xref: /openbmc/linux/fs/exec.c (revision f3a8b664)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60 
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64 
65 #include <trace/events/task.h>
66 #include "internal.h"
67 
68 #include <trace/events/sched.h>
69 
70 int suid_dumpable = 0;
71 
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74 
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 	BUG_ON(!fmt);
78 	if (WARN_ON(!fmt->load_binary))
79 		return;
80 	write_lock(&binfmt_lock);
81 	insert ? list_add(&fmt->lh, &formats) :
82 		 list_add_tail(&fmt->lh, &formats);
83 	write_unlock(&binfmt_lock);
84 }
85 
86 EXPORT_SYMBOL(__register_binfmt);
87 
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 	write_lock(&binfmt_lock);
91 	list_del(&fmt->lh);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(unregister_binfmt);
96 
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 	module_put(fmt->module);
100 }
101 
102 bool path_noexec(const struct path *path)
103 {
104 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107 
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 	struct linux_binfmt *fmt;
118 	struct file *file;
119 	struct filename *tmp = getname(library);
120 	int error = PTR_ERR(tmp);
121 	static const struct open_flags uselib_flags = {
122 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 		.acc_mode = MAY_READ | MAY_EXEC,
124 		.intent = LOOKUP_OPEN,
125 		.lookup_flags = LOOKUP_FOLLOW,
126 	};
127 
128 	if (IS_ERR(tmp))
129 		goto out;
130 
131 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 	putname(tmp);
133 	error = PTR_ERR(file);
134 	if (IS_ERR(file))
135 		goto out;
136 
137 	error = -EINVAL;
138 	if (!S_ISREG(file_inode(file)->i_mode))
139 		goto exit;
140 
141 	error = -EACCES;
142 	if (path_noexec(&file->f_path))
143 		goto exit;
144 
145 	fsnotify_open(file);
146 
147 	error = -ENOEXEC;
148 
149 	read_lock(&binfmt_lock);
150 	list_for_each_entry(fmt, &formats, lh) {
151 		if (!fmt->load_shlib)
152 			continue;
153 		if (!try_module_get(fmt->module))
154 			continue;
155 		read_unlock(&binfmt_lock);
156 		error = fmt->load_shlib(file);
157 		read_lock(&binfmt_lock);
158 		put_binfmt(fmt);
159 		if (error != -ENOEXEC)
160 			break;
161 	}
162 	read_unlock(&binfmt_lock);
163 exit:
164 	fput(file);
165 out:
166   	return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169 
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 	struct mm_struct *mm = current->mm;
180 	long diff = (long)(pages - bprm->vma_pages);
181 
182 	if (!mm || !diff)
183 		return;
184 
185 	bprm->vma_pages = pages;
186 	add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188 
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 		int write)
191 {
192 	struct page *page;
193 	int ret;
194 	unsigned int gup_flags = FOLL_FORCE;
195 
196 #ifdef CONFIG_STACK_GROWSUP
197 	if (write) {
198 		ret = expand_downwards(bprm->vma, pos);
199 		if (ret < 0)
200 			return NULL;
201 	}
202 #endif
203 
204 	if (write)
205 		gup_flags |= FOLL_WRITE;
206 
207 	/*
208 	 * We are doing an exec().  'current' is the process
209 	 * doing the exec and bprm->mm is the new process's mm.
210 	 */
211 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
212 			&page, NULL);
213 	if (ret <= 0)
214 		return NULL;
215 
216 	if (write) {
217 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218 		struct rlimit *rlim;
219 
220 		acct_arg_size(bprm, size / PAGE_SIZE);
221 
222 		/*
223 		 * We've historically supported up to 32 pages (ARG_MAX)
224 		 * of argument strings even with small stacks
225 		 */
226 		if (size <= ARG_MAX)
227 			return page;
228 
229 		/*
230 		 * Limit to 1/4-th the stack size for the argv+env strings.
231 		 * This ensures that:
232 		 *  - the remaining binfmt code will not run out of stack space,
233 		 *  - the program will have a reasonable amount of stack left
234 		 *    to work from.
235 		 */
236 		rlim = current->signal->rlim;
237 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
238 			put_page(page);
239 			return NULL;
240 		}
241 	}
242 
243 	return page;
244 }
245 
246 static void put_arg_page(struct page *page)
247 {
248 	put_page(page);
249 }
250 
251 static void free_arg_pages(struct linux_binprm *bprm)
252 {
253 }
254 
255 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256 		struct page *page)
257 {
258 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259 }
260 
261 static int __bprm_mm_init(struct linux_binprm *bprm)
262 {
263 	int err;
264 	struct vm_area_struct *vma = NULL;
265 	struct mm_struct *mm = bprm->mm;
266 
267 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268 	if (!vma)
269 		return -ENOMEM;
270 
271 	if (down_write_killable(&mm->mmap_sem)) {
272 		err = -EINTR;
273 		goto err_free;
274 	}
275 	vma->vm_mm = mm;
276 
277 	/*
278 	 * Place the stack at the largest stack address the architecture
279 	 * supports. Later, we'll move this to an appropriate place. We don't
280 	 * use STACK_TOP because that can depend on attributes which aren't
281 	 * configured yet.
282 	 */
283 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284 	vma->vm_end = STACK_TOP_MAX;
285 	vma->vm_start = vma->vm_end - PAGE_SIZE;
286 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
287 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288 	INIT_LIST_HEAD(&vma->anon_vma_chain);
289 
290 	err = insert_vm_struct(mm, vma);
291 	if (err)
292 		goto err;
293 
294 	mm->stack_vm = mm->total_vm = 1;
295 	arch_bprm_mm_init(mm, vma);
296 	up_write(&mm->mmap_sem);
297 	bprm->p = vma->vm_end - sizeof(void *);
298 	return 0;
299 err:
300 	up_write(&mm->mmap_sem);
301 err_free:
302 	bprm->vma = NULL;
303 	kmem_cache_free(vm_area_cachep, vma);
304 	return err;
305 }
306 
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
308 {
309 	return len <= MAX_ARG_STRLEN;
310 }
311 
312 #else
313 
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315 {
316 }
317 
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 		int write)
320 {
321 	struct page *page;
322 
323 	page = bprm->page[pos / PAGE_SIZE];
324 	if (!page && write) {
325 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326 		if (!page)
327 			return NULL;
328 		bprm->page[pos / PAGE_SIZE] = page;
329 	}
330 
331 	return page;
332 }
333 
334 static void put_arg_page(struct page *page)
335 {
336 }
337 
338 static void free_arg_page(struct linux_binprm *bprm, int i)
339 {
340 	if (bprm->page[i]) {
341 		__free_page(bprm->page[i]);
342 		bprm->page[i] = NULL;
343 	}
344 }
345 
346 static void free_arg_pages(struct linux_binprm *bprm)
347 {
348 	int i;
349 
350 	for (i = 0; i < MAX_ARG_PAGES; i++)
351 		free_arg_page(bprm, i);
352 }
353 
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 		struct page *page)
356 {
357 }
358 
359 static int __bprm_mm_init(struct linux_binprm *bprm)
360 {
361 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362 	return 0;
363 }
364 
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
366 {
367 	return len <= bprm->p;
368 }
369 
370 #endif /* CONFIG_MMU */
371 
372 /*
373  * Create a new mm_struct and populate it with a temporary stack
374  * vm_area_struct.  We don't have enough context at this point to set the stack
375  * flags, permissions, and offset, so we use temporary values.  We'll update
376  * them later in setup_arg_pages().
