1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/mmu_context.h> 72 #include <asm/tlb.h> 73 74 #include <trace/events/task.h> 75 #include "internal.h" 76 77 #include <trace/events/sched.h> 78 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 80 81 int suid_dumpable = 0; 82 83 static LIST_HEAD(formats); 84 static DEFINE_RWLOCK(binfmt_lock); 85 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 87 { 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 struct vm_area_struct *vma = bprm->vma; 202 struct mm_struct *mm = bprm->mm; 203 int ret; 204 205 /* 206 * Avoid relying on expanding the stack down in GUP (which 207 * does not work for STACK_GROWSUP anyway), and just do it 208 * by hand ahead of time. 209 */ 210 if (write && pos < vma->vm_start) { 211 mmap_write_lock(mm); 212 ret = expand_downwards(vma, pos); 213 if (unlikely(ret < 0)) { 214 mmap_write_unlock(mm); 215 return NULL; 216 } 217 mmap_write_downgrade(mm); 218 } else 219 mmap_read_lock(mm); 220 221 /* 222 * We are doing an exec(). 'current' is the process 223 * doing the exec and 'mm' is the new process's mm. 224 */ 225 ret = get_user_pages_remote(mm, pos, 1, 226 write ? FOLL_WRITE : 0, 227 &page, NULL); 228 mmap_read_unlock(mm); 229 if (ret <= 0) 230 return NULL; 231 232 if (write) 233 acct_arg_size(bprm, vma_pages(vma)); 234 235 return page; 236 } 237 238 static void put_arg_page(struct page *page) 239 { 240 put_page(page); 241 } 242 243 static void free_arg_pages(struct linux_binprm *bprm) 244 { 245 } 246 247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 248 struct page *page) 249 { 250 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 251 } 252 253 static int __bprm_mm_init(struct linux_binprm *bprm) 254 { 255 int err; 256 struct vm_area_struct *vma = NULL; 257 struct mm_struct *mm = bprm->mm; 258 259 bprm->vma = vma = vm_area_alloc(mm); 260 if (!vma) 261 return -ENOMEM; 262 vma_set_anonymous(vma); 263 264 if (mmap_write_lock_killable(mm)) { 265 err = -EINTR; 266 goto err_free; 267 } 268 269 /* 270 * Place the stack at the largest stack address the architecture 271 * supports. Later, we'll move this to an appropriate place. We don't 272 * use STACK_TOP because that can depend on attributes which aren't 273 * configured yet. 274 */ 275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 276 vma->vm_end = STACK_TOP_MAX; 277 vma->vm_start = vma->vm_end - PAGE_SIZE; 278 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 280 281 err = insert_vm_struct(mm, vma); 282 if (err) 283 goto err; 284 285 mm->stack_vm = mm->total_vm = 1; 286 mmap_write_unlock(mm); 287 bprm->p = vma->vm_end - sizeof(void *); 288 return 0; 289 err: 290 mmap_write_unlock(mm); 291 err_free: 292 bprm->vma = NULL; 293 vm_area_free(vma); 294 return err; 295 } 296 297 static bool valid_arg_len(struct linux_binprm *bprm, long len) 298 { 299 return len <= MAX_ARG_STRLEN; 300 } 301 302 #else 303 304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 305 { 306 } 307 308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 309 int write) 310 { 311 struct page *page; 312 313 page = bprm->page[pos / PAGE_SIZE]; 314 if (!page && write) { 315 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 316 if (!page) 317 return NULL; 318 bprm->page[pos / PAGE_SIZE] = page; 319 } 320 321 return page; 322 } 323 324 static void put_arg_page(struct page *page) 325 { 326 } 327 328 static void free_arg_page(struct linux_binprm *bprm, int i) 329 { 330 if (bprm->page[i]) { 331 __free_page(bprm->page[i]); 332 bprm->page[i] = NULL; 333 } 334 } 335 336 static void free_arg_pages(struct linux_binprm *bprm) 337 { 338 int i; 339 340 for (i = 0; i < MAX_ARG_PAGES; i++) 341 free_arg_page(bprm, i); 342 } 343 344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 345 struct page *page) 346 { 347 } 348 349 static int __bprm_mm_init(struct linux_binprm *bprm) 350 { 351 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 352 return 0; 353 } 354 355 static bool valid_arg_len(struct linux_binprm *bprm, long len) 356 { 357 return len <= bprm->p; 358 } 359 360 #endif /* CONFIG_MMU */ 361 362 /* 363 * Create a new mm_struct and populate it with a temporary stack 364 * vm_area_struct. We don't have enough context at this point to set the stack 365 * flags, permissions, and offset, so we use temporary values. We'll update 366 * them later in setup_arg_pages(). 367 */ 368 static int bprm_mm_init(struct linux_binprm *bprm) 369 { 370 int err; 371 struct mm_struct *mm = NULL; 372 373 bprm->mm = mm = mm_alloc(); 374 err = -ENOMEM; 375 if (!mm) 376 goto err; 377 378 /* Save current stack limit for all calculations made during exec. */ 379 task_lock(current->group_leader); 380 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 381 task_unlock(current->group_leader); 382 383 err = __bprm_mm_init(bprm); 384 if (err) 385 goto err; 386 387 return 0; 388 389 err: 390 if (mm) { 391 bprm->mm = NULL; 392 mmdrop(mm); 393 } 394 395 return err; 396 } 397 398 struct user_arg_ptr { 399 #ifdef CONFIG_COMPAT 400 bool is_compat; 401 #endif 402 union { 403 const char __user *const __user *native; 404 #ifdef CONFIG_COMPAT 405 const compat_uptr_t __user *compat; 406 #endif 407 } ptr; 408 }; 409 410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 411 { 412 const char __user *native; 413 414 #ifdef CONFIG_COMPAT 415 if (unlikely(argv.is_compat)) { 416 compat_uptr_t compat; 417 418 if (get_user(compat, argv.ptr.compat + nr)) 419 return ERR_PTR(-EFAULT); 420 421 return compat_ptr(compat); 422 } 423 #endif 424 425 if (get_user(native, argv.ptr.native + nr)) 426 return ERR_PTR(-EFAULT); 427 428 return native; 429 } 430 431 /* 432 * count() counts the number of strings in array ARGV. 433 */ 434 static int count(struct user_arg_ptr argv, int max) 435 { 436 int i = 0; 437 438 if (argv.ptr.native != NULL) { 439 for (;;) { 440 const char __user *p = get_user_arg_ptr(argv, i); 441 442 if (!p) 443 break; 444 445 if (IS_ERR(p)) 446 return -EFAULT; 447 448 if (i >= max) 449 return -E2BIG; 450 ++i; 451 452 if (fatal_signal_pending(current)) 453 return -ERESTARTNOHAND; 454 cond_resched(); 455 } 456 } 457 return i; 458 } 459 460 static int count_strings_kernel(const char *const *argv) 461 { 462 int i; 463 464 if (!argv) 465 return 0; 466 467 for (i = 0; argv[i]; ++i) { 468 if (i >= MAX_ARG_STRINGS) 469 return -E2BIG; 470 if (fatal_signal_pending(current)) 471 return -ERESTARTNOHAND; 472 cond_resched(); 473 } 474 return i; 475 } 476 477 static int bprm_stack_limits(struct linux_binprm *bprm) 478 { 479 unsigned long limit, ptr_size; 480 481 /* 482 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 483 * (whichever is smaller) for the argv+env strings. 