xref: /openbmc/linux/fs/exec.c (revision eb3fcf00)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 
64 #include <trace/events/task.h>
65 #include "internal.h"
66 
67 #include <trace/events/sched.h>
68 
69 int suid_dumpable = 0;
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	BUG_ON(!fmt);
77 	if (WARN_ON(!fmt->load_binary))
78 		return;
79 	write_lock(&binfmt_lock);
80 	insert ? list_add(&fmt->lh, &formats) :
81 		 list_add_tail(&fmt->lh, &formats);
82 	write_unlock(&binfmt_lock);
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 bool path_noexec(const struct path *path)
102 {
103 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
104 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
105 }
106 
107 #ifdef CONFIG_USELIB
108 /*
109  * Note that a shared library must be both readable and executable due to
110  * security reasons.
111  *
112  * Also note that we take the address to load from from the file itself.
113  */
114 SYSCALL_DEFINE1(uselib, const char __user *, library)
115 {
116 	struct linux_binfmt *fmt;
117 	struct file *file;
118 	struct filename *tmp = getname(library);
119 	int error = PTR_ERR(tmp);
120 	static const struct open_flags uselib_flags = {
121 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
122 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
123 		.intent = LOOKUP_OPEN,
124 		.lookup_flags = LOOKUP_FOLLOW,
125 	};
126 
127 	if (IS_ERR(tmp))
128 		goto out;
129 
130 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
131 	putname(tmp);
132 	error = PTR_ERR(file);
133 	if (IS_ERR(file))
134 		goto out;
135 
136 	error = -EINVAL;
137 	if (!S_ISREG(file_inode(file)->i_mode))
138 		goto exit;
139 
140 	error = -EACCES;
141 	if (path_noexec(&file->f_path))
142 		goto exit;
143 
144 	fsnotify_open(file);
145 
146 	error = -ENOEXEC;
147 
148 	read_lock(&binfmt_lock);
149 	list_for_each_entry(fmt, &formats, lh) {
150 		if (!fmt->load_shlib)
151 			continue;
152 		if (!try_module_get(fmt->module))
153 			continue;
154 		read_unlock(&binfmt_lock);
155 		error = fmt->load_shlib(file);
156 		read_lock(&binfmt_lock);
157 		put_binfmt(fmt);
158 		if (error != -ENOEXEC)
159 			break;
160 	}
161 	read_unlock(&binfmt_lock);
162 exit:
163 	fput(file);
164 out:
165   	return error;
166 }
167 #endif /* #ifdef CONFIG_USELIB */
168 
169 #ifdef CONFIG_MMU
170 /*
171  * The nascent bprm->mm is not visible until exec_mmap() but it can
172  * use a lot of memory, account these pages in current->mm temporary
173  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
174  * change the counter back via acct_arg_size(0).
175  */
176 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
177 {
178 	struct mm_struct *mm = current->mm;
179 	long diff = (long)(pages - bprm->vma_pages);
180 
181 	if (!mm || !diff)
182 		return;
183 
184 	bprm->vma_pages = pages;
185 	add_mm_counter(mm, MM_ANONPAGES, diff);
186 }
187 
188 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
189 		int write)
190 {
191 	struct page *page;
192 	int ret;
193 
194 #ifdef CONFIG_STACK_GROWSUP
195 	if (write) {
196 		ret = expand_downwards(bprm->vma, pos);
197 		if (ret < 0)
198 			return NULL;
199 	}
200 #endif
201 	ret = get_user_pages(current, bprm->mm, pos,
202 			1, write, 1, &page, NULL);
203 	if (ret <= 0)
204 		return NULL;
205 
206 	if (write) {
207 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
208 		struct rlimit *rlim;
209 
210 		acct_arg_size(bprm, size / PAGE_SIZE);
211 
212 		/*
213 		 * We've historically supported up to 32 pages (ARG_MAX)
214 		 * of argument strings even with small stacks
215 		 */
216 		if (size <= ARG_MAX)
217 			return page;
218 
219 		/*
220 		 * Limit to 1/4-th the stack size for the argv+env strings.
221 		 * This ensures that:
222 		 *  - the remaining binfmt code will not run out of stack space,
223 		 *  - the program will have a reasonable amount of stack left
224 		 *    to work from.
