1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/mm.h> 30 #include <linux/vmacache.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/tracehook.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 static int bprm_creds_from_file(struct linux_binprm *bprm); 76 77 int suid_dumpable = 0; 78 79 static LIST_HEAD(formats); 80 static DEFINE_RWLOCK(binfmt_lock); 81 82 void __register_binfmt(struct linux_binfmt * fmt, int insert) 83 { 84 BUG_ON(!fmt); 85 if (WARN_ON(!fmt->load_binary)) 86 return; 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 error = -EINVAL; 145 if (!S_ISREG(file_inode(file)->i_mode)) 146 goto exit; 147 148 error = -EACCES; 149 if (path_noexec(&file->f_path)) 150 goto exit; 151 152 fsnotify_open(file); 153 154 error = -ENOEXEC; 155 156 read_lock(&binfmt_lock); 157 list_for_each_entry(fmt, &formats, lh) { 158 if (!fmt->load_shlib) 159 continue; 160 if (!try_module_get(fmt->module)) 161 continue; 162 read_unlock(&binfmt_lock); 163 error = fmt->load_shlib(file); 164 read_lock(&binfmt_lock); 165 put_binfmt(fmt); 166 if (error != -ENOEXEC) 167 break; 168 } 169 read_unlock(&binfmt_lock); 170 exit: 171 fput(file); 172 out: 173 return error; 174 } 175 #endif /* #ifdef CONFIG_USELIB */ 176 177 #ifdef CONFIG_MMU 178 /* 179 * The nascent bprm->mm is not visible until exec_mmap() but it can 180 * use a lot of memory, account these pages in current->mm temporary 181 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 182 * change the counter back via acct_arg_size(0). 183 */ 184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 185 { 186 struct mm_struct *mm = current->mm; 187 long diff = (long)(pages - bprm->vma_pages); 188 189 if (!mm || !diff) 190 return; 191 192 bprm->vma_pages = pages; 193 add_mm_counter(mm, MM_ANONPAGES, diff); 194 } 195 196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 197 int write) 198 { 199 struct page *page; 200 int ret; 201 unsigned int gup_flags = FOLL_FORCE; 202 203 #ifdef CONFIG_STACK_GROWSUP 204 if (write) { 205 ret = expand_downwards(bprm->vma, pos); 206 if (ret < 0) 207 return NULL; 208 } 209 #endif 210 211 if (write) 212 gup_flags |= FOLL_WRITE; 213 214 /* 215 * We are doing an exec(). 'current' is the process 216 * doing the exec and bprm->mm is the new process's mm. 217 */ 218 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 219 &page, NULL, NULL); 220 if (ret <= 0) 221 return NULL; 222 223 if (write) 224 acct_arg_size(bprm, vma_pages(bprm->vma)); 225 226 return page; 227 } 228 229 static void put_arg_page(struct page *page) 230 { 231 put_page(page); 232 } 233 234 static void free_arg_pages(struct linux_binprm *bprm) 235 { 236 } 237 238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 239 struct page *page) 240 { 241 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 242 } 243 244 static int __bprm_mm_init(struct linux_binprm *bprm) 245 { 246 int err; 247 struct vm_area_struct *vma = NULL; 248 struct mm_struct *mm = bprm->mm; 249 250 bprm->vma = vma = vm_area_alloc(mm); 251 if (!vma) 252 return -ENOMEM; 253 vma_set_anonymous(vma); 254 255 if (mmap_write_lock_killable(mm)) { 256 err = -EINTR; 257 goto err_free; 258 } 259 260 /* 261 * Place the stack at the largest stack address the architecture 262 * supports. Later, we'll move this to an appropriate place. We don't 263 * use STACK_TOP because that can depend on attributes which aren't 264 * configured yet. 265 */ 266 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 267 vma->vm_end = STACK_TOP_MAX; 268 vma->vm_start = vma->vm_end - PAGE_SIZE; 269 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 271 272 err = insert_vm_struct(mm, vma); 273 if (err) 274 goto err; 275 276 mm->stack_vm = mm->total_vm = 1; 277 mmap_write_unlock(mm); 278 bprm->p = vma->vm_end - sizeof(void *); 279 return 0; 280 err: 281 mmap_write_unlock(mm); 282 err_free: 283 bprm->vma = NULL; 284 vm_area_free(vma); 285 return err; 286 } 287 288 static bool valid_arg_len(struct linux_binprm *bprm, long len) 289 { 290 return len <= MAX_ARG_STRLEN; 291 } 292 293 #else 294 295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 296 { 297 } 298 299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 300 int write) 301 { 302 struct page *page; 303 304 page = bprm->page[pos / PAGE_SIZE]; 305 if (!page && write) { 306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 307 if (!page) 308 return NULL; 309 bprm->page[pos / PAGE_SIZE] = page; 310 } 311 312 return page; 313 } 314 315 static void put_arg_page(struct page *page) 316 { 317 } 318 319 static void free_arg_page(struct linux_binprm *bprm, int i) 320 { 321 if (bprm->page[i]) { 322 __free_page(bprm->page[i]); 323 bprm->page[i] = NULL; 324 } 325 } 326 327 static void free_arg_pages(struct linux_binprm *bprm) 328 { 329 int i; 330 331 for (i = 0; i < MAX_ARG_PAGES; i++) 332 free_arg_page(bprm, i); 333 } 334 335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 336 struct page *page) 337 { 338 } 339 340 static int __bprm_mm_init(struct linux_binprm *bprm) 341 { 342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 343 return 0; 344 } 345 346 static bool valid_arg_len(struct linux_binprm *bprm, long len) 347 { 348 return len <= bprm->p; 349 } 350 351 #endif /* CONFIG_MMU */ 352 353 /* 354 * Create a new mm_struct and populate it with a temporary stack 355 * vm_area_struct. We don't have enough context at this point to set the stack 356 * flags, permissions, and offset, so we use temporary values. We'll update 357 * them later in setup_arg_pages(). 358 */ 359 static int bprm_mm_init(struct linux_binprm *bprm) 360 { 361 int err; 362 struct mm_struct *mm = NULL; 363 364 bprm->mm = mm = mm_alloc(); 365 err = -ENOMEM; 366 if (!mm) 367 goto err; 368 369 /* Save current stack limit for all calculations made during exec. */ 370 task_lock(current->group_leader); 371 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 372 task_unlock(current->group_leader); 373 374 err = __bprm_mm_init(bprm); 375 if (err) 376 goto err; 377 378 return 0; 379 380 err: 381 if (mm) { 382 bprm->mm = NULL; 383 mmdrop(mm); 384 } 385 386 return err; 387 } 388 389 struct user_arg_ptr { 390 #ifdef CONFIG_COMPAT 391 bool is_compat; 392 #endif 393 union { 394 const char __user *const __user *native; 395 #ifdef CONFIG_COMPAT 396 const compat_uptr_t __user *compat; 397 #endif 398 } ptr; 399 }; 400 401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 402 { 403 const char __user *native; 404 405 #ifdef CONFIG_COMPAT 406 if (unlikely(argv.is_compat)) { 407 compat_uptr_t compat; 408 409 if (get_user(compat, argv.ptr.compat + nr)) 410 return ERR_PTR(-EFAULT); 411 