484 * This ensures that: 485 * - the remaining binfmt code will not run out of stack space, 486 * - the program will have a reasonable amount of stack left 487 * to work from. 488 */ 489 limit = _STK_LIM / 4 * 3; 490 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 491 /* 492 * We've historically supported up to 32 pages (ARG_MAX) 493 * of argument strings even with small stacks 494 */ 495 limit = max_t(unsigned long, limit, ARG_MAX); 496 /* 497 * We must account for the size of all the argv and envp pointers to 498 * the argv and envp strings, since they will also take up space in 499 * the stack. They aren't stored until much later when we can't 500 * signal to the parent that the child has run out of stack space. 501 * Instead, calculate it here so it's possible to fail gracefully. 502 * 503 * In the case of argc = 0, make sure there is space for adding a 504 * empty string (which will bump argc to 1), to ensure confused 505 * userspace programs don't start processing from argv[1], thinking 506 * argc can never be 0, to keep them from walking envp by accident. 507 * See do_execveat_common(). 508 */ 509 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 510 if (limit <= ptr_size) 511 return -E2BIG; 512 limit -= ptr_size; 513 514 bprm->argmin = bprm->p - limit; 515 return 0; 516 } 517 518 /* 519 * 'copy_strings()' copies argument/environment strings from the old 520 * processes's memory to the new process's stack. The call to get_user_pages() 521 * ensures the destination page is created and not swapped out. 522 */ 523 static int copy_strings(int argc, struct user_arg_ptr argv, 524 struct linux_binprm *bprm) 525 { 526 struct page *kmapped_page = NULL; 527 char *kaddr = NULL; 528 unsigned long kpos = 0; 529 int ret; 530 531 while (argc-- > 0) { 532 const char __user *str; 533 int len; 534 unsigned long pos; 535 536 ret = -EFAULT; 537 str = get_user_arg_ptr(argv, argc); 538 if (IS_ERR(str)) 539 goto out; 540 541 len = strnlen_user(str, MAX_ARG_STRLEN); 542 if (!len) 543 goto out; 544 545 ret = -E2BIG; 546 if (!valid_arg_len(bprm, len)) 547 goto out; 548 549 /* We're going to work our way backwards. */ 550 pos = bprm->p; 551 str += len; 552 bprm->p -= len; 553 #ifdef CONFIG_MMU 554 if (bprm->p < bprm->argmin) 555 goto out; 556 #endif 557 558 while (len > 0) { 559 int offset, bytes_to_copy; 560 561 if (fatal_signal_pending(current)) { 562 ret = -ERESTARTNOHAND; 563 goto out; 564 } 565 cond_resched(); 566 567 offset = pos % PAGE_SIZE; 568 if (offset == 0) 569 offset = PAGE_SIZE; 570 571 bytes_to_copy = offset; 572 if (bytes_to_copy > len) 573 bytes_to_copy = len; 574 575 offset -= bytes_to_copy; 576 pos -= bytes_to_copy; 577 str -= bytes_to_copy; 578 len -= bytes_to_copy; 579 580 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 581 struct page *page; 582 583 page = get_arg_page(bprm, pos, 1); 584 if (!page) { 585 ret = -E2BIG; 586 goto out; 587 } 588 589 if (kmapped_page) { 590 flush_dcache_page(kmapped_page); 591 kunmap_local(kaddr); 592 put_arg_page(kmapped_page); 593 } 594 kmapped_page = page; 595 kaddr = kmap_local_page(kmapped_page); 596 kpos = pos & PAGE_MASK; 597 flush_arg_page(bprm, kpos, kmapped_page); 598 } 599 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 600 ret = -EFAULT; 601 goto out; 602 } 603 } 604 } 605 ret = 0; 606 out: 607 if (kmapped_page) { 608 flush_dcache_page(kmapped_page); 609 kunmap_local(kaddr); 610 put_arg_page(kmapped_page); 611 } 612 return ret; 613 } 614 615 /* 616 * Copy and argument/environment string from the kernel to the processes stack. 617 */ 618 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 619 { 620 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 621 unsigned long pos = bprm->p; 622 623 if (len == 0) 624 return -EFAULT; 625 if (!valid_arg_len(bprm, len)) 626 return -E2BIG; 627 628 /* We're going to work our way backwards. */ 629 arg += len; 630 bprm->p -= len; 631 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 632 return -E2BIG; 633 634 while (len > 0) { 635 unsigned int bytes_to_copy = min_t(unsigned int, len, 636 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 637 struct page *page; 638 639 pos -= bytes_to_copy; 640 arg -= bytes_to_copy; 641 len -= bytes_to_copy; 642 643 page = get_arg_page(bprm, pos, 1); 644 if (!page) 645 return -E2BIG; 646 flush_arg_page(bprm, pos & PAGE_MASK, page); 647 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 648 put_arg_page(page); 649 } 650 651 return 0; 652 } 653 EXPORT_SYMBOL(copy_string_kernel); 654 655 static int copy_strings_kernel(int argc, const char *const *argv, 656 struct linux_binprm *bprm) 657 { 658 while (argc-- > 0) { 659 int ret = copy_string_kernel(argv[argc], bprm); 660 if (ret < 0) 661 return ret; 662 if (fatal_signal_pending(current)) 663 return -ERESTARTNOHAND; 664 cond_resched(); 665 } 666 return 0; 667 } 668 669 #ifdef CONFIG_MMU 670 671 /* 672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 673 * the binfmt code determines where the new stack should reside, we shift it to 674 * its final location. The process proceeds as follows: 675 * 676 * 1) Use shift to calculate the new vma endpoints. 677 * 2) Extend vma to cover both the old and new ranges. This ensures the 678 * arguments passed to subsequent functions are consistent. 679 * 3) Move vma's page tables to the new range. 680 * 4) Free up any cleared pgd range. 681 * 5) Shrink the vma to cover only the new range. 682 */ 683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 684 { 685 struct mm_struct *mm = vma->vm_mm; 686 unsigned long old_start = vma->vm_start; 687 unsigned long old_end = vma->vm_end; 688 unsigned long length = old_end - old_start; 689 unsigned long new_start = old_start - shift; 690 unsigned long new_end = old_end - shift; 691 VMA_ITERATOR(vmi, mm, new_start); 692 struct vm_area_struct *next; 693 struct mmu_gather tlb; 694 695 BUG_ON(new_start > new_end); 696 697 /* 698 * ensure there are no vmas between where we want to go 699 * and where we are 700 */ 701 if (vma != vma_next(&vmi)) 702 return -EFAULT; 703 704 vma_iter_prev_range(&vmi); 705 /* 706 * cover the whole range: [new_start, old_end) 707 */ 708 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL)) 709 return -ENOMEM; 710 711 /* 712 * move the page tables downwards, on failure we rely on 713 * process cleanup to remove whatever mess we made. 714 */ 715 if (length != move_page_tables(vma, old_start, 716 vma, new_start, length, false)) 717 return -ENOMEM; 718 719 lru_add_drain(); 720 tlb_gather_mmu(&tlb, mm); 721 next = vma_next(&vmi); 722 if (new_end > old_start) { 723 /* 724 * when the old and new regions overlap clear from new_end. 725 */ 726 free_pgd_range(&tlb, new_end, old_end, new_end, 727 next ? next->vm_start : USER_PGTABLES_CEILING); 728 } else { 729 /* 730 * otherwise, clean from old_start; this is done to not touch 731 * the address space in [new_end, old_start) some architectures 732 * have constraints on va-space that make this illegal (IA64) - 733 * for the others its just a little faster. 