;
1100 }
1101 
1102 /*
1103  * Fill the binprm structure from the inode.
1104  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1105  *
1106  * This may be called multiple times for binary chains (scripts for example).
1107  */
1108 int prepare_binprm(struct linux_binprm *bprm)
1109 {
1110 	umode_t mode;
1111 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1112 	int retval;
1113 
1114 	mode = inode->i_mode;
1115 	if (bprm->file->f_op == NULL)
1116 		return -EACCES;
1117 
1118 	/* clear any previous set[ug]id data from a previous binary */
1119 	bprm->cred->euid = current_euid();
1120 	bprm->cred->egid = current_egid();
1121 
1122 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1123 		/* Set-uid? */
1124 		if (mode & S_ISUID) {
1125 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1126 			bprm->cred->euid = inode->i_uid;
1127 		}
1128 
1129 		/* Set-gid? */
1130 		/*
1131 		 * If setgid is set but no group execute bit then this
1132 		 * is a candidate for mandatory locking, not a setgid
1133 		 * executable.
1134 		 */
1135 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1136 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1137 			bprm->cred->egid = inode->i_gid;
1138 		}
1139 	}
1140 
1141 	/* fill in binprm security blob */
1142 	retval = security_bprm_set_creds(bprm);
1143 	if (retval)
1144 		return retval;
1145 	bprm->cred_prepared = 1;
1146 
1147 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1148 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1149 }
1150 
1151 EXPORT_SYMBOL(prepare_binprm);
1152 
1153 /*
1154  * Arguments are '\0' separated strings found at the location bprm->p
1155  * points to; chop off the first by relocating brpm->p to right after
1156  * the first '\0' encountered.
1157  */
1158 int remove_arg_zero(struct linux_binprm *bprm)
1159 {
1160 	int ret = 0;
1161 	unsigned long offset;
1162 	char *kaddr;
1163 	struct page *page;
1164 
1165 	if (!bprm->argc)
1166 		return 0;
1167 
1168 	do {
1169 		offset = bprm->p & ~PAGE_MASK;
1170 		page = get_arg_page(bprm, bprm->p, 0);
1171 		if (!page) {
1172 			ret = -EFAULT;
1173 			goto out;
1174 		}
1175 		kaddr = kmap_atomic(page, KM_USER0);
1176 
1177 		for (; offset < PAGE_SIZE && kaddr[offset];
1178 				offset++, bprm->p++)
1179 			;
1180 
1181 		kunmap_atomic(kaddr, KM_USER0);
1182 		put_arg_page(page);
1183 
1184 		if (offset == PAGE_SIZE)
1185 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1186 	} while (offset == PAGE_SIZE);
1187 
1188 	bprm->p++;
1189 	bprm->argc--;
1190 	ret = 0;
1191 
1192 out:
1193 	return ret;
1194 }
1195 EXPORT_SYMBOL(remove_arg_zero);
1196 
1197 /*
1198  * cycle the list of binary formats handler, until one recognizes the image
1199  */
1200 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1201 {
1202 	unsigned int depth = bprm->recursion_depth;
1203 	int try,retval;
1204 	struct linux_binfmt *fmt;
1205 
1206 	retval = security_bprm_check(bprm);
1207 	if (retval)
1208 		return retval;
1209 	retval = ima_bprm_check(bprm);
1210 	if (retval)
1211 		return retval;
1212 
1213 	/* kernel module loader fixup */
1214 	/* so we don't try to load run modprobe in kernel space. */
1215 	set_fs(USER_DS);
1216 
1217 	retval = audit_bprm(bprm);
1218 	if (retval)
1219 		return retval;
1220 
1221 	retval = -ENOENT;
1222 	for (try=0; try<2; try++) {
1223 		read_lock(&binfmt_lock);
1224 		list_for_each_entry(fmt, &formats, lh) {
1225 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1226 			if (!fn)
1227 				continue;
1228 			if (!try_module_get(fmt->module))
1229 				continue;
1230 			read_unlock(&binfmt_lock);
1231 			retval = fn(bprm, regs);
1232 			/*
1233 			 * Restore the depth counter to its starting value
1234 			 * in this call, so we don't have to rely on every
1235 			 * load_binary function to restore it on return.