412 return compat_ptr(compat); 413 } 414 #endif 415 416 if (get_user(native, argv.ptr.native + nr)) 417 return ERR_PTR(-EFAULT); 418 419 return native; 420 } 421 422 /* 423 * count() counts the number of strings in array ARGV. 424 */ 425 static int count(struct user_arg_ptr argv, int max) 426 { 427 int i = 0; 428 429 if (argv.ptr.native != NULL) { 430 for (;;) { 431 const char __user *p = get_user_arg_ptr(argv, i); 432 433 if (!p) 434 break; 435 436 if (IS_ERR(p)) 437 return -EFAULT; 438 439 if (i >= max) 440 return -E2BIG; 441 ++i; 442 443 if (fatal_signal_pending(current)) 444 return -ERESTARTNOHAND; 445 cond_resched(); 446 } 447 } 448 return i; 449 } 450 451 static int prepare_arg_pages(struct linux_binprm *bprm, 452 struct user_arg_ptr argv, struct user_arg_ptr envp) 453 { 454 unsigned long limit, ptr_size; 455 456 bprm->argc = count(argv, MAX_ARG_STRINGS); 457 if (bprm->argc < 0) 458 return bprm->argc; 459 460 bprm->envc = count(envp, MAX_ARG_STRINGS); 461 if (bprm->envc < 0) 462 return bprm->envc; 463 464 /* 465 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 466 * (whichever is smaller) for the argv+env strings. 467 * This ensures that: 468 * - the remaining binfmt code will not run out of stack space, 469 * - the program will have a reasonable amount of stack left 470 * to work from. 471 */ 472 limit = _STK_LIM / 4 * 3; 473 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 474 /* 475 * We've historically supported up to 32 pages (ARG_MAX) 476 * of argument strings even with small stacks 477 */ 478 limit = max_t(unsigned long, limit, ARG_MAX); 479 /* 480 * We must account for the size of all the argv and envp pointers to 481 * the argv and envp strings, since they will also take up space in 482 * the stack. They aren't stored until much later when we can't 483 * signal to the parent that the child has run out of stack space. 484 * Instead, calculate it here so it's possible to fail gracefully. 485 */ 486 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 487 if (limit <= ptr_size) 488 return -E2BIG; 489 limit -= ptr_size; 490 491 bprm->argmin = bprm->p - limit; 492 return 0; 493 } 494 495 /* 496 * 'copy_strings()' copies argument/environment strings from the old 497 * processes's memory to the new process's stack. The call to get_user_pages() 498 * ensures the destination page is created and not swapped out. 499 */ 500 static int copy_strings(int argc, struct user_arg_ptr argv, 501 struct linux_binprm *bprm) 502 { 503 struct page *kmapped_page = NULL; 504 char *kaddr = NULL; 505 unsigned long kpos = 0; 506 int ret; 507 508 while (argc-- > 0) { 509 const char __user *str; 510 int len; 511 unsigned long pos; 512 513 ret = -EFAULT; 514 str = get_user_arg_ptr(argv, argc); 515 if (IS_ERR(str)) 516 goto out; 517 518 len = strnlen_user(str, MAX_ARG_STRLEN); 519 if (!len) 520 goto out; 521 522 ret = -E2BIG; 523 if (!valid_arg_len(bprm, len)) 524 goto out; 525 526 /* We're going to work our way backwords. */ 527 pos = bprm->p; 528 str += len; 529 bprm->p -= len; 530 #ifdef CONFIG_MMU 531 if (bprm->p < bprm->argmin) 532 goto out; 533 #endif 534 535 while (len > 0) { 536 int offset, bytes_to_copy; 537 538 if (fatal_signal_pending(current)) { 539 ret = -ERESTARTNOHAND; 540 goto out; 541 } 542 cond_resched(); 543 544 offset = pos % PAGE_SIZE; 545 if (offset == 0) 546 offset = PAGE_SIZE; 547 548 bytes_to_copy = offset; 549 if (bytes_to_copy > len) 550 bytes_to_copy = len; 551 552 offset -= bytes_to_copy; 553 pos -= bytes_to_copy; 554 str -= bytes_to_copy; 555 len -= bytes_to_copy; 556 557 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 558 struct page *page; 559 560 page = get_arg_page(bprm, pos, 1); 561 if (!page) { 562 ret = -E2BIG; 563 goto out; 564 } 565 566 if (kmapped_page) { 567 flush_kernel_dcache_page(kmapped_page); 568 kunmap(kmapped_page); 569 put_arg_page(kmapped_page); 570 } 571 kmapped_page = page; 572 kaddr = kmap(kmapped_page); 573 kpos = pos & PAGE_MASK; 574 flush_arg_page(bprm, kpos, kmapped_page); 575 } 576 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 577 ret = -EFAULT; 578 goto out; 579 } 580 } 581 } 582 ret = 0; 583 out: 584 if (kmapped_page) { 585 flush_kernel_dcache_page(kmapped_page); 586 kunmap(kmapped_page); 587 put_arg_page(kmapped_page); 588 } 589 return ret; 590 } 591 592 /* 593 * Copy and argument/environment string from the kernel to the processes stack. 594 */ 595 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 596 { 597 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 598 unsigned long pos = bprm->p; 599 600 if (len == 0) 601 return -EFAULT; 602 if (!valid_arg_len(bprm, len)) 603 return -E2BIG; 604 605 /* We're going to work our way backwards. */ 606 arg += len; 607 bprm->p -= len; 608 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 609 return -E2BIG; 610 611 while (len > 0) { 612 unsigned int bytes_to_copy = min_t(unsigned int, len, 613 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 614 struct page *page; 615 char *kaddr; 616 617 pos -= bytes_to_copy; 618 arg -= bytes_to_copy; 619 len -= bytes_to_copy; 620 621 page = get_arg_page(bprm, pos, 1); 622 if (!page) 623 return -E2BIG; 624 kaddr = kmap_atomic(page); 625 flush_arg_page(bprm, pos & PAGE_MASK, page); 626 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 627 flush_kernel_dcache_page(page); 628 kunmap_atomic(kaddr); 629 put_arg_page(page); 630 } 631 632 return 0; 633 } 634 EXPORT_SYMBOL(copy_string_kernel); 635 636 #ifdef CONFIG_MMU 637 638 /* 639 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 640 * the binfmt code determines where the new stack should reside, we shift it to 641 * its final location. The process proceeds as follows: 642 * 643 * 1) Use shift to calculate the new vma endpoints. 644 * 2) Extend vma to cover both the old and new ranges. This ensures the 645 * arguments passed to subsequent functions are consistent. 646 * 3) Move vma's page tables to the new range. 647 * 4) Free up any cleared pgd range. 648 * 5) Shrink the vma to cover only the new range. 