xref: /openbmc/linux/fs/exec.c (revision ed1666f6)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 int suid_dumpable = 0;
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	BUG_ON(!fmt);
83 	if (WARN_ON(!fmt->load_binary))
84 		return;
85 	write_lock(&binfmt_lock);
86 	insert ? list_add(&fmt->lh, &formats) :
87 		 list_add_tail(&fmt->lh, &formats);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 bool path_noexec(const struct path *path)
108 {
109 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112 
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 	struct linux_binfmt *fmt;
123 	struct file *file;
124 	struct filename *tmp = getname(library);
125 	int error = PTR_ERR(tmp);
126 	static const struct open_flags uselib_flags = {
127 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 		.acc_mode = MAY_READ | MAY_EXEC,
129 		.intent = LOOKUP_OPEN,
130 		.lookup_flags = LOOKUP_FOLLOW,
131 	};
132 
133 	if (IS_ERR(tmp))
134 		goto out;
135 
136 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 	putname(tmp);
138 	error = PTR_ERR(file);
139 	if (IS_ERR(file))
140 		goto out;
141 
142 	error = -EINVAL;
143 	if (!S_ISREG(file_inode(file)->i_mode))
144 		goto exit;
145 
146 	error = -EACCES;
147 	if (path_noexec(&file->f_path))
148 		goto exit;
149 
150 	fsnotify_open(file);
151 
152 	error = -ENOEXEC;
153 
154 	read_lock(&binfmt_lock);
155 	list_for_each_entry(fmt, &formats, lh) {
156 		if (!fmt->load_shlib)
157 			continue;
158 		if (!try_module_get(fmt->module))
159 			continue;
160 		read_unlock(&binfmt_lock);
161 		error = fmt->load_shlib(file);
162 		read_lock(&binfmt_lock);
163 		put_binfmt(fmt);
164 		if (error != -ENOEXEC)
165 			break;
166 	}
167 	read_unlock(&binfmt_lock);
168 exit:
169 	fput(file);
170 out:
171   	return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174 
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 	struct mm_struct *mm = current->mm;
185 	long diff = (long)(pages - bprm->vma_pages);
186 
187 	if (!mm || !diff)
188 		return;
189 
190 	bprm->vma_pages = pages;
191 	add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193 
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 		int write)
196 {
197 	struct page *page;
198 	int ret;
199 	unsigned int gup_flags = FOLL_FORCE;
200 
201 #ifdef CONFIG_STACK_GROWSUP
202 	if (write) {
203 		ret = expand_downwards(bprm->vma, pos);
204 		if (ret < 0)
205 			return NULL;
206 	}
207 #endif
208 
209 	if (write)
210 		gup_flags |= FOLL_WRITE;
211 
212 	/*
213 	 * We are doing an exec().  'current' is the process
214 	 * doing the exec and bprm->mm is the new process's mm.
215 	 */
216 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 			&page, NULL, NULL);
218 	if (ret <= 0)
219 		return NULL;
220 
221 	if (write)
222 		acct_arg_size(bprm, vma_pages(bprm->vma));
223 
224 	return page;
225 }
226 
227 static void put_arg_page(struct page *page)
228 {
229 	put_page(page);
230 }
231 
232 static void free_arg_pages(struct linux_binprm *bprm)
233 {
234 }
235 
236 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
237 		struct page *page)
238 {
239 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
240 }
241 
242 static int __bprm_mm_init(struct linux_binprm *bprm)
243 {
244 	int err;
245 	struct vm_area_struct *vma = NULL;
246 	struct mm_struct *mm = bprm->mm;
247 
248 	bprm->vma = vma = vm_area_alloc(mm);
249 	if (!vma)
250 		return -ENOMEM;
251 	vma_set_anonymous(vma);
252 
253 	if (down_write_killable(&mm->mmap_sem)) {
254 		err = -EINTR;
255 		goto err_free;
256 	}
257 
258 	/*
259 	 * Place the stack at the largest stack address the architecture
260 	 * supports. Later, we'll move this to an appropriate place. We don't
261 	 * use STACK_TOP because that can depend on attributes which aren't
262 	 * configured yet.
263 	 */
264 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
265 	vma->vm_end = STACK_TOP_MAX;
266 	vma->vm_start = vma->vm_end - PAGE_SIZE;
267 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
268 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
269 
270 	err = insert_vm_struct(mm, vma);
271 	if (err)
272 		goto err;
273 
274 	mm->stack_vm = mm->total_vm = 1;
275 	arch_bprm_mm_init(mm, vma);
276 	up_write(&mm->mmap_sem);
277 	bprm->p = vma->vm_end - sizeof(void *);
278 	return 0;
279 err:
280 	up_write(&mm->mmap_sem);
281 err_free:
282 	bprm->vma = NULL;
283 	vm_area_free(vma);
284 	return err;
285 }
286 
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289 	return len <= MAX_ARG_STRLEN;
290 }
291 
292 #else
293 
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297 
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 		int write)
300 {
301 	struct page *page;
302 
303 	page = bprm->page[pos / PAGE_SIZE];
304 	if (!page && write) {
305 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 		if (!page)
307 			return NULL;
308 		bprm->page[pos / PAGE_SIZE] = page;
309 	}
310 
311 	return page;
312 }
313 
314 static void put_arg_page(struct page *page)
315 {
316 }
317 
318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320 	if (bprm->page[i]) {
321 		__free_page(bprm->page[i]);
322 		bprm->page[i] = NULL;
323 	}
324 }
325 
326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328 	int i;
329 
330 	for (i = 0; i < MAX_ARG_PAGES; i++)
331 		free_arg_page(bprm, i);
332 }
333 
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 		struct page *page)
336 {
337 }
338 
339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 	return 0;
343 }
344 
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347 	return len <= bprm->p;
348 }
349 
350 #endif /* CONFIG_MMU */
351 
352 /*
353  * Create a new mm_struct and populate it with a temporary stack
354  * vm_area_struct.  We don't have enough context at this point to set the stack
355  * flags, permissions, and offset, so we use temporary values.  We'll update
356  * them later in setup_arg_pages().
357  */
358 static int bprm_mm_init(struct linux_binprm *bprm)
359 {
360 	int err;
361 	struct mm_struct *mm = NULL;
362 
363 	bprm->mm = mm = mm_alloc();
364 	err = -ENOMEM;
365 	if (!mm)
366 		goto err;
367 
368 	/* Save current stack limit for all calculations made during exec. */
369 	task_lock(current->group_leader);
370 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
371 	task_unlock(current->group_leader);
372 
373 	err = __bprm_mm_init(bprm);
374 	if (err)
375 		goto err;
376 
377 	return 0;
378 
379 err:
380 	if (mm) {
381 		bprm->mm = NULL;
382 		mmdrop(mm);
383 	}
384 
385 	return err;
386 }
387 
388 struct user_arg_ptr {
389 #ifdef CONFIG_COMPAT
390 	bool is_compat;
391 #endif
392 	union {
393 		const char __user *const __user *native;
394 #ifdef CONFIG_COMPAT
395 		const compat_uptr_t __user *compat;
396 #endif
397 	} ptr;
398 };
399 
400 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
401 {
402 	const char __user *native;
403 
404 #ifdef CONFIG_COMPAT
405 	if (unlikely(argv.is_compat)) {
406 		compat_uptr_t compat;
407 
408 		if (get_user(compat, argv.ptr.compat + nr))
409 			return ERR_PTR(-EFAULT);
410 
411 		return compat_ptr(compat);
412 	}
413 #endif
414 
415 	if (get_user(native, argv.ptr.native + nr))
416 		return ERR_PTR(-EFAULT);
417 
418 	return native;
419 }
420 
421 /*
422  * count() counts the number of strings in array ARGV.