1236 			 */
1237 			bprm->recursion_depth = depth;
1238 			if (retval >= 0) {
1239 				if (depth == 0)
1240 					tracehook_report_exec(fmt, bprm, regs);
1241 				put_binfmt(fmt);
1242 				allow_write_access(bprm->file);
1243 				if (bprm->file)
1244 					fput(bprm->file);
1245 				bprm->file = NULL;
1246 				current->did_exec = 1;
1247 				proc_exec_connector(current);
1248 				return retval;
1249 			}
1250 			read_lock(&binfmt_lock);
1251 			put_binfmt(fmt);
1252 			if (retval != -ENOEXEC || bprm->mm == NULL)
1253 				break;
1254 			if (!bprm->file) {
1255 				read_unlock(&binfmt_lock);
1256 				return retval;
1257 			}
1258 		}
1259 		read_unlock(&binfmt_lock);
1260 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1261 			break;
1262 #ifdef CONFIG_MODULES
1263 		} else {
1264 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1265 			if (printable(bprm->buf[0]) &&
1266 			    printable(bprm->buf[1]) &&
1267 			    printable(bprm->buf[2]) &&
1268 			    printable(bprm->buf[3]))
1269 				break; /* -ENOEXEC */
1270 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1271 #endif
1272 		}
1273 	}
1274 	return retval;
1275 }
1276 
1277 EXPORT_SYMBOL(search_binary_handler);
1278 
1279 /*
1280  * sys_execve() executes a new program.
1281  */
1282 int do_execve(char * filename,
1283 	char __user *__user *argv,
1284 	char __user *__user *envp,
1285 	struct pt_regs * regs)
1286 {
1287 	struct linux_binprm *bprm;
1288 	struct file *file;
1289 	struct files_struct *displaced;
1290 	bool clear_in_exec;
1291 	int retval;
1292 
1293 	retval = unshare_files(&displaced);
1294 	if (retval)
1295 		goto out_ret;
1296 
1297 	retval = -ENOMEM;
1298 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1299 	if (!bprm)
1300 		goto out_files;
1301 
1302 	retval = prepare_bprm_creds(bprm);
1303 	if (retval)
1304 		goto out_free;
1305 
1306 	retval = check_unsafe_exec(bprm);
1307 	if (retval < 0)
1308 		goto out_free;
1309 	clear_in_exec = retval;
1310 	current->in_execve = 1;
1311 
1312 	file = open_exec(filename);
1313 	retval = PTR_ERR(file);
1314 	if (IS_ERR(file))
1315 		goto out_unmark;
1316 
1317 	sched_exec();
1318 
1319 	bprm->file = file;
1320 	bprm->filename = filename;
1321 	bprm->interp = filename;
1322 
1323 	retval = bprm_mm_init(bprm);
1324 	if (retval)
1325 		goto out_file;
1326 
1327 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1328 	if ((retval = bprm->argc) < 0)
1329 		goto out;
1330 
1331 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1332 	if ((retval = bprm->envc) < 0)
1333 		goto out;
1334 
1335 	retval = prepare_binprm(bprm);
1336 	if (retval < 0)
1337 		goto out;
1338 
1339 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1340 	if (retval < 0)
1341 		goto out;
1342 
1343 	bprm->exec = bprm->p;
1344 	retval = copy_strings(bprm->envc, envp, bprm);
1345 	if (retval < 0)
1346 		goto out;
1347 
1348 	retval = copy_strings(bprm->argc, argv, bprm);
1349 	if (retval < 0)
1350 		goto out;
1351 
1352 	current->flags &= ~PF_KTHREAD;
1353 	retval = search_binary_handler(bprm,regs);
1354 	if (retval < 0)
1355 		goto out;
1356 
1357 	/* execve succeeded */
1358 	current->fs->in_exec = 0;
1359 	current->in_execve = 0;
1360 	acct_update_integrals(current);
1361 	free_bprm(bprm);
1362 	if (displaced)
1363 		put_files_struct(displaced);
1364 	return retval;
1365 
1366 out:
1367 	if (bprm->mm)
1368 		mmput (bprm->mm);
