xref: /openbmc/linux/fs/exec.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
55 #include <asm/tlb.h>
56 
57 #ifdef CONFIG_KMOD
58 #include <linux/kmod.h>
59 #endif
60 
61 #ifdef __alpha__
62 /* for /sbin/loader handling in search_binary_handler() */
63 #include <linux/a.out.h>
64 #endif
65 
66 int core_uses_pid;
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 int suid_dumpable = 0;
69 
70 /* The maximal length of core_pattern is also specified in sysctl.c */
71 
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74 
75 int register_binfmt(struct linux_binfmt * fmt)
76 {
77 	if (!fmt)
78 		return -EINVAL;
79 	write_lock(&binfmt_lock);
80 	list_add(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 	return 0;
83 }
84 
85 EXPORT_SYMBOL(register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 asmlinkage long sys_uselib(const char __user * library)
108 {
109 	struct file *file;
110 	struct nameidata nd;
111 	char *tmp = getname(library);
112 	int error = PTR_ERR(tmp);
113 
114 	if (!IS_ERR(tmp)) {
115 		error = path_lookup_open(AT_FDCWD, tmp,
116 					 LOOKUP_FOLLOW, &nd,
117 					 FMODE_READ|FMODE_EXEC);
118 		putname(tmp);
119 	}
120 	if (error)
121 		goto out;
122 
123 	error = -EINVAL;
124 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
125 		goto exit;
126 
127 	error = -EACCES;
128 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
129 		goto exit;
130 
131 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
132 	if (error)
133 		goto exit;
134 
135 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
136 	error = PTR_ERR(file);
137 	if (IS_ERR(file))
138 		goto out;
139 
140 	error = -ENOEXEC;
141 	if(file->f_op) {
142 		struct linux_binfmt * fmt;
143 
144 		read_lock(&binfmt_lock);
145 		list_for_each_entry(fmt, &formats, lh) {
146 			if (!fmt->load_shlib)
147 				continue;
148 			if (!try_module_get(fmt->module))
149 				continue;
150 			read_unlock(&binfmt_lock);
151 			error = fmt->load_shlib(file);
152 			read_lock(&binfmt_lock);
153 			put_binfmt(fmt);
154 			if (error != -ENOEXEC)
155 				break;
156 		}
157 		read_unlock(&binfmt_lock);
158 	}
159 	fput(file);
160 out:
161   	return error;
162 exit:
163 	release_open_intent(&nd);
164 	path_put(&nd.path);
165 	goto out;
166 }
167 
168 #ifdef CONFIG_MMU
169 
170 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
171 		int write)
172 {
173 	struct page *page;
174 	int ret;
175 
176 #ifdef CONFIG_STACK_GROWSUP
177 	if (write) {
178 		ret = expand_stack_downwards(bprm->vma, pos);
179 		if (ret < 0)
180 			return NULL;
181 	}
182 #endif
183 	ret = get_user_pages(current, bprm->mm, pos,
184 			1, write, 1, &page, NULL);
185 	if (ret <= 0)
186 		return NULL;
187 
188 	if (write) {
189 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
190 		struct rlimit *rlim;
191 
192 		/*
193 		 * We've historically supported up to 32 pages (ARG_MAX)
194 		 * of argument strings even with small stacks
195 		 */
196 		if (size <= ARG_MAX)
197 			return page;
198 
199 		/*
200 		 * Limit to 1/4-th the stack size for the argv+env strings.
201 		 * This ensures that:
202 		 *  - the remaining binfmt code will not run out of stack space,
203 		 *  - the program will have a reasonable amount of stack left
204 		 *    to work from.
205 		 */
206 		rlim = current->signal->rlim;
207 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
208 			put_page(page);
209 			return NULL;
210 		}
211 	}
212 
213 	return page;
214 }
215 
216 static void put_arg_page(struct page *page)
217 {
218 	put_page(page);
219 }
220 
221 static void free_arg_page(struct linux_binprm *bprm, int i)
222 {
223 }
224 
225 static void free_arg_pages(struct linux_binprm *bprm)
226 {
227 }
228 
229 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
230 		struct page *page)
231 {
232 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
233 }
234 
235 static int __bprm_mm_init(struct linux_binprm *bprm)
236 {
237 	int err = -ENOMEM;
238 	struct vm_area_struct *vma = NULL;
239 	struct mm_struct *mm = bprm->mm;
240 
241 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
242 	if (!vma)
243 		goto err;
244 
245 	down_write(&mm->mmap_sem);
246 	vma->vm_mm = mm;
247 
248 	/*
249 	 * Place the stack at the largest stack address the architecture
250 	 * supports. Later, we'll move this to an appropriate place. We don't
251 	 * use STACK_TOP because that can depend on attributes which aren't
252 	 * configured yet.
253 	 */
254 	vma->vm_end = STACK_TOP_MAX;
255 	vma->vm_start = vma->vm_end - PAGE_SIZE;
256 
257 	vma->vm_flags = VM_STACK_FLAGS;
258 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
259 	err = insert_vm_struct(mm, vma);
260 	if (err) {
261 		up_write(&mm->mmap_sem);
262 		goto err;
263 	}
264 
265 	mm->stack_vm = mm->total_vm = 1;
266 	up_write(&mm->mmap_sem);
267 
268 	bprm->p = vma->vm_end - sizeof(void *);
269 
270 	return 0;
271 
272 err:
273 	if (vma) {
274 		bprm->vma = NULL;
275 		kmem_cache_free(vm_area_cachep, vma);
276 	}
277 
278 	return err;
279 }
280 
281 static bool valid_arg_len(struct linux_binprm *bprm, long len)
282 {
283 	return len <= MAX_ARG_STRLEN;
284 }
285 
286 #else
287 
288 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
289 		int write)
290 {
291 	struct page *page;
292 
293 	page = bprm->page[pos / PAGE_SIZE];
294 	if (!page && write) {
295 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
296 		if (!page)
297 			return NULL;
298 		bprm->page[pos / PAGE_SIZE] = page;
299 	}
300 
301 	return page;
302 }
303 
304 static void put_arg_page(struct page *page)
305 {
306 }
307 
308 static void free_arg_page(struct linux_binprm *bprm, int i)
309 {
310 	if (bprm->page[i]) {
311 		__free_page(bprm->page[i]);
312 		bprm->page[i] = NULL;
313 	}
314 }
315 
316 static void free_arg_pages(struct linux_binprm *bprm)
317 {
318 	int i;
319 
320 	for (i = 0; i < MAX_ARG_PAGES; i++)
321 		free_arg_page(bprm, i);
322 }
323 
324 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
325 		struct page *page)
326 {
327 }
328 
329 static int __bprm_mm_init(struct linux_binprm *bprm)
330 {
331 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
332 	return 0;
333 }
334 
335 static bool valid_arg_len(struct linux_binprm *bprm, long len)
336 {
337 	return len <= bprm->p;
338 }
339 
340 #endif /* CONFIG_MMU */
341 
342 /*
343  * Create a new mm_struct and populate it with a temporary stack
344  * vm_area_struct.  We don't have enough context at this point to set the stack
345  * flags, permissions, and offset, so we use temporary values.  We'll update
346  * them later in setup_arg_pages().