423  */
424 static int count(struct user_arg_ptr argv, int max)
425 {
426 	int i = 0;
427 
428 	if (argv.ptr.native != NULL) {
429 		for (;;) {
430 			const char __user *p = get_user_arg_ptr(argv, i);
431 
432 			if (!p)
433 				break;
434 
435 			if (IS_ERR(p))
436 				return -EFAULT;
437 
438 			if (i >= max)
439 				return -E2BIG;
440 			++i;
441 
442 			if (fatal_signal_pending(current))
443 				return -ERESTARTNOHAND;
444 			cond_resched();
445 		}
446 	}
447 	return i;
448 }
449 
450 static int prepare_arg_pages(struct linux_binprm *bprm,
451 			struct user_arg_ptr argv, struct user_arg_ptr envp)
452 {
453 	unsigned long limit, ptr_size;
454 
455 	bprm->argc = count(argv, MAX_ARG_STRINGS);
456 	if (bprm->argc < 0)
457 		return bprm->argc;
458 
459 	bprm->envc = count(envp, MAX_ARG_STRINGS);
460 	if (bprm->envc < 0)
461 		return bprm->envc;
462 
463 	/*
464 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
465 	 * (whichever is smaller) for the argv+env strings.
466 	 * This ensures that:
467 	 *  - the remaining binfmt code will not run out of stack space,
468 	 *  - the program will have a reasonable amount of stack left
469 	 *    to work from.
470 	 */
471 	limit = _STK_LIM / 4 * 3;
472 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
473 	/*
474 	 * We've historically supported up to 32 pages (ARG_MAX)
475 	 * of argument strings even with small stacks
476 	 */
477 	limit = max_t(unsigned long, limit, ARG_MAX);
478 	/*
479 	 * We must account for the size of all the argv and envp pointers to
480 	 * the argv and envp strings, since they will also take up space in
481 	 * the stack. They aren't stored until much later when we can't
482 	 * signal to the parent that the child has run out of stack space.
483 	 * Instead, calculate it here so it's possible to fail gracefully.
484 	 */
485 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
486 	if (limit <= ptr_size)
487 		return -E2BIG;
488 	limit -= ptr_size;
489 
490 	bprm->argmin = bprm->p - limit;
491 	return 0;
492 }
493 
494 /*
495  * 'copy_strings()' copies argument/environment strings from the old
496  * processes's memory to the new process's stack.  The call to get_user_pages()
497  * ensures the destination page is created and not swapped out.
498  */
499 static int copy_strings(int argc, struct user_arg_ptr argv,
500 			struct linux_binprm *bprm)
501 {
502 	struct page *kmapped_page = NULL;
503 	char *kaddr = NULL;
504 	unsigned long kpos = 0;
505 	int ret;
506 
507 	while (argc-- > 0) {
508 		const char __user *str;
509 		int len;
510 		unsigned long pos;
511 
512 		ret = -EFAULT;
513 		str = get_user_arg_ptr(argv, argc);
514 		if (IS_ERR(str))
515 			goto out;
516 
517 		len = strnlen_user(str, MAX_ARG_STRLEN);
518 		if (!len)
519 			goto out;
520 
521 		ret = -E2BIG;
522 		if (!valid_arg_len(bprm, len))
523 			goto out;
524 
525 		/* We're going to work our way backwords. */
526 		pos = bprm->p;
527 		str += len;
528 		bprm->p -= len;
529 #ifdef CONFIG_MMU
530 		if (bprm->p < bprm->argmin)
531 			goto out;
532 #endif
533 
534 		while (len > 0) {
535 			int offset, bytes_to_copy;
536 
537 			if (fatal_signal_pending(current)) {
538 				ret = -ERESTARTNOHAND;
539 				goto out;
540 			}
541 			cond_resched();
542 
543 			offset = pos % PAGE_SIZE;
544 			if (offset == 0)
545 				offset = PAGE_SIZE;
546 
547 			bytes_to_copy = offset;
548 			if (bytes_to_copy > len)
549 				bytes_to_copy = len;
550 
551 			offset -= bytes_to_copy;
552 			pos -= bytes_to_copy;
553 			str -= bytes_to_copy;
554 			len -= bytes_to_copy;
555 
556 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
557 				struct page *page;
558 
559 				page = get_arg_page(bprm, pos, 1);
560 				if (!page) {
561 					ret = -E2BIG;
562 					goto out;
563 				}
564 
565 				if (kmapped_page) {
566 					flush_kernel_dcache_page(kmapped_page);
567 					kunmap(kmapped_page);
568 					put_arg_page(kmapped_page);
569 				}
570 				kmapped_page = page;
571 				kaddr = kmap(kmapped_page);
572 				kpos = pos & PAGE_MASK;
573 				flush_arg_page(bprm, kpos, kmapped_page);
574 			}
575 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
576 				ret = -EFAULT;
577 				goto out;
578 			}
579 		}
580 	}
581 	ret = 0;
582 out:
583 	if (kmapped_page) {
584 		flush_kernel_dcache_page(kmapped_page);
585 		kunmap(kmapped_page);
586 		put_arg_page(kmapped_page);
587 	}
588 	return ret;
589 }
590 
591 /*
592  * Like copy_strings, but get argv and its values from kernel memory.
593  */
594 int copy_strings_kernel(int argc, const char *const *__argv,
595 			struct linux_binprm *bprm)
596 {
597 	int r;
598 	mm_segment_t oldfs = get_fs();
599 	struct user_arg_ptr argv = {
600 		.ptr.native = (const char __user *const  __user *)__argv,
601 	};
602 
603 	set_fs(KERNEL_DS);
604 	r = copy_strings(argc, argv, bprm);
605 	set_fs(oldfs);
606 
607 	return r;
608 }
609 EXPORT_SYMBOL(copy_strings_kernel);
610 
611 #ifdef CONFIG_MMU
612 
613 /*
614  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
615  * the binfmt code determines where the new stack should reside, we shift it to
616  * its final location.  The process proceeds as follows:
617  *
618  * 1) Use shift to calculate the new vma endpoints.
619  * 2) Extend vma to cover both the old and new ranges.  This ensures the
620  *    arguments passed to subsequent functions are consistent.
621  * 3) Move vma's page tables to the new range.
622  * 4) Free up any cleared pgd range.
623  * 5) Shrink the vma to cover only the new range.
