1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/utsname.h> 41 #include <linux/pid_namespace.h> 42 #include <linux/module.h> 43 #include <linux/namei.h> 44 #include <linux/proc_fs.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/mmu_context.h> 55 #include <asm/tlb.h> 56 57 #ifdef CONFIG_KMOD 58 #include <linux/kmod.h> 59 #endif 60 61 #ifdef __alpha__ 62 /* for /sbin/loader handling in search_binary_handler() */ 63 #include <linux/a.out.h> 64 #endif 65 66 int core_uses_pid; 67 char core_pattern[CORENAME_MAX_SIZE] = "core"; 68 int suid_dumpable = 0; 69 70 /* The maximal length of core_pattern is also specified in sysctl.c */ 71 72 static LIST_HEAD(formats); 73 static DEFINE_RWLOCK(binfmt_lock); 74 75 int register_binfmt(struct linux_binfmt * fmt) 76 { 77 if (!fmt) 78 return -EINVAL; 79 write_lock(&binfmt_lock); 80 list_add(&fmt->lh, &formats); 81 write_unlock(&binfmt_lock); 82 return 0; 83 } 84 85 EXPORT_SYMBOL(register_binfmt); 86 87 void unregister_binfmt(struct linux_binfmt * fmt) 88 { 89 write_lock(&binfmt_lock); 90 list_del(&fmt->lh); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(unregister_binfmt); 95 96 static inline void put_binfmt(struct linux_binfmt * fmt) 97 { 98 module_put(fmt->module); 99 } 100 101 /* 102 * Note that a shared library must be both readable and executable due to 103 * security reasons. 104 * 105 * Also note that we take the address to load from from the file itself. 106 */ 107 asmlinkage long sys_uselib(const char __user * library) 108 { 109 struct file *file; 110 struct nameidata nd; 111 char *tmp = getname(library); 112 int error = PTR_ERR(tmp); 113 114 if (!IS_ERR(tmp)) { 115 error = path_lookup_open(AT_FDCWD, tmp, 116 LOOKUP_FOLLOW, &nd, 117 FMODE_READ|FMODE_EXEC); 118 putname(tmp); 119 } 120 if (error) 121 goto out; 122 123 error = -EINVAL; 124 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 125 goto exit; 126 127 error = -EACCES; 128 if (nd.path.mnt->mnt_flags & MNT_NOEXEC) 129 goto exit; 130 131 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN); 132 if (error) 133 goto exit; 134 135 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 136 error = PTR_ERR(file); 137 if (IS_ERR(file)) 138 goto out; 139 140 error = -ENOEXEC; 141 if(file->f_op) { 142 struct linux_binfmt * fmt; 143 144 read_lock(&binfmt_lock); 145 list_for_each_entry(fmt, &formats, lh) { 146 if (!fmt->load_shlib) 147 continue; 148 if (!try_module_get(fmt->module)) 149 continue; 150 read_unlock(&binfmt_lock); 151 error = fmt->load_shlib(file); 152 read_lock(&binfmt_lock); 153 put_binfmt(fmt); 154 if (error != -ENOEXEC) 155 break; 156 } 157 read_unlock(&binfmt_lock); 158 } 159 fput(file); 160 out: 161 return error; 162 exit: 163 release_open_intent(&nd); 164 path_put(&nd.path); 165 goto out; 166 } 167 168 #ifdef CONFIG_MMU 169 170 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 171 int write) 172 { 173 struct page *page; 174 int ret; 175 176 #ifdef CONFIG_STACK_GROWSUP 177 if (write) { 178 ret = expand_stack_downwards(bprm->vma, pos); 179 if (ret < 0) 180 return NULL; 181 } 182 #endif 183 ret = get_user_pages(current, bprm->mm, pos, 184 1, write, 1, &page, NULL); 185 if (ret <= 0) 186 return NULL; 187 188 if (write) { 189 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 190 struct rlimit *rlim; 191 192 /* 193 * We've historically supported up to 32 pages (ARG_MAX) 194 * of argument strings even with small stacks 195 */ 196 if (size <= ARG_MAX) 197 return page; 198 199 /* 200 * Limit to 1/4-th the stack size for the argv+env strings. 201 * This ensures that: 202 * - the remaining binfmt code will not run out of stack space, 203 * - the program will have a reasonable amount of stack left 204 * to work from. 205 */ 206 rlim = current->signal->rlim; 207 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 208 put_page(page); 209 return NULL; 210 } 211 } 212 213 return page; 214 } 215 216 static void put_arg_page(struct page *page) 217 { 218 put_page(page); 219 } 220 221 static void free_arg_page(struct linux_binprm *bprm, int i) 222 { 223 } 224 225 static void free_arg_pages(struct linux_binprm *bprm) 226 { 227 } 228 229 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 230 struct page *page) 231 { 232 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 233 } 234 235 static int __bprm_mm_init(struct linux_binprm *bprm) 236 { 237 int err = -ENOMEM; 238 struct vm_area_struct *vma = NULL; 239 struct mm_struct *mm = bprm->mm; 240 241 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 242 if (!vma) 243 goto err; 244 245 down_write(&mm->mmap_sem); 246 vma->vm_mm = mm; 247 248 /* 249 * Place the stack at the largest stack address the architecture 250 * supports. Later, we'll move this to an appropriate place. We don't 251 * use STACK_TOP because that can depend on attributes which aren't 252 * configured yet. 253 */ 254 vma->vm_end = STACK_TOP_MAX; 255 vma->vm_start = vma->vm_end - PAGE_SIZE; 256 257 vma->vm_flags = VM_STACK_FLAGS; 258 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 259 err = insert_vm_struct(mm, vma); 260 if (err) { 261 up_write(&mm->mmap_sem); 262 goto err; 263 } 264 265 mm->stack_vm = mm->total_vm = 1; 266 up_write(&mm->mmap_sem); 267 268 bprm->p = vma->vm_end - sizeof(void *); 269 270 return 0; 271 272 err: 273 if (vma) { 274 bprm->vma = NULL; 275 kmem_cache_free(vm_area_cachep, vma); 276 } 277 278 return err; 279 } 280 281 static bool valid_arg_len(struct linux_binprm *bprm, long len) 282 { 283 return len <= MAX_ARG_STRLEN; 284 } 285 286 #else 287 288 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 289 int write) 290 { 291 struct page *page; 292 293 page = bprm->page[pos / PAGE_SIZE]; 294 if (!page && write) { 295 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 296 if (!page) 297 return NULL; 298 bprm->page[pos / PAGE_SIZE] = page; 299 } 300 301 return page; 302 } 303 304 static void put_arg_page(struct page *page) 305 { 306 } 307 308 static void free_arg_page(struct linux_binprm *bprm, int i) 309 { 310 if (bprm->page[i]) { 311 __free_page(bprm->page[i]); 312 bprm->page[i] = NULL; 313 } 314 } 315 316 static void free_arg_pages(struct linux_binprm *bprm) 317 { 318 int i; 319 320 for (i = 0; i < MAX_ARG_PAGES; i++) 321 free_arg_page(bprm, i); 322 } 323 324 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 325 struct page *page) 326 { 327 } 328 329 static int __bprm_mm_init(struct linux_binprm *bprm) 330 { 331 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 332 return 0; 333 } 334 335 static bool valid_arg_len(struct linux_binprm *bprm, long len) 336 { 337 return len <= bprm->p; 338 } 339 340 #endif /* CONFIG_MMU */ 341 342 /* 343 * Create a new mm_struct and populate it with a temporary stack 344 * vm_area_struct. We don't have enough context at this point to set the stack 345 * flags, permissions, and offset, so we use temporary values. We'll update 346 * them later in setup_arg_pages(). 347 */ 348 int bprm_mm_init(struct linux_binprm *bprm) 349 { 350 int err; 351 struct mm_struct *mm = NULL; 352 353 bprm->mm = mm = mm_alloc(); 354 err = -ENOMEM; 355 if (!mm) 356 goto err; 357 358 err = init_new_context(current, mm); 359 if (err) 360 goto err; 361 362 err = __bprm_mm_init(bprm); 363 if (err) 364 goto err; 365 366 return 0; 367 368 err: 369 if (mm) { 370 bprm->mm = NULL; 371 mmdrop(mm); 372 } 373 374 return err; 375 } 376 377 /* 378 * count() counts the number of strings in array ARGV. 379 */ 380 static int count(char __user * __user * argv, int max) 381 { 382 int i = 0; 383 384 if (argv != NULL) { 385 for (;;) { 386 char __user * p; 387 388 if (get_user(p, argv)) 389 return -EFAULT; 390 if (!p) 391 break; 392 argv++; 393 if(++i > max) 394 return -E2BIG; 395 cond_resched(); 396 } 397 } 398 return i; 399 } 400 401 /* 402 * 'copy_strings()' copies argument/environment strings from the old 403 * processes's memory to the new process's stack. The call to get_user_pages() 404 * ensures the destination page is created and not swapped out. 405 */ 406 static int copy_strings(int argc, char __user * __user * argv, 407 struct linux_binprm *bprm) 408 { 409 struct page *kmapped_page = NULL; 410 char *kaddr = NULL; 411 unsigned long kpos = 0; 412 int ret; 413 414 while (argc-- > 0) { 415 char __user *str; 416 int len; 417 unsigned long pos; 418 419 if (get_user(str, argv+argc) || 420 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 421 ret = -EFAULT; 422 goto out; 423 } 424 425 if (!valid_arg_len(bprm, len)) { 426 ret = -E2BIG; 427 goto out; 428 } 429 430 /* We're going to work our way backwords. */ 431 pos = bprm->p; 432 str += len; 433 bprm->p -= len; 434 435 while (len > 0) { 436 int offset, bytes_to_copy; 437 438 offset = pos % PAGE_SIZE; 439 if (offset == 0) 440 offset = PAGE_SIZE; 441 442 bytes_to_copy = offset; 443 if (bytes_to_copy > len) 444 bytes_to_copy = len; 445 446 offset -= bytes_to_copy; 447 pos -= bytes_to_copy; 448 str -= bytes_to_copy; 449 len -= bytes_to_copy; 450 451 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 452 struct page *page; 453 454 page = get_arg_page(bprm, pos, 1); 455 if (!page) { 456 ret = -E2BIG; 457 goto out; 458 } 459 460 if (kmapped_page) { 461 flush_kernel_dcache_page(kmapped_page); 462 kunmap(kmapped_page); 463 put_arg_page(kmapped_page); 464 } 465 kmapped_page = page; 466 kaddr = kmap(kmapped_page); 467 kpos = pos & PAGE_MASK; 468 flush_arg_page(bprm, kpos, kmapped_page); 469 } 470 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 471 ret = -EFAULT; 472 goto out; 473 } 474 } 475 } 476 ret = 0; 477 out: 478 if (kmapped_page) { 479 flush_kernel_dcache_page(kmapped_page); 480 kunmap(kmapped_page); 481 put_arg_page(kmapped_page); 482 } 483 return ret; 484 } 485 486 /* 487 * Like copy_strings, but get argv and its values from kernel memory. 488 */ 489 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 490 { 491 int r; 492 mm_segment_t oldfs = get_fs(); 493 set_fs(KERNEL_DS); 494 r = copy_strings(argc, (char __user * __user *)argv, bprm); 495 set_fs(oldfs); 496 return r; 497 } 498 EXPORT_SYMBOL(copy_strings_kernel); 499 500 #ifdef CONFIG_MMU 501 502 /* 503 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 504 * the binfmt code determines where the new stack should reside, we shift it to 505 * its final location. The process proceeds as follows: 506 * 507 * 1) Use shift to calculate the new vma endpoints. 508 * 2) Extend vma to cover both the old and new ranges. This ensures the 509 * arguments passed to subsequent functions are consistent. 510 * 3) Move vma's page tables to the new range. 511 * 4) Free up any cleared pgd range. 512 * 5) Shrink the vma to cover only the new range. 513 */ 514 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 515 { 516 struct mm_struct *mm = vma->vm_mm; 517 unsigned long old_start = vma->vm_start; 518 unsigned long old_end = vma->vm_end; 519 unsigned long length = old_end - old_start; 520 unsigned long new_start = old_start - shift; 521 unsigned long new_end = old_end - shift; 522 struct mmu_gather *tlb; 523 524 BUG_ON(new_start > new_end); 525 526 /* 527 * ensure there are no vmas between where we want to go 528 * and where we are 529 */ 530 if (vma != find_vma(mm, new_start)) 531 return -EFAULT; 532 533 /* 534 * cover the whole range: [new_start, old_end) 535 */ 536 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 537 538 /* 539 * move the page tables downwards, on failure we rely on 540 * process cleanup to remove whatever mess we made. 541 */ 542 if (length != move_page_tables(vma, old_start, 543 vma, new_start, length)) 544 return -ENOMEM; 545 546 lru_add_drain(); 547 tlb = tlb_gather_mmu(mm, 0); 548 if (new_end > old_start) { 549 /* 550 * when the old and new regions overlap clear from new_end. 551 */ 552 free_pgd_range(tlb, new_end, old_end, new_end, 553 vma->vm_next ? vma->vm_next->vm_start : 0); 554 } else { 555 /* 556 * otherwise, clean from old_start; this is done to not touch 557 * the address space in [new_end, old_start) some architectures 558 * have constraints on va-space that make this illegal (IA64) - 559 * for the others its just a little faster. 