347  */
348 int bprm_mm_init(struct linux_binprm *bprm)
349 {
350 	int err;
351 	struct mm_struct *mm = NULL;
352 
353 	bprm->mm = mm = mm_alloc();
354 	err = -ENOMEM;
355 	if (!mm)
356 		goto err;
357 
358 	err = init_new_context(current, mm);
359 	if (err)
360 		goto err;
361 
362 	err = __bprm_mm_init(bprm);
363 	if (err)
364 		goto err;
365 
366 	return 0;
367 
368 err:
369 	if (mm) {
370 		bprm->mm = NULL;
371 		mmdrop(mm);
372 	}
373 
374 	return err;
375 }
376 
377 /*
378  * count() counts the number of strings in array ARGV.
379  */
380 static int count(char __user * __user * argv, int max)
381 {
382 	int i = 0;
383 
384 	if (argv != NULL) {
385 		for (;;) {
386 			char __user * p;
387 
388 			if (get_user(p, argv))
389 				return -EFAULT;
390 			if (!p)
391 				break;
392 			argv++;
393 			if(++i > max)
394 				return -E2BIG;
395 			cond_resched();
396 		}
397 	}
398 	return i;
399 }
400 
401 /*
402  * 'copy_strings()' copies argument/environment strings from the old
403  * processes's memory to the new process's stack.  The call to get_user_pages()
404  * ensures the destination page is created and not swapped out.
405  */
406 static int copy_strings(int argc, char __user * __user * argv,
407 			struct linux_binprm *bprm)
408 {
409 	struct page *kmapped_page = NULL;
410 	char *kaddr = NULL;
411 	unsigned long kpos = 0;
412 	int ret;
413 
414 	while (argc-- > 0) {
415 		char __user *str;
416 		int len;
417 		unsigned long pos;
418 
419 		if (get_user(str, argv+argc) ||
420 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
421 			ret = -EFAULT;
422 			goto out;
423 		}
424 
425 		if (!valid_arg_len(bprm, len)) {
426 			ret = -E2BIG;
427 			goto out;
428 		}
429 
430 		/* We're going to work our way backwords. */
431 		pos = bprm->p;
432 		str += len;
433 		bprm->p -= len;
434 
435 		while (len > 0) {
436 			int offset, bytes_to_copy;
437 
438 			offset = pos % PAGE_SIZE;
439 			if (offset == 0)
440 				offset = PAGE_SIZE;
441 
442 			bytes_to_copy = offset;
443 			if (bytes_to_copy > len)
444 				bytes_to_copy = len;
445 
446 			offset -= bytes_to_copy;
447 			pos -= bytes_to_copy;
448 			str -= bytes_to_copy;
449 			len -= bytes_to_copy;
450 
451 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
452 				struct page *page;
453 
454 				page = get_arg_page(bprm, pos, 1);
455 				if (!page) {
456 					ret = -E2BIG;
457 					goto out;
458 				}
459 
460 				if (kmapped_page) {
461 					flush_kernel_dcache_page(kmapped_page);
462 					kunmap(kmapped_page);
463 					put_arg_page(kmapped_page);
464 				}
465 				kmapped_page = page;
466 				kaddr = kmap(kmapped_page);
467 				kpos = pos & PAGE_MASK;
468 				flush_arg_page(bprm, kpos, kmapped_page);
469 			}
470 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
471 				ret = -EFAULT;
472 				goto out;
473 			}
474 		}
475 	}
476 	ret = 0;
477 out:
478 	if (kmapped_page) {
479 		flush_kernel_dcache_page(kmapped_page);
480 		kunmap(kmapped_page);
481 		put_arg_page(kmapped_page);
482 	}
483 	return ret;
484 }
485 
486 /*
487  * Like copy_strings, but get argv and its values from kernel memory.
488  */
489 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
490 {
491 	int r;
492 	mm_segment_t oldfs = get_fs();
493 	set_fs(KERNEL_DS);
494 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
495 	set_fs(oldfs);
496 	return r;
497 }
498 EXPORT_SYMBOL(copy_strings_kernel);
499 
500 #ifdef CONFIG_MMU
501 
502 /*
503  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
504  * the binfmt code determines where the new stack should reside, we shift it to
505  * its final location.  The process proceeds as follows:
506  *
507  * 1) Use shift to calculate the new vma endpoints.
508  * 2) Extend vma to cover both the old and new ranges.  This ensures the
509  *    arguments passed to subsequent functions are consistent.
510  * 3) Move vma's page tables to the new range.
511  * 4) Free up any cleared pgd range.
512  * 5) Shrink the vma to cover only the new range.
513  */
514 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
515 {
516 	struct mm_struct *mm = vma->vm_mm;
517 	unsigned long old_start = vma->vm_start;
518 	unsigned long old_end = vma->vm_end;
519 	unsigned long length = old_end - old_start;
520 	unsigned long new_start = old_start - shift;
521 	unsigned long new_end = old_end - shift;
522 	struct mmu_gather *tlb;
523 
524 	BUG_ON(new_start > new_end);
525 
526 	/*
527 	 * ensure there are no vmas between where we want to go
528 	 * and where we are
529 	 */
530 	if (vma != find_vma(mm, new_start))
531 		return -EFAULT;
532 
533 	/*
534 	 * cover the whole range: [new_start, old_end)
535 	 */
536 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
537 
538 	/*
539 	 * move the page tables downwards, on failure we rely on
540 	 * process cleanup to remove whatever mess we made.
541 	 */
542 	if (length != move_page_tables(vma, old_start,
543 				       vma, new_start, length))
544 		return -ENOMEM;
545 
546 	lru_add_drain();
547 	tlb = tlb_gather_mmu(mm, 0);
548 	if (new_end > old_start) {
549 		/*
550 		 * when the old and new regions overlap clear from new_end.
551 		 */
552 		free_pgd_range(tlb, new_end, old_end, new_end,
553 			vma->vm_next ? vma->vm_next->vm_start : 0);
554 	} else {
555 		/*
556 		 * otherwise, clean from old_start; this is done to not touch
557 		 * the address space in [new_end, old_start) some architectures
558 		 * have constraints on va-space that make this illegal (IA64) -
559 		 * for the others its just a little faster.
560 		 */
561 		free_pgd_range(tlb, old_start, old_end, new_end,
562 			vma->vm_next ? vma->vm_next->vm_start : 0);
563 	}
564 	tlb_finish_mmu(tlb, new_end, old_end);
565 
566 	/*
567 	 * shrink the vma to just the new range.