734 */ 735 free_pgd_range(&tlb, old_start, old_end, new_end, 736 next ? next->vm_start : USER_PGTABLES_CEILING); 737 } 738 tlb_finish_mmu(&tlb); 739 740 vma_prev(&vmi); 741 /* Shrink the vma to just the new range */ 742 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 743 } 744 745 /* 746 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 747 * the stack is optionally relocated, and some extra space is added. 748 */ 749 int setup_arg_pages(struct linux_binprm *bprm, 750 unsigned long stack_top, 751 int executable_stack) 752 { 753 unsigned long ret; 754 unsigned long stack_shift; 755 struct mm_struct *mm = current->mm; 756 struct vm_area_struct *vma = bprm->vma; 757 struct vm_area_struct *prev = NULL; 758 unsigned long vm_flags; 759 unsigned long stack_base; 760 unsigned long stack_size; 761 unsigned long stack_expand; 762 unsigned long rlim_stack; 763 struct mmu_gather tlb; 764 struct vma_iterator vmi; 765 766 #ifdef CONFIG_STACK_GROWSUP 767 /* Limit stack size */ 768 stack_base = bprm->rlim_stack.rlim_max; 769 770 stack_base = calc_max_stack_size(stack_base); 771 772 /* Add space for stack randomization. */ 773 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 774 775 /* Make sure we didn't let the argument array grow too large. */ 776 if (vma->vm_end - vma->vm_start > stack_base) 777 return -ENOMEM; 778 779 stack_base = PAGE_ALIGN(stack_top - stack_base); 780 781 stack_shift = vma->vm_start - stack_base; 782 mm->arg_start = bprm->p - stack_shift; 783 bprm->p = vma->vm_end - stack_shift; 784 #else 785 stack_top = arch_align_stack(stack_top); 786 stack_top = PAGE_ALIGN(stack_top); 787 788 if (unlikely(stack_top < mmap_min_addr) || 789 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 790 return -ENOMEM; 791 792 stack_shift = vma->vm_end - stack_top; 793 794 bprm->p -= stack_shift; 795 mm->arg_start = bprm->p; 796 #endif 797 798 if (bprm->loader) 799 bprm->loader -= stack_shift; 800 bprm->exec -= stack_shift; 801 802 if (mmap_write_lock_killable(mm)) 803 return -EINTR; 804 805 vm_flags = VM_STACK_FLAGS; 806 807 /* 808 * Adjust stack execute permissions; explicitly enable for 809 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 810 * (arch default) otherwise. 811 */ 812 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 813 vm_flags |= VM_EXEC; 814 else if (executable_stack == EXSTACK_DISABLE_X) 815 vm_flags &= ~VM_EXEC; 816 vm_flags |= mm->def_flags; 817 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 818 819 vma_iter_init(&vmi, mm, vma->vm_start); 820 821 tlb_gather_mmu(&tlb, mm); 822 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 823 vm_flags); 824 tlb_finish_mmu(&tlb); 825 826 if (ret) 827 goto out_unlock; 828 BUG_ON(prev != vma); 829 830 if (unlikely(vm_flags & VM_EXEC)) { 831 pr_warn_once("process '%pD4' started with executable stack\n", 832 bprm->file); 833 } 834 835 /* Move stack pages down in memory. */ 836 if (stack_shift) { 837 ret = shift_arg_pages(vma, stack_shift); 838 if (ret) 839 goto out_unlock; 840 } 841 842 /* mprotect_fixup is overkill to remove the temporary stack flags */ 843 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 844 845 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 846 stack_size = vma->vm_end - vma->vm_start; 847 /* 848 * Align this down to a page boundary as expand_stack 849 * will align it up. 850 */ 851 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 852 853 stack_expand = min(rlim_stack, stack_size + stack_expand); 854 855 #ifdef CONFIG_STACK_GROWSUP 856 stack_base = vma->vm_start + stack_expand; 857 #else 858 stack_base = vma->vm_end - stack_expand; 859 #endif 860 current->mm->start_stack = bprm->p; 861 ret = expand_stack_locked(vma, stack_base); 862 if (ret) 863 ret = -EFAULT; 864 865 out_unlock: 866 mmap_write_unlock(mm); 867 return ret; 868 } 869 EXPORT_SYMBOL(setup_arg_pages); 870 871 #else 872 873 /* 874 * Transfer the program arguments and environment from the holding pages 875 * onto the stack. The provided stack pointer is adjusted accordingly. 876 */ 877 int transfer_args_to_stack(struct linux_binprm *bprm, 878 unsigned long *sp_location) 879 { 880 unsigned long index, stop, sp; 881 int ret = 0; 882 883 stop = bprm->p >> PAGE_SHIFT; 884 sp = *sp_location; 885 886 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 887 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 888 char *src = kmap_local_page(bprm->page[index]) + offset; 889 sp -= PAGE_SIZE - offset; 890 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 891 ret = -EFAULT; 892 kunmap_local(src); 893 if (ret) 894 goto out; 895 } 896 897 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 898 *sp_location = sp; 899 900 out: 901 return ret; 902 } 903 EXPORT_SYMBOL(transfer_args_to_stack); 904 905 #endif /* CONFIG_MMU */ 906 907 static struct file *do_open_execat(int fd, struct filename *name, int flags) 908 { 909 struct file *file; 910 int err; 911 struct open_flags open_exec_flags = { 912 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 913 .acc_mode = MAY_EXEC, 914 .intent = LOOKUP_OPEN, 915 .lookup_flags = LOOKUP_FOLLOW, 916 }; 917 918 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 919 return ERR_PTR(-EINVAL); 920 if (flags & AT_SYMLINK_NOFOLLOW) 921 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 922 if (flags & AT_EMPTY_PATH) 923 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 924 925 file = do_filp_open(fd, name, &open_exec_flags); 926 if (IS_ERR(file)) 927 goto out; 928 929 /* 930 * may_open() has already checked for this, so it should be 931 * impossible to trip now. But we need to be extra cautious 932 * and check again at the very end too. 933 */ 934 err = -EACCES; 935 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 936 path_noexec(&file->f_path))) 937 goto exit; 938 939 err = deny_write_access(file); 940 if (err) 941 goto exit; 942 943 out: 944 return file; 945 946 exit: 947 fput(file); 948 return ERR_PTR(err); 949 } 950 951 struct file *open_exec(const char *name) 952 { 953 struct filename *filename = getname_kernel(name); 954 struct file *f = ERR_CAST(filename); 955 956 if (!IS_ERR(filename)) { 957 f = do_open_execat(AT_FDCWD, filename, 0); 958 putname(filename); 959 } 960 return f; 961 } 962 EXPORT_SYMBOL(open_exec); 963 964 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 965 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 966 { 967 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 968 if (res > 0) 969 flush_icache_user_range(addr, addr + len); 970 return res; 971 } 972 EXPORT_SYMBOL(read_code); 973 #endif 974 975 /* 976 * Maps the mm_struct mm into the current task struct. 977 * On success, this function returns with exec_update_lock 978 * held for writing. 