624  */
625 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
626 {
627 	struct mm_struct *mm = vma->vm_mm;
628 	unsigned long old_start = vma->vm_start;
629 	unsigned long old_end = vma->vm_end;
630 	unsigned long length = old_end - old_start;
631 	unsigned long new_start = old_start - shift;
632 	unsigned long new_end = old_end - shift;
633 	struct mmu_gather tlb;
634 
635 	BUG_ON(new_start > new_end);
636 
637 	/*
638 	 * ensure there are no vmas between where we want to go
639 	 * and where we are
640 	 */
641 	if (vma != find_vma(mm, new_start))
642 		return -EFAULT;
643 
644 	/*
645 	 * cover the whole range: [new_start, old_end)
646 	 */
647 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
648 		return -ENOMEM;
649 
650 	/*
651 	 * move the page tables downwards, on failure we rely on
652 	 * process cleanup to remove whatever mess we made.
653 	 */
654 	if (length != move_page_tables(vma, old_start,
655 				       vma, new_start, length, false))
656 		return -ENOMEM;
657 
658 	lru_add_drain();
659 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
660 	if (new_end > old_start) {
661 		/*
662 		 * when the old and new regions overlap clear from new_end.
663 		 */
664 		free_pgd_range(&tlb, new_end, old_end, new_end,
665 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
666 	} else {
667 		/*
668 		 * otherwise, clean from old_start; this is done to not touch
669 		 * the address space in [new_end, old_start) some architectures
670 		 * have constraints on va-space that make this illegal (IA64) -
671 		 * for the others its just a little faster.
672 		 */
673 		free_pgd_range(&tlb, old_start, old_end, new_end,
674 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
675 	}
676 	tlb_finish_mmu(&tlb, old_start, old_end);
677 
678 	/*
679 	 * Shrink the vma to just the new range.  Always succeeds.
680 	 */
681 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
682 
683 	return 0;
684 }
685 
686 /*
687  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
688  * the stack is optionally relocated, and some extra space is added.
689  */
690 int setup_arg_pages(struct linux_binprm *bprm,
691 		    unsigned long stack_top,
692 		    int executable_stack)
693 {
694 	unsigned long ret;
695 	unsigned long stack_shift;
696 	struct mm_struct *mm = current->mm;
697 	struct vm_area_struct *vma = bprm->vma;
698 	struct vm_area_struct *prev = NULL;
699 	unsigned long vm_flags;
700 	unsigned long stack_base;
701 	unsigned long stack_size;
702 	unsigned long stack_expand;
703 	unsigned long rlim_stack;
704 
705 #ifdef CONFIG_STACK_GROWSUP
706 	/* Limit stack size */
707 	stack_base = bprm->rlim_stack.rlim_max;
708 	if (stack_base > STACK_SIZE_MAX)
709 		stack_base = STACK_SIZE_MAX;
710 
711 	/* Add space for stack randomization. */
712 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
713 
714 	/* Make sure we didn't let the argument array grow too large. */
715 	if (vma->vm_end - vma->vm_start > stack_base)
716 		return -ENOMEM;
717 
718 	stack_base = PAGE_ALIGN(stack_top - stack_base);
719 
720 	stack_shift = vma->vm_start - stack_base;
721 	mm->arg_start = bprm->p - stack_shift;
722 	bprm->p = vma->vm_end - stack_shift;
723 #else
724 	stack_top = arch_align_stack(stack_top);
725 	stack_top = PAGE_ALIGN(stack_top);
726 
727 	if (unlikely(stack_top < mmap_min_addr) ||
728 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
729 		return -ENOMEM;
730 
731 	stack_shift = vma->vm_end - stack_top;
732 
733 	bprm->p -= stack_shift;
734 	mm->arg_start = bprm->p;
735 #endif
736 
737 	if (bprm->loader)
738 		bprm->loader -= stack_shift;
739 	bprm->exec -= stack_shift;
740 
741 	if (down_write_killable(&mm->mmap_sem))
742 		return -EINTR;
743 
744 	vm_flags = VM_STACK_FLAGS;
745 
746 	/*
747 	 * Adjust stack execute permissions; explicitly enable for
748 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
749 	 * (arch default) otherwise.
750 	 */
751 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
752 		vm_flags |= VM_EXEC;
753 	else if (executable_stack == EXSTACK_DISABLE_X)
754 		vm_flags &= ~VM_EXEC;
755 	vm_flags |= mm->def_flags;
756 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
757 
758 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
759 			vm_flags);
760 	if (ret)
761 		goto out_unlock;
762 	BUG_ON(prev != vma);
763 
764 	/* Move stack pages down in memory. */
765 	if (stack_shift) {
766 		ret = shift_arg_pages(vma, stack_shift);
767 		if (ret)
768 			goto out_unlock;
769 	}
770 
771 	/* mprotect_fixup is overkill to remove the temporary stack flags */
772 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
773 
774 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
775 	stack_size = vma->vm_end - vma->vm_start;
776 	/*
777 	 * Align this down to a page boundary as expand_stack
778 	 * will align it up.
779 	 */
780 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
781 #ifdef CONFIG_STACK_GROWSUP
782 	if (stack_size + stack_expand > rlim_stack)
783 		stack_base = vma->vm_start + rlim_stack;
784 	else
785 		stack_base = vma->vm_end + stack_expand;
786 #else
787 	if (stack_size + stack_expand > rlim_stack)
788 		stack_base = vma->vm_end - rlim_stack;
789 	else
790 		stack_base = vma->vm_start - stack_expand;
791 #endif
792 	current->mm->start_stack = bprm->p;
793 	ret = expand_stack(vma, stack_base);
794 	if (ret)
795 		ret = -EFAULT;
796 
797 out_unlock:
798 	up_write(&mm->mmap_sem);
799 	return ret;
800 }
801 EXPORT_SYMBOL(setup_arg_pages);
802 
803 #else
804 
805 /*
806  * Transfer the program arguments and environment from the holding pages
807  * onto the stack. The provided stack pointer is adjusted accordingly.