649 */ 650 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 651 { 652 struct mm_struct *mm = vma->vm_mm; 653 unsigned long old_start = vma->vm_start; 654 unsigned long old_end = vma->vm_end; 655 unsigned long length = old_end - old_start; 656 unsigned long new_start = old_start - shift; 657 unsigned long new_end = old_end - shift; 658 struct mmu_gather tlb; 659 660 BUG_ON(new_start > new_end); 661 662 /* 663 * ensure there are no vmas between where we want to go 664 * and where we are 665 */ 666 if (vma != find_vma(mm, new_start)) 667 return -EFAULT; 668 669 /* 670 * cover the whole range: [new_start, old_end) 671 */ 672 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 673 return -ENOMEM; 674 675 /* 676 * move the page tables downwards, on failure we rely on 677 * process cleanup to remove whatever mess we made. 678 */ 679 if (length != move_page_tables(vma, old_start, 680 vma, new_start, length, false)) 681 return -ENOMEM; 682 683 lru_add_drain(); 684 tlb_gather_mmu(&tlb, mm, old_start, old_end); 685 if (new_end > old_start) { 686 /* 687 * when the old and new regions overlap clear from new_end. 688 */ 689 free_pgd_range(&tlb, new_end, old_end, new_end, 690 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 691 } else { 692 /* 693 * otherwise, clean from old_start; this is done to not touch 694 * the address space in [new_end, old_start) some architectures 695 * have constraints on va-space that make this illegal (IA64) - 696 * for the others its just a little faster. 697 */ 698 free_pgd_range(&tlb, old_start, old_end, new_end, 699 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 700 } 701 tlb_finish_mmu(&tlb, old_start, old_end); 702 703 /* 704 * Shrink the vma to just the new range. Always succeeds. 705 */ 706 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 707 708 return 0; 709 } 710 711 /* 712 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 713 * the stack is optionally relocated, and some extra space is added. 714 */ 715 int setup_arg_pages(struct linux_binprm *bprm, 716 unsigned long stack_top, 717 int executable_stack) 718 { 719 unsigned long ret; 720 unsigned long stack_shift; 721 struct mm_struct *mm = current->mm; 722 struct vm_area_struct *vma = bprm->vma; 723 struct vm_area_struct *prev = NULL; 724 unsigned long vm_flags; 725 unsigned long stack_base; 726 unsigned long stack_size; 727 unsigned long stack_expand; 728 unsigned long rlim_stack; 729 730 #ifdef CONFIG_STACK_GROWSUP 731 /* Limit stack size */ 732 stack_base = bprm->rlim_stack.rlim_max; 733 if (stack_base > STACK_SIZE_MAX) 734 stack_base = STACK_SIZE_MAX; 735 736 /* Add space for stack randomization. */ 737 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 738 739 /* Make sure we didn't let the argument array grow too large. */ 740 if (vma->vm_end - vma->vm_start > stack_base) 741 return -ENOMEM; 742 743 stack_base = PAGE_ALIGN(stack_top - stack_base); 744 745 stack_shift = vma->vm_start - stack_base; 746 mm->arg_start = bprm->p - stack_shift; 747 bprm->p = vma->vm_end - stack_shift; 748 #else 749 stack_top = arch_align_stack(stack_top); 750 stack_top = PAGE_ALIGN(stack_top); 751 752 if (unlikely(stack_top < mmap_min_addr) || 753 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 754 return -ENOMEM; 755 756 stack_shift = vma->vm_end - stack_top; 757 758 bprm->p -= stack_shift; 759 mm->arg_start = bprm->p; 760 #endif 761 762 if (bprm->loader) 763 bprm->loader -= stack_shift; 764 bprm->exec -= stack_shift; 765 766 if (mmap_write_lock_killable(mm)) 767 return -EINTR; 768 769 vm_flags = VM_STACK_FLAGS; 770 771 /* 772 * Adjust stack execute permissions; explicitly enable for 773 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 774 * (arch default) otherwise. 775 */ 776 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 777 vm_flags |= VM_EXEC; 778 else if (executable_stack == EXSTACK_DISABLE_X) 779 vm_flags &= ~VM_EXEC; 780 vm_flags |= mm->def_flags; 781 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 782 783 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 784 vm_flags); 785 if (ret) 786 goto out_unlock; 787 BUG_ON(prev != vma); 788 789 if (unlikely(vm_flags & VM_EXEC)) { 790 pr_warn_once("process '%pD4' started with executable stack\n", 791 bprm->file); 792 } 793 794 /* Move stack pages down in memory. */ 795 if (stack_shift) { 796 ret = shift_arg_pages(vma, stack_shift); 797 if (ret) 798 goto out_unlock; 799 } 800 801 /* mprotect_fixup is overkill to remove the temporary stack flags */ 802 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 803 804 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 805 stack_size = vma->vm_end - vma->vm_start; 806 /* 807 * Align this down to a page boundary as expand_stack 808 * will align it up. 809 */ 810 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 811 #ifdef CONFIG_STACK_GROWSUP 812 if (stack_size + stack_expand > rlim_stack) 813 stack_base = vma->vm_start + rlim_stack; 814 else 815 stack_base = vma->vm_end + stack_expand; 816 #else 817 if (stack_size + stack_expand > rlim_stack) 818 stack_base = vma->vm_end - rlim_stack; 819 else 820 stack_base = vma->vm_start - stack_expand; 821 #endif 822 current->mm->start_stack = bprm->p; 823 ret = expand_stack(vma, stack_base); 824 if (ret) 825 ret = -EFAULT; 826 827 out_unlock: 828 mmap_write_unlock(mm); 829 return ret; 830 } 831 EXPORT_SYMBOL(setup_arg_pages); 832 833 #else 834 835 /* 836 * Transfer the program arguments and environment from the holding pages 837 * onto the stack. The provided stack pointer is adjusted accordingly. 838 */ 839 int transfer_args_to_stack(struct linux_binprm *bprm, 840 unsigned long *sp_location) 841 { 842 unsigned long index, stop, sp; 843 int ret = 0; 844 845 stop = bprm->p >> PAGE_SHIFT; 846 sp = *sp_location; 847 848 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 849 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 850 char *src = kmap(bprm->page[index]) + offset; 851 sp -= PAGE_SIZE - offset; 852 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 853 ret = -EFAULT; 854 kunmap(bprm->page[index]); 855 if (ret) 856 goto out; 857 } 858 859 *sp_location = sp; 860 861 out: 862 return ret; 863 } 864 EXPORT_SYMBOL(transfer_args_to_stack); 865 866 #endif /* CONFIG_MMU */ 867 868 static struct file *do_open_execat(int fd, struct filename *name, int flags) 869 { 870 struct file *file; 871 int err; 872 struct open_flags open_exec_flags = { 873 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 874 .acc_mode = MAY_EXEC, 875 .intent = LOOKUP_OPEN, 876 .lookup_flags = LOOKUP_FOLLOW, 877 }; 878 879 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 880 return ERR_PTR(-EINVAL); 881 if (flags & AT_SYMLINK_NOFOLLOW) 882 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 883 if (flags & AT_EMPTY_PATH) 884 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 885 886 file = do_filp_open(fd, name, &open_exec_flags); 887 if (IS_ERR(file)) 888 goto out; 889 890 err = -EACCES; 891 if (!S_ISREG(file_inode(file)->i_mode)) 892 goto exit; 893 894 if (path_noexec(&file->f_path)) 895 goto exit; 896 897 err = deny_write_access(file); 898 if (err) 899 goto exit; 900 901 if (name->name[0] != '\0') 902 fsnotify_open(file); 903 904 out: 905 return file; 906 907 exit: 908 fput(file); 909 return ERR_PTR(err); 910 } 911 912 struct file *open_exec(const char *name) 913 { 914 struct filename *filename = getname_kernel(name); 915 struct file *f = ERR_CAST(filename); 916 917 if (!IS_ERR(filename)) { 918 f = do_open_execat(AT_FDCWD, filename, 0); 919 putname(filename); 920 } 921 return f; 922 } 923 EXPORT_SYMBOL(open_exec); 924 925 int kernel_read_file(struct file *file, void **buf, loff_t *size, 926 loff_t max_size, enum kernel_read_file_id id) 927 { 928 loff_t i_size, pos; 929 ssize_t bytes = 0; 930 int ret; 931 932 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 933 return -EINVAL; 934 935 ret = deny_write_access(file); 936 if (ret) 937 return ret; 938 939 ret = security_kernel_read_file(file, id); 940 if (ret) 941 goto out; 942 943 i_size = i_size_read(file_inode(file)); 944 if (i_size <= 0) { 945 ret = -EINVAL; 946 goto out; 947 } 948 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 949 ret = -EFBIG; 950 goto out; 951 } 952 953 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 954 *buf = vmalloc(i_size); 955 if (!*buf) { 956 ret = -ENOMEM; 957 goto out; 958 } 959 960 pos = 0; 961 while (pos < i_size) { 962 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 963 if (bytes < 0) { 964 ret = bytes; 965 goto out_free; 966 } 967 968 if (bytes == 0) 969 break; 970 } 971 972 if (pos != i_size) { 973 ret = -EIO; 974 goto out_free; 975 } 976 977 ret = security_kernel_post_read_file(file, *buf, i_size, id); 978 if (!ret) 979 *size = pos; 980 981 out_free: 982 if (ret < 0) { 983 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 984 vfree(*buf); 985 *buf = NULL; 986 } 987 } 988 989 out: 990 allow_write_access(file); 991 return ret; 992 } 993 EXPORT_SYMBOL_GPL(kernel_read_file); 994 995 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 996 loff_t max_size, enum kernel_read_file_id id) 997 { 998 struct file *file; 999 int ret; 1000 1001 if (!path || !*path) 1002 return -EINVAL; 1003 1004 file = filp_open(path, O_RDONLY, 0); 1005 if (IS_ERR(file)) 1006 return PTR_ERR(file); 1007 1008 ret = kernel_read_file(file, buf, size, max_size, id); 1009 fput(file); 1010 return ret; 1011 } 1012 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 1013 1014 int kernel_read_file_from_path_initns(const char *path, void **buf, 1015 loff_t *size, loff_t max_size, 1016 enum kernel_read_file_id id) 1017 { 1018 struct file *file; 1019 struct path root; 1020 int ret; 1021 1022 if (!path || !*path) 1023 return -EINVAL; 1024 1025 task_lock(&init_task); 1026 get_fs_root(init_task.fs, &root); 1027 task_unlock(&init_task); 1028 1029 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0); 1030 path_put(&root); 1031 if (IS_ERR(file)) 1032 return PTR_ERR(file); 1033 1034 ret = kernel_read_file(file, buf, size, max_size, id); 1035 fput(file); 1036 return ret; 1037 } 1038 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns); 1039 1040 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 1041 enum kernel_read_file_id id) 1042 { 1043 struct fd f = fdget(fd); 1044 int ret = -EBADF; 1045 1046 if (!f.file) 1047 goto out; 1048 1049 ret = kernel_read_file(f.file, buf, size, max_size, id); 1050 out: 1051 fdput(f); 1052 return ret; 1053 } 1054 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 1055 1056 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 1057 defined(CONFIG_BINFMT_ELF_FDPIC) 1058 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1059 { 1060 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1061 if (res > 0) 1062 flush_icache_user_range(addr, addr + len); 1063 return res; 1064 } 1065 EXPORT_SYMBOL(read_code); 1066 #endif 1067 1068 /* 1069 * Maps the mm_struct mm into the current task struct. 1070 * On success, this function returns with the mutex 1071 * exec_update_mutex locked. 1072 */ 1073 static int exec_mmap(struct mm_struct *mm) 1074 { 1075 struct task_struct *tsk; 1076 struct mm_struct *old_mm, *active_mm; 1077 int ret; 1078 1079 /* Notify parent that we're no longer interested in the old VM */ 1080 tsk = current; 1081 old_mm = current->mm; 1082 exec_mm_release(tsk, old_mm); 1083 if (old_mm) 1084 sync_mm_rss(old_mm); 1085 1086 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 1087 if (ret) 1088 return ret; 1089 1090 if (old_mm) { 1091 /* 1092 * Make sure that if there is a core dump in progress 1093 * for the old mm, we get out and die instead of going 1094 * through with the exec. We must hold mmap_lock around 1095 * checking core_state and changing tsk->mm. 1096 */ 1097 mmap_read_lock(old_mm); 1098 if (unlikely(old_mm->core_state)) { 1099 mmap_read_unlock(old_mm); 1100 mutex_unlock(&tsk->signal->exec_update_mutex); 1101 return -EINTR; 1102 } 1103 } 1104 1105 task_lock(tsk); 1106 active_mm = tsk->active_mm; 1107 membarrier_exec_mmap(mm); 1108 tsk->mm = mm; 1109 tsk->active_mm = mm; 1110 activate_mm(active_mm, mm); 1111 tsk->mm->vmacache_seqnum = 0; 1112 vmacache_flush(tsk); 1113 task_unlock(tsk); 1114 if (old_mm) { 1115 mmap_read_unlock(old_mm); 1116 BUG_ON(active_mm != old_mm); 1117 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1118 mm_update_next_owner(old_mm); 1119 mmput(old_mm); 1120 return 0; 1121 } 1122 mmdrop(active_mm); 1123 return 0; 1124 } 1125 1126 static int de_thread(struct task_struct *tsk) 1127 { 1128 struct signal_struct *sig = tsk->signal; 1129 struct sighand_struct *oldsighand = tsk->sighand; 1130 spinlock_t *lock = &oldsighand->siglock; 1131 1132 if (thread_group_empty(tsk)) 1133 goto no_thread_group; 1134 1135 /* 1136 * Kill all other threads in the thread group. 1137 */ 1138 spin_lock_irq(lock); 1139 if (signal_group_exit(sig)) { 1140 /* 1141 * Another group action in progress, just 1142 * return so that the signal is processed. 