377  */
378 static int bprm_mm_init(struct linux_binprm *bprm)
379 {
380 	int err;
381 	struct mm_struct *mm = NULL;
382 
383 	bprm->mm = mm = mm_alloc();
384 	err = -ENOMEM;
385 	if (!mm)
386 		goto err;
387 
388 	err = __bprm_mm_init(bprm);
389 	if (err)
390 		goto err;
391 
392 	return 0;
393 
394 err:
395 	if (mm) {
396 		bprm->mm = NULL;
397 		mmdrop(mm);
398 	}
399 
400 	return err;
401 }
402 
403 struct user_arg_ptr {
404 #ifdef CONFIG_COMPAT
405 	bool is_compat;
406 #endif
407 	union {
408 		const char __user *const __user *native;
409 #ifdef CONFIG_COMPAT
410 		const compat_uptr_t __user *compat;
411 #endif
412 	} ptr;
413 };
414 
415 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
416 {
417 	const char __user *native;
418 
419 #ifdef CONFIG_COMPAT
420 	if (unlikely(argv.is_compat)) {
421 		compat_uptr_t compat;
422 
423 		if (get_user(compat, argv.ptr.compat + nr))
424 			return ERR_PTR(-EFAULT);
425 
426 		return compat_ptr(compat);
427 	}
428 #endif
429 
430 	if (get_user(native, argv.ptr.native + nr))
431 		return ERR_PTR(-EFAULT);
432 
433 	return native;
434 }
435 
436 /*
437  * count() counts the number of strings in array ARGV.
438  */
439 static int count(struct user_arg_ptr argv, int max)
440 {
441 	int i = 0;
442 
443 	if (argv.ptr.native != NULL) {
444 		for (;;) {
445 			const char __user *p = get_user_arg_ptr(argv, i);
446 
447 			if (!p)
448 				break;
449 
450 			if (IS_ERR(p))
451 				return -EFAULT;
452 
453 			if (i >= max)
454 				return -E2BIG;
455 			++i;
456 
457 			if (fatal_signal_pending(current))
458 				return -ERESTARTNOHAND;
459 			cond_resched();
460 		}
461 	}
462 	return i;
463 }
464 
465 /*
466  * 'copy_strings()' copies argument/environment strings from the old
467  * processes's memory to the new process's stack.  The call to get_user_pages()
468  * ensures the destination page is created and not swapped out.
469  */
470 static int copy_strings(int argc, struct user_arg_ptr argv,
471 			struct linux_binprm *bprm)
472 {
473 	struct page *kmapped_page = NULL;
474 	char *kaddr = NULL;
475 	unsigned long kpos = 0;
476 	int ret;
477 
478 	while (argc-- > 0) {
479 		const char __user *str;
480 		int len;
481 		unsigned long pos;
482 
483 		ret = -EFAULT;
484 		str = get_user_arg_ptr(argv, argc);
485 		if (IS_ERR(str))
486 			goto out;
487 
488 		len = strnlen_user(str, MAX_ARG_STRLEN);
489 		if (!len)
490 			goto out;
491 
492 		ret = -E2BIG;
493 		if (!valid_arg_len(bprm, len))
494 			goto out;
495 
496 		/* We're going to work our way backwords. */
497 		pos = bprm->p;
498 		str += len;
499 		bprm->p -= len;
500 
501 		while (len > 0) {
502 			int offset, bytes_to_copy;
503 
504 			if (fatal_signal_pending(current)) {
505 				ret = -ERESTARTNOHAND;
506 				goto out;
507 			}
508 			cond_resched();
509 
510 			offset = pos % PAGE_SIZE;
511 			if (offset == 0)
512 				offset = PAGE_SIZE;
513 
514 			bytes_to_copy = offset;
515 			if (bytes_to_copy > len)
516 				bytes_to_copy = len;
517 
518 			offset -= bytes_to_copy;
519 			pos -= bytes_to_copy;
520 			str -= bytes_to_copy;
521 			len -= bytes_to_copy;
522 
523 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
524 				struct page *page;
525 
526 				page = get_arg_page(bprm, pos, 1);
527 				if (!page) {
528 					ret = -E2BIG;
529 					goto out;
530 				}
531 
532 				if (kmapped_page) {
533 					flush_kernel_dcache_page(kmapped_page);
534 					kunmap(kmapped_page);
535 					put_arg_page(kmapped_page);
536 				}
537 				kmapped_page = page;
538 				kaddr = kmap(kmapped_page);
539 				kpos = pos & PAGE_MASK;
540 				flush_arg_page(bprm, kpos, kmapped_page);
541 			}
542 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
543 				ret = -EFAULT;
544 				goto out;
545 			}
546 		}
547 	}
548 	ret = 0;
549 out:
550 	if (kmapped_page) {
551 		flush_kernel_dcache_page(kmapped_page);
552 		kunmap(kmapped_page);
553 		put_arg_page(kmapped_page);
554 	}
555 	return ret;
556 }
557 
558 /*
559  * Like copy_strings, but get argv and its values from kernel memory.
560  */
561 int copy_strings_kernel(int argc, const char *const *__argv,
562 			struct linux_binprm *bprm)
563 {
564 	int r;
565 	mm_segment_t oldfs = get_fs();
566 	struct user_arg_ptr argv = {
567 		.ptr.native = (const char __user *const  __user *)__argv,
568 	};
569 
570 	set_fs(KERNEL_DS);
571 	r = copy_strings(argc, argv, bprm);
572 	set_fs(oldfs);
573 
574 	return r;
575 }
576 EXPORT_SYMBOL(copy_strings_kernel);
577 
578 #ifdef CONFIG_MMU
579 
580 /*
581  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
582  * the binfmt code determines where the new stack should reside, we shift it to
583  * its final location.  The process proceeds as follows:
584  *
585  * 1) Use shift to calculate the new vma endpoints.
586  * 2) Extend vma to cover both the old and new ranges.  This ensures the
587  *    arguments passed to subsequent functions are consistent.
588  * 3) Move vma's page tables to the new range.
589  * 4) Free up any cleared pgd range.
590  * 5) Shrink the vma to cover only the new range.