225 		 */
226 		rlim = current->signal->rlim;
227 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
228 			put_page(page);
229 			return NULL;
230 		}
231 	}
232 
233 	return page;
234 }
235 
236 static void put_arg_page(struct page *page)
237 {
238 	put_page(page);
239 }
240 
241 static void free_arg_page(struct linux_binprm *bprm, int i)
242 {
243 }
244 
245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248 
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 		struct page *page)
251 {
252 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254 
255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257 	int err;
258 	struct vm_area_struct *vma = NULL;
259 	struct mm_struct *mm = bprm->mm;
260 
261 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
262 	if (!vma)
263 		return -ENOMEM;
264 
265 	down_write(&mm->mmap_sem);
266 	vma->vm_mm = mm;
267 
268 	/*
269 	 * Place the stack at the largest stack address the architecture
270 	 * supports. Later, we'll move this to an appropriate place. We don't
271 	 * use STACK_TOP because that can depend on attributes which aren't
272 	 * configured yet.
273 	 */
274 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
275 	vma->vm_end = STACK_TOP_MAX;
276 	vma->vm_start = vma->vm_end - PAGE_SIZE;
277 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
278 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
279 	INIT_LIST_HEAD(&vma->anon_vma_chain);
280 
281 	err = insert_vm_struct(mm, vma);
282 	if (err)
283 		goto err;
284 
285 	mm->stack_vm = mm->total_vm = 1;
286 	arch_bprm_mm_init(mm, vma);
287 	up_write(&mm->mmap_sem);
288 	bprm->p = vma->vm_end - sizeof(void *);
289 	return 0;
290 err:
291 	up_write(&mm->mmap_sem);
292 	bprm->vma = NULL;
293 	kmem_cache_free(vm_area_cachep, vma);
294 	return err;
295 }
296 
297 static bool valid_arg_len(struct linux_binprm *bprm, long len)
298 {
299 	return len <= MAX_ARG_STRLEN;
300 }
301 
302 #else
303 
304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
305 {
306 }
307 
308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 		int write)
310 {
311 	struct page *page;
312 
313 	page = bprm->page[pos / PAGE_SIZE];
314 	if (!page && write) {
315 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
316 		if (!page)
317 			return NULL;
318 		bprm->page[pos / PAGE_SIZE] = page;
319 	}
320 
321 	return page;
322 }
323 
324 static void put_arg_page(struct page *page)
325 {
326 }
327 
328 static void free_arg_page(struct linux_binprm *bprm, int i)
329 {
330 	if (bprm->page[i]) {
331 		__free_page(bprm->page[i]);
332 		bprm->page[i] = NULL;
333 	}
334 }
335 
336 static void free_arg_pages(struct linux_binprm *bprm)
337 {
338 	int i;
339 
340 	for (i = 0; i < MAX_ARG_PAGES; i++)
341 		free_arg_page(bprm, i);
342 }
343 
344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 		struct page *page)
346 {
347 }
348 
349 static int __bprm_mm_init(struct linux_binprm *bprm)
350 {
351 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
352 	return 0;
353 }
354 
355 static bool valid_arg_len(struct linux_binprm *bprm, long len)
356 {
357 	return len <= bprm->p;
358 }
359 
360 #endif /* CONFIG_MMU */
361 
362 /*
363  * Create a new mm_struct and populate it with a temporary stack
364  * vm_area_struct.  We don't have enough context at this point to set the stack
365  * flags, permissions, and offset, so we use temporary values.  We'll update
366  * them later in setup_arg_pages().
367  */
368 static int bprm_mm_init(struct linux_binprm *bprm)
369 {
370 	int err;
371 	struct mm_struct *mm = NULL;
372 
373 	bprm->mm = mm = mm_alloc();
374 	err = -ENOMEM;
375 	if (!mm)
376 		goto err;
377 
378 	err = __bprm_mm_init(bprm);
379 	if (err)
380 		goto err;
381 
382 	return 0;
383 
384 err:
385 	if (mm) {
386 		bprm->mm = NULL;
387 		mmdrop(mm);
388 	}
389 
390 	return err;
391 }
392 
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395 	bool is_compat;
396 #endif
397 	union {
398 		const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400 		const compat_uptr_t __user *compat;
401 #endif
402 	} ptr;
403 };
404 
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407 	const char __user *native;
408 
409 #ifdef CONFIG_COMPAT
410 	if (unlikely(argv.is_compat)) {
411 		compat_uptr_t compat;
412 
413 		if (get_user(compat, argv.ptr.compat + nr))
414 			return ERR_PTR(-EFAULT);
415 
416 		return compat_ptr(compat);
417 	}
418 #endif
419 
420 	if (get_user(native, argv.ptr.native + nr))
421 		return ERR_PTR(-EFAULT);
422 
423 	return native;
424 }
425 
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431 	int i = 0;
432 
433 	if (argv.ptr.native != NULL) {
434 		for (;;) {
435 			const char __user *p = get_user_arg_ptr(argv, i);
436 
437 			if (!p)
438 				break;
439 
440 			if (IS_ERR(p))
441 				return -EFAULT;
442 
443 			if (i >= max)
444 				return -E2BIG;
445 			++i;
446 
447 			if (fatal_signal_pending(current))
448 				return -ERESTARTNOHAND;
449 			cond_resched();
450 		}
451 	}
452 	return i;
453 }
454 
455 /*
456  * 'copy_strings()' copies argument/environment strings from the old
457  * processes's memory to the new process's stack.  The call to get_user_pages()
458  * ensures the destination page is created and not swapped out.