1143 */ 1144 spin_unlock_irq(lock); 1145 return -EAGAIN; 1146 } 1147 1148 sig->group_exit_task = tsk; 1149 sig->notify_count = zap_other_threads(tsk); 1150 if (!thread_group_leader(tsk)) 1151 sig->notify_count--; 1152 1153 while (sig->notify_count) { 1154 __set_current_state(TASK_KILLABLE); 1155 spin_unlock_irq(lock); 1156 schedule(); 1157 if (__fatal_signal_pending(tsk)) 1158 goto killed; 1159 spin_lock_irq(lock); 1160 } 1161 spin_unlock_irq(lock); 1162 1163 /* 1164 * At this point all other threads have exited, all we have to 1165 * do is to wait for the thread group leader to become inactive, 1166 * and to assume its PID: 1167 */ 1168 if (!thread_group_leader(tsk)) { 1169 struct task_struct *leader = tsk->group_leader; 1170 1171 for (;;) { 1172 cgroup_threadgroup_change_begin(tsk); 1173 write_lock_irq(&tasklist_lock); 1174 /* 1175 * Do this under tasklist_lock to ensure that 1176 * exit_notify() can't miss ->group_exit_task 1177 */ 1178 sig->notify_count = -1; 1179 if (likely(leader->exit_state)) 1180 break; 1181 __set_current_state(TASK_KILLABLE); 1182 write_unlock_irq(&tasklist_lock); 1183 cgroup_threadgroup_change_end(tsk); 1184 schedule(); 1185 if (__fatal_signal_pending(tsk)) 1186 goto killed; 1187 } 1188 1189 /* 1190 * The only record we have of the real-time age of a 1191 * process, regardless of execs it's done, is start_time. 1192 * All the past CPU time is accumulated in signal_struct 1193 * from sister threads now dead. But in this non-leader 1194 * exec, nothing survives from the original leader thread, 1195 * whose birth marks the true age of this process now. 1196 * When we take on its identity by switching to its PID, we 1197 * also take its birthdate (always earlier than our own). 1198 */ 1199 tsk->start_time = leader->start_time; 1200 tsk->start_boottime = leader->start_boottime; 1201 1202 BUG_ON(!same_thread_group(leader, tsk)); 1203 /* 1204 * An exec() starts a new thread group with the 1205 * TGID of the previous thread group. Rehash the 1206 * two threads with a switched PID, and release 1207 * the former thread group leader: 1208 */ 1209 1210 /* Become a process group leader with the old leader's pid. 1211 * The old leader becomes a thread of the this thread group. 1212 */ 1213 exchange_tids(tsk, leader); 1214 transfer_pid(leader, tsk, PIDTYPE_TGID); 1215 transfer_pid(leader, tsk, PIDTYPE_PGID); 1216 transfer_pid(leader, tsk, PIDTYPE_SID); 1217 1218 list_replace_rcu(&leader->tasks, &tsk->tasks); 1219 list_replace_init(&leader->sibling, &tsk->sibling); 1220 1221 tsk->group_leader = tsk; 1222 leader->group_leader = tsk; 1223 1224 tsk->exit_signal = SIGCHLD; 1225 leader->exit_signal = -1; 1226 1227 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1228 leader->exit_state = EXIT_DEAD; 1229 1230 /* 1231 * We are going to release_task()->ptrace_unlink() silently, 1232 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1233 * the tracer wont't block again waiting for this thread. 1234 */ 1235 if (unlikely(leader->ptrace)) 1236 __wake_up_parent(leader, leader->parent); 1237 write_unlock_irq(&tasklist_lock); 1238 cgroup_threadgroup_change_end(tsk); 1239 1240 release_task(leader); 1241 } 1242 1243 sig->group_exit_task = NULL; 1244 sig->notify_count = 0; 1245 1246 no_thread_group: 1247 /* we have changed execution domain */ 1248 tsk->exit_signal = SIGCHLD; 1249 1250 BUG_ON(!thread_group_leader(tsk)); 1251 return 0; 1252 1253 killed: 1254 /* protects against exit_notify() and __exit_signal() */ 1255 read_lock(&tasklist_lock); 1256 sig->group_exit_task = NULL; 1257 sig->notify_count = 0; 1258 read_unlock(&tasklist_lock); 1259 return -EAGAIN; 1260 } 1261 1262 1263 /* 1264 * This function makes sure the current process has its own signal table, 1265 * so that flush_signal_handlers can later reset the handlers without 1266 * disturbing other processes. (Other processes might share the signal 1267 * table via the CLONE_SIGHAND option to clone().) 1268 */ 1269 static int unshare_sighand(struct task_struct *me) 1270 { 1271 struct sighand_struct *oldsighand = me->sighand; 1272 1273 if (refcount_read(&oldsighand->count) != 1) { 1274 struct sighand_struct *newsighand; 1275 /* 1276 * This ->sighand is shared with the CLONE_SIGHAND 1277 * but not CLONE_THREAD task, switch to the new one. 1278 */ 1279 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1280 if (!newsighand) 1281 return -ENOMEM; 1282 1283 refcount_set(&newsighand->count, 1); 1284 memcpy(newsighand->action, oldsighand->action, 1285 sizeof(newsighand->action)); 1286 1287 write_lock_irq(&tasklist_lock); 1288 spin_lock(&oldsighand->siglock); 1289 rcu_assign_pointer(me->sighand, newsighand); 1290 spin_unlock(&oldsighand->siglock); 1291 write_unlock_irq(&tasklist_lock); 1292 1293 __cleanup_sighand(oldsighand); 1294 } 1295 return 0; 1296 } 1297 1298 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1299 { 1300 task_lock(tsk); 1301 strncpy(buf, tsk->comm, buf_size); 1302 task_unlock(tsk); 1303 return buf; 1304 } 1305 EXPORT_SYMBOL_GPL(__get_task_comm); 1306 1307 /* 1308 * These functions flushes out all traces of the currently running executable 1309 * so that a new one can be started 1310 */ 1311 1312 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1313 { 1314 task_lock(tsk); 1315 trace_task_rename(tsk, buf); 1316 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1317 task_unlock(tsk); 1318 perf_event_comm(tsk, exec); 1319 } 1320 1321 /* 1322 * Calling this is the point of no return. None of the failures will be 1323 * seen by userspace since either the process is already taking a fatal 1324 * signal (via de_thread() or coredump), or will have SEGV raised 1325 * (after exec_mmap()) by search_binary_handler (see below). 1326 */ 1327 int begin_new_exec(struct linux_binprm * bprm) 1328 { 1329 struct task_struct *me = current; 1330 int retval; 1331 1332 /* Once we are committed compute the creds */ 1333 retval = bprm_creds_from_file(bprm); 1334 if (retval) 1335 return retval; 1336 1337 /* 1338 * Ensure all future errors are fatal. 1339 */ 1340 bprm->point_of_no_return = true; 1341 1342 /* 1343 * Make this the only thread in the thread group. 1344 */ 1345 retval = de_thread(me); 1346 if (retval) 1347 goto out; 1348 1349 /* 1350 * Must be called _before_ exec_mmap() as bprm->mm is 1351 * not visibile until then. This also enables the update 1352 * to be lockless. 1353 */ 1354 set_mm_exe_file(bprm->mm, bprm->file); 1355 1356 /* If the binary is not readable then enforce mm->dumpable=0 */ 1357 would_dump(bprm, bprm->file); 1358 if (bprm->have_execfd) 1359 would_dump(bprm, bprm->executable); 1360 1361 /* 1362 * Release all of the old mmap stuff 1363 */ 1364 acct_arg_size(bprm, 0); 1365 retval = exec_mmap(bprm->mm); 1366 if (retval) 1367 goto out; 1368 1369 bprm->mm = NULL; 1370 1371 #ifdef CONFIG_POSIX_TIMERS 1372 exit_itimers(me->signal); 1373 flush_itimer_signals(); 1374 #endif 1375 1376 /* 1377 * Make the signal table private. 1378 */ 1379 retval = unshare_sighand(me); 1380 if (retval) 1381 goto out_unlock; 1382 1383 set_fs(USER_DS); 1384 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1385 PF_NOFREEZE | PF_NO_SETAFFINITY); 1386 flush_thread(); 1387 me->personality &= ~bprm->per_clear; 1388 1389 /* 1390 * We have to apply CLOEXEC before we change whether the process is 1391 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1392 * trying to access the should-be-closed file descriptors of a process 1393 * undergoing exec(2). 