979 */ 980 static int exec_mmap(struct mm_struct *mm) 981 { 982 struct task_struct *tsk; 983 struct mm_struct *old_mm, *active_mm; 984 int ret; 985 986 /* Notify parent that we're no longer interested in the old VM */ 987 tsk = current; 988 old_mm = current->mm; 989 exec_mm_release(tsk, old_mm); 990 if (old_mm) 991 sync_mm_rss(old_mm); 992 993 ret = down_write_killable(&tsk->signal->exec_update_lock); 994 if (ret) 995 return ret; 996 997 if (old_mm) { 998 /* 999 * If there is a pending fatal signal perhaps a signal 1000 * whose default action is to create a coredump get 1001 * out and die instead of going through with the exec. 1002 */ 1003 ret = mmap_read_lock_killable(old_mm); 1004 if (ret) { 1005 up_write(&tsk->signal->exec_update_lock); 1006 return ret; 1007 } 1008 } 1009 1010 task_lock(tsk); 1011 membarrier_exec_mmap(mm); 1012 1013 local_irq_disable(); 1014 active_mm = tsk->active_mm; 1015 tsk->active_mm = mm; 1016 tsk->mm = mm; 1017 mm_init_cid(mm); 1018 /* 1019 * This prevents preemption while active_mm is being loaded and 1020 * it and mm are being updated, which could cause problems for 1021 * lazy tlb mm refcounting when these are updated by context 1022 * switches. Not all architectures can handle irqs off over 1023 * activate_mm yet. 1024 */ 1025 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1026 local_irq_enable(); 1027 activate_mm(active_mm, mm); 1028 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1029 local_irq_enable(); 1030 lru_gen_add_mm(mm); 1031 task_unlock(tsk); 1032 lru_gen_use_mm(mm); 1033 if (old_mm) { 1034 mmap_read_unlock(old_mm); 1035 BUG_ON(active_mm != old_mm); 1036 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1037 mm_update_next_owner(old_mm); 1038 mmput(old_mm); 1039 return 0; 1040 } 1041 mmdrop_lazy_tlb(active_mm); 1042 return 0; 1043 } 1044 1045 static int de_thread(struct task_struct *tsk) 1046 { 1047 struct signal_struct *sig = tsk->signal; 1048 struct sighand_struct *oldsighand = tsk->sighand; 1049 spinlock_t *lock = &oldsighand->siglock; 1050 1051 if (thread_group_empty(tsk)) 1052 goto no_thread_group; 1053 1054 /* 1055 * Kill all other threads in the thread group. 1056 */ 1057 spin_lock_irq(lock); 1058 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1059 /* 1060 * Another group action in progress, just 1061 * return so that the signal is processed. 1062 */ 1063 spin_unlock_irq(lock); 1064 return -EAGAIN; 1065 } 1066 1067 sig->group_exec_task = tsk; 1068 sig->notify_count = zap_other_threads(tsk); 1069 if (!thread_group_leader(tsk)) 1070 sig->notify_count--; 1071 1072 while (sig->notify_count) { 1073 __set_current_state(TASK_KILLABLE); 1074 spin_unlock_irq(lock); 1075 schedule(); 1076 if (__fatal_signal_pending(tsk)) 1077 goto killed; 1078 spin_lock_irq(lock); 1079 } 1080 spin_unlock_irq(lock); 1081 1082 /* 1083 * At this point all other threads have exited, all we have to 1084 * do is to wait for the thread group leader to become inactive, 1085 * and to assume its PID: 1086 */ 1087 if (!thread_group_leader(tsk)) { 1088 struct task_struct *leader = tsk->group_leader; 1089 1090 for (;;) { 1091 cgroup_threadgroup_change_begin(tsk); 1092 write_lock_irq(&tasklist_lock); 1093 /* 1094 * Do this under tasklist_lock to ensure that 1095 * exit_notify() can't miss ->group_exec_task 1096 */ 1097 sig->notify_count = -1; 1098 if (likely(leader->exit_state)) 1099 break; 1100 __set_current_state(TASK_KILLABLE); 1101 write_unlock_irq(&tasklist_lock); 1102 cgroup_threadgroup_change_end(tsk); 1103 schedule(); 1104 if (__fatal_signal_pending(tsk)) 1105 goto killed; 1106 } 1107 1108 /* 1109 * The only record we have of the real-time age of a 1110 * process, regardless of execs it's done, is start_time. 1111 * All the past CPU time is accumulated in signal_struct 1112 * from sister threads now dead. But in this non-leader 1113 * exec, nothing survives from the original leader thread, 1114 * whose birth marks the true age of this process now. 1115 * When we take on its identity by switching to its PID, we 1116 * also take its birthdate (always earlier than our own). 1117 */ 1118 tsk->start_time = leader->start_time; 1119 tsk->start_boottime = leader->start_boottime; 1120 1121 BUG_ON(!same_thread_group(leader, tsk)); 1122 /* 1123 * An exec() starts a new thread group with the 1124 * TGID of the previous thread group. Rehash the 1125 * two threads with a switched PID, and release 1126 * the former thread group leader: 1127 */ 1128 1129 /* Become a process group leader with the old leader's pid. 1130 * The old leader becomes a thread of the this thread group. 1131 */ 1132 exchange_tids(tsk, leader); 1133 transfer_pid(leader, tsk, PIDTYPE_TGID); 1134 transfer_pid(leader, tsk, PIDTYPE_PGID); 1135 transfer_pid(leader, tsk, PIDTYPE_SID); 1136 1137 list_replace_rcu(&leader->tasks, &tsk->tasks); 1138 list_replace_init(&leader->sibling, &tsk->sibling); 1139 1140 tsk->group_leader = tsk; 1141 leader->group_leader = tsk; 1142 1143 tsk->exit_signal = SIGCHLD; 1144 leader->exit_signal = -1; 1145 1146 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1147 leader->exit_state = EXIT_DEAD; 1148 1149 /* 1150 * We are going to release_task()->ptrace_unlink() silently, 1151 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1152 * the tracer won't block again waiting for this thread. 1153 */ 1154 if (unlikely(leader->ptrace)) 1155 __wake_up_parent(leader, leader->parent); 1156 write_unlock_irq(&tasklist_lock); 1157 cgroup_threadgroup_change_end(tsk); 1158 1159 release_task(leader); 1160 } 1161 1162 sig->group_exec_task = NULL; 1163 sig->notify_count = 0; 1164 1165 no_thread_group: 1166 /* we have changed execution domain */ 1167 tsk->exit_signal = SIGCHLD; 1168 1169 BUG_ON(!thread_group_leader(tsk)); 1170 return 0; 1171 1172 killed: 1173 /* protects against exit_notify() and __exit_signal() */ 1174 read_lock(&tasklist_lock); 1175 sig->group_exec_task = NULL; 1176 sig->notify_count = 0; 1177 read_unlock(&tasklist_lock); 1178 return -EAGAIN; 1179 } 1180 1181 1182 /* 1183 * This function makes sure the current process has its own signal table, 1184 * so that flush_signal_handlers can later reset the handlers without 1185 * disturbing other processes. (Other processes might share the signal 1186 * table via the CLONE_SIGHAND option to clone().) 