591  */
592 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
593 {
594 	struct mm_struct *mm = vma->vm_mm;
595 	unsigned long old_start = vma->vm_start;
596 	unsigned long old_end = vma->vm_end;
597 	unsigned long length = old_end - old_start;
598 	unsigned long new_start = old_start - shift;
599 	unsigned long new_end = old_end - shift;
600 	struct mmu_gather tlb;
601 
602 	BUG_ON(new_start > new_end);
603 
604 	/*
605 	 * ensure there are no vmas between where we want to go
606 	 * and where we are
607 	 */
608 	if (vma != find_vma(mm, new_start))
609 		return -EFAULT;
610 
611 	/*
612 	 * cover the whole range: [new_start, old_end)
613 	 */
614 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
615 		return -ENOMEM;
616 
617 	/*
618 	 * move the page tables downwards, on failure we rely on
619 	 * process cleanup to remove whatever mess we made.
620 	 */
621 	if (length != move_page_tables(vma, old_start,
622 				       vma, new_start, length, false))
623 		return -ENOMEM;
624 
625 	lru_add_drain();
626 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
627 	if (new_end > old_start) {
628 		/*
629 		 * when the old and new regions overlap clear from new_end.
630 		 */
631 		free_pgd_range(&tlb, new_end, old_end, new_end,
632 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633 	} else {
634 		/*
635 		 * otherwise, clean from old_start; this is done to not touch
636 		 * the address space in [new_end, old_start) some architectures
637 		 * have constraints on va-space that make this illegal (IA64) -
638 		 * for the others its just a little faster.
639 		 */
640 		free_pgd_range(&tlb, old_start, old_end, new_end,
641 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
642 	}
643 	tlb_finish_mmu(&tlb, old_start, old_end);
644 
645 	/*
646 	 * Shrink the vma to just the new range.  Always succeeds.
647 	 */
648 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
649 
650 	return 0;
651 }
652 
653 /*
654  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
655  * the stack is optionally relocated, and some extra space is added.
656  */
657 int setup_arg_pages(struct linux_binprm *bprm,
658 		    unsigned long stack_top,
659 		    int executable_stack)
660 {
661 	unsigned long ret;
662 	unsigned long stack_shift;
663 	struct mm_struct *mm = current->mm;
664 	struct vm_area_struct *vma = bprm->vma;
665 	struct vm_area_struct *prev = NULL;
666 	unsigned long vm_flags;
667 	unsigned long stack_base;
668 	unsigned long stack_size;
669 	unsigned long stack_expand;
670 	unsigned long rlim_stack;
671 
672 #ifdef CONFIG_STACK_GROWSUP
673 	/* Limit stack size */
674 	stack_base = rlimit_max(RLIMIT_STACK);
675 	if (stack_base > STACK_SIZE_MAX)
676 		stack_base = STACK_SIZE_MAX;
677 
678 	/* Add space for stack randomization. */
679 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
680 
681 	/* Make sure we didn't let the argument array grow too large. */
682 	if (vma->vm_end - vma->vm_start > stack_base)
683 		return -ENOMEM;
684 
685 	stack_base = PAGE_ALIGN(stack_top - stack_base);
686 
687 	stack_shift = vma->vm_start - stack_base;
688 	mm->arg_start = bprm->p - stack_shift;
689 	bprm->p = vma->vm_end - stack_shift;
690 #else
691 	stack_top = arch_align_stack(stack_top);
692 	stack_top = PAGE_ALIGN(stack_top);
693 
694 	if (unlikely(stack_top < mmap_min_addr) ||
695 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
696 		return -ENOMEM;
697 
698 	stack_shift = vma->vm_end - stack_top;
699 
700 	bprm->p -= stack_shift;
701 	mm->arg_start = bprm->p;
702 #endif
703 
704 	if (bprm->loader)
705 		bprm->loader -= stack_shift;
706 	bprm->exec -= stack_shift;
707 
708 	if (down_write_killable(&mm->mmap_sem))
709 		return -EINTR;
710 
711 	vm_flags = VM_STACK_FLAGS;
712 
713 	/*
714 	 * Adjust stack execute permissions; explicitly enable for
715 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
716 	 * (arch default) otherwise.
717 	 */
718 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
719 		vm_flags |= VM_EXEC;
720 	else if (executable_stack == EXSTACK_DISABLE_X)
721 		vm_flags &= ~VM_EXEC;
722 	vm_flags |= mm->def_flags;
723 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
724 
725 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
726 			vm_flags);
727 	if (ret)
728 		goto out_unlock;
729 	BUG_ON(prev != vma);
730 
731 	/* Move stack pages down in memory. */
732 	if (stack_shift) {
733 		ret = shift_arg_pages(vma, stack_shift);
734 		if (ret)
735 			goto out_unlock;
736 	}
737 
738 	/* mprotect_fixup is overkill to remove the temporary stack flags */
739 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
740 
741 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
742 	stack_size = vma->vm_end - vma->vm_start;
743 	/*
744 	 * Align this down to a page boundary as expand_stack
745 	 * will align it up.
746 	 */
747 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
748 #ifdef CONFIG_STACK_GROWSUP
749 	if (stack_size + stack_expand > rlim_stack)
750 		stack_base = vma->vm_start + rlim_stack;
751 	else
752 		stack_base = vma->vm_end + stack_expand;
753 #else
754 	if (stack_size + stack_expand > rlim_stack)
755 		stack_base = vma->vm_end - rlim_stack;
756 	else
757 		stack_base = vma->vm_start - stack_expand;
758 #endif
759 	current->mm->start_stack = bprm->p;
760 	ret = expand_stack(vma, stack_base);
761 	if (ret)
762 		ret = -EFAULT;
763 
764 out_unlock:
765 	up_write(&mm->mmap_sem);
766 	return ret;
767 }
768 EXPORT_SYMBOL(setup_arg_pages);
769 
770 #else
771 
772 /*
773  * Transfer the program arguments and environment from the holding pages
774  * onto the stack. The provided stack pointer is adjusted accordingly.