808  */
809 int transfer_args_to_stack(struct linux_binprm *bprm,
810 			   unsigned long *sp_location)
811 {
812 	unsigned long index, stop, sp;
813 	int ret = 0;
814 
815 	stop = bprm->p >> PAGE_SHIFT;
816 	sp = *sp_location;
817 
818 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
819 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
820 		char *src = kmap(bprm->page[index]) + offset;
821 		sp -= PAGE_SIZE - offset;
822 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
823 			ret = -EFAULT;
824 		kunmap(bprm->page[index]);
825 		if (ret)
826 			goto out;
827 	}
828 
829 	*sp_location = sp;
830 
831 out:
832 	return ret;
833 }
834 EXPORT_SYMBOL(transfer_args_to_stack);
835 
836 #endif /* CONFIG_MMU */
837 
838 static struct file *do_open_execat(int fd, struct filename *name, int flags)
839 {
840 	struct file *file;
841 	int err;
842 	struct open_flags open_exec_flags = {
843 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
844 		.acc_mode = MAY_EXEC,
845 		.intent = LOOKUP_OPEN,
846 		.lookup_flags = LOOKUP_FOLLOW,
847 	};
848 
849 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
850 		return ERR_PTR(-EINVAL);
851 	if (flags & AT_SYMLINK_NOFOLLOW)
852 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
853 	if (flags & AT_EMPTY_PATH)
854 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
855 
856 	file = do_filp_open(fd, name, &open_exec_flags);
857 	if (IS_ERR(file))
858 		goto out;
859 
860 	err = -EACCES;
861 	if (!S_ISREG(file_inode(file)->i_mode))
862 		goto exit;
863 
864 	if (path_noexec(&file->f_path))
865 		goto exit;
866 
867 	err = deny_write_access(file);
868 	if (err)
869 		goto exit;
870 
871 	if (name->name[0] != '\0')
872 		fsnotify_open(file);
873 
874 out:
875 	return file;
876 
877 exit:
878 	fput(file);
879 	return ERR_PTR(err);
880 }
881 
882 struct file *open_exec(const char *name)
883 {
884 	struct filename *filename = getname_kernel(name);
885 	struct file *f = ERR_CAST(filename);
886 
887 	if (!IS_ERR(filename)) {
888 		f = do_open_execat(AT_FDCWD, filename, 0);
889 		putname(filename);
890 	}
891 	return f;
892 }
893 EXPORT_SYMBOL(open_exec);
894 
895 int kernel_read_file(struct file *file, void **buf, loff_t *size,
896 		     loff_t max_size, enum kernel_read_file_id id)
897 {
898 	loff_t i_size, pos;
899 	ssize_t bytes = 0;
900 	int ret;
901 
902 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
903 		return -EINVAL;
904 
905 	ret = deny_write_access(file);
906 	if (ret)
907 		return ret;
908 
909 	ret = security_kernel_read_file(file, id);
910 	if (ret)
911 		goto out;
912 
913 	i_size = i_size_read(file_inode(file));
914 	if (i_size <= 0) {
915 		ret = -EINVAL;
916 		goto out;
917 	}
918 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
919 		ret = -EFBIG;
920 		goto out;
921 	}
922 
923 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
924 		*buf = vmalloc(i_size);
925 	if (!*buf) {
926 		ret = -ENOMEM;
927 		goto out;
928 	}
929 
930 	pos = 0;
931 	while (pos < i_size) {
932 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
933 		if (bytes < 0) {
934 			ret = bytes;
935 			goto out_free;
936 		}
937 
938 		if (bytes == 0)
939 			break;
940 	}
941 
942 	if (pos != i_size) {
943 		ret = -EIO;
944 		goto out_free;
945 	}
946 
947 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
948 	if (!ret)
949 		*size = pos;
950 
951 out_free:
952 	if (ret < 0) {
953 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
954 			vfree(*buf);
955 			*buf = NULL;
956 		}
957 	}
958 
959 out:
960 	allow_write_access(file);
961 	return ret;
962 }
963 EXPORT_SYMBOL_GPL(kernel_read_file);
964 
965 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
966 			       loff_t max_size, enum kernel_read_file_id id)
967 {
968 	struct file *file;
969 	int ret;
970 
971 	if (!path || !*path)
972 		return -EINVAL;
973 
974 	file = filp_open(path, O_RDONLY, 0);
975 	if (IS_ERR(file))
976 		return PTR_ERR(file);
977 
978 	ret = kernel_read_file(file, buf, size, max_size, id);
979 	fput(file);
980 	return ret;
981 }
982 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
983 
984 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
985 			     enum kernel_read_file_id id)
986 {
987 	struct fd f = fdget(fd);
988 	int ret = -EBADF;
989 
990 	if (!f.file)
991 		goto out;
992 
993 	ret = kernel_read_file(f.file, buf, size, max_size, id);
994 out:
995 	fdput(f);
996 	return ret;
997 }
998 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
999 
1000 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1001 {
1002 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1003 	if (res > 0)
1004 		flush_icache_range(addr, addr + len);
1005 	return res;
1006 }
1007 EXPORT_SYMBOL(read_code);
1008 
1009 static int exec_mmap(struct mm_struct *mm)
1010 {
1011 	struct task_struct *tsk;
1012 	struct mm_struct *old_mm, *active_mm;
1013 
1014 	/* Notify parent that we're no longer interested in the old VM */
1015 	tsk = current;
1016 	old_mm = current->mm;
1017 	mm_release(tsk, old_mm);
1018 
1019 	if (old_mm) {
1020 		sync_mm_rss(old_mm);
1021 		/*
1022 		 * Make sure that if there is a core dump in progress
1023 		 * for the old mm, we get out and die instead of going
1024 		 * through with the exec.  We must hold mmap_sem around
1025 		 * checking core_state and changing tsk->mm.
1026 		 */
1027 		down_read(&old_mm->mmap_sem);
1028 		if (unlikely(old_mm->core_state)) {
1029 			up_read(&old_mm->mmap_sem);
1030 			return -EINTR;
1031 		}
1032 	}
1033 	task_lock(tsk);
1034 	active_mm = tsk->active_mm;
1035 	tsk->mm = mm;
1036 	tsk->active_mm = mm;
1037 	activate_mm(active_mm, mm);
1038 	tsk->mm->vmacache_seqnum = 0;
1039 	vmacache_flush(tsk);
1040 	task_unlock(tsk);
1041 	if (old_mm) {
1042 		up_read(&old_mm->mmap_sem);
1043 		BUG_ON(active_mm != old_mm);
1044 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1045 		mm_update_next_owner(old_mm);
1046 		mmput(old_mm);
1047 		return 0;
1048 	}
1049 	mmdrop(active_mm);
1050 	return 0;
1051 }
1052 
1053 /*
1054  * This function makes sure the current process has its own signal table,
1055  * so that flush_signal_handlers can later reset the handlers without
1056  * disturbing other processes.  (Other processes might share the signal
1057  * table via the CLONE_SIGHAND option to clone().)
1058  */
1059 static int de_thread(struct task_struct *tsk)
1060 {
1061 	struct signal_struct *sig = tsk->signal;
1062 	struct sighand_struct *oldsighand = tsk->sighand;
1063 	spinlock_t *lock = &oldsighand->siglock;
1064 
1065 	if (thread_group_empty(tsk))
1066 		goto no_thread_group;
1067 
1068 	/*
1069 	 * Kill all other threads in the thread group.
1070 	 */
1071 	spin_lock_irq(lock);
1072 	if (signal_group_exit(sig)) {
1073 		/*
1074 		 * Another group action in progress, just
1075 		 * return so that the signal is processed.
1076 		 */
1077 		spin_unlock_irq(lock);
1078 		return -EAGAIN;
1079 	}
1080 
1081 	sig->group_exit_task = tsk;
1082 	sig->notify_count = zap_other_threads(tsk);
1083 	if (!thread_group_leader(tsk))
1084 		sig->notify_count--;
1085 
1086 	while (sig->notify_count) {
1087 		__set_current_state(TASK_KILLABLE);
1088 		spin_unlock_irq(lock);
1089 		schedule();
1090 		if (__fatal_signal_pending(tsk))
1091 			goto killed;
1092 		spin_lock_irq(lock);
1093 	}
1094 	spin_unlock_irq(lock);
1095 
1096 	/*
1097 	 * At this point all other threads have exited, all we have to
1098 	 * do is to wait for the thread group leader to become inactive,
1099 	 * and to assume its PID:
1100 	 */
1101 	if (!thread_group_leader(tsk)) {
1102 		struct task_struct *leader = tsk->group_leader;
1103 
1104 		for (;;) {
1105 			cgroup_threadgroup_change_begin(tsk);
1106 			write_lock_irq(&tasklist_lock);
1107 			/*
1108 			 * Do this under tasklist_lock to ensure that
1109 			 * exit_notify() can't miss ->group_exit_task
1110 			 */
1111 			sig->notify_count = -1;
1112 			if (likely(leader->exit_state))
1113 				break;
1114 			__set_current_state(TASK_KILLABLE);
1115 			write_unlock_irq(&tasklist_lock);
1116 			cgroup_threadgroup_change_end(tsk);
1117 			schedule();
1118 			if (__fatal_signal_pending(tsk))
1119 				goto killed;
1120 		}
1121 
1122 		/*
1123 		 * The only record we have of the real-time age of a
1124 		 * process, regardless of execs it's done, is start_time.