1394 */ 1395 do_close_on_exec(me->files); 1396 1397 if (bprm->secureexec) { 1398 /* Make sure parent cannot signal privileged process. */ 1399 me->pdeath_signal = 0; 1400 1401 /* 1402 * For secureexec, reset the stack limit to sane default to 1403 * avoid bad behavior from the prior rlimits. This has to 1404 * happen before arch_pick_mmap_layout(), which examines 1405 * RLIMIT_STACK, but after the point of no return to avoid 1406 * needing to clean up the change on failure. 1407 */ 1408 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1409 bprm->rlim_stack.rlim_cur = _STK_LIM; 1410 } 1411 1412 me->sas_ss_sp = me->sas_ss_size = 0; 1413 1414 /* 1415 * Figure out dumpability. Note that this checking only of current 1416 * is wrong, but userspace depends on it. This should be testing 1417 * bprm->secureexec instead. 1418 */ 1419 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1420 !(uid_eq(current_euid(), current_uid()) && 1421 gid_eq(current_egid(), current_gid()))) 1422 set_dumpable(current->mm, suid_dumpable); 1423 else 1424 set_dumpable(current->mm, SUID_DUMP_USER); 1425 1426 perf_event_exec(); 1427 __set_task_comm(me, kbasename(bprm->filename), true); 1428 1429 /* An exec changes our domain. We are no longer part of the thread 1430 group */ 1431 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1432 flush_signal_handlers(me, 0); 1433 1434 /* 1435 * install the new credentials for this executable 1436 */ 1437 security_bprm_committing_creds(bprm); 1438 1439 commit_creds(bprm->cred); 1440 bprm->cred = NULL; 1441 1442 /* 1443 * Disable monitoring for regular users 1444 * when executing setuid binaries. Must 1445 * wait until new credentials are committed 1446 * by commit_creds() above 1447 */ 1448 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1449 perf_event_exit_task(me); 1450 /* 1451 * cred_guard_mutex must be held at least to this point to prevent 1452 * ptrace_attach() from altering our determination of the task's 1453 * credentials; any time after this it may be unlocked. 1454 */ 1455 security_bprm_committed_creds(bprm); 1456 1457 /* Pass the opened binary to the interpreter. */ 1458 if (bprm->have_execfd) { 1459 retval = get_unused_fd_flags(0); 1460 if (retval < 0) 1461 goto out_unlock; 1462 fd_install(retval, bprm->executable); 1463 bprm->executable = NULL; 1464 bprm->execfd = retval; 1465 } 1466 return 0; 1467 1468 out_unlock: 1469 mutex_unlock(&me->signal->exec_update_mutex); 1470 out: 1471 return retval; 1472 } 1473 EXPORT_SYMBOL(begin_new_exec); 1474 1475 void would_dump(struct linux_binprm *bprm, struct file *file) 1476 { 1477 struct inode *inode = file_inode(file); 1478 if (inode_permission(inode, MAY_READ) < 0) { 1479 struct user_namespace *old, *user_ns; 1480 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1481 1482 /* Ensure mm->user_ns contains the executable */ 1483 user_ns = old = bprm->mm->user_ns; 1484 while ((user_ns != &init_user_ns) && 1485 !privileged_wrt_inode_uidgid(user_ns, inode)) 1486 user_ns = user_ns->parent; 1487 1488 if (old != user_ns) { 1489 bprm->mm->user_ns = get_user_ns(user_ns); 1490 put_user_ns(old); 1491 } 1492 } 1493 } 1494 EXPORT_SYMBOL(would_dump); 1495 1496 void setup_new_exec(struct linux_binprm * bprm) 1497 { 1498 /* Setup things that can depend upon the personality */ 1499 struct task_struct *me = current; 1500 1501 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1502 1503 arch_setup_new_exec(); 1504 1505 /* Set the new mm task size. We have to do that late because it may 1506 * depend on TIF_32BIT which is only updated in flush_thread() on 1507 * some architectures like powerpc 1508 */ 1509 me->mm->task_size = TASK_SIZE; 1510 mutex_unlock(&me->signal->exec_update_mutex); 1511 mutex_unlock(&me->signal->cred_guard_mutex); 1512 } 1513 EXPORT_SYMBOL(setup_new_exec); 1514 1515 /* Runs immediately before start_thread() takes over. */ 1516 void finalize_exec(struct linux_binprm *bprm) 1517 { 1518 /* Store any stack rlimit changes before starting thread. */ 1519 task_lock(current->group_leader); 1520 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1521 task_unlock(current->group_leader); 1522 } 1523 EXPORT_SYMBOL(finalize_exec); 1524 1525 /* 1526 * Prepare credentials and lock ->cred_guard_mutex. 1527 * setup_new_exec() commits the new creds and drops the lock. 1528 * Or, if exec fails before, free_bprm() should release ->cred and 1529 * and unlock. 1530 */ 1531 static int prepare_bprm_creds(struct linux_binprm *bprm) 1532 { 1533 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1534 return -ERESTARTNOINTR; 1535 1536 bprm->cred = prepare_exec_creds(); 1537 if (likely(bprm->cred)) 1538 return 0; 1539 1540 mutex_unlock(¤t->signal->cred_guard_mutex); 1541 return -ENOMEM; 1542 } 1543 1544 static void free_bprm(struct linux_binprm *bprm) 1545 { 1546 free_arg_pages(bprm); 1547 if (bprm->cred) { 1548 mutex_unlock(¤t->signal->cred_guard_mutex); 1549 abort_creds(bprm->cred); 1550 } 1551 if (bprm->file) { 1552 allow_write_access(bprm->file); 1553 fput(bprm->file); 1554 } 1555 if (bprm->executable) 1556 fput(bprm->executable); 1557 /* If a binfmt changed the interp, free it. */ 1558 if (bprm->interp != bprm->filename) 1559 kfree(bprm->interp); 1560 kfree(bprm); 1561 } 1562 1563 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1564 { 1565 /* If a binfmt changed the interp, free it first. */ 1566 if (bprm->interp != bprm->filename) 1567 kfree(bprm->interp); 1568 bprm->interp = kstrdup(interp, GFP_KERNEL); 1569 if (!bprm->interp) 1570 return -ENOMEM; 1571 return 0; 1572 } 1573 EXPORT_SYMBOL(bprm_change_interp); 1574 1575 /* 1576 * determine how safe it is to execute the proposed program 1577 * - the caller must hold ->cred_guard_mutex to protect against 1578 * PTRACE_ATTACH or seccomp thread-sync 1579 */ 1580 static void check_unsafe_exec(struct linux_binprm *bprm) 1581 { 1582 struct task_struct *p = current, *t; 1583 unsigned n_fs; 1584 1585 if (p->ptrace) 1586 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1587 1588 /* 1589 * This isn't strictly necessary, but it makes it harder for LSMs to 1590 * mess up. 1591 */ 1592 if (task_no_new_privs(current)) 1593 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1594 1595 t = p; 1596 n_fs = 1; 1597 spin_lock(&p->fs->lock); 1598 rcu_read_lock(); 1599 while_each_thread(p, t) { 1600 if (t->fs == p->fs) 1601 n_fs++; 1602 } 1603 rcu_read_unlock(); 1604 1605 if (p->fs->users > n_fs) 1606 bprm->unsafe |= LSM_UNSAFE_SHARE; 1607 else 1608 p->fs->in_exec = 1; 1609 spin_unlock(&p->fs->lock); 1610 } 1611 1612 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1613 { 1614 /* Handle suid and sgid on files */ 1615 struct inode *inode; 1616 unsigned int mode; 1617 kuid_t uid; 1618 kgid_t gid; 1619 1620 if (!mnt_may_suid(file->f_path.mnt)) 1621 return; 1622 1623 if (task_no_new_privs(current)) 1624 return; 1625 1626 inode = file->f_path.dentry->d_inode; 1627 mode = READ_ONCE(inode->i_mode); 1628 if (!