1369 
1370 out_file:
1371 	if (bprm->file) {
1372 		allow_write_access(bprm->file);
1373 		fput(bprm->file);
1374 	}
1375 
1376 out_unmark:
1377 	if (clear_in_exec)
1378 		current->fs->in_exec = 0;
1379 	current->in_execve = 0;
1380 
1381 out_free:
1382 	free_bprm(bprm);
1383 
1384 out_files:
1385 	if (displaced)
1386 		reset_files_struct(displaced);
1387 out_ret:
1388 	return retval;
1389 }
1390 
1391 int set_binfmt(struct linux_binfmt *new)
1392 {
1393 	struct linux_binfmt *old = current->binfmt;
1394 
1395 	if (new) {
1396 		if (!try_module_get(new->module))
1397 			return -1;
1398 	}
1399 	current->binfmt = new;
1400 	if (old)
1401 		module_put(old->module);
1402 	return 0;
1403 }
1404 
1405 EXPORT_SYMBOL(set_binfmt);
1406 
1407 /* format_corename will inspect the pattern parameter, and output a
1408  * name into corename, which must have space for at least
1409  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1410  */
1411 static int format_corename(char *corename, long signr)
1412 {
1413 	const struct cred *cred = current_cred();
1414 	const char *pat_ptr = core_pattern;
1415 	int ispipe = (*pat_ptr == '|');
1416 	char *out_ptr = corename;
1417 	char *const out_end = corename + CORENAME_MAX_SIZE;
1418 	int rc;
1419 	int pid_in_pattern = 0;
1420 
1421 	/* Repeat as long as we have more pattern to process and more output
1422 	   space */
1423 	while (*pat_ptr) {
1424 		if (*pat_ptr != '%') {
1425 			if (out_ptr == out_end)
1426 				goto out;
1427 			*out_ptr++ = *pat_ptr++;
1428 		} else {
1429 			switch (*++pat_ptr) {
1430 			case 0:
1431 				goto out;
1432 			/* Double percent, output one percent */
1433 			case '%':
1434 				if (out_ptr == out_end)
1435 					goto out;
1436 				*out_ptr++ = '%';
1437 				break;
1438 			/* pid */
1439 			case 'p':
1440 				pid_in_pattern = 1;
1441 				rc = snprintf(out_ptr, out_end - out_ptr,
1442 					      "%d", task_tgid_vnr(current));
1443 				if (rc > out_end - out_ptr)
1444 					goto out;
1445 				out_ptr += rc;
1446 				break;
1447 			/* uid */
1448 			case 'u':
1449 				rc = snprintf(out_ptr, out_end - out_ptr,
1450 					      "%d", cred->uid);
1451 				if (rc > out_end - out_ptr)
1452 					goto out;
1453 				out_ptr += rc;
1454 				break;
1455 			/* gid */
1456 			case 'g':
1457 				rc = snprintf(out_ptr, out_end - out_ptr,
1458 					      "%d", cred->gid);
1459 				if (rc > out_end - out_ptr)
1460 					goto out;
1461 				out_ptr += rc;
1462 				break;
1463 			/* signal that caused the coredump */
1464 			case 's':
1465 				rc = snprintf(out_ptr, out_end - out_ptr,
1466 					      "%ld", signr);
1467 				if (rc > out_end - out_ptr)
1468 					goto out;
1469 				out_ptr += rc;
1470 				break;
1471 			/* UNIX time of coredump */
1472 			case 't': {
1473 				struct timeval tv;
1474 				do_gettimeofday(&tv);
1475 				rc = snprintf(out_ptr, out_end - out_ptr,
1476 					      "%lu", tv.tv_sec);
1477 				if (rc > out_end - out_ptr)
1478 					goto out;
1479 				out_ptr += rc;
1480 				break;
1481 			}
1482 			/* hostname */
1483 			case 'h':
1484 				down_read(&uts_sem);
1485 				rc = snprintf(out_ptr, out_end - out_ptr,
1486 					      "%s", utsname()->nodename);
1487 				up_read(&uts_sem);
1488 				if (rc > out_end - out_ptr)
1489 					goto out;
1490 				out_ptr += rc;
1491 				break;
1492 			/* executable */
1493 			case 'e':
1494 				rc = snprintf(out_ptr, out_end - out_ptr,