459  */
460 static int copy_strings(int argc, struct user_arg_ptr argv,
461 			struct linux_binprm *bprm)
462 {
463 	struct page *kmapped_page = NULL;
464 	char *kaddr = NULL;
465 	unsigned long kpos = 0;
466 	int ret;
467 
468 	while (argc-- > 0) {
469 		const char __user *str;
470 		int len;
471 		unsigned long pos;
472 
473 		ret = -EFAULT;
474 		str = get_user_arg_ptr(argv, argc);
475 		if (IS_ERR(str))
476 			goto out;
477 
478 		len = strnlen_user(str, MAX_ARG_STRLEN);
479 		if (!len)
480 			goto out;
481 
482 		ret = -E2BIG;
483 		if (!valid_arg_len(bprm, len))
484 			goto out;
485 
486 		/* We're going to work our way backwords. */
487 		pos = bprm->p;
488 		str += len;
489 		bprm->p -= len;
490 
491 		while (len > 0) {
492 			int offset, bytes_to_copy;
493 
494 			if (fatal_signal_pending(current)) {
495 				ret = -ERESTARTNOHAND;
496 				goto out;
497 			}
498 			cond_resched();
499 
500 			offset = pos % PAGE_SIZE;
501 			if (offset == 0)
502 				offset = PAGE_SIZE;
503 
504 			bytes_to_copy = offset;
505 			if (bytes_to_copy > len)
506 				bytes_to_copy = len;
507 
508 			offset -= bytes_to_copy;
509 			pos -= bytes_to_copy;
510 			str -= bytes_to_copy;
511 			len -= bytes_to_copy;
512 
513 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
514 				struct page *page;
515 
516 				page = get_arg_page(bprm, pos, 1);
517 				if (!page) {
518 					ret = -E2BIG;
519 					goto out;
520 				}
521 
522 				if (kmapped_page) {
523 					flush_kernel_dcache_page(kmapped_page);
524 					kunmap(kmapped_page);
525 					put_arg_page(kmapped_page);
526 				}
527 				kmapped_page = page;
528 				kaddr = kmap(kmapped_page);
529 				kpos = pos & PAGE_MASK;
530 				flush_arg_page(bprm, kpos, kmapped_page);
531 			}
532 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
533 				ret = -EFAULT;
534 				goto out;
535 			}
536 		}
537 	}
538 	ret = 0;
539 out:
540 	if (kmapped_page) {
541 		flush_kernel_dcache_page(kmapped_page);
542 		kunmap(kmapped_page);
543 		put_arg_page(kmapped_page);
544 	}
545 	return ret;
546 }
547 
548 /*
549  * Like copy_strings, but get argv and its values from kernel memory.
550  */
551 int copy_strings_kernel(int argc, const char *const *__argv,
552 			struct linux_binprm *bprm)
553 {
554 	int r;
555 	mm_segment_t oldfs = get_fs();
556 	struct user_arg_ptr argv = {
557 		.ptr.native = (const char __user *const  __user *)__argv,
558 	};
559 
560 	set_fs(KERNEL_DS);
561 	r = copy_strings(argc, argv, bprm);
562 	set_fs(oldfs);
563 
564 	return r;
565 }
566 EXPORT_SYMBOL(copy_strings_kernel);
567 
568 #ifdef CONFIG_MMU
569 
570 /*
571  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
572  * the binfmt code determines where the new stack should reside, we shift it to
573  * its final location.  The process proceeds as follows:
574  *
575  * 1) Use shift to calculate the new vma endpoints.
576  * 2) Extend vma to cover both the old and new ranges.  This ensures the
577  *    arguments passed to subsequent functions are consistent.
578  * 3) Move vma's page tables to the new range.
579  * 4) Free up any cleared pgd range.
580  * 5) Shrink the vma to cover only the new range.