1125 		 * All the past CPU time is accumulated in signal_struct
1126 		 * from sister threads now dead.  But in this non-leader
1127 		 * exec, nothing survives from the original leader thread,
1128 		 * whose birth marks the true age of this process now.
1129 		 * When we take on its identity by switching to its PID, we
1130 		 * also take its birthdate (always earlier than our own).
1131 		 */
1132 		tsk->start_time = leader->start_time;
1133 		tsk->real_start_time = leader->real_start_time;
1134 
1135 		BUG_ON(!same_thread_group(leader, tsk));
1136 		BUG_ON(has_group_leader_pid(tsk));
1137 		/*
1138 		 * An exec() starts a new thread group with the
1139 		 * TGID of the previous thread group. Rehash the
1140 		 * two threads with a switched PID, and release
1141 		 * the former thread group leader:
1142 		 */
1143 
1144 		/* Become a process group leader with the old leader's pid.
1145 		 * The old leader becomes a thread of the this thread group.
1146 		 * Note: The old leader also uses this pid until release_task
1147 		 *       is called.  Odd but simple and correct.
1148 		 */
1149 		tsk->pid = leader->pid;
1150 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1151 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1152 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1153 		transfer_pid(leader, tsk, PIDTYPE_SID);
1154 
1155 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1156 		list_replace_init(&leader->sibling, &tsk->sibling);
1157 
1158 		tsk->group_leader = tsk;
1159 		leader->group_leader = tsk;
1160 
1161 		tsk->exit_signal = SIGCHLD;
1162 		leader->exit_signal = -1;
1163 
1164 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1165 		leader->exit_state = EXIT_DEAD;
1166 
1167 		/*
1168 		 * We are going to release_task()->ptrace_unlink() silently,
1169 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1170 		 * the tracer wont't block again waiting for this thread.
1171 		 */
1172 		if (unlikely(leader->ptrace))
1173 			__wake_up_parent(leader, leader->parent);
1174 		write_unlock_irq(&tasklist_lock);
1175 		cgroup_threadgroup_change_end(tsk);
1176 
1177 		release_task(leader);
1178 	}
1179 
1180 	sig->group_exit_task = NULL;
1181 	sig->notify_count = 0;
1182 
1183 no_thread_group:
1184 	/* we have changed execution domain */
1185 	tsk->exit_signal = SIGCHLD;
1186 
1187 #ifdef CONFIG_POSIX_TIMERS
1188 	exit_itimers(sig);
1189 	flush_itimer_signals();
1190 #endif
1191 
1192 	if (refcount_read(&oldsighand->count) != 1) {
1193 		struct sighand_struct *newsighand;
1194 		/*
1195 		 * This ->sighand is shared with the CLONE_SIGHAND
1196 		 * but not CLONE_THREAD task, switch to the new one.
1197 		 */
1198 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1199 		if (!newsighand)
1200 			return -ENOMEM;
1201 
1202 		refcount_set(&newsighand->count, 1);
1203 		memcpy(newsighand->action, oldsighand->action,
1204 		       sizeof(newsighand->action));
1205 
1206 		write_lock_irq(&tasklist_lock);
1207 		spin_lock(&oldsighand->siglock);
1208 		rcu_assign_pointer(tsk->sighand, newsighand);
1209 		spin_unlock(&oldsighand->siglock);
1210 		write_unlock_irq(&tasklist_lock);
1211 
1212 		__cleanup_sighand(oldsighand);
1213 	}
1214 
1215 	BUG_ON(!thread_group_leader(tsk));
1216 	return 0;
1217 
1218 killed:
1219 	/* protects against exit_notify() and __exit_signal() */
1220 	read_lock(&tasklist_lock);
1221 	sig->group_exit_task = NULL;
1222 	sig->notify_count = 0;
1223 	read_unlock(&tasklist_lock);
1224 	return -EAGAIN;
1225 }
1226 
1227 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1228 {
1229 	task_lock(tsk);
1230 	strncpy(buf, tsk->comm, buf_size);
1231 	task_unlock(tsk);
1232 	return buf;
1233 }
1234 EXPORT_SYMBOL_GPL(__get_task_comm);
1235 
1236 /*
1237  * These functions flushes out all traces of the currently running executable
1238  * so that a new one can be started
1239  */
1240 
1241 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1242 {
1243 	task_lock(tsk);
1244 	trace_task_rename(tsk, buf);
1245 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1246 	task_unlock(tsk);
1247 	perf_event_comm(tsk, exec);
1248 }
1249 
1250 /*
1251  * Calling this is the point of no return. None of the failures will be
1252  * seen by userspace since either the process is already taking a fatal
1253  * signal (via de_thread() or coredump), or will have SEGV raised
1254  * (after exec_mmap()) by search_binary_handlers (see below).
1255  */
1256 int flush_old_exec(struct linux_binprm * bprm)
1257 {
1258 	int retval;
1259 
1260 	/*
1261 	 * Make sure we have a private signal table and that
1262 	 * we are unassociated from the previous thread group.
1263 	 */
1264 	retval = de_thread(current);
1265 	if (retval)
1266 		goto out;
1267 
1268 	/*
1269 	 * Must be called _before_ exec_mmap() as bprm->mm is
1270 	 * not visibile until then. This also enables the update
1271 	 * to be lockless.
1272 	 */
1273 	set_mm_exe_file(bprm->mm, bprm->file);
1274 
1275 	/*
1276 	 * Release all of the old mmap stuff
1277 	 */
1278 	acct_arg_size(bprm, 0);
1279 	retval = exec_mmap(bprm->mm);
1280 	if (retval)
1281 		goto out;
1282 
1283 	/*
1284 	 * After clearing bprm->mm (to mark that current is using the
1285 	 * prepared mm now), we have nothing left of the original
1286 	 * process. If anything from here on returns an error, the check
1287 	 * in search_binary_handler() will SEGV current.
1288 	 */
1289 	bprm->mm = NULL;
1290 
1291 	set_fs(USER_DS);
1292 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1293 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1294 	flush_thread();
1295 	current->personality &= ~bprm->per_clear;
1296 
1297 	/*
1298 	 * We have to apply CLOEXEC before we change whether the process is
1299 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1300 	 * trying to access the should-be-closed file descriptors of a process
1301 	 * undergoing exec(2).