(mode & (S_ISUID|S_ISGID))) 1629 return; 1630 1631 /* Be careful if suid/sgid is set */ 1632 inode_lock(inode); 1633 1634 /* reload atomically mode/uid/gid now that lock held */ 1635 mode = inode->i_mode; 1636 uid = inode->i_uid; 1637 gid = inode->i_gid; 1638 inode_unlock(inode); 1639 1640 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1641 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1642 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1643 return; 1644 1645 if (mode & S_ISUID) { 1646 bprm->per_clear |= PER_CLEAR_ON_SETID; 1647 bprm->cred->euid = uid; 1648 } 1649 1650 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1651 bprm->per_clear |= PER_CLEAR_ON_SETID; 1652 bprm->cred->egid = gid; 1653 } 1654 } 1655 1656 /* 1657 * Compute brpm->cred based upon the final binary. 1658 */ 1659 static int bprm_creds_from_file(struct linux_binprm *bprm) 1660 { 1661 /* Compute creds based on which file? */ 1662 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1663 1664 bprm_fill_uid(bprm, file); 1665 return security_bprm_creds_from_file(bprm, file); 1666 } 1667 1668 /* 1669 * Fill the binprm structure from the inode. 1670 * Read the first BINPRM_BUF_SIZE bytes 1671 * 1672 * This may be called multiple times for binary chains (scripts for example). 1673 */ 1674 static int prepare_binprm(struct linux_binprm *bprm) 1675 { 1676 loff_t pos = 0; 1677 1678 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1679 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1680 } 1681 1682 /* 1683 * Arguments are '\0' separated strings found at the location bprm->p 1684 * points to; chop off the first by relocating brpm->p to right after 1685 * the first '\0' encountered. 1686 */ 1687 int remove_arg_zero(struct linux_binprm *bprm) 1688 { 1689 int ret = 0; 1690 unsigned long offset; 1691 char *kaddr; 1692 struct page *page; 1693 1694 if (!bprm->argc) 1695 return 0; 1696 1697 do { 1698 offset = bprm->p & ~PAGE_MASK; 1699 page = get_arg_page(bprm, bprm->p, 0); 1700 if (!page) { 1701 ret = -EFAULT; 1702 goto out; 1703 } 1704 kaddr = kmap_atomic(page); 1705 1706 for (; offset < PAGE_SIZE && kaddr[offset]; 1707 offset++, bprm->p++) 1708 ; 1709 1710 kunmap_atomic(kaddr); 1711 put_arg_page(page); 1712 } while (offset == PAGE_SIZE); 1713 1714 bprm->p++; 1715 bprm->argc--; 1716 ret = 0; 1717 1718 out: 1719 return ret; 1720 } 1721 EXPORT_SYMBOL(remove_arg_zero); 1722 1723 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1724 /* 1725 * cycle the list of binary formats handler, until one recognizes the image 1726 */ 1727 static int search_binary_handler(struct linux_binprm *bprm) 1728 { 1729 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1730 struct linux_binfmt *fmt; 1731 int retval; 1732 1733 retval = prepare_binprm(bprm); 1734 if (retval < 0) 1735 return retval; 1736 1737 retval = security_bprm_check(bprm); 1738 if (retval) 1739 return retval; 1740 1741 retval = -ENOENT; 1742 retry: 1743 read_lock(&binfmt_lock); 1744 list_for_each_entry(fmt, &formats, lh) { 1745 if (!try_module_get(fmt->module)) 1746 continue; 1747 read_unlock(&binfmt_lock); 1748 1749 retval = fmt->load_binary(bprm); 1750 1751 read_lock(&binfmt_lock); 1752 put_binfmt(fmt); 1753 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1754 read_unlock(&binfmt_lock); 1755 return retval; 1756 } 1757 } 1758 read_unlock(&binfmt_lock); 1759 1760 if (need_retry) { 1761 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1762 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1763 return retval; 1764 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1765 return retval; 1766 need_retry = false; 1767 goto retry; 1768 } 1769 1770 return retval; 1771 } 1772 1773 static int exec_binprm(struct linux_binprm *bprm) 1774 { 1775 pid_t old_pid, old_vpid; 1776 int ret, depth; 1777 1778 /* Need to fetch pid before load_binary changes it */ 1779 old_pid = current->pid; 1780 rcu_read_lock(); 1781 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1782 rcu_read_unlock(); 1783 1784 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1785 for (depth = 0;; depth++) { 1786 struct file *exec; 1787 if (depth > 5) 1788 return -ELOOP; 1789 1790 ret = search_binary_handler(bprm); 1791 if (ret < 0) 1792 return ret; 1793 if (!bprm->interpreter) 1794 break; 1795 1796 exec = bprm->file; 1797 bprm->file = bprm->interpreter; 1798 bprm->interpreter = NULL; 1799 1800 allow_write_access(exec); 1801 if (unlikely(bprm->have_execfd)) { 1802 if (bprm->executable) { 1803 fput(exec); 1804 return -ENOEXEC; 1805 } 1806 bprm->executable = exec; 1807 } else 1808 fput(exec); 1809 } 1810 1811 audit_bprm(bprm); 1812 trace_sched_process_exec(current, old_pid, bprm); 1813 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1814 proc_exec_connector(current); 1815 return 0; 1816 } 1817 1818 /* 1819 * sys_execve() executes a new program. 1820 */ 1821 static int __do_execve_file(int fd, struct filename *filename, 1822 struct user_arg_ptr argv, 1823 struct user_arg_ptr envp, 1824 int flags, struct file *file) 1825 { 1826 char *pathbuf = NULL; 1827 struct linux_binprm *bprm; 1828 struct files_struct *displaced; 1829 int retval; 1830 1831 if (IS_ERR(filename)) 1832 return PTR_ERR(filename); 1833 1834 /* 1835 * We move the actual failure in case of RLIMIT_NPROC excess from 1836 * set*uid() to execve() because too many poorly written programs 1837 * don't check setuid() return code. Here we additionally recheck 1838 * whether NPROC limit is still exceeded. 