581  */
582 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
583 {
584 	struct mm_struct *mm = vma->vm_mm;
585 	unsigned long old_start = vma->vm_start;
586 	unsigned long old_end = vma->vm_end;
587 	unsigned long length = old_end - old_start;
588 	unsigned long new_start = old_start - shift;
589 	unsigned long new_end = old_end - shift;
590 	struct mmu_gather tlb;
591 
592 	BUG_ON(new_start > new_end);
593 
594 	/*
595 	 * ensure there are no vmas between where we want to go
596 	 * and where we are
597 	 */
598 	if (vma != find_vma(mm, new_start))
599 		return -EFAULT;
600 
601 	/*
602 	 * cover the whole range: [new_start, old_end)
603 	 */
604 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
605 		return -ENOMEM;
606 
607 	/*
608 	 * move the page tables downwards, on failure we rely on
609 	 * process cleanup to remove whatever mess we made.
610 	 */
611 	if (length != move_page_tables(vma, old_start,
612 				       vma, new_start, length, false))
613 		return -ENOMEM;
614 
615 	lru_add_drain();
616 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
617 	if (new_end > old_start) {
618 		/*
619 		 * when the old and new regions overlap clear from new_end.
620 		 */
621 		free_pgd_range(&tlb, new_end, old_end, new_end,
622 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
623 	} else {
624 		/*
625 		 * otherwise, clean from old_start; this is done to not touch
626 		 * the address space in [new_end, old_start) some architectures
627 		 * have constraints on va-space that make this illegal (IA64) -
628 		 * for the others its just a little faster.
629 		 */
630 		free_pgd_range(&tlb, old_start, old_end, new_end,
631 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
632 	}
633 	tlb_finish_mmu(&tlb, old_start, old_end);
634 
635 	/*
636 	 * Shrink the vma to just the new range.  Always succeeds.
637 	 */
638 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
639 
640 	return 0;
641 }
642 
643 /*
644  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
645  * the stack is optionally relocated, and some extra space is added.
646  */
647 int setup_arg_pages(struct linux_binprm *bprm,
648 		    unsigned long stack_top,
649 		    int executable_stack)
650 {
651 	unsigned long ret;
652 	unsigned long stack_shift;
653 	struct mm_struct *mm = current->mm;
654 	struct vm_area_struct *vma = bprm->vma;
655 	struct vm_area_struct *prev = NULL;
656 	unsigned long vm_flags;
657 	unsigned long stack_base;
658 	unsigned long stack_size;
659 	unsigned long stack_expand;
660 	unsigned long rlim_stack;
661 
662 #ifdef CONFIG_STACK_GROWSUP
663 	/* Limit stack size */
664 	stack_base = rlimit_max(RLIMIT_STACK);
665 	if (stack_base > STACK_SIZE_MAX)
666 		stack_base = STACK_SIZE_MAX;
667 
668 	/* Add space for stack randomization. */
669 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
670 
671 	/* Make sure we didn't let the argument array grow too large. */
672 	if (vma->vm_end - vma->vm_start > stack_base)
673 		return -ENOMEM;
674 
675 	stack_base = PAGE_ALIGN(stack_top - stack_base);
676 
677 	stack_shift = vma->vm_start - stack_base;
678 	mm->arg_start = bprm->p - stack_shift;
679 	bprm->p = vma->vm_end - stack_shift;
680 #else
681 	stack_top = arch_align_stack(stack_top);
682 	stack_top = PAGE_ALIGN(stack_top);
683 
684 	if (unlikely(stack_top < mmap_min_addr) ||
685 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
686 		return -ENOMEM;
687 
688 	stack_shift = vma->vm_end - stack_top;
689 
690 	bprm->p -= stack_shift;
691 	mm->arg_start = bprm->p;
692 #endif
693 
694 	if (bprm->loader)
695 		bprm->loader -= stack_shift;
696 	bprm->exec -= stack_shift;
697 
698 	down_write(&mm->mmap_sem);
699 	vm_flags = VM_STACK_FLAGS;
700 
701 	/*
702 	 * Adjust stack execute permissions; explicitly enable for
703 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
704 	 * (arch default) otherwise.