560 */ 561 free_pgd_range(tlb, old_start, old_end, new_end, 562 vma->vm_next ? vma->vm_next->vm_start : 0); 563 } 564 tlb_finish_mmu(tlb, new_end, old_end); 565 566 /* 567 * shrink the vma to just the new range. 568 */ 569 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 570 571 return 0; 572 } 573 574 #define EXTRA_STACK_VM_PAGES 20 /* random */ 575 576 /* 577 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 578 * the stack is optionally relocated, and some extra space is added. 579 */ 580 int setup_arg_pages(struct linux_binprm *bprm, 581 unsigned long stack_top, 582 int executable_stack) 583 { 584 unsigned long ret; 585 unsigned long stack_shift; 586 struct mm_struct *mm = current->mm; 587 struct vm_area_struct *vma = bprm->vma; 588 struct vm_area_struct *prev = NULL; 589 unsigned long vm_flags; 590 unsigned long stack_base; 591 592 #ifdef CONFIG_STACK_GROWSUP 593 /* Limit stack size to 1GB */ 594 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 595 if (stack_base > (1 << 30)) 596 stack_base = 1 << 30; 597 598 /* Make sure we didn't let the argument array grow too large. */ 599 if (vma->vm_end - vma->vm_start > stack_base) 600 return -ENOMEM; 601 602 stack_base = PAGE_ALIGN(stack_top - stack_base); 603 604 stack_shift = vma->vm_start - stack_base; 605 mm->arg_start = bprm->p - stack_shift; 606 bprm->p = vma->vm_end - stack_shift; 607 #else 608 stack_top = arch_align_stack(stack_top); 609 stack_top = PAGE_ALIGN(stack_top); 610 stack_shift = vma->vm_end - stack_top; 611 612 bprm->p -= stack_shift; 613 mm->arg_start = bprm->p; 614 #endif 615 616 if (bprm->loader) 617 bprm->loader -= stack_shift; 618 bprm->exec -= stack_shift; 619 620 down_write(&mm->mmap_sem); 621 vm_flags = VM_STACK_FLAGS; 622 623 /* 624 * Adjust stack execute permissions; explicitly enable for 625 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 626 * (arch default) otherwise. 627 */ 628 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 629 vm_flags |= VM_EXEC; 630 else if (executable_stack == EXSTACK_DISABLE_X) 631 vm_flags &= ~VM_EXEC; 632 vm_flags |= mm->def_flags; 633 634 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 635 vm_flags); 636 if (ret) 637 goto out_unlock; 638 BUG_ON(prev != vma); 639 640 /* Move stack pages down in memory. */ 641 if (stack_shift) { 642 ret = shift_arg_pages(vma, stack_shift); 643 if (ret) { 644 up_write(&mm->mmap_sem); 645 return ret; 646 } 647 } 648 649 #ifdef CONFIG_STACK_GROWSUP 650 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 651 #else 652 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 653 #endif 654 ret = expand_stack(vma, stack_base); 655 if (ret) 656 ret = -EFAULT; 657 658 out_unlock: 659 up_write(&mm->mmap_sem); 660 return 0; 661 } 662 EXPORT_SYMBOL(setup_arg_pages); 663 664 #endif /* CONFIG_MMU */ 665 666 struct file *open_exec(const char *name) 667 { 668 struct nameidata nd; 669 struct file *file; 670 int err; 671 672 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, 673 FMODE_READ|FMODE_EXEC); 674 if (err) 675 goto out; 676 677 err = -EACCES; 678 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 679 goto out_path_put; 680 681 if (nd.path.mnt->mnt_flags & MNT_NOEXEC) 682 goto out_path_put; 683 684 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN); 685 if (err) 686 goto out_path_put; 687 688 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 689 if (IS_ERR(file)) 690 return file; 691 692 err = deny_write_access(file); 693 if (err) { 694 fput(file); 695 goto out; 696 } 697 698 return file; 699 700 out_path_put: 701 release_open_intent(&nd); 702 path_put(&nd.path); 703 out: 704 return ERR_PTR(err); 705 } 706 EXPORT_SYMBOL(open_exec); 707 708 int kernel_read(struct file *file, unsigned long offset, 709 char *addr, unsigned long count) 710 { 711 mm_segment_t old_fs; 712 loff_t pos = offset; 713 int result; 714 715 old_fs = get_fs(); 716 set_fs(get_ds()); 717 /* The cast to a user pointer is valid due to the set_fs() */ 718 result = vfs_read(file, (void __user *)addr, count, &pos); 719 set_fs(old_fs); 720 return result; 721 } 722 723 EXPORT_SYMBOL(kernel_read); 724 725 static int exec_mmap(struct mm_struct *mm) 726 { 727 struct task_struct *tsk; 728 struct mm_struct * old_mm, *active_mm; 729 730 /* Notify parent that we're no longer interested in the old VM */ 731 tsk = current; 732 old_mm = current->mm; 733 mm_release(tsk, old_mm); 734 735 if (old_mm) { 736 /* 737 * Make sure that if there is a core dump in progress 738 * for the old mm, we get out and die instead of going 739 * through with the exec. We must hold mmap_sem around 740 * checking core_state and changing tsk->mm. 741 */ 742 down_read(&old_mm->mmap_sem); 743 if (unlikely(old_mm->core_state)) { 744 up_read(&old_mm->mmap_sem); 745 return -EINTR; 746 } 747 } 748 task_lock(tsk); 749 active_mm = tsk->active_mm; 750 tsk->mm = mm; 751 tsk->active_mm = mm; 752 activate_mm(active_mm, mm); 753 task_unlock(tsk); 754 mm_update_next_owner(old_mm); 755 arch_pick_mmap_layout(mm); 756 if (old_mm) { 757 up_read(&old_mm->mmap_sem); 758 BUG_ON(active_mm != old_mm); 759 mmput(old_mm); 760 return 0; 761 } 762 mmdrop(active_mm); 763 return 0; 764 } 765 766 /* 767 * This function makes sure the current process has its own signal table, 768 * so that flush_signal_handlers can later reset the handlers without 769 * disturbing other processes. (Other processes might share the signal 770 * table via the CLONE_SIGHAND option to clone().) 