568 	 */
569 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
570 
571 	return 0;
572 }
573 
574 #define EXTRA_STACK_VM_PAGES	20	/* random */
575 
576 /*
577  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
578  * the stack is optionally relocated, and some extra space is added.
579  */
580 int setup_arg_pages(struct linux_binprm *bprm,
581 		    unsigned long stack_top,
582 		    int executable_stack)
583 {
584 	unsigned long ret;
585 	unsigned long stack_shift;
586 	struct mm_struct *mm = current->mm;
587 	struct vm_area_struct *vma = bprm->vma;
588 	struct vm_area_struct *prev = NULL;
589 	unsigned long vm_flags;
590 	unsigned long stack_base;
591 
592 #ifdef CONFIG_STACK_GROWSUP
593 	/* Limit stack size to 1GB */
594 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
595 	if (stack_base > (1 << 30))
596 		stack_base = 1 << 30;
597 
598 	/* Make sure we didn't let the argument array grow too large. */
599 	if (vma->vm_end - vma->vm_start > stack_base)
600 		return -ENOMEM;
601 
602 	stack_base = PAGE_ALIGN(stack_top - stack_base);
603 
604 	stack_shift = vma->vm_start - stack_base;
605 	mm->arg_start = bprm->p - stack_shift;
606 	bprm->p = vma->vm_end - stack_shift;
607 #else
608 	stack_top = arch_align_stack(stack_top);
609 	stack_top = PAGE_ALIGN(stack_top);
610 	stack_shift = vma->vm_end - stack_top;
611 
612 	bprm->p -= stack_shift;
613 	mm->arg_start = bprm->p;
614 #endif
615 
616 	if (bprm->loader)
617 		bprm->loader -= stack_shift;
618 	bprm->exec -= stack_shift;
619 
620 	down_write(&mm->mmap_sem);
621 	vm_flags = VM_STACK_FLAGS;
622 
623 	/*
624 	 * Adjust stack execute permissions; explicitly enable for
625 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
626 	 * (arch default) otherwise.
627 	 */
628 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
629 		vm_flags |= VM_EXEC;
630 	else if (executable_stack == EXSTACK_DISABLE_X)
631 		vm_flags &= ~VM_EXEC;
632 	vm_flags |= mm->def_flags;
633 
634 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
635 			vm_flags);
636 	if (ret)
637 		goto out_unlock;
638 	BUG_ON(prev != vma);
639 
640 	/* Move stack pages down in memory. */
641 	if (stack_shift) {
642 		ret = shift_arg_pages(vma, stack_shift);
643 		if (ret) {
644 			up_write(&mm->mmap_sem);
645 			return ret;
646 		}
647 	}
648 
649 #ifdef CONFIG_STACK_GROWSUP
650 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
651 #else
652 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
653 #endif
654 	ret = expand_stack(vma, stack_base);
655 	if (ret)
656 		ret = -EFAULT;
657 
658 out_unlock:
659 	up_write(&mm->mmap_sem);
660 	return 0;
661 }
662 EXPORT_SYMBOL(setup_arg_pages);
663 
664 #endif /* CONFIG_MMU */
665 
666 struct file *open_exec(const char *name)
667 {
668 	struct nameidata nd;
669 	struct file *file;
670 	int err;
671 
672 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
673 				FMODE_READ|FMODE_EXEC);
674 	if (err)
675 		goto out;
676 
677 	err = -EACCES;
678 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
679 		goto out_path_put;
680 
681 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
682 		goto out_path_put;
683 
684 	err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
685 	if (err)
686 		goto out_path_put;
687 
688 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
689 	if (IS_ERR(file))
690 		return file;
691 
692 	err = deny_write_access(file);
693 	if (err) {
694 		fput(file);
695 		goto out;
696 	}
697 
698 	return file;
699 
700  out_path_put:
701 	release_open_intent(&nd);
702 	path_put(&nd.path);
703  out:
704 	return ERR_PTR(err);
705 }
706 EXPORT_SYMBOL(open_exec);
707 
708 int kernel_read(struct file *file, unsigned long offset,
709 	char *addr, unsigned long count)
710 {
711 	mm_segment_t old_fs;
712 	loff_t pos = offset;
713 	int result;
714 
715 	old_fs = get_fs();
716 	set_fs(get_ds());
717 	/* The cast to a user pointer is valid due to the set_fs() */
718 	result = vfs_read(file, (void __user *)addr, count, &pos);
719 	set_fs(old_fs);
720 	return result;
721 }
722 
723 EXPORT_SYMBOL(kernel_read);
724 
725 static int exec_mmap(struct mm_struct *mm)
726 {
727 	struct task_struct *tsk;
728 	struct mm_struct * old_mm, *active_mm;
729 
730 	/* Notify parent that we're no longer interested in the old VM */
731 	tsk = current;
732 	old_mm = current->mm;
733 	mm_release(tsk, old_mm);
734 
735 	if (old_mm) {
736 		/*
737 		 * Make sure that if there is a core dump in progress
738 		 * for the old mm, we get out and die instead of going
739 		 * through with the exec.  We must hold mmap_sem around
740 		 * checking core_state and changing tsk->mm.
741 		 */
742 		down_read(&old_mm->mmap_sem);
743 		if (unlikely(old_mm->core_state)) {
744 			up_read(&old_mm->mmap_sem);
745 			return -EINTR;
746 		}
747 	}
748 	task_lock(tsk);
749 	active_mm = tsk->active_mm;
750 	tsk->mm = mm;
751 	tsk->active_mm = mm;
752 	activate_mm(active_mm, mm);
753 	task_unlock(tsk);
754 	mm_update_next_owner(old_mm);
755 	arch_pick_mmap_layout(mm);
756 	if (old_mm) {
757 		up_read(&old_mm->mmap_sem);
758 		BUG_ON(active_mm != old_mm);
759 		mmput(old_mm);
760 		return 0;
761 	}
762 	mmdrop(active_mm);
763 	return 0;
764 }
765 
766 /*
767  * This function makes sure the current process has its own signal table,
768  * so that flush_signal_handlers can later reset the handlers without
769  * disturbing other processes.  (Other processes might share the signal
770  * table via the CLONE_SIGHAND option to clone().)
771  */
772 static int de_thread(struct task_struct *tsk)
773 {
774 	struct signal_struct *sig = tsk->signal;
775 	struct sighand_struct *oldsighand = tsk->sighand;
776 	spinlock_t *lock = &oldsighand->siglock;
777 	struct task_struct *leader = NULL;
778 	int count;
779 
780 	if (thread_group_empty(tsk))
781 		goto no_thread_group;
782 
783 	/*
784 	 * Kill all other threads in the thread group.
785 	 */
786 	spin_lock_irq(lock);
787 	if (signal_group_exit(sig)) {
788 		/*
789 		 * Another group action in progress, just
790 		 * return so that the signal is processed.