705 	 */
706 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
707 		vm_flags |= VM_EXEC;
708 	else if (executable_stack == EXSTACK_DISABLE_X)
709 		vm_flags &= ~VM_EXEC;
710 	vm_flags |= mm->def_flags;
711 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
712 
713 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
714 			vm_flags);
715 	if (ret)
716 		goto out_unlock;
717 	BUG_ON(prev != vma);
718 
719 	/* Move stack pages down in memory. */
720 	if (stack_shift) {
721 		ret = shift_arg_pages(vma, stack_shift);
722 		if (ret)
723 			goto out_unlock;
724 	}
725 
726 	/* mprotect_fixup is overkill to remove the temporary stack flags */
727 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
728 
729 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
730 	stack_size = vma->vm_end - vma->vm_start;
731 	/*
732 	 * Align this down to a page boundary as expand_stack
733 	 * will align it up.
734 	 */
735 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
736 #ifdef CONFIG_STACK_GROWSUP
737 	if (stack_size + stack_expand > rlim_stack)
738 		stack_base = vma->vm_start + rlim_stack;
739 	else
740 		stack_base = vma->vm_end + stack_expand;
741 #else
742 	if (stack_size + stack_expand > rlim_stack)
743 		stack_base = vma->vm_end - rlim_stack;
744 	else
745 		stack_base = vma->vm_start - stack_expand;
746 #endif
747 	current->mm->start_stack = bprm->p;
748 	ret = expand_stack(vma, stack_base);
749 	if (ret)
750 		ret = -EFAULT;
751 
752 out_unlock:
753 	up_write(&mm->mmap_sem);
754 	return ret;
755 }
756 EXPORT_SYMBOL(setup_arg_pages);
757 
758 #endif /* CONFIG_MMU */
759 
760 static struct file *do_open_execat(int fd, struct filename *name, int flags)
761 {
762 	struct file *file;
763 	int err;
764 	struct open_flags open_exec_flags = {
765 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
766 		.acc_mode = MAY_EXEC | MAY_OPEN,
767 		.intent = LOOKUP_OPEN,
768 		.lookup_flags = LOOKUP_FOLLOW,
769 	};
770 
771 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
772 		return ERR_PTR(-EINVAL);
773 	if (flags & AT_SYMLINK_NOFOLLOW)
774 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
775 	if (flags & AT_EMPTY_PATH)
776 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
777 
778 	file = do_filp_open(fd, name, &open_exec_flags);
779 	if (IS_ERR(file))
780 		goto out;
781 
782 	err = -EACCES;
783 	if (!S_ISREG(file_inode(file)->i_mode))
784 		goto exit;
785 
786 	if (path_noexec(&file->f_path))
787 		goto exit;
788 
789 	err = deny_write_access(file);
790 	if (err)
791 		goto exit;
792 
793 	if (name->name[0] != '\0')
794 		fsnotify_open(file);
795 
796 out:
797 	return file;
798 
799 exit:
800 	fput(file);
801 	return ERR_PTR(err);
802 }
803 
804 struct file *open_exec(const char *name)
805 {
806 	struct filename *filename = getname_kernel(name);
807 	struct file *f = ERR_CAST(filename);
808 
809 	if (!IS_ERR(filename)) {
810 		f = do_open_execat(AT_FDCWD, filename, 0);
811 		putname(filename);
812 	}
813 	return f;
814 }
815 EXPORT_SYMBOL(open_exec);
816 
817 int kernel_read(struct file *file, loff_t offset,
818 		char *addr, unsigned long count)
819 {
820 	mm_segment_t old_fs;
821 	loff_t pos = offset;
822 	int result;
823 
824 	old_fs = get_fs();
825 	set_fs(get_ds());
826 	/* The cast to a user pointer is valid due to the set_fs() */
827 	result = vfs_read(file, (void __user *)addr, count, &pos);
828 	set_fs(old_fs);
829 	return result;
830 }
831 
832 EXPORT_SYMBOL(kernel_read);
833 
834 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
835 {
836 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
837 	if (res > 0)
838 		flush_icache_range(addr, addr + len);
839 	return res;
840 }
841 EXPORT_SYMBOL(read_code);
842 
843 static int exec_mmap(struct mm_struct *mm)
844 {
845 	struct task_struct *tsk;
846 	struct mm_struct *old_mm, *active_mm;
847 
848 	/* Notify parent that we're no longer interested in the old VM */
849 	tsk = current;
850 	old_mm = current->mm;
851 	mm_release(tsk, old_mm);
852 
853 	if (old_mm) {
854 		sync_mm_rss(old_mm);
855 		/*
856 		 * Make sure that if there is a core dump in progress
857 		 * for the old mm, we get out and die instead of going
858 		 * through with the exec.  We must hold mmap_sem around
859 		 * checking core_state and changing tsk->mm.