771 */ 772 static int de_thread(struct task_struct *tsk) 773 { 774 struct signal_struct *sig = tsk->signal; 775 struct sighand_struct *oldsighand = tsk->sighand; 776 spinlock_t *lock = &oldsighand->siglock; 777 struct task_struct *leader = NULL; 778 int count; 779 780 if (thread_group_empty(tsk)) 781 goto no_thread_group; 782 783 /* 784 * Kill all other threads in the thread group. 785 */ 786 spin_lock_irq(lock); 787 if (signal_group_exit(sig)) { 788 /* 789 * Another group action in progress, just 790 * return so that the signal is processed. 791 */ 792 spin_unlock_irq(lock); 793 return -EAGAIN; 794 } 795 sig->group_exit_task = tsk; 796 zap_other_threads(tsk); 797 798 /* Account for the thread group leader hanging around: */ 799 count = thread_group_leader(tsk) ? 1 : 2; 800 sig->notify_count = count; 801 while (atomic_read(&sig->count) > count) { 802 __set_current_state(TASK_UNINTERRUPTIBLE); 803 spin_unlock_irq(lock); 804 schedule(); 805 spin_lock_irq(lock); 806 } 807 spin_unlock_irq(lock); 808 809 /* 810 * At this point all other threads have exited, all we have to 811 * do is to wait for the thread group leader to become inactive, 812 * and to assume its PID: 813 */ 814 if (!thread_group_leader(tsk)) { 815 leader = tsk->group_leader; 816 817 sig->notify_count = -1; /* for exit_notify() */ 818 for (;;) { 819 write_lock_irq(&tasklist_lock); 820 if (likely(leader->exit_state)) 821 break; 822 __set_current_state(TASK_UNINTERRUPTIBLE); 823 write_unlock_irq(&tasklist_lock); 824 schedule(); 825 } 826 827 if (unlikely(task_child_reaper(tsk) == leader)) 828 task_active_pid_ns(tsk)->child_reaper = tsk; 829 /* 830 * The only record we have of the real-time age of a 831 * process, regardless of execs it's done, is start_time. 832 * All the past CPU time is accumulated in signal_struct 833 * from sister threads now dead. But in this non-leader 834 * exec, nothing survives from the original leader thread, 835 * whose birth marks the true age of this process now. 836 * When we take on its identity by switching to its PID, we 837 * also take its birthdate (always earlier than our own). 838 */ 839 tsk->start_time = leader->start_time; 840 841 BUG_ON(!same_thread_group(leader, tsk)); 842 BUG_ON(has_group_leader_pid(tsk)); 843 /* 844 * An exec() starts a new thread group with the 845 * TGID of the previous thread group. Rehash the 846 * two threads with a switched PID, and release 847 * the former thread group leader: 848 */ 849 850 /* Become a process group leader with the old leader's pid. 851 * The old leader becomes a thread of the this thread group. 852 * Note: The old leader also uses this pid until release_task 853 * is called. Odd but simple and correct. 854 */ 855 detach_pid(tsk, PIDTYPE_PID); 856 tsk->pid = leader->pid; 857 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 858 transfer_pid(leader, tsk, PIDTYPE_PGID); 859 transfer_pid(leader, tsk, PIDTYPE_SID); 860 list_replace_rcu(&leader->tasks, &tsk->tasks); 861 862 tsk->group_leader = tsk; 863 leader->group_leader = tsk; 864 865 tsk->exit_signal = SIGCHLD; 866 867 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 868 leader->exit_state = EXIT_DEAD; 869 870 write_unlock_irq(&tasklist_lock); 871 } 872 873 sig->group_exit_task = NULL; 874 sig->notify_count = 0; 875 876 no_thread_group: 877 exit_itimers(sig); 878 flush_itimer_signals(); 879 if (leader) 880 release_task(leader); 881 882 if (atomic_read(&oldsighand->count) != 1) { 883 struct sighand_struct *newsighand; 884 /* 885 * This ->sighand is shared with the CLONE_SIGHAND 886 * but not CLONE_THREAD task, switch to the new one. 887 */ 888 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 889 if (!newsighand) 890 return -ENOMEM; 891 892 atomic_set(&newsighand->count, 1); 893 memcpy(newsighand->action, oldsighand->action, 894 sizeof(newsighand->action)); 895 896 write_lock_irq(&tasklist_lock); 897 spin_lock(&oldsighand->siglock); 898 rcu_assign_pointer(tsk->sighand, newsighand); 899 spin_unlock(&oldsighand->siglock); 900 write_unlock_irq(&tasklist_lock); 901 902 __cleanup_sighand(oldsighand); 903 } 904 905 BUG_ON(!thread_group_leader(tsk)); 906 return 0; 907 } 908 909 /* 910 * These functions flushes out all traces of the currently running executable 911 * so that a new one can be started 912 */ 913 static void flush_old_files(struct files_struct * files) 914 { 915 long j = -1; 916 struct fdtable *fdt; 917 918 spin_lock(&files->file_lock); 919 for (;;) { 920 unsigned long set, i; 921 922 j++; 923 i = j * __NFDBITS; 924 fdt = files_fdtable(files); 925 if (i >= fdt->max_fds) 926 break; 927 set = fdt->close_on_exec->fds_bits[j]; 928 if (!set) 929 continue; 930 fdt->close_on_exec->fds_bits[j] = 0; 931 spin_unlock(&files->file_lock); 932 for ( ; set ; i++,set >>= 1) { 933 if (set & 1) { 934 sys_close(i); 935 } 936 } 937 spin_lock(&files->file_lock); 938 939 } 940 spin_unlock(&files->file_lock); 941 } 942 943 char *get_task_comm(char *buf, struct task_struct *tsk) 944 { 945 /* buf must be at least sizeof(tsk->comm) in size */ 946 task_lock(tsk); 947 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 948 task_unlock(tsk); 949 return buf; 950 } 951 952 void set_task_comm(struct task_struct *tsk, char *buf) 953 { 954 task_lock(tsk); 955 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 956 task_unlock(tsk); 957 } 958 959 int flush_old_exec(struct linux_binprm * bprm) 960 { 961 char * name; 962 int i, ch, retval; 963 char tcomm[sizeof(current->comm)]; 964 965 /* 966 * Make sure we have a private signal table and that 967 * we are unassociated from the previous thread group. 