1495 					      "%s", current->comm);
1496 				if (rc > out_end - out_ptr)
1497 					goto out;
1498 				out_ptr += rc;
1499 				break;
1500 			/* core limit size */
1501 			case 'c':
1502 				rc = snprintf(out_ptr, out_end - out_ptr,
1503 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1504 				if (rc > out_end - out_ptr)
1505 					goto out;
1506 				out_ptr += rc;
1507 				break;
1508 			default:
1509 				break;
1510 			}
1511 			++pat_ptr;
1512 		}
1513 	}
1514 	/* Backward compatibility with core_uses_pid:
1515 	 *
1516 	 * If core_pattern does not include a %p (as is the default)
1517 	 * and core_uses_pid is set, then .%pid will be appended to
1518 	 * the filename. Do not do this for piped commands. */
1519 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1520 		rc = snprintf(out_ptr, out_end - out_ptr,
1521 			      ".%d", task_tgid_vnr(current));
1522 		if (rc > out_end - out_ptr)
1523 			goto out;
1524 		out_ptr += rc;
1525 	}
1526 out:
1527 	*out_ptr = 0;
1528 	return ispipe;
1529 }
1530 
1531 static int zap_process(struct task_struct *start)
1532 {
1533 	struct task_struct *t;
1534 	int nr = 0;
1535 
1536 	start->signal->flags = SIGNAL_GROUP_EXIT;
1537 	start->signal->group_stop_count = 0;
1538 
1539 	t = start;
1540 	do {
1541 		if (t != current && t->mm) {
1542 			sigaddset(&t->pending.signal, SIGKILL);
1543 			signal_wake_up(t, 1);
1544 			nr++;
1545 		}
1546 	} while_each_thread(start, t);
1547 
1548 	return nr;
1549 }
1550 
1551 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1552 				struct core_state *core_state, int exit_code)
1553 {
1554 	struct task_struct *g, *p;
1555 	unsigned long flags;
1556 	int nr = -EAGAIN;
1557 
1558 	spin_lock_irq(&tsk->sighand->siglock);
1559 	if (!signal_group_exit(tsk->signal)) {
1560 		mm->core_state = core_state;
1561 		tsk->signal->group_exit_code = exit_code;
1562 		nr = zap_process(tsk);
1563 	}
1564 	spin_unlock_irq(&tsk->sighand->siglock);
1565 	if (unlikely(nr < 0))
1566 		return nr;
1567 
1568 	if (atomic_read(&mm->mm_users) == nr + 1)
1569 		goto done;
1570 	/*
1571 	 * We should find and kill all tasks which use this mm, and we should
1572 	 * count them correctly into ->nr_threads. We don't take tasklist
1573 	 * lock, but this is safe wrt:
1574 	 *
1575 	 * fork:
1576 	 *	None of sub-threads can fork after zap_process(leader). All
1577 	 *	processes which were created before this point should be
1578 	 *	visible to zap_threads() because copy_process() adds the new
1579 	 *	process to the tail of init_task.tasks list, and lock/unlock
1580 	 *	of ->siglock provides a memory barrier.
1581 	 *
1582 	 * do_exit:
1583 	 *	The caller holds mm->mmap_sem. This means that the task which
1584 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1585 	 *	its ->mm.
1586 	 *
1587 	 * de_thread:
1588 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1589 	 *	we must see either old or new leader, this does not matter.
1590 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1591 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1592 	 *	it can't fail.
1593 	 *
1594 	 *	Note also that "g" can be the old leader with ->mm == NULL
1595 	 *	and already unhashed and thus removed from ->thread_group.
1596 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1597 	 *	clear the ->next pointer, we will find the new leader via
1598 	 *	next_thread().