860 		 */
861 		down_read(&old_mm->mmap_sem);
862 		if (unlikely(old_mm->core_state)) {
863 			up_read(&old_mm->mmap_sem);
864 			return -EINTR;
865 		}
866 	}
867 	task_lock(tsk);
868 	active_mm = tsk->active_mm;
869 	tsk->mm = mm;
870 	tsk->active_mm = mm;
871 	activate_mm(active_mm, mm);
872 	tsk->mm->vmacache_seqnum = 0;
873 	vmacache_flush(tsk);
874 	task_unlock(tsk);
875 	if (old_mm) {
876 		up_read(&old_mm->mmap_sem);
877 		BUG_ON(active_mm != old_mm);
878 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
879 		mm_update_next_owner(old_mm);
880 		mmput(old_mm);
881 		return 0;
882 	}
883 	mmdrop(active_mm);
884 	return 0;
885 }
886 
887 /*
888  * This function makes sure the current process has its own signal table,
889  * so that flush_signal_handlers can later reset the handlers without
890  * disturbing other processes.  (Other processes might share the signal
891  * table via the CLONE_SIGHAND option to clone().)
892  */
893 static int de_thread(struct task_struct *tsk)
894 {
895 	struct signal_struct *sig = tsk->signal;
896 	struct sighand_struct *oldsighand = tsk->sighand;
897 	spinlock_t *lock = &oldsighand->siglock;
898 
899 	if (thread_group_empty(tsk))
900 		goto no_thread_group;
901 
902 	/*
903 	 * Kill all other threads in the thread group.
904 	 */
905 	spin_lock_irq(lock);
906 	if (signal_group_exit(sig)) {
907 		/*
908 		 * Another group action in progress, just
909 		 * return so that the signal is processed.
910 		 */
911 		spin_unlock_irq(lock);
912 		return -EAGAIN;
913 	}
914 
915 	sig->group_exit_task = tsk;
916 	sig->notify_count = zap_other_threads(tsk);
917 	if (!thread_group_leader(tsk))
918 		sig->notify_count--;
919 
920 	while (sig->notify_count) {
921 		__set_current_state(TASK_KILLABLE);
922 		spin_unlock_irq(lock);
923 		schedule();
924 		if (unlikely(__fatal_signal_pending(tsk)))
925 			goto killed;
926 		spin_lock_irq(lock);
927 	}
928 	spin_unlock_irq(lock);
929 
930 	/*
931 	 * At this point all other threads have exited, all we have to
932 	 * do is to wait for the thread group leader to become inactive,
933 	 * and to assume its PID:
934 	 */
935 	if (!thread_group_leader(tsk)) {
936 		struct task_struct *leader = tsk->group_leader;
937 
938 		for (;;) {
939 			threadgroup_change_begin(tsk);
940 			write_lock_irq(&tasklist_lock);
941 			/*
942 			 * Do this under tasklist_lock to ensure that
943 			 * exit_notify() can't miss ->group_exit_task
944 			 */
945 			sig->notify_count = -1;
946 			if (likely(leader->exit_state))
947 				break;
948 			__set_current_state(TASK_KILLABLE);
949 			write_unlock_irq(&tasklist_lock);
950 			threadgroup_change_end(tsk);
951 			schedule();
952 			if (unlikely(__fatal_signal_pending(tsk)))
953 				goto killed;
954 		}
955 
956 		/*
957 		 * The only record we have of the real-time age of a
958 		 * process, regardless of execs it's done, is start_time.
959 		 * All the past CPU time is accumulated in signal_struct
960 		 * from sister threads now dead.  But in this non-leader
961 		 * exec, nothing survives from the original leader thread,
962 		 * whose birth marks the true age of this process now.
963 		 * When we take on its identity by switching to its PID, we
964 		 * also take its birthdate (always earlier than our own).
965 		 */
966 		tsk->start_time = leader->start_time;
967 		tsk->real_start_time = leader->real_start_time;
968 
969 		BUG_ON(!same_thread_group(leader, tsk));
970 		BUG_ON(has_group_leader_pid(tsk));
971 		/*
972 		 * An exec() starts a new thread group with the
973 		 * TGID of the previous thread group. Rehash the
974 		 * two threads with a switched PID, and release
975 		 * the former thread group leader:
976 		 */
977 
978 		/* Become a process group leader with the old leader's pid.
979 		 * The old leader becomes a thread of the this thread group.
980 		 * Note: The old leader also uses this pid until release_task
981 		 *       is called.  Odd but simple and correct.