1302 	 */
1303 	do_close_on_exec(current->files);
1304 	return 0;
1305 
1306 out:
1307 	return retval;
1308 }
1309 EXPORT_SYMBOL(flush_old_exec);
1310 
1311 void would_dump(struct linux_binprm *bprm, struct file *file)
1312 {
1313 	struct inode *inode = file_inode(file);
1314 	if (inode_permission(inode, MAY_READ) < 0) {
1315 		struct user_namespace *old, *user_ns;
1316 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1317 
1318 		/* Ensure mm->user_ns contains the executable */
1319 		user_ns = old = bprm->mm->user_ns;
1320 		while ((user_ns != &init_user_ns) &&
1321 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1322 			user_ns = user_ns->parent;
1323 
1324 		if (old != user_ns) {
1325 			bprm->mm->user_ns = get_user_ns(user_ns);
1326 			put_user_ns(old);
1327 		}
1328 	}
1329 }
1330 EXPORT_SYMBOL(would_dump);
1331 
1332 void setup_new_exec(struct linux_binprm * bprm)
1333 {
1334 	/*
1335 	 * Once here, prepare_binrpm() will not be called any more, so
1336 	 * the final state of setuid/setgid/fscaps can be merged into the
1337 	 * secureexec flag.
1338 	 */
1339 	bprm->secureexec |= bprm->cap_elevated;
1340 
1341 	if (bprm->secureexec) {
1342 		/* Make sure parent cannot signal privileged process. */
1343 		current->pdeath_signal = 0;
1344 
1345 		/*
1346 		 * For secureexec, reset the stack limit to sane default to
1347 		 * avoid bad behavior from the prior rlimits. This has to
1348 		 * happen before arch_pick_mmap_layout(), which examines
1349 		 * RLIMIT_STACK, but after the point of no return to avoid
1350 		 * needing to clean up the change on failure.
1351 		 */
1352 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1353 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1354 	}
1355 
1356 	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1357 
1358 	current->sas_ss_sp = current->sas_ss_size = 0;
1359 
1360 	/*
1361 	 * Figure out dumpability. Note that this checking only of current
1362 	 * is wrong, but userspace depends on it. This should be testing
1363 	 * bprm->secureexec instead.
1364 	 */
1365 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1366 	    !(uid_eq(current_euid(), current_uid()) &&
1367 	      gid_eq(current_egid(), current_gid())))
1368 		set_dumpable(current->mm, suid_dumpable);
1369 	else
1370 		set_dumpable(current->mm, SUID_DUMP_USER);
1371 
1372 	arch_setup_new_exec();
1373 	perf_event_exec();
1374 	__set_task_comm(current, kbasename(bprm->filename), true);
1375 
1376 	/* Set the new mm task size. We have to do that late because it may
1377 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1378 	 * some architectures like powerpc
1379 	 */
1380 	current->mm->task_size = TASK_SIZE;
1381 
1382 	/* An exec changes our domain. We are no longer part of the thread
1383 	   group */
1384 	current->self_exec_id++;
1385 	flush_signal_handlers(current, 0);
1386 }
1387 EXPORT_SYMBOL(setup_new_exec);
1388 
1389 /* Runs immediately before start_thread() takes over. */
1390 void finalize_exec(struct linux_binprm *bprm)
1391 {
1392 	/* Store any stack rlimit changes before starting thread. */
1393 	task_lock(current->group_leader);
1394 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1395 	task_unlock(current->group_leader);
1396 }
1397 EXPORT_SYMBOL(finalize_exec);
1398 
1399 /*
1400  * Prepare credentials and lock ->cred_guard_mutex.
1401  * install_exec_creds() commits the new creds and drops the lock.
1402  * Or, if exec fails before, free_bprm() should release ->cred and
1403  * and unlock.
1404  */
1405 static int prepare_bprm_creds(struct linux_binprm *bprm)
1406 {
1407 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1408 		return -ERESTARTNOINTR;
1409 
1410 	bprm->cred = prepare_exec_creds();
1411 	if (likely(bprm->cred))
1412 		return 0;
1413 
1414 	mutex_unlock(&current->signal->cred_guard_mutex);
1415 	return -ENOMEM;
1416 }
1417 
1418 static void free_bprm(struct linux_binprm *bprm)
1419 {
1420 	free_arg_pages(bprm);
1421 	if (bprm->cred) {
1422 		mutex_unlock(&current->signal->cred_guard_mutex);
1423 		abort_creds(bprm->cred);
1424 	}
1425 	if (bprm->file) {
1426 		allow_write_access(bprm->file);
1427 		fput(bprm->file);
1428 	}
1429 	/* If a binfmt changed the interp, free it. */
1430 	if (bprm->interp != bprm->filename)
1431 		kfree(bprm->interp);
1432 	kfree(bprm);
1433 }
1434 
1435 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1436 {
1437 	/* If a binfmt changed the interp, free it first. */
1438 	if (bprm->interp != bprm->filename)
1439 		kfree(bprm->interp);
1440 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1441 	if (!bprm->interp)
1442 		return -ENOMEM;
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL(bprm_change_interp);
1446 
1447 /*
1448  * install the new credentials for this executable
1449  */
1450 void install_exec_creds(struct linux_binprm *bprm)
1451 {
1452 	security_bprm_committing_creds(bprm);
1453 
1454 	commit_creds(bprm->cred);
1455 	bprm->cred = NULL;
1456 
1457 	/*
1458 	 * Disable monitoring for regular users
1459 	 * when executing setuid binaries. Must
1460 	 * wait until new credentials are committed
1461 	 * by commit_creds() above
1462 	 */
1463 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1464 		perf_event_exit_task(current);
1465 	/*
1466 	 * cred_guard_mutex must be held at least to this point to prevent
1467 	 * ptrace_attach() from altering our determination of the task's
1468 	 * credentials; any time after this it may be unlocked.
1469 	 */
1470 	security_bprm_committed_creds(bprm);
1471 	mutex_unlock(&current->signal->cred_guard_mutex);
1472 }
1473 EXPORT_SYMBOL(install_exec_creds);
1474 
1475 /*
1476  * determine how safe it is to execute the proposed program
1477  * - the caller must hold ->cred_guard_mutex to protect against
1478  *   PTRACE_ATTACH or seccomp thread-sync
1479  */
1480 static void check_unsafe_exec(struct linux_binprm *bprm)
1481 {
1482 	struct task_struct *p = current, *t;
1483 	unsigned n_fs;
1484 
1485 	if (p->ptrace)
1486 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1487 
1488 	/*
1489 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1490 	 * mess up.
1491 	 */
1492 	if (task_no_new_privs(current))
1493 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1494 
1495 	t = p;
1496 	n_fs = 1;
1497 	spin_lock(&p->fs->lock);
1498 	rcu_read_lock();
1499 	while_each_thread(p, t) {
1500 		if (t->fs == p->fs)
1501 			n_fs++;
1502 	}
1503 	rcu_read_unlock();
1504 
1505 	if (p->fs->users > n_fs)
1506 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1507 	else
1508 		p->fs->in_exec = 1;
1509 	spin_unlock(&p->fs->lock);
1510 }
1511 
1512 static void bprm_fill_uid(struct linux_binprm *bprm)
1513 {
1514 	struct inode *inode;
1515 	unsigned int mode;
1516 	kuid_t uid;
1517 	kgid_t gid;
1518 
1519 	/*
1520 	 * Since this can be called multiple times (via prepare_binprm),
1521 	 * we must clear any previous work done when setting set[ug]id
1522 	 * bits from any earlier bprm->file uses (for example when run
1523 	 * first for a setuid script then again for its interpreter).