775  */
776 int transfer_args_to_stack(struct linux_binprm *bprm,
777 			   unsigned long *sp_location)
778 {
779 	unsigned long index, stop, sp;
780 	int ret = 0;
781 
782 	stop = bprm->p >> PAGE_SHIFT;
783 	sp = *sp_location;
784 
785 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
786 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
787 		char *src = kmap(bprm->page[index]) + offset;
788 		sp -= PAGE_SIZE - offset;
789 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
790 			ret = -EFAULT;
791 		kunmap(bprm->page[index]);
792 		if (ret)
793 			goto out;
794 	}
795 
796 	*sp_location = sp;
797 
798 out:
799 	return ret;
800 }
801 EXPORT_SYMBOL(transfer_args_to_stack);
802 
803 #endif /* CONFIG_MMU */
804 
805 static struct file *do_open_execat(int fd, struct filename *name, int flags)
806 {
807 	struct file *file;
808 	int err;
809 	struct open_flags open_exec_flags = {
810 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
811 		.acc_mode = MAY_EXEC,
812 		.intent = LOOKUP_OPEN,
813 		.lookup_flags = LOOKUP_FOLLOW,
814 	};
815 
816 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
817 		return ERR_PTR(-EINVAL);
818 	if (flags & AT_SYMLINK_NOFOLLOW)
819 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
820 	if (flags & AT_EMPTY_PATH)
821 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
822 
823 	file = do_filp_open(fd, name, &open_exec_flags);
824 	if (IS_ERR(file))
825 		goto out;
826 
827 	err = -EACCES;
828 	if (!S_ISREG(file_inode(file)->i_mode))
829 		goto exit;
830 
831 	if (path_noexec(&file->f_path))
832 		goto exit;
833 
834 	err = deny_write_access(file);
835 	if (err)
836 		goto exit;
837 
838 	if (name->name[0] != '\0')
839 		fsnotify_open(file);
840 
841 out:
842 	return file;
843 
844 exit:
845 	fput(file);
846 	return ERR_PTR(err);
847 }
848 
849 struct file *open_exec(const char *name)
850 {
851 	struct filename *filename = getname_kernel(name);
852 	struct file *f = ERR_CAST(filename);
853 
854 	if (!IS_ERR(filename)) {
855 		f = do_open_execat(AT_FDCWD, filename, 0);
856 		putname(filename);
857 	}
858 	return f;
859 }
860 EXPORT_SYMBOL(open_exec);
861 
862 int kernel_read(struct file *file, loff_t offset,
863 		char *addr, unsigned long count)
864 {
865 	mm_segment_t old_fs;
866 	loff_t pos = offset;
867 	int result;
868 
869 	old_fs = get_fs();
870 	set_fs(get_ds());
871 	/* The cast to a user pointer is valid due to the set_fs() */
872 	result = vfs_read(file, (void __user *)addr, count, &pos);
873 	set_fs(old_fs);
874 	return result;
875 }
876 
877 EXPORT_SYMBOL(kernel_read);
878 
879 int kernel_read_file(struct file *file, void **buf, loff_t *size,
880 		     loff_t max_size, enum kernel_read_file_id id)
881 {
882 	loff_t i_size, pos;
883 	ssize_t bytes = 0;
884 	int ret;
885 
886 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
887 		return -EINVAL;
888 
889 	ret = security_kernel_read_file(file, id);
890 	if (ret)
891 		return ret;
892 
893 	ret = deny_write_access(file);
894 	if (ret)
895 		return ret;
896 
897 	i_size = i_size_read(file_inode(file));
898 	if (max_size > 0 && i_size > max_size) {
899 		ret = -EFBIG;
900 		goto out;
901 	}
902 	if (i_size <= 0) {
903 		ret = -EINVAL;
904 		goto out;
905 	}
906 
907 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
908 		*buf = vmalloc(i_size);
909 	if (!*buf) {
910 		ret = -ENOMEM;
911 		goto out;
912 	}
913 
914 	pos = 0;
915 	while (pos < i_size) {
916 		bytes = kernel_read(file, pos, (char *)(*buf) + pos,
917 				    i_size - pos);
918 		if (bytes < 0) {
919 			ret = bytes;
920 			goto out;
921 		}
922 
923 		if (bytes == 0)
924 			break;
925 		pos += bytes;
926 	}
927 
928 	if (pos != i_size) {
929 		ret = -EIO;
930 		goto out_free;
931 	}
932 
933 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
934 	if (!ret)
935 		*size = pos;
936 
937 out_free:
938 	if (ret < 0) {
939 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
940 			vfree(*buf);
941 			*buf = NULL;
942 		}
943 	}
944 
945 out:
946 	allow_write_access(file);
947 	return ret;
948 }
949 EXPORT_SYMBOL_GPL(kernel_read_file);
950 
951 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
952 			       loff_t max_size, enum kernel_read_file_id id)
953 {
954 	struct file *file;
955 	int ret;
956 
957 	if (!path || !*path)
958 		return -EINVAL;
959 
960 	file = filp_open(path, O_RDONLY, 0);
961 	if (IS_ERR(file))
962 		return PTR_ERR(file);
963 
964 	ret = kernel_read_file(file, buf, size, max_size, id);
965 	fput(file);
966 	return ret;
967 }
968 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
969 
970 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
971 			     enum kernel_read_file_id id)
972 {
973 	struct fd f = fdget(fd);
974 	int ret = -EBADF;
975 
976 	if (!f.file)
977 		goto out;
978 
979 	ret = kernel_read_file(f.file, buf, size, max_size, id);
980 out:
981 	fdput(f);
982 	return ret;
983 }
984 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
985 
986 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
987 {
988 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
989 	if (res > 0)
990 		flush_icache_range(addr, addr + len);
991 	return res;
992 }
993 EXPORT_SYMBOL(read_code);
994 
995 static int exec_mmap(struct mm_struct *mm)
996 {
997 	struct task_struct *tsk;
998 	struct mm_struct *old_mm, *active_mm;
999 
1000 	/* Notify parent that we're no longer interested in the old VM */
1001 	tsk = current;
1002 	old_mm = current->mm;
1003 	mm_release(tsk, old_mm);
1004 
1005 	if (old_mm) {
1006 		sync_mm_rss(old_mm);
1007 		/*
1008 		 * Make sure that if there is a core dump in progress
1009 		 * for the old mm, we get out and die instead of going
1010 		 * through with the exec.  We must hold mmap_sem around
1011 		 * checking core_state and changing tsk->mm.
1012 		 */
1013 		down_read(&old_mm->mmap_sem);
1014 		if (unlikely(old_mm->core_state)) {
1015 			up_read(&old_mm->mmap_sem);
1016 			return -EINTR;
1017 		}
1018 	}
1019 	task_lock(tsk);
1020 	active_mm = tsk->active_mm;
1021 	tsk->mm = mm;
1022 	tsk->active_mm = mm;
1023 	activate_mm(active_mm, mm);
1024 	tsk->mm->vmacache_seqnum = 0;
1025 	vmacache_flush(tsk);
1026 	task_unlock(tsk);
1027 	if (old_mm) {
1028 		up_read(&old_mm->mmap_sem);
1029 		BUG_ON(active_mm != old_mm);
1030 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1031 		mm_update_next_owner(old_mm);
1032 		mmput(old_mm);
1033 		return 0;
1034 	}
1035 	mmdrop(active_mm);
1036 	return 0;
1037 }
1038 
1039 /*
1040  * This function makes sure the current process has its own signal table,
1041  * so that flush_signal_handlers can later reset the handlers without
1042  * disturbing other processes.  (Other processes might share the signal
1043  * table via the CLONE_SIGHAND option to clone().)