791 		 */
792 		spin_unlock_irq(lock);
793 		return -EAGAIN;
794 	}
795 	sig->group_exit_task = tsk;
796 	zap_other_threads(tsk);
797 
798 	/* Account for the thread group leader hanging around: */
799 	count = thread_group_leader(tsk) ? 1 : 2;
800 	sig->notify_count = count;
801 	while (atomic_read(&sig->count) > count) {
802 		__set_current_state(TASK_UNINTERRUPTIBLE);
803 		spin_unlock_irq(lock);
804 		schedule();
805 		spin_lock_irq(lock);
806 	}
807 	spin_unlock_irq(lock);
808 
809 	/*
810 	 * At this point all other threads have exited, all we have to
811 	 * do is to wait for the thread group leader to become inactive,
812 	 * and to assume its PID:
813 	 */
814 	if (!thread_group_leader(tsk)) {
815 		leader = tsk->group_leader;
816 
817 		sig->notify_count = -1;	/* for exit_notify() */
818 		for (;;) {
819 			write_lock_irq(&tasklist_lock);
820 			if (likely(leader->exit_state))
821 				break;
822 			__set_current_state(TASK_UNINTERRUPTIBLE);
823 			write_unlock_irq(&tasklist_lock);
824 			schedule();
825 		}
826 
827 		if (unlikely(task_child_reaper(tsk) == leader))
828 			task_active_pid_ns(tsk)->child_reaper = tsk;
829 		/*
830 		 * The only record we have of the real-time age of a
831 		 * process, regardless of execs it's done, is start_time.
832 		 * All the past CPU time is accumulated in signal_struct
833 		 * from sister threads now dead.  But in this non-leader
834 		 * exec, nothing survives from the original leader thread,
835 		 * whose birth marks the true age of this process now.
836 		 * When we take on its identity by switching to its PID, we
837 		 * also take its birthdate (always earlier than our own).
838 		 */
839 		tsk->start_time = leader->start_time;
840 
841 		BUG_ON(!same_thread_group(leader, tsk));
842 		BUG_ON(has_group_leader_pid(tsk));
843 		/*
844 		 * An exec() starts a new thread group with the
845 		 * TGID of the previous thread group. Rehash the
846 		 * two threads with a switched PID, and release
847 		 * the former thread group leader:
848 		 */
849 
850 		/* Become a process group leader with the old leader's pid.
851 		 * The old leader becomes a thread of the this thread group.
852 		 * Note: The old leader also uses this pid until release_task
853 		 *       is called.  Odd but simple and correct.
854 		 */
855 		detach_pid(tsk, PIDTYPE_PID);
856 		tsk->pid = leader->pid;
857 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
858 		transfer_pid(leader, tsk, PIDTYPE_PGID);
859 		transfer_pid(leader, tsk, PIDTYPE_SID);
860 		list_replace_rcu(&leader->tasks, &tsk->tasks);
861 
862 		tsk->group_leader = tsk;
863 		leader->group_leader = tsk;
864 
865 		tsk->exit_signal = SIGCHLD;
866 
867 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
868 		leader->exit_state = EXIT_DEAD;
869 
870 		write_unlock_irq(&tasklist_lock);
871 	}
872 
873 	sig->group_exit_task = NULL;
874 	sig->notify_count = 0;
875 
876 no_thread_group:
877 	exit_itimers(sig);
878 	flush_itimer_signals();
879 	if (leader)
880 		release_task(leader);
881 
882 	if (atomic_read(&oldsighand->count) != 1) {
883 		struct sighand_struct *newsighand;
884 		/*
885 		 * This ->sighand is shared with the CLONE_SIGHAND
886 		 * but not CLONE_THREAD task, switch to the new one.
887 		 */
888 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
889 		if (!newsighand)
890 			return -ENOMEM;
891 
892 		atomic_set(&newsighand->count, 1);
893 		memcpy(newsighand->action, oldsighand->action,
894 		       sizeof(newsighand->action));
895 
896 		write_lock_irq(&tasklist_lock);
897 		spin_lock(&oldsighand->siglock);
898 		rcu_assign_pointer(tsk->sighand, newsighand);
899 		spin_unlock(&oldsighand->siglock);
900 		write_unlock_irq(&tasklist_lock);
901 
902 		__cleanup_sighand(oldsighand);
903 	}
904 
905 	BUG_ON(!thread_group_leader(tsk));
906 	return 0;
907 }
908 
909 /*
910  * These functions flushes out all traces of the currently running executable
911  * so that a new one can be started
912  */
913 static void flush_old_files(struct files_struct * files)
914 {
915 	long j = -1;
916 	struct fdtable *fdt;
917 
918 	spin_lock(&files->file_lock);
919 	for (;;) {
920 		unsigned long set, i;
921 
922 		j++;
923 		i = j * __NFDBITS;
924 		fdt = files_fdtable(files);
925 		if (i >= fdt->max_fds)
926 			break;
927 		set = fdt->close_on_exec->fds_bits[j];
928 		if (!set)
929 			continue;
930 		fdt->close_on_exec->fds_bits[j] = 0;
931 		spin_unlock(&files->file_lock);
932 		for ( ; set ; i++,set >>= 1) {
933 			if (set & 1) {
934 				sys_close(i);
935 			}
936 		}
937 		spin_lock(&files->file_lock);
938 
939 	}
940 	spin_unlock(&files->file_lock);
941 }
942 
943 char *get_task_comm(char *buf, struct task_struct *tsk)
944 {
945 	/* buf must be at least sizeof(tsk->comm) in size */
946 	task_lock(tsk);
947 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
948 	task_unlock(tsk);
949 	return buf;
950 }
951 
952 void set_task_comm(struct task_struct *tsk, char *buf)
953 {
954 	task_lock(tsk);
955 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
956 	task_unlock(tsk);
957 }
958 
959 int flush_old_exec(struct linux_binprm * bprm)
960 {
961 	char * name;
962 	int i, ch, retval;
963 	char tcomm[sizeof(current->comm)];
964 
965 	/*
966 	 * Make sure we have a private signal table and that
967 	 * we are unassociated from the previous thread group.