1524 	 */
1525 	bprm->cred->euid = current_euid();
1526 	bprm->cred->egid = current_egid();
1527 
1528 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1529 		return;
1530 
1531 	if (task_no_new_privs(current))
1532 		return;
1533 
1534 	inode = bprm->file->f_path.dentry->d_inode;
1535 	mode = READ_ONCE(inode->i_mode);
1536 	if (!(mode & (S_ISUID|S_ISGID)))
1537 		return;
1538 
1539 	/* Be careful if suid/sgid is set */
1540 	inode_lock(inode);
1541 
1542 	/* reload atomically mode/uid/gid now that lock held */
1543 	mode = inode->i_mode;
1544 	uid = inode->i_uid;
1545 	gid = inode->i_gid;
1546 	inode_unlock(inode);
1547 
1548 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1549 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1550 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1551 		return;
1552 
1553 	if (mode & S_ISUID) {
1554 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1555 		bprm->cred->euid = uid;
1556 	}
1557 
1558 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1559 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1560 		bprm->cred->egid = gid;
1561 	}
1562 }
1563 
1564 /*
1565  * Fill the binprm structure from the inode.
1566  * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1567  *
1568  * This may be called multiple times for binary chains (scripts for example).
1569  */
1570 int prepare_binprm(struct linux_binprm *bprm)
1571 {
1572 	int retval;
1573 	loff_t pos = 0;
1574 
1575 	bprm_fill_uid(bprm);
1576 
1577 	/* fill in binprm security blob */
1578 	retval = security_bprm_set_creds(bprm);
1579 	if (retval)
1580 		return retval;
1581 	bprm->called_set_creds = 1;
1582 
1583 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1584 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1585 }
1586 
1587 EXPORT_SYMBOL(prepare_binprm);
1588 
1589 /*
1590  * Arguments are '\0' separated strings found at the location bprm->p
1591  * points to; chop off the first by relocating brpm->p to right after
1592  * the first '\0' encountered.
1593  */
1594 int remove_arg_zero(struct linux_binprm *bprm)
1595 {
1596 	int ret = 0;
1597 	unsigned long offset;
1598 	char *kaddr;
1599 	struct page *page;
1600 
1601 	if (!bprm->argc)
1602 		return 0;
1603 
1604 	do {
1605 		offset = bprm->p & ~PAGE_MASK;
1606 		page = get_arg_page(bprm, bprm->p, 0);
1607 		if (!page) {
1608 			ret = -EFAULT;
1609 			goto out;
1610 		}
1611 		kaddr = kmap_atomic(page);
1612 
1613 		for (; offset < PAGE_SIZE && kaddr[offset];
1614 				offset++, bprm->p++)
1615 			;
1616 
1617 		kunmap_atomic(kaddr);
1618 		put_arg_page(page);
1619 	} while (offset == PAGE_SIZE);
1620 
1621 	bprm->p++;
1622 	bprm->argc--;
1623 	ret = 0;
1624 
1625 out:
1626 	return ret;
1627 }
1628 EXPORT_SYMBOL(remove_arg_zero);
1629 
1630 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1631 /*
1632  * cycle the list of binary formats handler, until one recognizes the image
1633  */
1634 int search_binary_handler(struct linux_binprm *bprm)
1635 {
1636 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1637 	struct linux_binfmt *fmt;
1638 	int retval;
1639 
1640 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1641 	if (bprm->recursion_depth > 5)
1642 		return -ELOOP;
1643 
1644 	retval = security_bprm_check(bprm);
1645 	if (retval)
1646 		return retval;
1647 
1648 	retval = -ENOENT;
1649  retry:
1650 	read_lock(&binfmt_lock);
1651 	list_for_each_entry(fmt, &formats, lh) {
1652 		if (!try_module_get(fmt->module))
1653 			continue;
1654 		read_unlock(&binfmt_lock);
1655 		bprm->recursion_depth++;
1656 		retval = fmt->load_binary(bprm);
1657 		read_lock(&binfmt_lock);
1658 		put_binfmt(fmt);
1659 		bprm->recursion_depth--;
1660 		if (retval < 0 && !bprm->mm) {
1661 			/* we got to flush_old_exec() and failed after it */
1662 			read_unlock(&binfmt_lock);
1663 			force_sigsegv(SIGSEGV, current);
1664 			return retval;
1665 		}
1666 		if (retval != -ENOEXEC || !bprm->file) {
1667 			read_unlock(&binfmt_lock);
1668 			return retval;
1669 		}
1670 	}
1671 	read_unlock(&binfmt_lock);
1672 
1673 	if (need_retry) {
1674 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1675 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1676 			return retval;
1677 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1678 			return retval;
1679 		need_retry = false;
1680 		goto retry;
1681 	}
1682 
1683 	return retval;
1684 }
1685 EXPORT_SYMBOL(search_binary_handler);
1686 
1687 static int exec_binprm(struct linux_binprm *bprm)
1688 {
1689 	pid_t old_pid, old_vpid;
1690 	int ret;
1691 
1692 	/* Need to fetch pid before load_binary changes it */
1693 	old_pid = current->pid;
1694 	rcu_read_lock();
1695 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1696 	rcu_read_unlock();
1697 
1698 	ret = search_binary_handler(bprm);
1699 	if (ret >= 0) {
1700 		audit_bprm(bprm);
1701 		trace_sched_process_exec(current, old_pid, bprm);
1702 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1703 		proc_exec_connector(current);
1704 	}
1705 
1706 	return ret;
1707 }
1708 
1709 /*
1710  * sys_execve() executes a new program.
1711  */
1712 static int __do_execve_file(int fd, struct filename *filename,
1713 			    struct user_arg_ptr argv,
1714 			    struct user_arg_ptr envp,
1715 			    int flags, struct file *file)
1716 {
1717 	char *pathbuf = NULL;
1718 	struct linux_binprm *bprm;
1719 	struct files_struct *displaced;
1720 	int retval;
1721 
1722 	if (IS_ERR(filename))
1723 		return PTR_ERR(filename);
1724 
1725 	/*
1726 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1727 	 * set*uid() to execve() because too many poorly written programs
1728 	 * don't check setuid() return code.  Here we additionally recheck
1729 	 * whether NPROC limit is still exceeded.
1730 	 */
1731 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1732 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1733 		retval = -EAGAIN;
1734 		goto out_ret;
1735 	}
1736 
1737 	/* We're below the limit (still or again), so we don't want to make
1738 	 * further execve() calls fail. */
1739 	current->flags &= ~PF_NPROC_EXCEEDED;
1740 
1741 	retval = unshare_files(&displaced);
1742 	if (retval)
1743 		goto out_ret;
1744 
1745 	retval = -ENOMEM;
1746 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1747 	if (!bprm)
1748 		goto out_files;
1749 
1750 	retval = prepare_bprm_creds(bprm);
1751 	if (retval)
1752 		goto out_free;
1753 
1754 	check_unsafe_exec(bprm);
1755 	current->in_execve = 1;
1756 
1757 	if (!file)
1758 		file = do_open_execat(fd, filename, flags);
1759 	retval = PTR_ERR(file);
1760 	if (IS_ERR(file))
1761 		goto out_unmark;
1762 
1763 	sched_exec();
1764 
1765 	bprm->file = file;
1766 	if (!filename) {
1767 		bprm->filename = "none";
1768 	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1769 		bprm->filename = filename->name;
1770 	} else {
1771 		if (filename->name[0] == '\0')
1772 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1773 		else
1774 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1775 					    fd, filename->name);
1776 		if (!pathbuf) {
1777 			retval = -ENOMEM;
1778 			goto out_unmark;
1779 		}
1780 		/*
1781 		 * Record that a name derived from an O_CLOEXEC fd will be
1782 		 * inaccessible after exec. Relies on having exclusive access to
1783 		 * current->files (due to unshare_files above).