1044  */
1045 static int de_thread(struct task_struct *tsk)
1046 {
1047 	struct signal_struct *sig = tsk->signal;
1048 	struct sighand_struct *oldsighand = tsk->sighand;
1049 	spinlock_t *lock = &oldsighand->siglock;
1050 
1051 	if (thread_group_empty(tsk))
1052 		goto no_thread_group;
1053 
1054 	/*
1055 	 * Kill all other threads in the thread group.
1056 	 */
1057 	spin_lock_irq(lock);
1058 	if (signal_group_exit(sig)) {
1059 		/*
1060 		 * Another group action in progress, just
1061 		 * return so that the signal is processed.
1062 		 */
1063 		spin_unlock_irq(lock);
1064 		return -EAGAIN;
1065 	}
1066 
1067 	sig->group_exit_task = tsk;
1068 	sig->notify_count = zap_other_threads(tsk);
1069 	if (!thread_group_leader(tsk))
1070 		sig->notify_count--;
1071 
1072 	while (sig->notify_count) {
1073 		__set_current_state(TASK_KILLABLE);
1074 		spin_unlock_irq(lock);
1075 		schedule();
1076 		if (unlikely(__fatal_signal_pending(tsk)))
1077 			goto killed;
1078 		spin_lock_irq(lock);
1079 	}
1080 	spin_unlock_irq(lock);
1081 
1082 	/*
1083 	 * At this point all other threads have exited, all we have to
1084 	 * do is to wait for the thread group leader to become inactive,
1085 	 * and to assume its PID:
1086 	 */
1087 	if (!thread_group_leader(tsk)) {
1088 		struct task_struct *leader = tsk->group_leader;
1089 
1090 		for (;;) {
1091 			threadgroup_change_begin(tsk);
1092 			write_lock_irq(&tasklist_lock);
1093 			/*
1094 			 * Do this under tasklist_lock to ensure that
1095 			 * exit_notify() can't miss ->group_exit_task
1096 			 */
1097 			sig->notify_count = -1;
1098 			if (likely(leader->exit_state))
1099 				break;
1100 			__set_current_state(TASK_KILLABLE);
1101 			write_unlock_irq(&tasklist_lock);
1102 			threadgroup_change_end(tsk);
1103 			schedule();
1104 			if (unlikely(__fatal_signal_pending(tsk)))
1105 				goto killed;
1106 		}
1107 
1108 		/*
1109 		 * The only record we have of the real-time age of a
1110 		 * process, regardless of execs it's done, is start_time.
1111 		 * All the past CPU time is accumulated in signal_struct
1112 		 * from sister threads now dead.  But in this non-leader
1113 		 * exec, nothing survives from the original leader thread,
1114 		 * whose birth marks the true age of this process now.
1115 		 * When we take on its identity by switching to its PID, we
1116 		 * also take its birthdate (always earlier than our own).
1117 		 */
1118 		tsk->start_time = leader->start_time;
1119 		tsk->real_start_time = leader->real_start_time;
1120 
1121 		BUG_ON(!same_thread_group(leader, tsk));
1122 		BUG_ON(has_group_leader_pid(tsk));
1123 		/*
1124 		 * An exec() starts a new thread group with the
1125 		 * TGID of the previous thread group. Rehash the
1126 		 * two threads with a switched PID, and release
1127 		 * the former thread group leader:
1128 		 */
1129 
1130 		/* Become a process group leader with the old leader's pid.
1131 		 * The old leader becomes a thread of the this thread group.
1132 		 * Note: The old leader also uses this pid until release_task
1133 		 *       is called.  Odd but simple and correct.
1134 		 */
1135 		tsk->pid = leader->pid;
1136 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1137 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 		transfer_pid(leader, tsk, PIDTYPE_SID);
1139 
1140 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 		list_replace_init(&leader->sibling, &tsk->sibling);
1142 
1143 		tsk->group_leader = tsk;
1144 		leader->group_leader = tsk;
1145 
1146 		tsk->exit_signal = SIGCHLD;
1147 		leader->exit_signal = -1;
1148 
1149 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 		leader->exit_state = EXIT_DEAD;
1151 
1152 		/*
1153 		 * We are going to release_task()->ptrace_unlink() silently,
1154 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 		 * the tracer wont't block again waiting for this thread.
1156 		 */
1157 		if (unlikely(leader->ptrace))
1158 			__wake_up_parent(leader, leader->parent);
1159 		write_unlock_irq(&tasklist_lock);
1160 		threadgroup_change_end(tsk);
1161 
1162 		release_task(leader);
1163 	}
1164 
1165 	sig->group_exit_task = NULL;
1166 	sig->notify_count = 0;
1167 
1168 no_thread_group:
1169 	/* we have changed execution domain */
1170 	tsk->exit_signal = SIGCHLD;
1171 
1172 	exit_itimers(sig);
1173 	flush_itimer_signals();
1174 
1175 	if (atomic_read(&oldsighand->count) != 1) {
1176 		struct sighand_struct *newsighand;
1177 		/*
1178 		 * This ->sighand is shared with the CLONE_SIGHAND
1179 		 * but not CLONE_THREAD task, switch to the new one.
1180 		 */
1181 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1182 		if (!newsighand)
1183 			return -ENOMEM;
1184 
1185 		atomic_set(&newsighand->count, 1);
1186 		memcpy(newsighand->action, oldsighand->action,
1187 		       sizeof(newsighand->action));
1188 
1189 		write_lock_irq(&tasklist_lock);
1190 		spin_lock(&oldsighand->siglock);
1191 		rcu_assign_pointer(tsk->sighand, newsighand);
1192 		spin_unlock(&oldsighand->siglock);
1193 		write_unlock_irq(&tasklist_lock);
1194 
1195 		__cleanup_sighand(oldsighand);
1196 	}
1197 
1198 	BUG_ON(!thread_group_leader(tsk));
1199 	return 0;
1200 
1201 killed:
1202 	/* protects against exit_notify() and __exit_signal() */
1203 	read_lock(&tasklist_lock);
1204 	sig->group_exit_task = NULL;
1205 	sig->notify_count = 0;
1206 	read_unlock(&tasklist_lock);
1207 	return -EAGAIN;
1208 }
1209 
1210 char *get_task_comm(char *buf, struct task_struct *tsk)
1211 {
1212 	/* buf must be at least sizeof(tsk->comm) in size */
1213 	task_lock(tsk);
1214 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1215 	task_unlock(tsk);
1216 	return buf;
1217 }
1218 EXPORT_SYMBOL_GPL(get_task_comm);
1219 
1220 /*
1221  * These functions flushes out all traces of the currently running executable
1222  * so that a new one can be started
1223  */
1224 
1225 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1226 {
1227 	task_lock(tsk);
1228 	trace_task_rename(tsk, buf);
1229 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1230 	task_unlock(tsk);
1231 	perf_event_comm(tsk, exec);
1232 }
1233 
1234 int flush_old_exec(struct linux_binprm * bprm)
1235 {
1236 	int retval;
1237 
1238 	/*
1239 	 * Make sure we have a private signal table and that
1240 	 * we are unassociated from the previous thread group.