1599 	 */
1600 	rcu_read_lock();
1601 	for_each_process(g) {
1602 		if (g == tsk->group_leader)
1603 			continue;
1604 		if (g->flags & PF_KTHREAD)
1605 			continue;
1606 		p = g;
1607 		do {
1608 			if (p->mm) {
1609 				if (unlikely(p->mm == mm)) {
1610 					lock_task_sighand(p, &flags);
1611 					nr += zap_process(p);
1612 					unlock_task_sighand(p, &flags);
1613 				}
1614 				break;
1615 			}
1616 		} while_each_thread(g, p);
1617 	}
1618 	rcu_read_unlock();
1619 done:
1620 	atomic_set(&core_state->nr_threads, nr);
1621 	return nr;
1622 }
1623 
1624 static int coredump_wait(int exit_code, struct core_state *core_state)
1625 {
1626 	struct task_struct *tsk = current;
1627 	struct mm_struct *mm = tsk->mm;
1628 	struct completion *vfork_done;
1629 	int core_waiters;
1630 
1631 	init_completion(&core_state->startup);
1632 	core_state->dumper.task = tsk;
1633 	core_state->dumper.next = NULL;
1634 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1635 	up_write(&mm->mmap_sem);
1636 
1637 	if (unlikely(core_waiters < 0))
1638 		goto fail;
1639 
1640 	/*
1641 	 * Make sure nobody is waiting for us to release the VM,
1642 	 * otherwise we can deadlock when we wait on each other
1643 	 */
1644 	vfork_done = tsk->vfork_done;
1645 	if (vfork_done) {
1646 		tsk->vfork_done = NULL;
1647 		complete(vfork_done);
1648 	}
1649 
1650 	if (core_waiters)
1651 		wait_for_completion(&core_state->startup);
1652 fail:
1653 	return core_waiters;
1654 }
1655 
1656 static void coredump_finish(struct mm_struct *mm)
1657 {
1658 	struct core_thread *curr, *next;
1659 	struct task_struct *task;
1660 
1661 	next = mm->core_state->dumper.next;
1662 	while ((curr = next) != NULL) {
1663 		next = curr->next;
1664 		task = curr->task;
1665 		/*
1666 		 * see exit_mm(), curr->task must not see
1667 		 * ->task == NULL before we read ->next.
1668 		 */
1669 		smp_mb();
1670 		curr->task = NULL;
1671 		wake_up_process(task);
1672 	}
1673 
1674 	mm->core_state = NULL;
1675 }
1676 
1677 /*
1678  * set_dumpable converts traditional three-value dumpable to two flags and
1679  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1680  * these bits are not changed atomically.  So get_dumpable can observe the
1681  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1682  * return either old dumpable or new one by paying attention to the order of
1683  * modifying the bits.
1684  *
1685  * dumpable |   mm->flags (binary)
1686  * old  new | initial interim  final
1687  * ---------+-----------------------
1688  *  0    1  |   00      01      01
1689  *  0    2  |   00      10(*)   11
1690  *  1    0  |   01      00      00
1691  *  1    2  |   01      11      11
1692  *  2    0  |   11      10(*)   00
1693  *  2    1  |   11      11      01
1694  *
1695  * (*) get_dumpable regards interim value of 10 as 11.
1696  */
1697 void set_dumpable(struct mm_struct *mm, int value)
1698 {
1699 	switch (value) {
1700 	case 0:
1701 		clear_bit(MMF_DUMPABLE, &mm->flags);
1702 		smp_wmb();
1703 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1704 		break;
1705 	case 1:
1706 		set_bit(MMF_DUMPABLE, &mm->flags);
1707 		smp_wmb();
1708 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1709 		break;
1710 	case 2:
1711 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1712 		smp_wmb();
1713 		set_bit(MMF_DUMPABLE, &mm->flags);
1714 		break;
1715 	}
1716 }
1717 
1718 int get_dumpable(struct mm_struct *mm)
1719 {
1720 	int ret;
1721 
1722 	ret = mm->flags & 0x3;
1723 	return (ret >= 2) ? 2 : ret;
1724 }
1725 
1726 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1727 {
1728 	struct core_state core_state;
1729 	char corename[CORENAME_MAX_SIZE + 1];
1730 	struct mm_struct *mm = current->mm;
1731 	struct linux_binfmt * binfmt;
1732 	struct inode * inode;
1733 	struct file * file;
1734 	const struct cred *old_cred;
1735 	struct cred *cred;
1736 	int retval = 0;
1737 	int flag = 0;
1738 	int ispipe = 0;
1739 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1740 	char **helper_argv = NULL;
1741 	int helper_argc = 0;
1742 	char *delimit;
1743 
1744 	audit_core_dumps(signr);
1745 
1746 	binfmt = current->binfmt;
1747 	if (!binfmt || !binfmt->core_dump)
1748 		goto fail;
1749 
1750 	cred = prepare_creds();
1751 	if (!cred) {
1752 		retval = -ENOMEM;
1753 		goto fail;
1754 	}
1755 
1756 	down_write(&mm->mmap_sem);
1757 	/*
1758 	 * If another thread got here first, or we are not dumpable, bail out.