1187 */ 1188 static int unshare_sighand(struct task_struct *me) 1189 { 1190 struct sighand_struct *oldsighand = me->sighand; 1191 1192 if (refcount_read(&oldsighand->count) != 1) { 1193 struct sighand_struct *newsighand; 1194 /* 1195 * This ->sighand is shared with the CLONE_SIGHAND 1196 * but not CLONE_THREAD task, switch to the new one. 1197 */ 1198 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1199 if (!newsighand) 1200 return -ENOMEM; 1201 1202 refcount_set(&newsighand->count, 1); 1203 1204 write_lock_irq(&tasklist_lock); 1205 spin_lock(&oldsighand->siglock); 1206 memcpy(newsighand->action, oldsighand->action, 1207 sizeof(newsighand->action)); 1208 rcu_assign_pointer(me->sighand, newsighand); 1209 spin_unlock(&oldsighand->siglock); 1210 write_unlock_irq(&tasklist_lock); 1211 1212 __cleanup_sighand(oldsighand); 1213 } 1214 return 0; 1215 } 1216 1217 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1218 { 1219 task_lock(tsk); 1220 /* Always NUL terminated and zero-padded */ 1221 strscpy_pad(buf, tsk->comm, buf_size); 1222 task_unlock(tsk); 1223 return buf; 1224 } 1225 EXPORT_SYMBOL_GPL(__get_task_comm); 1226 1227 /* 1228 * These functions flushes out all traces of the currently running executable 1229 * so that a new one can be started 1230 */ 1231 1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1233 { 1234 task_lock(tsk); 1235 trace_task_rename(tsk, buf); 1236 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1237 task_unlock(tsk); 1238 perf_event_comm(tsk, exec); 1239 } 1240 1241 /* 1242 * Calling this is the point of no return. None of the failures will be 1243 * seen by userspace since either the process is already taking a fatal 1244 * signal (via de_thread() or coredump), or will have SEGV raised 1245 * (after exec_mmap()) by search_binary_handler (see below). 1246 */ 1247 int begin_new_exec(struct linux_binprm * bprm) 1248 { 1249 struct task_struct *me = current; 1250 int retval; 1251 1252 /* Once we are committed compute the creds */ 1253 retval = bprm_creds_from_file(bprm); 1254 if (retval) 1255 return retval; 1256 1257 /* 1258 * Ensure all future errors are fatal. 1259 */ 1260 bprm->point_of_no_return = true; 1261 1262 /* 1263 * Make this the only thread in the thread group. 1264 */ 1265 retval = de_thread(me); 1266 if (retval) 1267 goto out; 1268 1269 /* 1270 * Cancel any io_uring activity across execve 1271 */ 1272 io_uring_task_cancel(); 1273 1274 /* Ensure the files table is not shared. */ 1275 retval = unshare_files(); 1276 if (retval) 1277 goto out; 1278 1279 /* 1280 * Must be called _before_ exec_mmap() as bprm->mm is 1281 * not visible until then. Doing it here also ensures 1282 * we don't race against replace_mm_exe_file(). 1283 */ 1284 retval = set_mm_exe_file(bprm->mm, bprm->file); 1285 if (retval) 1286 goto out; 1287 1288 /* If the binary is not readable then enforce mm->dumpable=0 */ 1289 would_dump(bprm, bprm->file); 1290 if (bprm->have_execfd) 1291 would_dump(bprm, bprm->executable); 1292 1293 /* 1294 * Release all of the old mmap stuff 1295 */ 1296 acct_arg_size(bprm, 0); 1297 retval = exec_mmap(bprm->mm); 1298 if (retval) 1299 goto out; 1300 1301 bprm->mm = NULL; 1302 1303 retval = exec_task_namespaces(); 1304 if (retval) 1305 goto out_unlock; 1306 1307 #ifdef CONFIG_POSIX_TIMERS 1308 spin_lock_irq(&me->sighand->siglock); 1309 posix_cpu_timers_exit(me); 1310 spin_unlock_irq(&me->sighand->siglock); 1311 exit_itimers(me); 1312 flush_itimer_signals(); 1313 #endif 1314 1315 /* 1316 * Make the signal table private. 1317 */ 1318 retval = unshare_sighand(me); 1319 if (retval) 1320 goto out_unlock; 1321 1322 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1323 PF_NOFREEZE | PF_NO_SETAFFINITY); 1324 flush_thread(); 1325 me->personality &= ~bprm->per_clear; 1326 1327 clear_syscall_work_syscall_user_dispatch(me); 1328 1329 /* 1330 * We have to apply CLOEXEC before we change whether the process is 1331 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1332 * trying to access the should-be-closed file descriptors of a process 1333 * undergoing exec(2). 1334 */ 1335 do_close_on_exec(me->files); 1336 1337 if (bprm->secureexec) { 1338 /* Make sure parent cannot signal privileged process. */ 1339 me->pdeath_signal = 0; 1340 1341 /* 1342 * For secureexec, reset the stack limit to sane default to 1343 * avoid bad behavior from the prior rlimits. This has to 1344 * happen before arch_pick_mmap_layout(), which examines 1345 * RLIMIT_STACK, but after the point of no return to avoid 1346 * needing to clean up the change on failure. 1347 */ 1348 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1349 bprm->rlim_stack.rlim_cur = _STK_LIM; 1350 } 1351 1352 me->sas_ss_sp = me->sas_ss_size = 0; 1353 1354 /* 1355 * Figure out dumpability. Note that this checking only of current 1356 * is wrong, but userspace depends on it. This should be testing 1357 * bprm->secureexec instead. 1358 */ 1359 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1360 !(uid_eq(current_euid(), current_uid()) && 1361 gid_eq(current_egid(), current_gid()))) 1362 set_dumpable(current->mm, suid_dumpable); 1363 else 1364 set_dumpable(current->mm, SUID_DUMP_USER); 1365 1366 perf_event_exec(); 1367 __set_task_comm(me, kbasename(bprm->filename), true); 1368 1369 /* An exec changes our domain. We are no longer part of the thread 1370 group */ 1371 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1372 flush_signal_handlers(me, 0); 1373 1374 retval = set_cred_ucounts(bprm->cred); 1375 if (retval < 0) 1376 goto out_unlock; 1377 1378 /* 1379 * install the new credentials for this executable 1380 */ 1381 security_bprm_committing_creds(bprm); 1382 1383 commit_creds(bprm->cred); 1384 bprm->cred = NULL; 1385 1386 /* 1387 * Disable monitoring for regular users 1388 * when executing setuid binaries. Must 1389 * wait until new credentials are committed 1390 * by commit_creds() above 1391 */ 1392 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1393 perf_event_exit_task(me); 1394 /* 1395 * cred_guard_mutex must be held at least to this point to prevent 1396 * ptrace_attach() from altering our determination of the task's 1397 * credentials; any time after this it may be unlocked. 1398 */ 1399 security_bprm_committed_creds(bprm); 1400 1401 /* Pass the opened binary to the interpreter. */ 1402 if (bprm->have_execfd) { 1403 retval = get_unused_fd_flags(0); 1404 if (retval < 0) 1405 goto out_unlock; 1406 fd_install(retval, bprm->executable); 1407 bprm->executable = NULL; 1408 bprm->execfd = retval; 1409 } 1410 return 0; 1411 1412 out_unlock: 1413 up_write(&me->signal->exec_update_lock); 1414 if (!bprm->cred) 1415 mutex_unlock(&me->signal->cred_guard_mutex); 1416 1417 out: 1418 return retval; 1419 } 1420 EXPORT_SYMBOL(begin_new_exec); 1421 1422 void would_dump(struct linux_binprm *bprm, struct file *file) 1423 { 1424 struct inode *inode = file_inode(file); 1425 struct mnt_idmap *idmap = file_mnt_idmap(file); 1426 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1427 struct user_namespace *old, *user_ns; 1428 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1429 1430 /* Ensure mm->user_ns contains the executable */ 1431 user_ns = old = bprm->mm->user_ns; 1432 while ((user_ns != &init_user_ns) && 1433 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1434 user_ns = user_ns->parent; 1435 1436 if (old != user_ns) { 1437 bprm->mm->user_ns = get_user_ns(user_ns); 1438 put_user_ns(old); 1439 } 1440 } 1441 } 1442 EXPORT_SYMBOL(would_dump); 1443 1444 void setup_new_exec(struct linux_binprm * bprm) 1445 { 1446 /* Setup things that can depend upon the personality */ 1447 struct task_struct *me = current; 1448 1449 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1450 1451 arch_setup_new_exec(); 1452 1453 /* Set the new mm task size. We have to do that late because it may 1454 * depend on TIF_32BIT which is only updated in flush_thread() on 1455 * some architectures like powerpc 1456 */ 1457 me->mm->task_size = TASK_SIZE; 1458 up_write(&me->signal->exec_update_lock); 1459 mutex_unlock(&me->signal->cred_guard_mutex); 1460 } 1461 EXPORT_SYMBOL(setup_new_exec); 1462 1463 /* Runs immediately before start_thread() takes over. */ 1464 void finalize_exec(struct linux_binprm *bprm) 1465 { 1466 /* Store any stack rlimit changes before starting thread. */ 1467 task_lock(current->group_leader); 1468 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1469 task_unlock(current->group_leader); 1470 } 1471 EXPORT_SYMBOL(finalize_exec); 1472 1473 /* 1474 * Prepare credentials and lock ->cred_guard_mutex. 1475 * setup_new_exec() commits the new creds and drops the lock. 1476 * Or, if exec fails before, free_bprm() should release ->cred 1477 * and unlock. 1478 */ 1479 static int prepare_bprm_creds(struct linux_binprm *bprm) 1480 { 1481 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1482 return -ERESTARTNOINTR; 1483 1484 bprm->cred = prepare_exec_creds(); 1485 if (likely(bprm->cred)) 1486 return 0; 1487 1488 mutex_unlock(¤t->signal->cred_guard_mutex); 1489 return -ENOMEM; 1490 } 1491 1492 static void free_bprm(struct linux_binprm *bprm) 1493 { 1494 if (bprm->mm) { 1495 acct_arg_size(bprm, 0); 1496 mmput(bprm->mm); 1497 } 1498 free_arg_pages(bprm); 1499 if (bprm->cred) { 1500 mutex_unlock(¤t->signal->cred_guard_mutex); 1501 abort_creds(bprm->cred); 1502 } 1503 if (bprm->file) { 1504 allow_write_access(bprm->file); 1505 fput(bprm->file); 1506 } 1507 if (bprm->executable) 1508 fput(bprm->executable); 1509 /* If a binfmt changed the interp, free it. */ 1510 if (bprm->interp != bprm->filename) 1511 kfree(bprm->interp); 1512 kfree(bprm->fdpath); 1513 kfree(bprm); 1514 } 1515 1516 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1517 { 1518 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1519 int retval = -ENOMEM; 1520 if (!bprm) 1521 goto out; 1522 1523 if (fd == AT_FDCWD || filename->name[0] == '/') { 1524 bprm->filename = filename->name; 1525 } else { 1526 if (filename->name[0] == '\0') 1527 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1528 else 1529 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1530 fd, filename->name); 1531 if (!bprm->fdpath) 1532 goto out_free; 1533 1534 bprm->filename = bprm->fdpath; 1535 } 1536 bprm->interp = bprm->filename; 1537 1538 retval = bprm_mm_init(bprm); 1539 if (retval) 1540 goto out_free; 1541 return bprm; 1542 1543 out_free: 1544 free_bprm(bprm); 1545 out: 1546 return ERR_PTR(retval); 1547 } 1548 1549 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1550 { 1551 /* If a binfmt changed the interp, free it first. */ 1552 if (bprm->interp != bprm->filename) 1553 kfree(bprm->interp); 1554 bprm->interp = kstrdup(interp, GFP_KERNEL); 1555 if (!bprm->interp) 1556 return -ENOMEM; 1557 return 0; 1558 } 1559 EXPORT_SYMBOL(bprm_change_interp); 1560 1561 /* 1562 * determine how safe it is to execute the proposed program 1563 * - the caller must hold ->cred_guard_mutex to protect against 1564 * PTRACE_ATTACH or seccomp thread-sync 1565 */ 1566 static void check_unsafe_exec(struct linux_binprm *bprm) 1567 { 1568 struct task_struct *p = current, *t; 1569 unsigned n_fs; 1570 1571 if (p->ptrace) 1572 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1573 1574 /* 1575 * This isn't strictly necessary, but it makes it harder for LSMs to 1576 * mess up. 1577 */ 1578 if (task_no_new_privs(current)) 1579 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1580 1581 /* 1582 * If another task is sharing our fs, we cannot safely 1583 * suid exec because the differently privileged task 1584 * will be able to manipulate the current directory, etc. 1585 * It would be nice to force an unshare instead... 1586 */ 1587 t = p; 1588 n_fs = 1; 1589 spin_lock(&p->fs->lock); 1590 rcu_read_lock(); 1591 while_each_thread(p, t) { 1592 if (t->fs == p->fs) 1593 n_fs++; 1594 } 1595 rcu_read_unlock(); 1596 1597 if (p->fs->users > n_fs) 1598 bprm->unsafe |= LSM_UNSAFE_SHARE; 1599 else 1600 p->fs->in_exec = 1; 1601 spin_unlock(&p->fs->lock); 1602 } 1603 1604 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1605 { 1606 /* Handle suid and sgid on files */ 1607 struct mnt_idmap *idmap; 1608 struct inode *inode = file_inode(file); 1609 unsigned int mode; 1610 vfsuid_t vfsuid; 1611 vfsgid_t vfsgid; 1612 int err; 1613 1614 if (!mnt_may_suid(file->f_path.mnt)) 1615 return; 1616 1617 if (task_no_new_privs(current)) 1618 return; 1619 1620 mode = READ_ONCE(inode->i_mode); 1621 if (!(mode & (S_ISUID|S_ISGID))) 1622 return; 1623 1624 idmap = file_mnt_idmap(file); 1625 1626 /* Be careful if suid/sgid is set */ 1627 inode_lock(inode); 1628 1629 /* Atomically reload and check mode/uid/gid now that lock held. */ 1630 mode = inode->i_mode; 1631 vfsuid = i_uid_into_vfsuid(idmap, inode); 1632 vfsgid = i_gid_into_vfsgid(idmap, inode); 1633 err = inode_permission(idmap, inode, MAY_EXEC); 1634 inode_unlock(inode); 1635 1636 /* Did the exec bit vanish out from under us? Give up. */ 1637 if (err) 1638 return; 1639 1640 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1641 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1642 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1643 return; 1644 1645 if (mode & S_ISUID) { 1646 bprm->per_clear |= PER_CLEAR_ON_SETID; 1647 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1648 } 1649 1650 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1651 bprm->per_clear |= PER_CLEAR_ON_SETID; 1652 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1653 } 1654 } 1655 1656 /* 1657 * Compute brpm->cred based upon the final binary. 1658 */ 1659 static int bprm_creds_from_file(struct linux_binprm *bprm) 1660 { 1661 /* Compute creds based on which file? */ 1662 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1663 1664 bprm_fill_uid(bprm, file); 1665 return security_bprm_creds_from_file(bprm, file); 1666 } 1667 1668 /* 1669 * Fill the binprm structure from the inode. 1670 * Read the first BINPRM_BUF_SIZE bytes 1671 * 1672 * This may be called multiple times for binary chains (scripts for example). 