1241 	 */
1242 	retval = de_thread(current);
1243 	if (retval)
1244 		goto out;
1245 
1246 	/*
1247 	 * Must be called _before_ exec_mmap() as bprm->mm is
1248 	 * not visibile until then. This also enables the update
1249 	 * to be lockless.
1250 	 */
1251 	set_mm_exe_file(bprm->mm, bprm->file);
1252 
1253 	/*
1254 	 * Release all of the old mmap stuff
1255 	 */
1256 	acct_arg_size(bprm, 0);
1257 	retval = exec_mmap(bprm->mm);
1258 	if (retval)
1259 		goto out;
1260 
1261 	bprm->mm = NULL;		/* We're using it now */
1262 
1263 	set_fs(USER_DS);
1264 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1265 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1266 	flush_thread();
1267 	current->personality &= ~bprm->per_clear;
1268 
1269 	return 0;
1270 
1271 out:
1272 	return retval;
1273 }
1274 EXPORT_SYMBOL(flush_old_exec);
1275 
1276 void would_dump(struct linux_binprm *bprm, struct file *file)
1277 {
1278 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1279 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1280 }
1281 EXPORT_SYMBOL(would_dump);
1282 
1283 void setup_new_exec(struct linux_binprm * bprm)
1284 {
1285 	arch_pick_mmap_layout(current->mm);
1286 
1287 	/* This is the point of no return */
1288 	current->sas_ss_sp = current->sas_ss_size = 0;
1289 
1290 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1291 		set_dumpable(current->mm, SUID_DUMP_USER);
1292 	else
1293 		set_dumpable(current->mm, suid_dumpable);
1294 
1295 	perf_event_exec();
1296 	__set_task_comm(current, kbasename(bprm->filename), true);
1297 
1298 	/* Set the new mm task size. We have to do that late because it may
1299 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1300 	 * some architectures like powerpc
1301 	 */
1302 	current->mm->task_size = TASK_SIZE;
1303 
1304 	/* install the new credentials */
1305 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1306 	    !gid_eq(bprm->cred->gid, current_egid())) {
1307 		current->pdeath_signal = 0;
1308 	} else {
1309 		would_dump(bprm, bprm->file);
1310 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1311 			set_dumpable(current->mm, suid_dumpable);
1312 	}
1313 
1314 	/* An exec changes our domain. We are no longer part of the thread
1315 	   group */
1316 	current->self_exec_id++;
1317 	flush_signal_handlers(current, 0);
1318 	do_close_on_exec(current->files);
1319 }
1320 EXPORT_SYMBOL(setup_new_exec);
1321 
1322 /*
1323  * Prepare credentials and lock ->cred_guard_mutex.
1324  * install_exec_creds() commits the new creds and drops the lock.
1325  * Or, if exec fails before, free_bprm() should release ->cred and
1326  * and unlock.
1327  */
1328 int prepare_bprm_creds(struct linux_binprm *bprm)
1329 {
1330 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1331 		return -ERESTARTNOINTR;
1332 
1333 	bprm->cred = prepare_exec_creds();
1334 	if (likely(bprm->cred))
1335 		return 0;
1336 
1337 	mutex_unlock(&current->signal->cred_guard_mutex);
1338 	return -ENOMEM;
1339 }
1340 
1341 static void free_bprm(struct linux_binprm *bprm)
1342 {
1343 	free_arg_pages(bprm);
1344 	if (bprm->cred) {
1345 		mutex_unlock(&current->signal->cred_guard_mutex);
1346 		abort_creds(bprm->cred);
1347 	}
1348 	if (bprm->file) {
1349 		allow_write_access(bprm->file);
1350 		fput(bprm->file);
1351 	}
1352 	/* If a binfmt changed the interp, free it. */
1353 	if (bprm->interp != bprm->filename)
1354 		kfree(bprm->interp);
1355 	kfree(bprm);
1356 }
1357 
1358 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1359 {
1360 	/* If a binfmt changed the interp, free it first. */
1361 	if (bprm->interp != bprm->filename)
1362 		kfree(bprm->interp);
1363 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1364 	if (!bprm->interp)
1365 		return -ENOMEM;
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL(bprm_change_interp);
1369 
1370 /*
1371  * install the new credentials for this executable
1372  */
1373 void install_exec_creds(struct linux_binprm *bprm)
1374 {
1375 	security_bprm_committing_creds(bprm);
1376 
1377 	commit_creds(bprm->cred);
1378 	bprm->cred = NULL;
1379 
1380 	/*
1381 	 * Disable monitoring for regular users
1382 	 * when executing setuid binaries. Must
1383 	 * wait until new credentials are committed
1384 	 * by commit_creds() above
1385 	 */
1386 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1387 		perf_event_exit_task(current);
1388 	/*
1389 	 * cred_guard_mutex must be held at least to this point to prevent
1390 	 * ptrace_attach() from altering our determination of the task's
1391 	 * credentials; any time after this it may be unlocked.
1392 	 */
1393 	security_bprm_committed_creds(bprm);
1394 	mutex_unlock(&current->signal->cred_guard_mutex);
1395 }
1396 EXPORT_SYMBOL(install_exec_creds);
1397 
1398 /*
1399  * determine how safe it is to execute the proposed program
1400  * - the caller must hold ->cred_guard_mutex to protect against
1401  *   PTRACE_ATTACH or seccomp thread-sync
1402  */
1403 static void check_unsafe_exec(struct linux_binprm *bprm)
1404 {
1405 	struct task_struct *p = current, *t;
1406 	unsigned n_fs;
1407 
1408 	if (p->ptrace) {
1409 		if (p->ptrace & PT_PTRACE_CAP)
1410 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1411 		else
1412 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1413 	}
1414 
1415 	/*
1416 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1417 	 * mess up.
1418 	 */
1419 	if (task_no_new_privs(current))
1420 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1421 
1422 	t = p;
1423 	n_fs = 1;
1424 	spin_lock(&p->fs->lock);
1425 	rcu_read_lock();
1426 	while_each_thread(p, t) {
1427 		if (t->fs == p->fs)
1428 			n_fs++;
1429 	}
1430 	rcu_read_unlock();
1431 
1432 	if (p->fs->users > n_fs)
1433 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1434 	else
1435 		p->fs->in_exec = 1;
1436 	spin_unlock(&p->fs->lock);
1437 }
1438 
1439 static void bprm_fill_uid(struct linux_binprm *bprm)
1440 {
1441 	struct inode *inode;
1442 	unsigned int mode;
1443 	kuid_t uid;
1444 	kgid_t gid;
1445 
1446 	/*
1447 	 * Since this can be called multiple times (via prepare_binprm),
1448 	 * we must clear any previous work done when setting set[ug]id
1449 	 * bits from any earlier bprm->file uses (for example when run
1450 	 * first for a setuid script then again for its interpreter).