968 	 */
969 	retval = de_thread(current);
970 	if (retval)
971 		goto out;
972 
973 	set_mm_exe_file(bprm->mm, bprm->file);
974 
975 	/*
976 	 * Release all of the old mmap stuff
977 	 */
978 	retval = exec_mmap(bprm->mm);
979 	if (retval)
980 		goto out;
981 
982 	bprm->mm = NULL;		/* We're using it now */
983 
984 	/* This is the point of no return */
985 	current->sas_ss_sp = current->sas_ss_size = 0;
986 
987 	if (current->euid == current->uid && current->egid == current->gid)
988 		set_dumpable(current->mm, 1);
989 	else
990 		set_dumpable(current->mm, suid_dumpable);
991 
992 	name = bprm->filename;
993 
994 	/* Copies the binary name from after last slash */
995 	for (i=0; (ch = *(name++)) != '\0';) {
996 		if (ch == '/')
997 			i = 0; /* overwrite what we wrote */
998 		else
999 			if (i < (sizeof(tcomm) - 1))
1000 				tcomm[i++] = ch;
1001 	}
1002 	tcomm[i] = '\0';
1003 	set_task_comm(current, tcomm);
1004 
1005 	current->flags &= ~PF_RANDOMIZE;
1006 	flush_thread();
1007 
1008 	/* Set the new mm task size. We have to do that late because it may
1009 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1010 	 * some architectures like powerpc
1011 	 */
1012 	current->mm->task_size = TASK_SIZE;
1013 
1014 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1015 		suid_keys(current);
1016 		set_dumpable(current->mm, suid_dumpable);
1017 		current->pdeath_signal = 0;
1018 	} else if (file_permission(bprm->file, MAY_READ) ||
1019 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1020 		suid_keys(current);
1021 		set_dumpable(current->mm, suid_dumpable);
1022 	}
1023 
1024 	/* An exec changes our domain. We are no longer part of the thread
1025 	   group */
1026 
1027 	current->self_exec_id++;
1028 
1029 	flush_signal_handlers(current, 0);
1030 	flush_old_files(current->files);
1031 
1032 	return 0;
1033 
1034 out:
1035 	return retval;
1036 }
1037 
1038 EXPORT_SYMBOL(flush_old_exec);
1039 
1040 /*
1041  * Fill the binprm structure from the inode.
1042  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1043  */
1044 int prepare_binprm(struct linux_binprm *bprm)
1045 {
1046 	int mode;
1047 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1048 	int retval;
1049 
1050 	mode = inode->i_mode;
1051 	if (bprm->file->f_op == NULL)
1052 		return -EACCES;
1053 
1054 	bprm->e_uid = current->euid;
1055 	bprm->e_gid = current->egid;
1056 
1057 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1058 		/* Set-uid? */
1059 		if (mode & S_ISUID) {
1060 			current->personality &= ~PER_CLEAR_ON_SETID;
1061 			bprm->e_uid = inode->i_uid;
1062 		}
1063 
1064 		/* Set-gid? */
1065 		/*
1066 		 * If setgid is set but no group execute bit then this
1067 		 * is a candidate for mandatory locking, not a setgid
1068 		 * executable.
1069 		 */
1070 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1071 			current->personality &= ~PER_CLEAR_ON_SETID;
1072 			bprm->e_gid = inode->i_gid;
1073 		}
1074 	}
1075 
1076 	/* fill in binprm security blob */
1077 	retval = security_bprm_set(bprm);
1078 	if (retval)
1079 		return retval;
1080 
1081 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1082 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1083 }
1084 
1085 EXPORT_SYMBOL(prepare_binprm);
1086 
1087 static int unsafe_exec(struct task_struct *p)
1088 {
1089 	int unsafe = tracehook_unsafe_exec(p);
1090 
1091 	if (atomic_read(&p->fs->count) > 1 ||
1092 	    atomic_read(&p->files->count) > 1 ||
1093 	    atomic_read(&p->sighand->count) > 1)
1094 		unsafe |= LSM_UNSAFE_SHARE;
1095 
1096 	return unsafe;
1097 }
1098 
1099 void compute_creds(struct linux_binprm *bprm)
1100 {
1101 	int unsafe;
1102 
1103 	if (bprm->e_uid != current->uid) {
1104 		suid_keys(current);
1105 		current->pdeath_signal = 0;
1106 	}
1107 	exec_keys(current);
1108 
1109 	task_lock(current);
1110 	unsafe = unsafe_exec(current);
1111 	security_bprm_apply_creds(bprm, unsafe);
1112 	task_unlock(current);
1113 	security_bprm_post_apply_creds(bprm);
1114 }
1115 EXPORT_SYMBOL(compute_creds);
1116 
1117 /*
1118  * Arguments are '\0' separated strings found at the location bprm->p
1119  * points to; chop off the first by relocating brpm->p to right after
1120  * the first '\0' encountered.
1121  */
1122 int remove_arg_zero(struct linux_binprm *bprm)
1123 {
1124 	int ret = 0;
1125 	unsigned long offset;
1126 	char *kaddr;
1127 	struct page *page;
1128 
1129 	if (!bprm->argc)
1130 		return 0;
1131 
1132 	do {
1133 		offset = bprm->p & ~PAGE_MASK;
1134 		page = get_arg_page(bprm, bprm->p, 0);
1135 		if (!page) {
1136 			ret = -EFAULT;
1137 			goto out;
1138 		}
1139 		kaddr = kmap_atomic(page, KM_USER0);
1140 
1141 		for (; offset < PAGE_SIZE && kaddr[offset];
1142 				offset++, bprm->p++)
1143 			;
1144 
1145 		kunmap_atomic(kaddr, KM_USER0);
1146 		put_arg_page(page);
1147 
1148 		if (offset == PAGE_SIZE)
1149 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1150 	} while (offset == PAGE_SIZE);
1151 
1152 	bprm->p++;
1153 	bprm->argc--;
1154 	ret = 0;
1155 
1156 out:
1157 	return ret;
1158 }
1159 EXPORT_SYMBOL(remove_arg_zero);
1160 
1161 /*
1162  * cycle the list of binary formats handler, until one recognizes the image
1163  */
1164 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1165 {
1166 	int try,retval;
1167 	struct linux_binfmt *fmt;
1168 #ifdef __alpha__
1169 	/* handle /sbin/loader.. */
1170 	{
1171 	    struct exec * eh = (struct exec *) bprm->buf;
1172 
1173 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1174 		(eh->fh.f_flags & 0x3000) == 0x3000)
1175 	    {
1176 		struct file * file;
1177 		unsigned long loader;
1178 
1179 		allow_write_access(bprm->file);
1180 		fput(bprm->file);
1181 		bprm->file = NULL;
1182 
1183 		loader = bprm->vma->vm_end - sizeof(void *);
1184 
1185 		file = open_exec("/sbin/loader");
1186 		retval = PTR_ERR(file);
1187 		if (IS_ERR(file))
1188 			return retval;
1189 
1190 		/* Remember if the application is TASO.  */
1191 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1192 
1193 		bprm->file = file;
1194 		bprm->loader = loader;
1195 		retval = prepare_binprm(bprm);
1196 		if (retval<0)
1197 			return retval;
1198 		/* should call search_binary_handler recursively here,
1199 		   but it does not matter */
1200 	    }
1201 	}
1202 #endif
1203 	retval = security_bprm_check(bprm);
1204 	if (retval)
1205 		return retval;
1206 
1207 	/* kernel module loader fixup */
1208 	/* so we don't try to load run modprobe in kernel space. */
1209 	set_fs(USER_DS);
1210 
1211 	retval = audit_bprm(bprm);
1212 	if (retval)
1213 		return retval;
1214 
1215 	retval = -ENOENT;
1216 	for (try=0; try<2; try++) {
1217 		read_lock(&binfmt_lock);
1218 		list_for_each_entry(fmt, &formats, lh) {
1219 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1220 			if (!fn)
1221 				continue;
1222 			if (!try_module_get(fmt->module))
1223 				continue;
1224 			read_unlock(&binfmt_lock);
1225 			retval = fn(bprm, regs);
1226 			if (retval >= 0) {
1227 				tracehook_report_exec(fmt, bprm, regs);
1228 				put_binfmt(fmt);
1229 				allow_write_access(bprm->file);
1230 				if (bprm->file)
1231 					fput(bprm->file);
1232 				bprm->file = NULL;
1233 				current->did_exec = 1;
1234 				proc_exec_connector(current);
1235 				return retval;
1236 			}
1237 			read_lock(&binfmt_lock);
1238 			put_binfmt(fmt);
1239 			if (retval != -ENOEXEC || bprm->mm == NULL)
1240 				break;
1241 			if (!bprm->file) {
1242 				read_unlock(&binfmt_lock);
1243 				return retval;
1244 			}
1245 		}
1246 		read_unlock(&binfmt_lock);
1247 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1248 			break;
1249 #ifdef CONFIG_KMOD
1250 		}else{
1251 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1252 			if (printable(bprm->buf[0]) &&
1253 			    printable(bprm->buf[1]) &&
1254 			    printable(bprm->buf[2]) &&
1255 			    printable(bprm->buf[3]))
1256 				break; /* -ENOEXEC */
1257 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1258 #endif
1259 		}
1260 	}
1261 	return retval;
1262 }
1263 
1264 EXPORT_SYMBOL(search_binary_handler);
1265 
1266 void free_bprm(struct linux_binprm *bprm)
1267 {
1268 	free_arg_pages(bprm);
1269 	kfree(bprm);
1270 }
1271 
1272 /*
1273  * sys_execve() executes a new program.