968 */ 969 retval = de_thread(current); 970 if (retval) 971 goto out; 972 973 set_mm_exe_file(bprm->mm, bprm->file); 974 975 /* 976 * Release all of the old mmap stuff 977 */ 978 retval = exec_mmap(bprm->mm); 979 if (retval) 980 goto out; 981 982 bprm->mm = NULL; /* We're using it now */ 983 984 /* This is the point of no return */ 985 current->sas_ss_sp = current->sas_ss_size = 0; 986 987 if (current->euid == current->uid && current->egid == current->gid) 988 set_dumpable(current->mm, 1); 989 else 990 set_dumpable(current->mm, suid_dumpable); 991 992 name = bprm->filename; 993 994 /* Copies the binary name from after last slash */ 995 for (i=0; (ch = *(name++)) != '\0';) { 996 if (ch == '/') 997 i = 0; /* overwrite what we wrote */ 998 else 999 if (i < (sizeof(tcomm) - 1)) 1000 tcomm[i++] = ch; 1001 } 1002 tcomm[i] = '\0'; 1003 set_task_comm(current, tcomm); 1004 1005 current->flags &= ~PF_RANDOMIZE; 1006 flush_thread(); 1007 1008 /* Set the new mm task size. We have to do that late because it may 1009 * depend on TIF_32BIT which is only updated in flush_thread() on 1010 * some architectures like powerpc 1011 */ 1012 current->mm->task_size = TASK_SIZE; 1013 1014 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1015 suid_keys(current); 1016 set_dumpable(current->mm, suid_dumpable); 1017 current->pdeath_signal = 0; 1018 } else if (file_permission(bprm->file, MAY_READ) || 1019 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1020 suid_keys(current); 1021 set_dumpable(current->mm, suid_dumpable); 1022 } 1023 1024 /* An exec changes our domain. We are no longer part of the thread 1025 group */ 1026 1027 current->self_exec_id++; 1028 1029 flush_signal_handlers(current, 0); 1030 flush_old_files(current->files); 1031 1032 return 0; 1033 1034 out: 1035 return retval; 1036 } 1037 1038 EXPORT_SYMBOL(flush_old_exec); 1039 1040 /* 1041 * Fill the binprm structure from the inode. 1042 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1043 */ 1044 int prepare_binprm(struct linux_binprm *bprm) 1045 { 1046 int mode; 1047 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1048 int retval; 1049 1050 mode = inode->i_mode; 1051 if (bprm->file->f_op == NULL) 1052 return -EACCES; 1053 1054 bprm->e_uid = current->euid; 1055 bprm->e_gid = current->egid; 1056 1057 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1058 /* Set-uid? */ 1059 if (mode & S_ISUID) { 1060 current->personality &= ~PER_CLEAR_ON_SETID; 1061 bprm->e_uid = inode->i_uid; 1062 } 1063 1064 /* Set-gid? */ 1065 /* 1066 * If setgid is set but no group execute bit then this 1067 * is a candidate for mandatory locking, not a setgid 1068 * executable. 1069 */ 1070 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1071 current->personality &= ~PER_CLEAR_ON_SETID; 1072 bprm->e_gid = inode->i_gid; 1073 } 1074 } 1075 1076 /* fill in binprm security blob */ 1077 retval = security_bprm_set(bprm); 1078 if (retval) 1079 return retval; 1080 1081 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1082 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1083 } 1084 1085 EXPORT_SYMBOL(prepare_binprm); 1086 1087 static int unsafe_exec(struct task_struct *p) 1088 { 1089 int unsafe = tracehook_unsafe_exec(p); 1090 1091 if (atomic_read(&p->fs->count) > 1 || 1092 atomic_read(&p->files->count) > 1 || 1093 atomic_read(&p->sighand->count) > 1) 1094 unsafe |= LSM_UNSAFE_SHARE; 1095 1096 return unsafe; 1097 } 1098 1099 void compute_creds(struct linux_binprm *bprm) 1100 { 1101 int unsafe; 1102 1103 if (bprm->e_uid != current->uid) { 1104 suid_keys(current); 1105 current->pdeath_signal = 0; 1106 } 1107 exec_keys(current); 1108 1109 task_lock(current); 1110 unsafe = unsafe_exec(current); 1111 security_bprm_apply_creds(bprm, unsafe); 1112 task_unlock(current); 1113 security_bprm_post_apply_creds(bprm); 1114 } 1115 EXPORT_SYMBOL(compute_creds); 1116 1117 /* 1118 * Arguments are '\0' separated strings found at the location bprm->p 1119 * points to; chop off the first by relocating brpm->p to right after 1120 * the first '\0' encountered. 1121 */ 1122 int remove_arg_zero(struct linux_binprm *bprm) 1123 { 1124 int ret = 0; 1125 unsigned long offset; 1126 char *kaddr; 1127 struct page *page; 1128 1129 if (!bprm->argc) 1130 return 0; 1131 1132 do { 1133 offset = bprm->p & ~PAGE_MASK; 1134 page = get_arg_page(bprm, bprm->p, 0); 1135 if (!page) { 1136 ret = -EFAULT; 1137 goto out; 1138 } 1139 kaddr = kmap_atomic(page, KM_USER0); 1140 1141 for (; offset < PAGE_SIZE && kaddr[offset]; 1142 offset++, bprm->p++) 1143 ; 1144 1145 kunmap_atomic(kaddr, KM_USER0); 1146 put_arg_page(page); 1147 1148 if (offset == PAGE_SIZE) 1149 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1150 } while (offset == PAGE_SIZE); 1151 1152 bprm->p++; 1153 bprm->argc--; 1154 ret = 0; 1155 1156 out: 1157 return ret; 1158 } 1159 EXPORT_SYMBOL(remove_arg_zero); 1160 1161 /* 1162 * cycle the list of binary formats handler, until one recognizes the image 1163 */ 1164 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1165 { 1166 int try,retval; 1167 struct linux_binfmt *fmt; 1168 #ifdef __alpha__ 1169 /* handle /sbin/loader.. */ 1170 { 1171 struct exec * eh = (struct exec *) bprm->buf; 1172 1173 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1174 (eh->fh.f_flags & 0x3000) == 0x3000) 1175 { 1176 struct file * file; 1177 unsigned long loader; 1178 1179 allow_write_access(bprm->file); 1180 fput(bprm->file); 1181 bprm->file = NULL; 1182 1183 loader = bprm->vma->vm_end - sizeof(void *); 1184 1185 file = open_exec("/sbin/loader"); 1186 retval = PTR_ERR(file); 1187 if (IS_ERR(file)) 1188 return retval; 1189 1190 /* Remember if the application is TASO. */ 1191 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1192 1193 bprm->file = file; 1194 bprm->loader = loader; 1195 retval = prepare_binprm(bprm); 1196 if (retval<0) 1197 return retval; 1198 /* should call search_binary_handler recursively here, 1199 but it does not matter */ 1200 } 1201 } 1202 #endif 1203 retval = security_bprm_check(bprm); 1204 if (retval) 1205 return retval; 1206 1207 /* kernel module loader fixup */ 1208 /* so we don't try to load run modprobe in kernel space. */ 1209 set_fs(USER_DS); 1210 1211 retval = audit_bprm(bprm); 1212 if (retval) 1213 return retval; 1214 1215 retval = -ENOENT; 1216 for (try=0; try<2; try++) { 1217 read_lock(&binfmt_lock); 1218 list_for_each_entry(fmt, &formats, lh) { 1219 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1220 if (!fn) 1221 continue; 1222 if (!try_module_get(fmt->module)) 1223 continue; 1224 read_unlock(&binfmt_lock); 1225 retval = fn(bprm, regs); 1226 if (retval >= 0) { 1227 tracehook_report_exec(fmt, bprm, regs); 1228 put_binfmt(fmt); 1229 allow_write_access(bprm->file); 1230 if (bprm->file) 1231 fput(bprm->file); 1232 bprm->file = NULL; 1233 current->did_exec = 1; 1234 proc_exec_connector(current); 1235 return retval; 1236 } 1237 read_lock(&binfmt_lock); 1238 put_binfmt(fmt); 1239 if (retval != -ENOEXEC || bprm->mm == NULL) 1240 break; 1241 if (!bprm->file) { 1242 read_unlock(&binfmt_lock); 1243 return retval; 1244 } 1245 } 1246 read_unlock(&binfmt_lock); 1247 if (retval != -ENOEXEC || bprm->mm == NULL) { 1248 break; 1249 #ifdef CONFIG_KMOD 1250 }else{ 1251 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1252 if (printable(bprm->buf[0]) && 1253 printable(bprm->buf[1]) && 1254 printable(bprm->buf[2]) && 1255 printable(bprm->buf[3])) 1256 break; /* -ENOEXEC */ 1257 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1258 #endif 1259 } 1260 } 1261 return retval; 1262 } 1263 1264 EXPORT_SYMBOL(search_binary_handler); 1265 1266 void free_bprm(struct linux_binprm *bprm) 1267 { 1268 free_arg_pages(bprm); 1269 kfree(bprm); 1270 } 1271 1272 /* 1273 * sys_execve() executes a new program. 1274 */ 1275 int do_execve(char * filename, 1276 char __user *__user *argv, 1277 char __user *__user *envp, 1278 struct pt_regs * regs) 1279 { 1280 struct linux_binprm *bprm; 1281 struct file *file; 1282 struct files_struct *displaced; 1283 int retval; 1284 1285 retval = unshare_files(&displaced); 1286 if (retval) 1287 goto out_ret; 1288 1289 retval = -ENOMEM; 1290 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1291 if (!bprm) 1292 goto out_files; 1293 1294 file = open_exec(filename); 1295 retval = PTR_ERR(file); 1296 if (IS_ERR(file)) 1297 goto out_kfree; 1298 1299 sched_exec(); 1300 1301 bprm->file = file; 1302 bprm->filename = filename; 1303 bprm->interp = filename; 1304 1305 retval = bprm_mm_init(bprm); 1306 if (retval) 1307 goto out_file; 1308 1309 bprm->argc = count(argv, MAX_ARG_STRINGS); 1310 if ((retval = bprm->argc) < 0) 1311 goto out_mm; 1312 1313 bprm->envc = count(envp, MAX_ARG_STRINGS); 1314 if ((retval = bprm->envc) < 0) 1315 goto out_mm; 1316 1317 retval = security_bprm_alloc(bprm); 1318 if (retval) 1319 goto out; 1320 1321 retval = prepare_binprm(bprm); 1322 if (retval < 0) 1323 goto out; 1324 1325 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1326 if (retval < 0) 1327 goto out; 1328 1329 bprm->exec = bprm->p; 1330 retval = copy_strings(bprm->envc, envp, bprm); 1331 if (retval < 0) 1332 goto out; 1333 1334 retval = copy_strings(bprm->argc, argv, bprm); 1335 if (retval < 0) 1336 goto out; 1337 1338 current->flags &= ~PF_KTHREAD; 1339 retval = search_binary_handler(bprm,regs); 1340 if (retval >= 0) { 1341 /* execve success */ 1342 security_bprm_free(bprm); 1343 acct_update_integrals(current); 1344 free_bprm(bprm); 1345 if (displaced) 1346 put_files_struct(displaced); 1347 return retval; 1348 } 1349 1350 out: 1351 if (bprm->security) 1352 security_bprm_free(bprm); 1353 1354 out_mm: 1355 if (bprm->mm) 1356 mmput (bprm->mm); 1357 1358 out_file: 1359 if (bprm->file) { 1360 allow_write_access(bprm->file); 1361 fput(bprm->file); 1362 } 1363 out_kfree: 1364 free_bprm(bprm); 1365 1366 out_files: 1367 if (displaced) 1368 reset_files_struct(displaced); 1369 out_ret: 1370 return retval; 1371 } 1372 1373 int set_binfmt(struct linux_binfmt *new) 1374 { 1375 struct linux_binfmt *old = current->binfmt; 1376 1377 if (new) { 1378 if (!try_module_get(new->module)) 1379 return -1; 1380 } 1381 current->binfmt = new; 1382 if (old) 1383 module_put(old->module); 1384 return 0; 1385 } 1386 1387 EXPORT_SYMBOL(set_binfmt); 1388 1389 /* format_corename will inspect the pattern parameter, and output a 1390 * name into corename, which must have space for at least 1391 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1392 */ 1393 static int format_corename(char *corename, int nr_threads, long signr) 1394 { 1395 const char *pat_ptr = core_pattern; 1396 int ispipe = (*pat_ptr == '|'); 1397 char *out_ptr = corename; 1398 char *const out_end = corename + CORENAME_MAX_SIZE; 1399 int rc; 1400 int pid_in_pattern = 0; 1401 1402 /* Repeat as long as we have more pattern to process and more output 1403 space */ 1404 while (*pat_ptr) { 1405 if (*pat_ptr != '%') { 1406 if (out_ptr == out_end) 1407 goto out; 1408 *out_ptr++ = *pat_ptr++; 1409 } else { 1410 switch (*++pat_ptr) { 1411 case 0: 1412 goto out; 1413 /* Double percent, output one percent */ 1414 case '%': 1415 if (out_ptr == out_end) 1416 goto out; 1417 *out_ptr++ = '%'; 1418 break; 1419 /* pid */ 1420 case 'p': 1421 pid_in_pattern = 1; 1422 rc = snprintf(out_ptr, out_end - out_ptr, 1423 "%d", task_tgid_vnr(current)); 1424 if (rc > out_end - out_ptr) 1425 goto out; 1426 out_ptr += rc; 1427 break; 1428 /* uid */ 1429 case 'u': 1430 rc = snprintf(out_ptr, out_end - out_ptr, 1431 "%d", current->uid); 1432 if (rc > out_end - out_ptr) 1433 goto out; 1434 out_ptr += rc; 1435 break; 1436 /* gid */ 1437 case 'g': 1438 rc = snprintf(out_ptr, out_end - out_ptr, 1439 "%d", current->gid); 