1451 	 */
1452 	bprm->cred->euid = current_euid();
1453 	bprm->cred->egid = current_egid();
1454 
1455 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1456 		return;
1457 
1458 	if (task_no_new_privs(current))
1459 		return;
1460 
1461 	inode = file_inode(bprm->file);
1462 	mode = READ_ONCE(inode->i_mode);
1463 	if (!(mode & (S_ISUID|S_ISGID)))
1464 		return;
1465 
1466 	/* Be careful if suid/sgid is set */
1467 	inode_lock(inode);
1468 
1469 	/* reload atomically mode/uid/gid now that lock held */
1470 	mode = inode->i_mode;
1471 	uid = inode->i_uid;
1472 	gid = inode->i_gid;
1473 	inode_unlock(inode);
1474 
1475 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1476 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1477 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1478 		return;
1479 
1480 	if (mode & S_ISUID) {
1481 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1482 		bprm->cred->euid = uid;
1483 	}
1484 
1485 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1486 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1487 		bprm->cred->egid = gid;
1488 	}
1489 }
1490 
1491 /*
1492  * Fill the binprm structure from the inode.
1493  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1494  *
1495  * This may be called multiple times for binary chains (scripts for example).
1496  */
1497 int prepare_binprm(struct linux_binprm *bprm)
1498 {
1499 	int retval;
1500 
1501 	bprm_fill_uid(bprm);
1502 
1503 	/* fill in binprm security blob */
1504 	retval = security_bprm_set_creds(bprm);
1505 	if (retval)
1506 		return retval;
1507 	bprm->cred_prepared = 1;
1508 
1509 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1510 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1511 }
1512 
1513 EXPORT_SYMBOL(prepare_binprm);
1514 
1515 /*
1516  * Arguments are '\0' separated strings found at the location bprm->p
1517  * points to; chop off the first by relocating brpm->p to right after
1518  * the first '\0' encountered.
1519  */
1520 int remove_arg_zero(struct linux_binprm *bprm)
1521 {
1522 	int ret = 0;
1523 	unsigned long offset;
1524 	char *kaddr;
1525 	struct page *page;
1526 
1527 	if (!bprm->argc)
1528 		return 0;
1529 
1530 	do {
1531 		offset = bprm->p & ~PAGE_MASK;
1532 		page = get_arg_page(bprm, bprm->p, 0);
1533 		if (!page) {
1534 			ret = -EFAULT;
1535 			goto out;
1536 		}
1537 		kaddr = kmap_atomic(page);
1538 
1539 		for (; offset < PAGE_SIZE && kaddr[offset];
1540 				offset++, bprm->p++)
1541 			;
1542 
1543 		kunmap_atomic(kaddr);
1544 		put_arg_page(page);
1545 	} while (offset == PAGE_SIZE);
1546 
1547 	bprm->p++;
1548 	bprm->argc--;
1549 	ret = 0;
1550 
1551 out:
1552 	return ret;
1553 }
1554 EXPORT_SYMBOL(remove_arg_zero);
1555 
1556 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1557 /*
1558  * cycle the list of binary formats handler, until one recognizes the image
1559  */
1560 int search_binary_handler(struct linux_binprm *bprm)
1561 {
1562 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1563 	struct linux_binfmt *fmt;
1564 	int retval;
1565 
1566 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1567 	if (bprm->recursion_depth > 5)
1568 		return -ELOOP;
1569 
1570 	retval = security_bprm_check(bprm);
1571 	if (retval)
1572 		return retval;
1573 
1574 	retval = -ENOENT;
1575  retry:
1576 	read_lock(&binfmt_lock);
1577 	list_for_each_entry(fmt, &formats, lh) {
1578 		if (!try_module_get(fmt->module))
1579 			continue;
1580 		read_unlock(&binfmt_lock);
1581 		bprm->recursion_depth++;
1582 		retval = fmt->load_binary(bprm);
1583 		read_lock(&binfmt_lock);
1584 		put_binfmt(fmt);
1585 		bprm->recursion_depth--;
1586 		if (retval < 0 && !bprm->mm) {
1587 			/* we got to flush_old_exec() and failed after it */
1588 			read_unlock(&binfmt_lock);
1589 			force_sigsegv(SIGSEGV, current);
1590 			return retval;
1591 		}
1592 		if (retval != -ENOEXEC || !bprm->file) {
1593 			read_unlock(&binfmt_lock);
1594 			return retval;
1595 		}
1596 	}
1597 	read_unlock(&binfmt_lock);
1598 
1599 	if (need_retry) {
1600 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1601 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1602 			return retval;
1603 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1604 			return retval;
1605 		need_retry = false;
1606 		goto retry;
1607 	}
1608 
1609 	return retval;
1610 }
1611 EXPORT_SYMBOL(search_binary_handler);
1612 
1613 static int exec_binprm(struct linux_binprm *bprm)
1614 {
1615 	pid_t old_pid, old_vpid;
1616 	int ret;
1617 
1618 	/* Need to fetch pid before load_binary changes it */
1619 	old_pid = current->pid;
1620 	rcu_read_lock();
1621 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1622 	rcu_read_unlock();
1623 
1624 	ret = search_binary_handler(bprm);
1625 	if (ret >= 0) {
1626 		audit_bprm(bprm);
1627 		trace_sched_process_exec(current, old_pid, bprm);
1628 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1629 		proc_exec_connector(current);
1630 	}
1631 
1632 	return ret;
1633 }
1634 
1635 /*
1636  * sys_execve() executes a new program.
1637  */
1638 static int do_execveat_common(int fd, struct filename *filename,
1639 			      struct user_arg_ptr argv,
1640 			      struct user_arg_ptr envp,
1641 			      int flags)
1642 {
1643 	char *pathbuf = NULL;
1644 	struct linux_binprm *bprm;
1645 	struct file *file;
1646 	struct files_struct *displaced;
1647 	int retval;
1648 
1649 	if (IS_ERR(filename))
1650 		return PTR_ERR(filename);
1651 
1652 	/*
1653 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1654 	 * set*uid() to execve() because too many poorly written programs
1655 	 * don't check setuid() return code.  Here we additionally recheck
1656 	 * whether NPROC limit is still exceeded.