1274  */
1275 int do_execve(char * filename,
1276 	char __user *__user *argv,
1277 	char __user *__user *envp,
1278 	struct pt_regs * regs)
1279 {
1280 	struct linux_binprm *bprm;
1281 	struct file *file;
1282 	struct files_struct *displaced;
1283 	int retval;
1284 
1285 	retval = unshare_files(&displaced);
1286 	if (retval)
1287 		goto out_ret;
1288 
1289 	retval = -ENOMEM;
1290 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1291 	if (!bprm)
1292 		goto out_files;
1293 
1294 	file = open_exec(filename);
1295 	retval = PTR_ERR(file);
1296 	if (IS_ERR(file))
1297 		goto out_kfree;
1298 
1299 	sched_exec();
1300 
1301 	bprm->file = file;
1302 	bprm->filename = filename;
1303 	bprm->interp = filename;
1304 
1305 	retval = bprm_mm_init(bprm);
1306 	if (retval)
1307 		goto out_file;
1308 
1309 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1310 	if ((retval = bprm->argc) < 0)
1311 		goto out_mm;
1312 
1313 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1314 	if ((retval = bprm->envc) < 0)
1315 		goto out_mm;
1316 
1317 	retval = security_bprm_alloc(bprm);
1318 	if (retval)
1319 		goto out;
1320 
1321 	retval = prepare_binprm(bprm);
1322 	if (retval < 0)
1323 		goto out;
1324 
1325 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1326 	if (retval < 0)
1327 		goto out;
1328 
1329 	bprm->exec = bprm->p;
1330 	retval = copy_strings(bprm->envc, envp, bprm);
1331 	if (retval < 0)
1332 		goto out;
1333 
1334 	retval = copy_strings(bprm->argc, argv, bprm);
1335 	if (retval < 0)
1336 		goto out;
1337 
1338 	current->flags &= ~PF_KTHREAD;
1339 	retval = search_binary_handler(bprm,regs);
1340 	if (retval >= 0) {
1341 		/* execve success */
1342 		security_bprm_free(bprm);
1343 		acct_update_integrals(current);
1344 		free_bprm(bprm);
1345 		if (displaced)
1346 			put_files_struct(displaced);
1347 		return retval;
1348 	}
1349 
1350 out:
1351 	if (bprm->security)
1352 		security_bprm_free(bprm);
1353 
1354 out_mm:
1355 	if (bprm->mm)
1356 		mmput (bprm->mm);
1357 
1358 out_file:
1359 	if (bprm->file) {
1360 		allow_write_access(bprm->file);
1361 		fput(bprm->file);
1362 	}
1363 out_kfree:
1364 	free_bprm(bprm);
1365 
1366 out_files:
1367 	if (displaced)
1368 		reset_files_struct(displaced);
1369 out_ret:
1370 	return retval;
1371 }
1372 
1373 int set_binfmt(struct linux_binfmt *new)
1374 {
1375 	struct linux_binfmt *old = current->binfmt;
1376 
1377 	if (new) {
1378 		if (!try_module_get(new->module))
1379 			return -1;
1380 	}
1381 	current->binfmt = new;
1382 	if (old)
1383 		module_put(old->module);
1384 	return 0;
1385 }
1386 
1387 EXPORT_SYMBOL(set_binfmt);
1388 
1389 /* format_corename will inspect the pattern parameter, and output a
1390  * name into corename, which must have space for at least
1391  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1392  */
1393 static int format_corename(char *corename, int nr_threads, long signr)
1394 {
1395 	const char *pat_ptr = core_pattern;
1396 	int ispipe = (*pat_ptr == '|');
1397 	char *out_ptr = corename;
1398 	char *const out_end = corename + CORENAME_MAX_SIZE;
1399 	int rc;
1400 	int pid_in_pattern = 0;
1401 
1402 	/* Repeat as long as we have more pattern to process and more output
1403 	   space */
1404 	while (*pat_ptr) {
1405 		if (*pat_ptr != '%') {
1406 			if (out_ptr == out_end)
1407 				goto out;
1408 			*out_ptr++ = *pat_ptr++;
1409 		} else {
1410 			switch (*++pat_ptr) {
1411 			case 0:
1412 				goto out;
1413 			/* Double percent, output one percent */
1414 			case '%':
1415 				if (out_ptr == out_end)
1416 					goto out;
1417 				*out_ptr++ = '%';
1418 				break;
1419 			/* pid */
1420 			case 'p':
1421 				pid_in_pattern = 1;
1422 				rc = snprintf(out_ptr, out_end - out_ptr,
1423 					      "%d", task_tgid_vnr(current));
1424 				if (rc > out_end - out_ptr)
1425 					goto out;
1426 				out_ptr += rc;
1427 				break;
1428 			/* uid */
1429 			case 'u':
1430 				rc = snprintf(out_ptr, out_end - out_ptr,
1431 					      "%d", current->uid);
1432 				if (rc > out_end - out_ptr)
1433 					goto out;
1434 				out_ptr += rc;
1435 				break;
1436 			/* gid */
1437 			case 'g':
1438 				rc = snprintf(out_ptr, out_end - out_ptr,
1439 					      "%d", current->gid);
1440 				if (rc > out_end - out_ptr)
1441 					goto out;
1442 				out_ptr += rc;
1443 				break;
1444 			/* signal that caused the coredump */
1445 			case 's':
1446 				rc = snprintf(out_ptr, out_end - out_ptr,
1447 					      "%ld", signr);
1448 				if (rc > out_end - out_ptr)
1449 					goto out;
1450 				out_ptr += rc;
1451 				break;
1452 			/* UNIX time of coredump */
1453 			case 't': {
1454 				struct timeval tv;
1455 				do_gettimeofday(&tv);
1456 				rc = snprintf(out_ptr, out_end - out_ptr,
1457 					      "%lu", tv.tv_sec);
1458 				if (rc > out_end - out_ptr)
1459 					goto out;
1460 				out_ptr += rc;
1461 				break;
1462 			}
1463 			/* hostname */
1464 			case 'h':
1465 				down_read(&uts_sem);
1466 				rc = snprintf(out_ptr, out_end - out_ptr,
1467 					      "%s", utsname()->nodename);
1468 				up_read(&uts_sem);
1469 				if (rc > out_end - out_ptr)
1470 					goto out;
1471 				out_ptr += rc;
1472 				break;
1473 			/* executable */
1474 			case 'e':
1475 				rc = snprintf(out_ptr, out_end - out_ptr,