1440 if (rc > out_end - out_ptr) 1441 goto out; 1442 out_ptr += rc; 1443 break; 1444 /* signal that caused the coredump */ 1445 case 's': 1446 rc = snprintf(out_ptr, out_end - out_ptr, 1447 "%ld", signr); 1448 if (rc > out_end - out_ptr) 1449 goto out; 1450 out_ptr += rc; 1451 break; 1452 /* UNIX time of coredump */ 1453 case 't': { 1454 struct timeval tv; 1455 do_gettimeofday(&tv); 1456 rc = snprintf(out_ptr, out_end - out_ptr, 1457 "%lu", tv.tv_sec); 1458 if (rc > out_end - out_ptr) 1459 goto out; 1460 out_ptr += rc; 1461 break; 1462 } 1463 /* hostname */ 1464 case 'h': 1465 down_read(&uts_sem); 1466 rc = snprintf(out_ptr, out_end - out_ptr, 1467 "%s", utsname()->nodename); 1468 up_read(&uts_sem); 1469 if (rc > out_end - out_ptr) 1470 goto out; 1471 out_ptr += rc; 1472 break; 1473 /* executable */ 1474 case 'e': 1475 rc = snprintf(out_ptr, out_end - out_ptr, 1476 "%s", current->comm); 1477 if (rc > out_end - out_ptr) 1478 goto out; 1479 out_ptr += rc; 1480 break; 1481 /* core limit size */ 1482 case 'c': 1483 rc = snprintf(out_ptr, out_end - out_ptr, 1484 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1485 if (rc > out_end - out_ptr) 1486 goto out; 1487 out_ptr += rc; 1488 break; 1489 default: 1490 break; 1491 } 1492 ++pat_ptr; 1493 } 1494 } 1495 /* Backward compatibility with core_uses_pid: 1496 * 1497 * If core_pattern does not include a %p (as is the default) 1498 * and core_uses_pid is set, then .%pid will be appended to 1499 * the filename. Do not do this for piped commands. */ 1500 if (!ispipe && !pid_in_pattern 1501 && (core_uses_pid || nr_threads)) { 1502 rc = snprintf(out_ptr, out_end - out_ptr, 1503 ".%d", task_tgid_vnr(current)); 1504 if (rc > out_end - out_ptr) 1505 goto out; 1506 out_ptr += rc; 1507 } 1508 out: 1509 *out_ptr = 0; 1510 return ispipe; 1511 } 1512 1513 static int zap_process(struct task_struct *start) 1514 { 1515 struct task_struct *t; 1516 int nr = 0; 1517 1518 start->signal->flags = SIGNAL_GROUP_EXIT; 1519 start->signal->group_stop_count = 0; 1520 1521 t = start; 1522 do { 1523 if (t != current && t->mm) { 1524 sigaddset(&t->pending.signal, SIGKILL); 1525 signal_wake_up(t, 1); 1526 nr++; 1527 } 1528 } while_each_thread(start, t); 1529 1530 return nr; 1531 } 1532 1533 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1534 struct core_state *core_state, int exit_code) 1535 { 1536 struct task_struct *g, *p; 1537 unsigned long flags; 1538 int nr = -EAGAIN; 1539 1540 spin_lock_irq(&tsk->sighand->siglock); 1541 if (!signal_group_exit(tsk->signal)) { 1542 mm->core_state = core_state; 1543 tsk->signal->group_exit_code = exit_code; 1544 nr = zap_process(tsk); 1545 } 1546 spin_unlock_irq(&tsk->sighand->siglock); 1547 if (unlikely(nr < 0)) 1548 return nr; 1549 1550 if (atomic_read(&mm->mm_users) == nr + 1) 1551 goto done; 1552 /* 1553 * We should find and kill all tasks which use this mm, and we should 1554 * count them correctly into ->nr_threads. We don't take tasklist 1555 * lock, but this is safe wrt: 1556 * 1557 * fork: 1558 * None of sub-threads can fork after zap_process(leader). All 1559 * processes which were created before this point should be 1560 * visible to zap_threads() because copy_process() adds the new 1561 * process to the tail of init_task.tasks list, and lock/unlock 1562 * of ->siglock provides a memory barrier. 1563 * 1564 * do_exit: 1565 * The caller holds mm->mmap_sem. This means that the task which 1566 * uses this mm can't pass exit_mm(), so it can't exit or clear 1567 * its ->mm. 1568 * 1569 * de_thread: 1570 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1571 * we must see either old or new leader, this does not matter. 1572 * However, it can change p->sighand, so lock_task_sighand(p) 1573 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1574 * it can't fail. 1575 * 1576 * Note also that "g" can be the old leader with ->mm == NULL 1577 * and already unhashed and thus removed from ->thread_group. 1578 * This is OK, __unhash_process()->list_del_rcu() does not 1579 * clear the ->next pointer, we will find the new leader via 1580 * next_thread(). 1581 */ 1582 rcu_read_lock(); 1583 for_each_process(g) { 1584 if (g == tsk->group_leader) 1585 continue; 1586 if (g->flags & PF_KTHREAD) 1587 continue; 1588 p = g; 1589 do { 1590 if (p->mm) { 1591 if (unlikely(p->mm == mm)) { 1592 lock_task_sighand(p, &flags); 1593 nr += zap_process(p); 1594 unlock_task_sighand(p, &flags); 1595 } 1596 break; 1597 } 1598 } while_each_thread(g, p); 1599 } 1600 rcu_read_unlock(); 1601 done: 1602 atomic_set(&core_state->nr_threads, nr); 1603 return nr; 1604 } 1605 1606 static int coredump_wait(int exit_code, struct core_state *core_state) 1607 { 1608 struct task_struct *tsk = current; 1609 struct mm_struct *mm = tsk->mm; 1610 struct completion *vfork_done; 1611 int core_waiters; 1612 1613 init_completion(&core_state->startup); 1614 core_state->dumper.task = tsk; 1615 core_state->dumper.next = NULL; 1616 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1617 up_write(&mm->mmap_sem); 1618 1619 if (unlikely(core_waiters < 0)) 1620 goto fail; 1621 1622 /* 1623 * Make sure nobody is waiting for us to release the VM, 1624 * otherwise we can deadlock when we wait on each other 1625 */ 1626 vfork_done = tsk->vfork_done; 1627 if (vfork_done) { 1628 tsk->vfork_done = NULL; 1629 complete(vfork_done); 1630 } 1631 1632 if (core_waiters) 1633 wait_for_completion(&core_state->startup); 1634 fail: 1635 return core_waiters; 1636 } 1637 1638 static void coredump_finish(struct mm_struct *mm) 1639 { 1640 struct core_thread *curr, *next; 1641 struct task_struct *task; 1642 1643 next = mm->core_state->dumper.next; 1644 while ((curr = next) != NULL) { 1645 next = curr->next; 1646 task = curr->task; 1647 /* 1648 * see exit_mm(), curr->task must not see 1649 * ->task == NULL before we read ->next. 1650 */ 1651 smp_mb(); 1652 curr->task = NULL; 1653 wake_up_process(task); 1654 } 1655 1656 mm->core_state = NULL; 1657 } 1658 1659 /* 1660 * set_dumpable converts traditional three-value dumpable to two flags and 1661 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1662 * these bits are not changed atomically. So get_dumpable can observe the 1663 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1664 * return either old dumpable or new one by paying attention to the order of 1665 * modifying the bits. 1666 * 1667 * dumpable | mm->flags (binary) 1668 * old new | initial interim final 1669 * ---------+----------------------- 1670 * 0 1 | 00 01 01 1671 * 0 2 | 00 10(*) 11 1672 * 1 0 | 01 00 00 1673 * 1 2 | 01 11 11 1674 * 2 0 | 11 10(*) 00 1675 * 2 1 | 11 11 01 1676 * 1677 * (*) get_dumpable regards interim value of 10 as 11. 1678 */ 1679 void set_dumpable(struct mm_struct *mm, int value) 1680 { 1681 switch (value) { 1682 case 0: 1683 clear_bit(MMF_DUMPABLE, &mm->flags); 1684 smp_wmb(); 1685 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1686 break; 1687 case 1: 1688 set_bit(MMF_DUMPABLE, &mm->flags); 1689 smp_wmb(); 1690 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1691 break; 1692 case 2: 1693 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1694 smp_wmb(); 1695 set_bit(MMF_DUMPABLE, &mm->flags); 1696 break; 1697 } 1698 } 1699 1700 int get_dumpable(struct mm_struct *mm) 1701 { 1702 int ret; 1703 1704 ret = mm->flags & 0x3; 1705 return (ret >= 2) ? 2 : ret; 1706 } 1707 1708 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1709 { 1710 struct core_state core_state; 1711 char corename[CORENAME_MAX_SIZE + 1]; 1712 struct mm_struct *mm = current->mm; 1713 struct linux_binfmt * binfmt; 1714 struct inode * inode; 1715 struct file * file; 1716 int retval = 0; 1717 int fsuid = current->fsuid; 1718 int flag = 0; 1719 int ispipe = 0; 1720 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1721 char **helper_argv = NULL; 1722 int helper_argc = 0; 1723 char *delimit; 1724 1725 audit_core_dumps(signr); 1726 1727 binfmt = current->binfmt; 1728 if (!binfmt || !binfmt->core_dump) 1729 goto fail; 1730 down_write(&mm->mmap_sem); 1731 /* 1732 * If another thread got here first, or we are not dumpable, bail out. 1733 */ 1734 if (mm->core_state || !get_dumpable(mm)) { 1735 up_write(&mm->mmap_sem); 1736 goto fail; 1737 } 1738 1739 /* 1740 * We cannot trust fsuid as being the "true" uid of the 1741 * process nor do we know its entire history. We only know it 1742 * was tainted so we dump it as root in mode 2. 1743 */ 1744 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1745 flag = O_EXCL; /* Stop rewrite attacks */ 1746 current->fsuid = 0; /* Dump root private */ 1747 } 1748 1749 retval = coredump_wait(exit_code, &core_state); 1750 if (retval < 0) 1751 goto fail; 1752 1753 /* 1754 * Clear any false indication of pending signals that might 1755 * be seen by the filesystem code called to write the core file. 1756 */ 1757 clear_thread_flag(TIF_SIGPENDING); 1758 1759 /* 1760 * lock_kernel() because format_corename() is controlled by sysctl, which 1761 * uses lock_kernel() 1762 */ 1763 lock_kernel(); 1764 ispipe = format_corename(corename, retval, signr); 1765 unlock_kernel(); 1766 /* 1767 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1768 * to a pipe. Since we're not writing directly to the filesystem 1769 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1770 * created unless the pipe reader choses to write out the core file 1771 * at which point file size limits and permissions will be imposed 1772 * as it does with any other process 1773 */ 1774 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1775 goto fail_unlock; 1776 1777 if (ispipe) { 1778 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1779 /* Terminate the string before the first option */ 1780 delimit = strchr(corename, ' '); 1781 if (delimit) 1782 *delimit = '\0'; 1783 delimit = strrchr(helper_argv[0], '/'); 1784 if (delimit) 1785 delimit++; 1786 else 1787 delimit = helper_argv[0]; 1788 if (!strcmp(delimit, current->comm)) { 1789 printk(KERN_NOTICE "Recursive core dump detected, " 1790 "aborting\n"); 1791 goto fail_unlock; 1792 } 1793 1794 core_limit = RLIM_INFINITY; 1795 1796 /* SIGPIPE can happen, but it's just never processed */ 1797 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1798 &file)) { 1799 printk(KERN_INFO "Core dump to %s pipe failed\n", 1800 corename); 1801 goto fail_unlock; 1802 } 1803 } else 1804 file = filp_open(corename, 1805 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1806 0600); 1807 if (IS_ERR(file)) 1808 goto fail_unlock; 1809 inode = file->f_path.dentry->d_inode; 1810 if (inode->i_nlink > 1) 1811 goto close_fail; /* multiple links - don't dump */ 1812 if (!ispipe && d_unhashed(file->f_path.dentry)) 1813 goto close_fail; 1814 1815 /* AK: actually i see no reason to not allow this for named pipes etc., 1816 but keep the previous behaviour for now. */ 1817 if (!ispipe && !S_ISREG(inode->i_mode)) 1818 goto close_fail; 1819 /* 1820 * Dont allow local users get cute and trick others to coredump 1821 * into their pre-created files: 1822 */ 1823 if (inode->i_uid != current->fsuid) 1824 goto close_fail; 1825 if (!file->f_op) 1826 goto close_fail; 1827 if (!file->f_op->write) 1828 goto close_fail; 1829 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1830 goto close_fail; 1831 1832 retval = binfmt->core_dump(signr, regs, file, core_limit); 1833 1834 if (retval) 1835 current->signal->group_exit_code |= 0x80; 1836 close_fail: 1837 filp_close(file, NULL); 1838 fail_unlock: 1839 if (helper_argv) 1840 argv_free(helper_argv); 1841 1842 current->fsuid = fsuid; 1843 coredump_finish(mm); 1844 fail: 1845 return retval; 1846 } 1847