1673 */ 1674 static int prepare_binprm(struct linux_binprm *bprm) 1675 { 1676 loff_t pos = 0; 1677 1678 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1679 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1680 } 1681 1682 /* 1683 * Arguments are '\0' separated strings found at the location bprm->p 1684 * points to; chop off the first by relocating brpm->p to right after 1685 * the first '\0' encountered. 1686 */ 1687 int remove_arg_zero(struct linux_binprm *bprm) 1688 { 1689 int ret = 0; 1690 unsigned long offset; 1691 char *kaddr; 1692 struct page *page; 1693 1694 if (!bprm->argc) 1695 return 0; 1696 1697 do { 1698 offset = bprm->p & ~PAGE_MASK; 1699 page = get_arg_page(bprm, bprm->p, 0); 1700 if (!page) { 1701 ret = -EFAULT; 1702 goto out; 1703 } 1704 kaddr = kmap_local_page(page); 1705 1706 for (; offset < PAGE_SIZE && kaddr[offset]; 1707 offset++, bprm->p++) 1708 ; 1709 1710 kunmap_local(kaddr); 1711 put_arg_page(page); 1712 } while (offset == PAGE_SIZE); 1713 1714 bprm->p++; 1715 bprm->argc--; 1716 ret = 0; 1717 1718 out: 1719 return ret; 1720 } 1721 EXPORT_SYMBOL(remove_arg_zero); 1722 1723 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1724 /* 1725 * cycle the list of binary formats handler, until one recognizes the image 1726 */ 1727 static int search_binary_handler(struct linux_binprm *bprm) 1728 { 1729 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1730 struct linux_binfmt *fmt; 1731 int retval; 1732 1733 retval = prepare_binprm(bprm); 1734 if (retval < 0) 1735 return retval; 1736 1737 retval = security_bprm_check(bprm); 1738 if (retval) 1739 return retval; 1740 1741 retval = -ENOENT; 1742 retry: 1743 read_lock(&binfmt_lock); 1744 list_for_each_entry(fmt, &formats, lh) { 1745 if (!try_module_get(fmt->module)) 1746 continue; 1747 read_unlock(&binfmt_lock); 1748 1749 retval = fmt->load_binary(bprm); 1750 1751 read_lock(&binfmt_lock); 1752 put_binfmt(fmt); 1753 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1754 read_unlock(&binfmt_lock); 1755 return retval; 1756 } 1757 } 1758 read_unlock(&binfmt_lock); 1759 1760 if (need_retry) { 1761 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1762 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1763 return retval; 1764 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1765 return retval; 1766 need_retry = false; 1767 goto retry; 1768 } 1769 1770 return retval; 1771 } 1772 1773 /* binfmt handlers will call back into begin_new_exec() on success. */ 1774 static int exec_binprm(struct linux_binprm *bprm) 1775 { 1776 pid_t old_pid, old_vpid; 1777 int ret, depth; 1778 1779 /* Need to fetch pid before load_binary changes it */ 1780 old_pid = current->pid; 1781 rcu_read_lock(); 1782 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1783 rcu_read_unlock(); 1784 1785 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1786 for (depth = 0;; depth++) { 1787 struct file *exec; 1788 if (depth > 5) 1789 return -ELOOP; 1790 1791 ret = search_binary_handler(bprm); 1792 if (ret < 0) 1793 return ret; 1794 if (!bprm->interpreter) 1795 break; 1796 1797 exec = bprm->file; 1798 bprm->file = bprm->interpreter; 1799 bprm->interpreter = NULL; 1800 1801 allow_write_access(exec); 1802 if (unlikely(bprm->have_execfd)) { 1803 if (bprm->executable) { 1804 fput(exec); 1805 return -ENOEXEC; 1806 } 1807 bprm->executable = exec; 1808 } else 1809 fput(exec); 1810 } 1811 1812 audit_bprm(bprm); 1813 trace_sched_process_exec(current, old_pid, bprm); 1814 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1815 proc_exec_connector(current); 1816 return 0; 1817 } 1818 1819 /* 1820 * sys_execve() executes a new program. 1821 */ 1822 static int bprm_execve(struct linux_binprm *bprm, 1823 int fd, struct filename *filename, int flags) 1824 { 1825 struct file *file; 1826 int retval; 1827 1828 retval = prepare_bprm_creds(bprm); 1829 if (retval) 1830 return retval; 1831 1832 /* 1833 * Check for unsafe execution states before exec_binprm(), which 1834 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1835 * where setuid-ness is evaluated. 1836 */ 1837 check_unsafe_exec(bprm); 1838 current->in_execve = 1; 1839 sched_mm_cid_before_execve(current); 1840 1841 file = do_open_execat(fd, filename, flags); 1842 retval = PTR_ERR(file); 1843 if (IS_ERR(file)) 1844 goto out_unmark; 1845 1846 sched_exec(); 1847 1848 bprm->file = file; 1849 /* 1850 * Record that a name derived from an O_CLOEXEC fd will be 1851 * inaccessible after exec. This allows the code in exec to 1852 * choose to fail when the executable is not mmaped into the 1853 * interpreter and an open file descriptor is not passed to 1854 * the interpreter. This makes for a better user experience 1855 * than having the interpreter start and then immediately fail 1856 * when it finds the executable is inaccessible. 1857 */ 1858 if (bprm->fdpath && get_close_on_exec(fd)) 1859 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1860 1861 /* Set the unchanging part of bprm->cred */ 1862 retval = security_bprm_creds_for_exec(bprm); 1863 if (retval) 1864 goto out; 1865 1866 retval = exec_binprm(bprm); 1867 if (retval < 0) 1868 goto out; 1869 1870 sched_mm_cid_after_execve(current); 1871 /* execve succeeded */ 1872 current->fs->in_exec = 0; 1873 current->in_execve = 0; 1874 rseq_execve(current); 1875 user_events_execve(current); 1876 acct_update_integrals(current); 1877 task_numa_free(current, false); 1878 return retval; 1879 1880 out: 1881 /* 1882 * If past the point of no return ensure the code never 1883 * returns to the userspace process. Use an existing fatal 1884 * signal if present otherwise terminate the process with 1885 * SIGSEGV. 1886 */ 1887 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1888 force_fatal_sig(SIGSEGV); 1889 1890 out_unmark: 1891 sched_mm_cid_after_execve(current); 1892 current->fs->in_exec = 0; 1893 current->in_execve = 0; 1894 1895 return retval; 1896 } 1897 1898 static int do_execveat_common(int fd, struct filename *filename, 1899 struct user_arg_ptr argv, 1900 struct user_arg_ptr envp, 1901 int flags) 1902 { 1903 struct linux_binprm *bprm; 1904 int retval; 1905 1906 if (IS_ERR(filename)) 1907 return PTR_ERR(filename); 1908 1909 /* 1910 * We move the actual failure in case of RLIMIT_NPROC excess from 1911 * set*uid() to execve() because too many poorly written programs 1912 * don't check setuid() return code. Here we additionally recheck 1913 * whether NPROC limit is still exceeded. 