1476 					      "%s", current->comm);
1477 				if (rc > out_end - out_ptr)
1478 					goto out;
1479 				out_ptr += rc;
1480 				break;
1481 			/* core limit size */
1482 			case 'c':
1483 				rc = snprintf(out_ptr, out_end - out_ptr,
1484 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1485 				if (rc > out_end - out_ptr)
1486 					goto out;
1487 				out_ptr += rc;
1488 				break;
1489 			default:
1490 				break;
1491 			}
1492 			++pat_ptr;
1493 		}
1494 	}
1495 	/* Backward compatibility with core_uses_pid:
1496 	 *
1497 	 * If core_pattern does not include a %p (as is the default)
1498 	 * and core_uses_pid is set, then .%pid will be appended to
1499 	 * the filename. Do not do this for piped commands. */
1500 	if (!ispipe && !pid_in_pattern
1501 	    && (core_uses_pid || nr_threads)) {
1502 		rc = snprintf(out_ptr, out_end - out_ptr,
1503 			      ".%d", task_tgid_vnr(current));
1504 		if (rc > out_end - out_ptr)
1505 			goto out;
1506 		out_ptr += rc;
1507 	}
1508 out:
1509 	*out_ptr = 0;
1510 	return ispipe;
1511 }
1512 
1513 static int zap_process(struct task_struct *start)
1514 {
1515 	struct task_struct *t;
1516 	int nr = 0;
1517 
1518 	start->signal->flags = SIGNAL_GROUP_EXIT;
1519 	start->signal->group_stop_count = 0;
1520 
1521 	t = start;
1522 	do {
1523 		if (t != current && t->mm) {
1524 			sigaddset(&t->pending.signal, SIGKILL);
1525 			signal_wake_up(t, 1);
1526 			nr++;
1527 		}
1528 	} while_each_thread(start, t);
1529 
1530 	return nr;
1531 }
1532 
1533 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1534 				struct core_state *core_state, int exit_code)
1535 {
1536 	struct task_struct *g, *p;
1537 	unsigned long flags;
1538 	int nr = -EAGAIN;
1539 
1540 	spin_lock_irq(&tsk->sighand->siglock);
1541 	if (!signal_group_exit(tsk->signal)) {
1542 		mm->core_state = core_state;
1543 		tsk->signal->group_exit_code = exit_code;
1544 		nr = zap_process(tsk);
1545 	}
1546 	spin_unlock_irq(&tsk->sighand->siglock);
1547 	if (unlikely(nr < 0))
1548 		return nr;
1549 
1550 	if (atomic_read(&mm->mm_users) == nr + 1)
1551 		goto done;
1552 	/*
1553 	 * We should find and kill all tasks which use this mm, and we should
1554 	 * count them correctly into ->nr_threads. We don't take tasklist
1555 	 * lock, but this is safe wrt:
1556 	 *
1557 	 * fork:
1558 	 *	None of sub-threads can fork after zap_process(leader). All
1559 	 *	processes which were created before this point should be
1560 	 *	visible to zap_threads() because copy_process() adds the new
1561 	 *	process to the tail of init_task.tasks list, and lock/unlock
1562 	 *	of ->siglock provides a memory barrier.
1563 	 *
1564 	 * do_exit:
1565 	 *	The caller holds mm->mmap_sem. This means that the task which
1566 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1567 	 *	its ->mm.
1568 	 *
1569 	 * de_thread:
1570 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1571 	 *	we must see either old or new leader, this does not matter.
1572 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1573 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1574 	 *	it can't fail.
1575 	 *
1576 	 *	Note also that "g" can be the old leader with ->mm == NULL
1577 	 *	and already unhashed and thus removed from ->thread_group.
1578 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1579 	 *	clear the ->next pointer, we will find the new leader via
1580 	 *	next_thread().
1581 	 */
1582 	rcu_read_lock();
1583 	for_each_process(g) {
1584 		if (g == tsk->group_leader)
1585 			continue;
1586 		if (g->flags & PF_KTHREAD)
1587 			continue;
1588 		p = g;
1589 		do {
1590 			if (p->mm) {
1591 				if (unlikely(p->mm == mm)) {
1592 					lock_task_sighand(p, &flags);
1593 					nr += zap_process(p);
1594 					unlock_task_sighand(p, &flags);
1595 				}
1596 				break;
1597 			}
1598 		} while_each_thread(g, p);
1599 	}
1600 	rcu_read_unlock();
1601 done:
1602 	atomic_set(&core_state->nr_threads, nr);
1603 	return nr;
1604 }
1605 
1606 static int coredump_wait(int exit_code, struct core_state *core_state)
1607 {
1608 	struct task_struct *tsk = current;
1609 	struct mm_struct *mm = tsk->mm;
1610 	struct completion *vfork_done;
1611 	int core_waiters;
1612 
1613 	init_completion(&core_state->startup);
1614 	core_state->dumper.task = tsk;
1615 	core_state->dumper.next = NULL;
1616 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1617 	up_write(&mm->mmap_sem);
1618 
1619 	if (unlikely(core_waiters < 0))
1620 		goto fail;
1621 
1622 	/*
1623 	 * Make sure nobody is waiting for us to release the VM,
1624 	 * otherwise we can deadlock when we wait on each other
1625 	 */
1626 	vfork_done = tsk->vfork_done;
1627 	if (vfork_done) {
1628 		tsk->vfork_done = NULL;
1629 		complete(vfork_done);
1630 	}
1631 
1632 	if (core_waiters)
1633 		wait_for_completion(&core_state->startup);
1634 fail:
1635 	return core_waiters;
1636 }
1637 
1638 static void coredump_finish(struct mm_struct *mm)
1639 {
1640 	struct core_thread *curr, *next;
1641 	struct task_struct *task;
1642 
1643 	next = mm->core_state->dumper.next;
1644 	while ((curr = next) != NULL) {
1645 		next = curr->next;
1646 		task = curr->task;
1647 		/*
1648 		 * see exit_mm(), curr->task must not see
1649 		 * ->task == NULL before we read ->next.