982 		 */
983 		tsk->pid = leader->pid;
984 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
985 		transfer_pid(leader, tsk, PIDTYPE_PGID);
986 		transfer_pid(leader, tsk, PIDTYPE_SID);
987 
988 		list_replace_rcu(&leader->tasks, &tsk->tasks);
989 		list_replace_init(&leader->sibling, &tsk->sibling);
990 
991 		tsk->group_leader = tsk;
992 		leader->group_leader = tsk;
993 
994 		tsk->exit_signal = SIGCHLD;
995 		leader->exit_signal = -1;
996 
997 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
998 		leader->exit_state = EXIT_DEAD;
999 
1000 		/*
1001 		 * We are going to release_task()->ptrace_unlink() silently,
1002 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1003 		 * the tracer wont't block again waiting for this thread.
1004 		 */
1005 		if (unlikely(leader->ptrace))
1006 			__wake_up_parent(leader, leader->parent);
1007 		write_unlock_irq(&tasklist_lock);
1008 		threadgroup_change_end(tsk);
1009 
1010 		release_task(leader);
1011 	}
1012 
1013 	sig->group_exit_task = NULL;
1014 	sig->notify_count = 0;
1015 
1016 no_thread_group:
1017 	/* we have changed execution domain */
1018 	tsk->exit_signal = SIGCHLD;
1019 
1020 	exit_itimers(sig);
1021 	flush_itimer_signals();
1022 
1023 	if (atomic_read(&oldsighand->count) != 1) {
1024 		struct sighand_struct *newsighand;
1025 		/*
1026 		 * This ->sighand is shared with the CLONE_SIGHAND
1027 		 * but not CLONE_THREAD task, switch to the new one.
1028 		 */
1029 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1030 		if (!newsighand)
1031 			return -ENOMEM;
1032 
1033 		atomic_set(&newsighand->count, 1);
1034 		memcpy(newsighand->action, oldsighand->action,
1035 		       sizeof(newsighand->action));
1036 
1037 		write_lock_irq(&tasklist_lock);
1038 		spin_lock(&oldsighand->siglock);
1039 		rcu_assign_pointer(tsk->sighand, newsighand);
1040 		spin_unlock(&oldsighand->siglock);
1041 		write_unlock_irq(&tasklist_lock);
1042 
1043 		__cleanup_sighand(oldsighand);
1044 	}
1045 
1046 	BUG_ON(!thread_group_leader(tsk));
1047 	return 0;
1048 
1049 killed:
1050 	/* protects against exit_notify() and __exit_signal() */
1051 	read_lock(&tasklist_lock);
1052 	sig->group_exit_task = NULL;
1053 	sig->notify_count = 0;
1054 	read_unlock(&tasklist_lock);
1055 	return -EAGAIN;
1056 }
1057 
1058 char *get_task_comm(char *buf, struct task_struct *tsk)
1059 {
1060 	/* buf must be at least sizeof(tsk->comm) in size */
1061 	task_lock(tsk);
1062 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1063 	task_unlock(tsk);
1064 	return buf;
1065 }
1066 EXPORT_SYMBOL_GPL(get_task_comm);
1067 
1068 /*
1069  * These functions flushes out all traces of the currently running executable
1070  * so that a new one can be started
1071  */
1072 
1073 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1074 {
1075 	task_lock(tsk);
1076 	trace_task_rename(tsk, buf);
1077 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1078 	task_unlock(tsk);
1079 	perf_event_comm(tsk, exec);
1080 }
1081 
1082 int flush_old_exec(struct linux_binprm * bprm)
1083 {
1084 	int retval;
1085 
1086 	/*
1087 	 * Make sure we have a private signal table and that
1088 	 * we are unassociated from the previous thread group.
1089 	 */
1090 	retval = de_thread(current);
1091 	if (retval)
1092 		goto out;
1093 
1094 	/*
1095 	 * Must be called _before_ exec_mmap() as bprm->mm is
1096 	 * not visibile until then. This also enables the update
1097 	 * to be lockless.