1914 */ 1915 if ((current->flags & PF_NPROC_EXCEEDED) && 1916 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1917 retval = -EAGAIN; 1918 goto out_ret; 1919 } 1920 1921 /* We're below the limit (still or again), so we don't want to make 1922 * further execve() calls fail. */ 1923 current->flags &= ~PF_NPROC_EXCEEDED; 1924 1925 bprm = alloc_bprm(fd, filename); 1926 if (IS_ERR(bprm)) { 1927 retval = PTR_ERR(bprm); 1928 goto out_ret; 1929 } 1930 1931 retval = count(argv, MAX_ARG_STRINGS); 1932 if (retval == 0) 1933 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1934 current->comm, bprm->filename); 1935 if (retval < 0) 1936 goto out_free; 1937 bprm->argc = retval; 1938 1939 retval = count(envp, MAX_ARG_STRINGS); 1940 if (retval < 0) 1941 goto out_free; 1942 bprm->envc = retval; 1943 1944 retval = bprm_stack_limits(bprm); 1945 if (retval < 0) 1946 goto out_free; 1947 1948 retval = copy_string_kernel(bprm->filename, bprm); 1949 if (retval < 0) 1950 goto out_free; 1951 bprm->exec = bprm->p; 1952 1953 retval = copy_strings(bprm->envc, envp, bprm); 1954 if (retval < 0) 1955 goto out_free; 1956 1957 retval = copy_strings(bprm->argc, argv, bprm); 1958 if (retval < 0) 1959 goto out_free; 1960 1961 /* 1962 * When argv is empty, add an empty string ("") as argv[0] to 1963 * ensure confused userspace programs that start processing 1964 * from argv[1] won't end up walking envp. See also 1965 * bprm_stack_limits(). 1966 */ 1967 if (bprm->argc == 0) { 1968 retval = copy_string_kernel("", bprm); 1969 if (retval < 0) 1970 goto out_free; 1971 bprm->argc = 1; 1972 } 1973 1974 retval = bprm_execve(bprm, fd, filename, flags); 1975 out_free: 1976 free_bprm(bprm); 1977 1978 out_ret: 1979 putname(filename); 1980 return retval; 1981 } 1982 1983 int kernel_execve(const char *kernel_filename, 1984 const char *const *argv, const char *const *envp) 1985 { 1986 struct filename *filename; 1987 struct linux_binprm *bprm; 1988 int fd = AT_FDCWD; 1989 int retval; 1990 1991 /* It is non-sense for kernel threads to call execve */ 1992 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1993 return -EINVAL; 1994 1995 filename = getname_kernel(kernel_filename); 1996 if (IS_ERR(filename)) 1997 return PTR_ERR(filename); 1998 1999 bprm = alloc_bprm(fd, filename); 2000 if (IS_ERR(bprm)) { 2001 retval = PTR_ERR(bprm); 2002 goto out_ret; 2003 } 2004 2005 retval = count_strings_kernel(argv); 2006 if (WARN_ON_ONCE(retval == 0)) 2007 retval = -EINVAL; 2008 if (retval < 0) 2009 goto out_free; 2010 bprm->argc = retval; 2011 2012 retval = count_strings_kernel(envp); 2013 if (retval < 0) 2014 goto out_free; 2015 bprm->envc = retval; 2016 2017 retval = bprm_stack_limits(bprm); 2018 if (retval < 0) 2019 goto out_free; 2020 2021 retval = copy_string_kernel(bprm->filename, bprm); 2022 if (retval < 0) 2023 goto out_free; 2024 bprm->exec = bprm->p; 2025 2026 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2027 if (retval < 0) 2028 goto out_free; 2029 2030 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2031 if (retval < 0) 2032 goto out_free; 2033 2034 retval = bprm_execve(bprm, fd, filename, 0); 2035 out_free: 2036 free_bprm(bprm); 2037 out_ret: 2038 putname(filename); 2039 return retval; 2040 } 2041 2042 static int do_execve(struct filename *filename, 2043 const char __user *const __user *__argv, 2044 const char __user *const __user *__envp) 2045 { 2046 struct user_arg_ptr argv = { .ptr.native = __argv }; 2047 struct user_arg_ptr envp = { .ptr.native = __envp }; 2048 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2049 } 2050 2051 static int do_execveat(int fd, struct filename *filename, 2052 const char __user *const __user *__argv, 2053 const char __user *const __user *__envp, 2054 int flags) 2055 { 2056 struct user_arg_ptr argv = { .ptr.native = __argv }; 2057 struct user_arg_ptr envp = { .ptr.native = __envp }; 2058 2059 return do_execveat_common(fd, filename, argv, envp, flags); 2060 } 2061 2062 #ifdef CONFIG_COMPAT 2063 static int compat_do_execve(struct filename *filename, 2064 const compat_uptr_t __user *__argv, 2065 const compat_uptr_t __user *__envp) 2066 { 2067 struct user_arg_ptr argv = { 2068 .is_compat = true, 2069 .ptr.compat = __argv, 2070 }; 2071 struct user_arg_ptr envp = { 2072 .is_compat = true, 2073 .ptr.compat = __envp, 2074 }; 2075 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2076 } 2077 2078 static int compat_do_execveat(int fd, struct filename *filename, 2079 const compat_uptr_t __user *__argv, 2080 const compat_uptr_t __user *__envp, 2081 int flags) 2082 { 2083 struct user_arg_ptr argv = { 2084 .is_compat = true, 2085 .ptr.compat = __argv, 2086 }; 2087 struct user_arg_ptr envp = { 2088 .is_compat = true, 2089 .ptr.compat = __envp, 2090 }; 2091 return do_execveat_common(fd, filename, argv, envp, flags); 2092 } 2093 #endif 2094 2095 void set_binfmt(struct linux_binfmt *new) 2096 { 2097 struct mm_struct *mm = current->mm; 2098 2099 if (mm->binfmt) 2100 module_put(mm->binfmt->module); 2101 2102 mm->binfmt = new; 2103 if (new) 2104 __module_get(new->module); 2105 } 2106 EXPORT_SYMBOL(set_binfmt); 2107 2108 /* 2109 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2110 */ 2111 void set_dumpable(struct mm_struct *mm, int value) 2112 { 2113 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2114 return; 2115 2116 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2117 } 2118 2119 SYSCALL_DEFINE3(execve, 2120 const char __user *, filename, 2121 const char __user *const __user *, argv, 2122 const char __user *const __user *, envp) 2123 { 2124 return do_execve(getname(filename), argv, envp); 2125 } 2126 2127 SYSCALL_DEFINE5(execveat, 2128 int, fd, const char __user *, filename, 2129 const char __user *const __user *, argv, 2130 const char __user *const __user *, envp, 2131 int, flags) 2132 { 2133 return do_execveat(fd, 2134 getname_uflags(filename, flags), 2135 argv, envp, flags); 2136 } 2137 2138 #ifdef CONFIG_COMPAT 2139 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2140 const compat_uptr_t __user *, argv, 2141 const compat_uptr_t __user *, envp) 2142 { 2143 return compat_do_execve(getname(filename), argv, envp); 2144 } 2145 2146 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2147 const char __user *, filename, 2148 const compat_uptr_t __user *, argv, 2149 const compat_uptr_t __user *, envp, 2150 int, flags) 2151 { 2152 return compat_do_execveat(fd, 2153 getname_uflags(filename, flags), 2154 argv, envp, flags); 2155 } 2156 #endif 2157 2158 #ifdef CONFIG_SYSCTL 2159 2160 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2161 void *buffer, size_t *lenp, loff_t *ppos) 2162 { 2163 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2164 2165 if (!error) 2166 validate_coredump_safety(); 2167 return error; 2168 } 2169 2170 static struct ctl_table fs_exec_sysctls[] = { 2171 { 2172 .procname = "suid_dumpable", 2173 .data = &suid_dumpable, 2174 .maxlen = sizeof(int), 2175 .mode = 0644, 2176 .proc_handler = proc_dointvec_minmax_coredump, 2177 .extra1 = SYSCTL_ZERO, 2178 .extra2 = SYSCTL_TWO, 2179 }, 2180 { } 2181 }; 2182 2183 static int __init init_fs_exec_sysctls(void) 2184 { 2185 register_sysctl_init("fs", fs_exec_sysctls); 2186 return 0; 2187 } 2188 2189 fs_initcall(init_fs_exec_sysctls); 2190 #endif /* CONFIG_SYSCTL */ 2191