1650 		 */
1651 		smp_mb();
1652 		curr->task = NULL;
1653 		wake_up_process(task);
1654 	}
1655 
1656 	mm->core_state = NULL;
1657 }
1658 
1659 /*
1660  * set_dumpable converts traditional three-value dumpable to two flags and
1661  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1662  * these bits are not changed atomically.  So get_dumpable can observe the
1663  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1664  * return either old dumpable or new one by paying attention to the order of
1665  * modifying the bits.
1666  *
1667  * dumpable |   mm->flags (binary)
1668  * old  new | initial interim  final
1669  * ---------+-----------------------
1670  *  0    1  |   00      01      01
1671  *  0    2  |   00      10(*)   11
1672  *  1    0  |   01      00      00
1673  *  1    2  |   01      11      11
1674  *  2    0  |   11      10(*)   00
1675  *  2    1  |   11      11      01
1676  *
1677  * (*) get_dumpable regards interim value of 10 as 11.
1678  */
1679 void set_dumpable(struct mm_struct *mm, int value)
1680 {
1681 	switch (value) {
1682 	case 0:
1683 		clear_bit(MMF_DUMPABLE, &mm->flags);
1684 		smp_wmb();
1685 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1686 		break;
1687 	case 1:
1688 		set_bit(MMF_DUMPABLE, &mm->flags);
1689 		smp_wmb();
1690 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1691 		break;
1692 	case 2:
1693 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1694 		smp_wmb();
1695 		set_bit(MMF_DUMPABLE, &mm->flags);
1696 		break;
1697 	}
1698 }
1699 
1700 int get_dumpable(struct mm_struct *mm)
1701 {
1702 	int ret;
1703 
1704 	ret = mm->flags & 0x3;
1705 	return (ret >= 2) ? 2 : ret;
1706 }
1707 
1708 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1709 {
1710 	struct core_state core_state;
1711 	char corename[CORENAME_MAX_SIZE + 1];
1712 	struct mm_struct *mm = current->mm;
1713 	struct linux_binfmt * binfmt;
1714 	struct inode * inode;
1715 	struct file * file;
1716 	int retval = 0;
1717 	int fsuid = current->fsuid;
1718 	int flag = 0;
1719 	int ispipe = 0;
1720 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1721 	char **helper_argv = NULL;
1722 	int helper_argc = 0;
1723 	char *delimit;
1724 
1725 	audit_core_dumps(signr);
1726 
1727 	binfmt = current->binfmt;
1728 	if (!binfmt || !binfmt->core_dump)
1729 		goto fail;
1730 	down_write(&mm->mmap_sem);
1731 	/*
1732 	 * If another thread got here first, or we are not dumpable, bail out.
1733 	 */
1734 	if (mm->core_state || !get_dumpable(mm)) {
1735 		up_write(&mm->mmap_sem);
1736 		goto fail;
1737 	}
1738 
1739 	/*
1740 	 *	We cannot trust fsuid as being the "true" uid of the
1741 	 *	process nor do we know its entire history. We only know it
1742 	 *	was tainted so we dump it as root in mode 2.
1743 	 */
1744 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1745 		flag = O_EXCL;		/* Stop rewrite attacks */
1746 		current->fsuid = 0;	/* Dump root private */
1747 	}
1748 
1749 	retval = coredump_wait(exit_code, &core_state);
1750 	if (retval < 0)
1751 		goto fail;
1752 
1753 	/*
1754 	 * Clear any false indication of pending signals that might
1755 	 * be seen by the filesystem code called to write the core file.
1756 	 */
1757 	clear_thread_flag(TIF_SIGPENDING);
1758 
1759 	/*
1760 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1761 	 * uses lock_kernel()
1762 	 */
1763  	lock_kernel();
1764 	ispipe = format_corename(corename, retval, signr);
1765 	unlock_kernel();
1766 	/*
1767 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1768 	 * to a pipe.  Since we're not writing directly to the filesystem
1769 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1770 	 * created unless the pipe reader choses to write out the core file
1771 	 * at which point file size limits and permissions will be imposed
1772 	 * as it does with any other process
1773 	 */
1774 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1775 		goto fail_unlock;
1776 
1777  	if (ispipe) {
1778 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1779 		/* Terminate the string before the first option */
1780 		delimit = strchr(corename, ' ');
1781 		if (delimit)
1782 			*delimit = '\0';
1783 		delimit = strrchr(helper_argv[0], '/');
1784 		if (delimit)
1785 			delimit++;
1786 		else
1787 			delimit = helper_argv[0];
1788 		if (!strcmp(delimit, current->comm)) {
1789 			printk(KERN_NOTICE "Recursive core dump detected, "
1790 					"aborting\n");
1791 			goto fail_unlock;
1792 		}
1793 
1794 		core_limit = RLIM_INFINITY;
1795 
1796 		/* SIGPIPE can happen, but it's just never processed */
1797  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1798 				&file)) {
1799  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1800 			       corename);
1801  			goto fail_unlock;
1802  		}
1803  	} else
1804  		file = filp_open(corename,
1805 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1806 				 0600);
1807 	if (IS_ERR(file))
1808 		goto fail_unlock;
1809 	inode = file->f_path.dentry->d_inode;
1810 	if (inode->i_nlink > 1)
1811 		goto close_fail;	/* multiple links - don't dump */
1812 	if (!ispipe && d_unhashed(file->f_path.dentry))
1813 		goto close_fail;
1814 
1815 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1816 	   but keep the previous behaviour for now. */
1817 	if (!ispipe && !S_ISREG(inode->i_mode))
1818 		goto close_fail;
1819 	/*
1820 	 * Dont allow local users get cute and trick others to coredump
1821 	 * into their pre-created files:
1822 	 */
1823 	if (inode->i_uid != current->fsuid)
1824 		goto close_fail;
1825 	if (!file->f_op)
1826 		goto close_fail;
1827 	if (!file->f_op->write)
1828 		goto close_fail;
1829 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1830 		goto close_fail;
1831 
1832 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1833 
1834 	if (retval)
1835 		current->signal->group_exit_code |= 0x80;
1836 close_fail:
1837 	filp_close(file, NULL);
1838 fail_unlock:
1839 	if (helper_argv)
1840 		argv_free(helper_argv);
1841 
1842 	current->fsuid = fsuid;
1843 	coredump_finish(mm);
1844 fail:
1845 	return retval;
1846 }
1847