1657 	 */
1658 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1659 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1660 		retval = -EAGAIN;
1661 		goto out_ret;
1662 	}
1663 
1664 	/* We're below the limit (still or again), so we don't want to make
1665 	 * further execve() calls fail. */
1666 	current->flags &= ~PF_NPROC_EXCEEDED;
1667 
1668 	retval = unshare_files(&displaced);
1669 	if (retval)
1670 		goto out_ret;
1671 
1672 	retval = -ENOMEM;
1673 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1674 	if (!bprm)
1675 		goto out_files;
1676 
1677 	retval = prepare_bprm_creds(bprm);
1678 	if (retval)
1679 		goto out_free;
1680 
1681 	check_unsafe_exec(bprm);
1682 	current->in_execve = 1;
1683 
1684 	file = do_open_execat(fd, filename, flags);
1685 	retval = PTR_ERR(file);
1686 	if (IS_ERR(file))
1687 		goto out_unmark;
1688 
1689 	sched_exec();
1690 
1691 	bprm->file = file;
1692 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1693 		bprm->filename = filename->name;
1694 	} else {
1695 		if (filename->name[0] == '\0')
1696 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1697 		else
1698 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1699 					    fd, filename->name);
1700 		if (!pathbuf) {
1701 			retval = -ENOMEM;
1702 			goto out_unmark;
1703 		}
1704 		/*
1705 		 * Record that a name derived from an O_CLOEXEC fd will be
1706 		 * inaccessible after exec. Relies on having exclusive access to
1707 		 * current->files (due to unshare_files above).
1708 		 */
1709 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1710 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1711 		bprm->filename = pathbuf;
1712 	}
1713 	bprm->interp = bprm->filename;
1714 
1715 	retval = bprm_mm_init(bprm);
1716 	if (retval)
1717 		goto out_unmark;
1718 
1719 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1720 	if ((retval = bprm->argc) < 0)
1721 		goto out;
1722 
1723 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1724 	if ((retval = bprm->envc) < 0)
1725 		goto out;
1726 
1727 	retval = prepare_binprm(bprm);
1728 	if (retval < 0)
1729 		goto out;
1730 
1731 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1732 	if (retval < 0)
1733 		goto out;
1734 
1735 	bprm->exec = bprm->p;
1736 	retval = copy_strings(bprm->envc, envp, bprm);
1737 	if (retval < 0)
1738 		goto out;
1739 
1740 	retval = copy_strings(bprm->argc, argv, bprm);
1741 	if (retval < 0)
1742 		goto out;
1743 
1744 	retval = exec_binprm(bprm);
1745 	if (retval < 0)
1746 		goto out;
1747 
1748 	/* execve succeeded */
1749 	current->fs->in_exec = 0;
1750 	current->in_execve = 0;
1751 	acct_update_integrals(current);
1752 	task_numa_free(current);
1753 	free_bprm(bprm);
1754 	kfree(pathbuf);
1755 	putname(filename);
1756 	if (displaced)
1757 		put_files_struct(displaced);
1758 	return retval;
1759 
1760 out:
1761 	if (bprm->mm) {
1762 		acct_arg_size(bprm, 0);
1763 		mmput(bprm->mm);
1764 	}
1765 
1766 out_unmark:
1767 	current->fs->in_exec = 0;
1768 	current->in_execve = 0;
1769 
1770 out_free:
1771 	free_bprm(bprm);
1772 	kfree(pathbuf);
1773 
1774 out_files:
1775 	if (displaced)
1776 		reset_files_struct(displaced);
1777 out_ret:
1778 	putname(filename);
1779 	return retval;
1780 }
1781 
1782 int do_execve(struct filename *filename,
1783 	const char __user *const __user *__argv,
1784 	const char __user *const __user *__envp)
1785 {
1786 	struct user_arg_ptr argv = { .ptr.native = __argv };
1787 	struct user_arg_ptr envp = { .ptr.native = __envp };
1788 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1789 }
1790 
1791 int do_execveat(int fd, struct filename *filename,
1792 		const char __user *const __user *__argv,
1793 		const char __user *const __user *__envp,
1794 		int flags)
1795 {
1796 	struct user_arg_ptr argv = { .ptr.native = __argv };
1797 	struct user_arg_ptr envp = { .ptr.native = __envp };
1798 
1799 	return do_execveat_common(fd, filename, argv, envp, flags);
1800 }
1801 
1802 #ifdef CONFIG_COMPAT
1803 static int compat_do_execve(struct filename *filename,
1804 	const compat_uptr_t __user *__argv,
1805 	const compat_uptr_t __user *__envp)
1806 {
1807 	struct user_arg_ptr argv = {
1808 		.is_compat = true,
1809 		.ptr.compat = __argv,
1810 	};
1811 	struct user_arg_ptr envp = {
1812 		.is_compat = true,
1813 		.ptr.compat = __envp,
1814 	};
1815 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1816 }
1817 
1818 static int compat_do_execveat(int fd, struct filename *filename,
1819 			      const compat_uptr_t __user *__argv,
1820 			      const compat_uptr_t __user *__envp,
1821 			      int flags)
1822 {
1823 	struct user_arg_ptr argv = {
1824 		.is_compat = true,
1825 		.ptr.compat = __argv,
1826 	};
1827 	struct user_arg_ptr envp = {
1828 		.is_compat = true,
1829 		.ptr.compat = __envp,
1830 	};
1831 	return do_execveat_common(fd, filename, argv, envp, flags);
1832 }
1833 #endif
1834 
1835 void set_binfmt(struct linux_binfmt *new)
1836 {
1837 	struct mm_struct *mm = current->mm;
1838 
1839 	if (mm->binfmt)
1840 		module_put(mm->binfmt->module);
1841 
1842 	mm->binfmt = new;
1843 	if (new)
1844 		__module_get(new->module);
1845 }
1846 EXPORT_SYMBOL(set_binfmt);
1847 
1848 /*
1849  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1850  */
1851 void set_dumpable(struct mm_struct *mm, int value)
1852 {
1853 	unsigned long old, new;
1854 
1855 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1856 		return;
1857 
1858 	do {
1859 		old = ACCESS_ONCE(mm->flags);
1860 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1861 	} while (cmpxchg(&mm->flags, old, new) != old);
1862 }
1863 
1864 SYSCALL_DEFINE3(execve,
1865 		const char __user *, filename,
1866 		const char __user *const __user *, argv,
1867 		const char __user *const __user *, envp)
1868 {
1869 	return do_execve(getname(filename), argv, envp);
1870 }
1871 
1872 SYSCALL_DEFINE5(execveat,
1873 		int, fd, const char __user *, filename,
1874 		const char __user *const __user *, argv,
1875 		const char __user *const __user *, envp,
1876 		int, flags)
1877 {
1878 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1879 
1880 	return do_execveat(fd,
1881 			   getname_flags(filename, lookup_flags, NULL),
1882 			   argv, envp, flags);
1883 }
1884 
1885 #ifdef CONFIG_COMPAT
1886 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1887 	const compat_uptr_t __user *, argv,
1888 	const compat_uptr_t __user *, envp)
1889 {
1890 	return compat_do_execve(getname(filename), argv, envp);
1891 }
1892 
1893 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1894 		       const char __user *, filename,
1895 		       const compat_uptr_t __user *, argv,
1896 		       const compat_uptr_t __user *, envp,
1897 		       int,  flags)
1898 {
1899 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1900 
1901 	return compat_do_execveat(fd,
1902 				  getname_flags(filename, lookup_flags, NULL),
1903 				  argv, envp, flags);
1904 }
1905 #endif
1906