1839 */ 1840 if ((current->flags & PF_NPROC_EXCEEDED) && 1841 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1842 retval = -EAGAIN; 1843 goto out_ret; 1844 } 1845 1846 /* We're below the limit (still or again), so we don't want to make 1847 * further execve() calls fail. */ 1848 current->flags &= ~PF_NPROC_EXCEEDED; 1849 1850 retval = unshare_files(&displaced); 1851 if (retval) 1852 goto out_ret; 1853 1854 retval = -ENOMEM; 1855 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1856 if (!bprm) 1857 goto out_files; 1858 1859 retval = prepare_bprm_creds(bprm); 1860 if (retval) 1861 goto out_free; 1862 1863 check_unsafe_exec(bprm); 1864 current->in_execve = 1; 1865 1866 if (!file) 1867 file = do_open_execat(fd, filename, flags); 1868 retval = PTR_ERR(file); 1869 if (IS_ERR(file)) 1870 goto out_unmark; 1871 1872 sched_exec(); 1873 1874 bprm->file = file; 1875 if (!filename) { 1876 bprm->filename = "none"; 1877 } else if (fd == AT_FDCWD || filename->name[0] == '/') { 1878 bprm->filename = filename->name; 1879 } else { 1880 if (filename->name[0] == '\0') 1881 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1882 else 1883 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1884 fd, filename->name); 1885 if (!pathbuf) { 1886 retval = -ENOMEM; 1887 goto out_unmark; 1888 } 1889 /* 1890 * Record that a name derived from an O_CLOEXEC fd will be 1891 * inaccessible after exec. Relies on having exclusive access to 1892 * current->files (due to unshare_files above). 1893 */ 1894 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1895 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1896 bprm->filename = pathbuf; 1897 } 1898 bprm->interp = bprm->filename; 1899 1900 retval = bprm_mm_init(bprm); 1901 if (retval) 1902 goto out_unmark; 1903 1904 retval = prepare_arg_pages(bprm, argv, envp); 1905 if (retval < 0) 1906 goto out; 1907 1908 /* Set the unchanging part of bprm->cred */ 1909 retval = security_bprm_creds_for_exec(bprm); 1910 if (retval) 1911 goto out; 1912 1913 retval = copy_string_kernel(bprm->filename, bprm); 1914 if (retval < 0) 1915 goto out; 1916 1917 bprm->exec = bprm->p; 1918 retval = copy_strings(bprm->envc, envp, bprm); 1919 if (retval < 0) 1920 goto out; 1921 1922 retval = copy_strings(bprm->argc, argv, bprm); 1923 if (retval < 0) 1924 goto out; 1925 1926 retval = exec_binprm(bprm); 1927 if (retval < 0) 1928 goto out; 1929 1930 /* execve succeeded */ 1931 current->fs->in_exec = 0; 1932 current->in_execve = 0; 1933 rseq_execve(current); 1934 acct_update_integrals(current); 1935 task_numa_free(current, false); 1936 free_bprm(bprm); 1937 kfree(pathbuf); 1938 if (filename) 1939 putname(filename); 1940 if (displaced) 1941 put_files_struct(displaced); 1942 return retval; 1943 1944 out: 1945 /* 1946 * If past the point of no return ensure the the code never 1947 * returns to the userspace process. Use an existing fatal 1948 * signal if present otherwise terminate the process with 1949 * SIGSEGV. 1950 */ 1951 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1952 force_sigsegv(SIGSEGV); 1953 if (bprm->mm) { 1954 acct_arg_size(bprm, 0); 1955 mmput(bprm->mm); 1956 } 1957 1958 out_unmark: 1959 current->fs->in_exec = 0; 1960 current->in_execve = 0; 1961 1962 out_free: 1963 free_bprm(bprm); 1964 kfree(pathbuf); 1965 1966 out_files: 1967 if (displaced) 1968 reset_files_struct(displaced); 1969 out_ret: 1970 if (filename) 1971 putname(filename); 1972 return retval; 1973 } 1974 1975 static int do_execveat_common(int fd, struct filename *filename, 1976 struct user_arg_ptr argv, 1977 struct user_arg_ptr envp, 1978 int flags) 1979 { 1980 return __do_execve_file(fd, filename, argv, envp, flags, NULL); 1981 } 1982 1983 int do_execve_file(struct file *file, void *__argv, void *__envp) 1984 { 1985 struct user_arg_ptr argv = { .ptr.native = __argv }; 1986 struct user_arg_ptr envp = { .ptr.native = __envp }; 1987 1988 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); 1989 } 1990 1991 int do_execve(struct filename *filename, 1992 const char __user *const __user *__argv, 1993 const char __user *const __user *__envp) 1994 { 1995 struct user_arg_ptr argv = { .ptr.native = __argv }; 1996 struct user_arg_ptr envp = { .ptr.native = __envp }; 1997 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1998 } 1999 2000 int do_execveat(int fd, struct filename *filename, 2001 const char __user *const __user *__argv, 2002 const char __user *const __user *__envp, 2003 int flags) 2004 { 2005 struct user_arg_ptr argv = { .ptr.native = __argv }; 2006 struct user_arg_ptr envp = { .ptr.native = __envp }; 2007 2008 return do_execveat_common(fd, filename, argv, envp, flags); 2009 } 2010 2011 #ifdef CONFIG_COMPAT 2012 static int compat_do_execve(struct filename *filename, 2013 const compat_uptr_t __user *__argv, 2014 const compat_uptr_t __user *__envp) 2015 { 2016 struct user_arg_ptr argv = { 2017 .is_compat = true, 2018 .ptr.compat = __argv, 2019 }; 2020 struct user_arg_ptr envp = { 2021 .is_compat = true, 2022 .ptr.compat = __envp, 2023 }; 2024 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2025 } 2026 2027 static int compat_do_execveat(int fd, struct filename *filename, 2028 const compat_uptr_t __user *__argv, 2029 const compat_uptr_t __user *__envp, 2030 int flags) 2031 { 2032 struct user_arg_ptr argv = { 2033 .is_compat = true, 2034 .ptr.compat = __argv, 2035 }; 2036 struct user_arg_ptr envp = { 2037 .is_compat = true, 2038 .ptr.compat = __envp, 2039 }; 2040 return do_execveat_common(fd, filename, argv, envp, flags); 2041 } 2042 #endif 2043 2044 void set_binfmt(struct linux_binfmt *new) 2045 { 2046 struct mm_struct *mm = current->mm; 2047 2048 if (mm->binfmt) 2049 module_put(mm->binfmt->module); 2050 2051 mm->binfmt = new; 2052 if (new) 2053 __module_get(new->module); 2054 } 2055 EXPORT_SYMBOL(set_binfmt); 2056 2057 /* 2058 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2059 */ 2060 void set_dumpable(struct mm_struct *mm, int value) 2061 { 2062 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2063 return; 2064 2065 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2066 } 2067 2068 SYSCALL_DEFINE3(execve, 2069 const char __user *, filename, 2070 const char __user *const __user *, argv, 2071 const char __user *const __user *, envp) 2072 { 2073 return do_execve(getname(filename), argv, envp); 2074 } 2075 2076 SYSCALL_DEFINE5(execveat, 2077 int, fd, const char __user *, filename, 2078 const char __user *const __user *, argv, 2079 const char __user *const __user *, envp, 2080 int, flags) 2081 { 2082 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2083 2084 return do_execveat(fd, 2085 getname_flags(filename, lookup_flags, NULL), 2086 argv, envp, flags); 2087 } 2088 2089 #ifdef CONFIG_COMPAT 2090 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2091 const compat_uptr_t __user *, argv, 2092 const compat_uptr_t __user *, envp) 2093 { 2094 return compat_do_execve(getname(filename), argv, envp); 2095 } 2096 2097 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2098 const char __user *, filename, 2099 const compat_uptr_t __user *, argv, 2100 const compat_uptr_t __user *, envp, 2101 int, flags) 2102 { 2103 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2104 2105 return compat_do_execveat(fd, 2106 getname_flags(filename, lookup_flags, NULL), 2107 argv, envp, flags); 2108 } 2109 #endif 2110