1784 		 */
1785 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1786 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1787 		bprm->filename = pathbuf;
1788 	}
1789 	bprm->interp = bprm->filename;
1790 
1791 	retval = bprm_mm_init(bprm);
1792 	if (retval)
1793 		goto out_unmark;
1794 
1795 	retval = prepare_arg_pages(bprm, argv, envp);
1796 	if (retval < 0)
1797 		goto out;
1798 
1799 	retval = prepare_binprm(bprm);
1800 	if (retval < 0)
1801 		goto out;
1802 
1803 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1804 	if (retval < 0)
1805 		goto out;
1806 
1807 	bprm->exec = bprm->p;
1808 	retval = copy_strings(bprm->envc, envp, bprm);
1809 	if (retval < 0)
1810 		goto out;
1811 
1812 	retval = copy_strings(bprm->argc, argv, bprm);
1813 	if (retval < 0)
1814 		goto out;
1815 
1816 	would_dump(bprm, bprm->file);
1817 
1818 	retval = exec_binprm(bprm);
1819 	if (retval < 0)
1820 		goto out;
1821 
1822 	/* execve succeeded */
1823 	current->fs->in_exec = 0;
1824 	current->in_execve = 0;
1825 	membarrier_execve(current);
1826 	rseq_execve(current);
1827 	acct_update_integrals(current);
1828 	task_numa_free(current);
1829 	free_bprm(bprm);
1830 	kfree(pathbuf);
1831 	if (filename)
1832 		putname(filename);
1833 	if (displaced)
1834 		put_files_struct(displaced);
1835 	return retval;
1836 
1837 out:
1838 	if (bprm->mm) {
1839 		acct_arg_size(bprm, 0);
1840 		mmput(bprm->mm);
1841 	}
1842 
1843 out_unmark:
1844 	current->fs->in_exec = 0;
1845 	current->in_execve = 0;
1846 
1847 out_free:
1848 	free_bprm(bprm);
1849 	kfree(pathbuf);
1850 
1851 out_files:
1852 	if (displaced)
1853 		reset_files_struct(displaced);
1854 out_ret:
1855 	if (filename)
1856 		putname(filename);
1857 	return retval;
1858 }
1859 
1860 static int do_execveat_common(int fd, struct filename *filename,
1861 			      struct user_arg_ptr argv,
1862 			      struct user_arg_ptr envp,
1863 			      int flags)
1864 {
1865 	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1866 }
1867 
1868 int do_execve_file(struct file *file, void *__argv, void *__envp)
1869 {
1870 	struct user_arg_ptr argv = { .ptr.native = __argv };
1871 	struct user_arg_ptr envp = { .ptr.native = __envp };
1872 
1873 	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1874 }
1875 
1876 int do_execve(struct filename *filename,
1877 	const char __user *const __user *__argv,
1878 	const char __user *const __user *__envp)
1879 {
1880 	struct user_arg_ptr argv = { .ptr.native = __argv };
1881 	struct user_arg_ptr envp = { .ptr.native = __envp };
1882 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1883 }
1884 
1885 int do_execveat(int fd, struct filename *filename,
1886 		const char __user *const __user *__argv,
1887 		const char __user *const __user *__envp,
1888 		int flags)
1889 {
1890 	struct user_arg_ptr argv = { .ptr.native = __argv };
1891 	struct user_arg_ptr envp = { .ptr.native = __envp };
1892 
1893 	return do_execveat_common(fd, filename, argv, envp, flags);
1894 }
1895 
1896 #ifdef CONFIG_COMPAT
1897 static int compat_do_execve(struct filename *filename,
1898 	const compat_uptr_t __user *__argv,
1899 	const compat_uptr_t __user *__envp)
1900 {
1901 	struct user_arg_ptr argv = {
1902 		.is_compat = true,
1903 		.ptr.compat = __argv,
1904 	};
1905 	struct user_arg_ptr envp = {
1906 		.is_compat = true,
1907 		.ptr.compat = __envp,
1908 	};
1909 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1910 }
1911 
1912 static int compat_do_execveat(int fd, struct filename *filename,
1913 			      const compat_uptr_t __user *__argv,
1914 			      const compat_uptr_t __user *__envp,
1915 			      int flags)
1916 {
1917 	struct user_arg_ptr argv = {
1918 		.is_compat = true,
1919 		.ptr.compat = __argv,
1920 	};
1921 	struct user_arg_ptr envp = {
1922 		.is_compat = true,
1923 		.ptr.compat = __envp,
1924 	};
1925 	return do_execveat_common(fd, filename, argv, envp, flags);
1926 }
1927 #endif
1928 
1929 void set_binfmt(struct linux_binfmt *new)
1930 {
1931 	struct mm_struct *mm = current->mm;
1932 
1933 	if (mm->binfmt)
1934 		module_put(mm->binfmt->module);
1935 
1936 	mm->binfmt = new;
1937 	if (new)
1938 		__module_get(new->module);
1939 }
1940 EXPORT_SYMBOL(set_binfmt);
1941 
1942 /*
1943  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1944  */
1945 void set_dumpable(struct mm_struct *mm, int value)
1946 {
1947 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1948 		return;
1949 
1950 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1951 }
1952 
1953 SYSCALL_DEFINE3(execve,
1954 		const char __user *, filename,
1955 		const char __user *const __user *, argv,
1956 		const char __user *const __user *, envp)
1957 {
1958 	return do_execve(getname(filename), argv, envp);
1959 }
1960 
1961 SYSCALL_DEFINE5(execveat,
1962 		int, fd, const char __user *, filename,
1963 		const char __user *const __user *, argv,
1964 		const char __user *const __user *, envp,
1965 		int, flags)
1966 {
1967 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1968 
1969 	return do_execveat(fd,
1970 			   getname_flags(filename, lookup_flags, NULL),
1971 			   argv, envp, flags);
1972 }
1973 
1974 #ifdef CONFIG_COMPAT
1975 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1976 	const compat_uptr_t __user *, argv,
1977 	const compat_uptr_t __user *, envp)
1978 {
1979 	return compat_do_execve(getname(filename), argv, envp);
1980 }
1981 
1982 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1983 		       const char __user *, filename,
1984 		       const compat_uptr_t __user *, argv,
1985 		       const compat_uptr_t __user *, envp,
1986 		       int,  flags)
1987 {
1988 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1989 
1990 	return compat_do_execveat(fd,
1991 				  getname_flags(filename, lookup_flags, NULL),
1992 				  argv, envp, flags);
1993 }
1994 #endif
1995