1759 	 */
1760 	if (mm->core_state || !get_dumpable(mm)) {
1761 		up_write(&mm->mmap_sem);
1762 		put_cred(cred);
1763 		goto fail;
1764 	}
1765 
1766 	/*
1767 	 *	We cannot trust fsuid as being the "true" uid of the
1768 	 *	process nor do we know its entire history. We only know it
1769 	 *	was tainted so we dump it as root in mode 2.
1770 	 */
1771 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1772 		flag = O_EXCL;		/* Stop rewrite attacks */
1773 		cred->fsuid = 0;	/* Dump root private */
1774 	}
1775 
1776 	retval = coredump_wait(exit_code, &core_state);
1777 	if (retval < 0) {
1778 		put_cred(cred);
1779 		goto fail;
1780 	}
1781 
1782 	old_cred = override_creds(cred);
1783 
1784 	/*
1785 	 * Clear any false indication of pending signals that might
1786 	 * be seen by the filesystem code called to write the core file.
1787 	 */
1788 	clear_thread_flag(TIF_SIGPENDING);
1789 
1790 	/*
1791 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1792 	 * uses lock_kernel()
1793 	 */
1794  	lock_kernel();
1795 	ispipe = format_corename(corename, signr);
1796 	unlock_kernel();
1797 	/*
1798 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1799 	 * to a pipe.  Since we're not writing directly to the filesystem
1800 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1801 	 * created unless the pipe reader choses to write out the core file
1802 	 * at which point file size limits and permissions will be imposed
1803 	 * as it does with any other process
1804 	 */
1805 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1806 		goto fail_unlock;
1807 
1808  	if (ispipe) {
1809 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1810 		if (!helper_argv) {
1811 			printk(KERN_WARNING "%s failed to allocate memory\n",
1812 			       __func__);
1813 			goto fail_unlock;
1814 		}
1815 		/* Terminate the string before the first option */
1816 		delimit = strchr(corename, ' ');
1817 		if (delimit)
1818 			*delimit = '\0';
1819 		delimit = strrchr(helper_argv[0], '/');
1820 		if (delimit)
1821 			delimit++;
1822 		else
1823 			delimit = helper_argv[0];
1824 		if (!strcmp(delimit, current->comm)) {
1825 			printk(KERN_NOTICE "Recursive core dump detected, "
1826 					"aborting\n");
1827 			goto fail_unlock;
1828 		}
1829 
1830 		core_limit = RLIM_INFINITY;
1831 
1832 		/* SIGPIPE can happen, but it's just never processed */
1833  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1834 				&file)) {
1835  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1836 			       corename);
1837  			goto fail_unlock;
1838  		}
1839  	} else
1840  		file = filp_open(corename,
1841 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1842 				 0600);
1843 	if (IS_ERR(file))
1844 		goto fail_unlock;
1845 	inode = file->f_path.dentry->d_inode;
1846 	if (inode->i_nlink > 1)
1847 		goto close_fail;	/* multiple links - don't dump */
1848 	if (!ispipe && d_unhashed(file->f_path.dentry))
1849 		goto close_fail;
1850 
1851 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1852 	   but keep the previous behaviour for now. */
1853 	if (!ispipe && !S_ISREG(inode->i_mode))
1854 		goto close_fail;
1855 	/*
1856 	 * Dont allow local users get cute and trick others to coredump
1857 	 * into their pre-created files:
1858 	 */
1859 	if (inode->i_uid != current_fsuid())
1860 		goto close_fail;
1861 	if (!file->f_op)
1862 		goto close_fail;
1863 	if (!file->f_op->write)
1864 		goto close_fail;
1865 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1866 		goto close_fail;
1867 
1868 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1869 
1870 	if (retval)
1871 		current->signal->group_exit_code |= 0x80;
1872 close_fail:
1873 	filp_close(file, NULL);
1874 fail_unlock:
1875 	if (helper_argv)
1876 		argv_free(helper_argv);
1877 
1878 	revert_creds(old_cred);
1879 	put_cred(cred);
1880 	coredump_finish(mm);
1881 fail:
1882 	return;
1883 }
1884