1098 	 */
1099 	set_mm_exe_file(bprm->mm, bprm->file);
1100 
1101 	/*
1102 	 * Release all of the old mmap stuff
1103 	 */
1104 	acct_arg_size(bprm, 0);
1105 	retval = exec_mmap(bprm->mm);
1106 	if (retval)
1107 		goto out;
1108 
1109 	bprm->mm = NULL;		/* We're using it now */
1110 
1111 	set_fs(USER_DS);
1112 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1113 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1114 	flush_thread();
1115 	current->personality &= ~bprm->per_clear;
1116 
1117 	return 0;
1118 
1119 out:
1120 	return retval;
1121 }
1122 EXPORT_SYMBOL(flush_old_exec);
1123 
1124 void would_dump(struct linux_binprm *bprm, struct file *file)
1125 {
1126 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1127 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1128 }
1129 EXPORT_SYMBOL(would_dump);
1130 
1131 void setup_new_exec(struct linux_binprm * bprm)
1132 {
1133 	arch_pick_mmap_layout(current->mm);
1134 
1135 	/* This is the point of no return */
1136 	current->sas_ss_sp = current->sas_ss_size = 0;
1137 
1138 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1139 		set_dumpable(current->mm, SUID_DUMP_USER);
1140 	else
1141 		set_dumpable(current->mm, suid_dumpable);
1142 
1143 	perf_event_exec();
1144 	__set_task_comm(current, kbasename(bprm->filename), true);
1145 
1146 	/* Set the new mm task size. We have to do that late because it may
1147 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1148 	 * some architectures like powerpc
1149 	 */
1150 	current->mm->task_size = TASK_SIZE;
1151 
1152 	/* install the new credentials */
1153 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1154 	    !gid_eq(bprm->cred->gid, current_egid())) {
1155 		current->pdeath_signal = 0;
1156 	} else {
1157 		would_dump(bprm, bprm->file);
1158 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1159 			set_dumpable(current->mm, suid_dumpable);
1160 	}
1161 
1162 	/* An exec changes our domain. We are no longer part of the thread
1163 	   group */
1164 	current->self_exec_id++;
1165 	flush_signal_handlers(current, 0);
1166 	do_close_on_exec(current->files);
1167 }
1168 EXPORT_SYMBOL(setup_new_exec);
1169 
1170 /*
1171  * Prepare credentials and lock ->cred_guard_mutex.
1172  * install_exec_creds() commits the new creds and drops the lock.
1173  * Or, if exec fails before, free_bprm() should release ->cred and
1174  * and unlock.
1175  */
1176 int prepare_bprm_creds(struct linux_binprm *bprm)
1177 {
1178 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1179 		return -ERESTARTNOINTR;
1180 
1181 	bprm->cred = prepare_exec_creds();
1182 	if (likely(bprm->cred))
1183 		return 0;
1184 
1185 	mutex_unlock(&current->signal->cred_guard_mutex);
1186 	return -ENOMEM;
1187 }
1188 
1189 static void free_bprm(struct linux_binprm *bprm)
1190 {
1191 	free_arg_pages(bprm);
1192 	if (bprm->cred) {
1193 		mutex_unlock(&current->signal->cred_guard_mutex);
1194 		abort_creds(bprm->cred);
1195 	}
1196 	if (bprm->file) {
1197 		allow_write_access(bprm->file);
1198 		fput(bprm->file);
1199 	}
1200 	/* If a binfmt changed the interp, free it. */
1201 	if (bprm->interp != bprm->filename)
1202 		kfree(bprm->interp);
1203 	kfree(bprm);
1204 }
1205 
1206 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1207 {
1208 	/* If a binfmt changed the interp, free it first. */
1209 	if (bprm->interp != bprm->filename)
1210 		kfree(bprm->interp);
1211 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1212 	if (!bprm->interp)
1213 		return -ENOMEM;
1214 	return 0;
1215 }
1216 EXPORT_SYMBOL(bprm_change_interp);
1217 
1218 /*
1219  * install the new credentials for this executable
1220  */
1221 void install_exec_creds(struct linux_binprm *bprm)
1222 {
1223 	security_bprm_committing_creds(bprm);
1224 
1225 	commit_creds(bprm->cred);
1226 	bprm->cred = NULL;
1227 
1228 	/*
1229 	 * Disable monitoring for regular users
1230 	 * when executing setuid binaries. Must
1231 	 * wait until new credentials are committed
1232 	 * by commit_creds() above
1233 	 */
1234 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1235 		perf_event_exit_task(current);
1236 	/*
1237 	 * cred_guard_mutex must be held at least to this point to prevent
1238 	 * ptrace_attach() from altering our determination of the task's
1239 	 * credentials; any time after this it may be unlocked.
1240 	 */
1241 	security_bprm_committed_creds(bprm);
1242 	mutex_unlock(&current->signal->cred_guard_mutex);
1243 }
1244 EXPORT_SYMBOL(install_exec_creds);
1245 
1246 /*
1247  * determine how safe it is to execute the proposed program
1248  * - the caller must hold ->cred_guard_mutex to protect against
1249  *   PTRACE_ATTACH or seccomp thread-sync
1250  */
1251 static void check_unsafe_exec(struct linux_binprm *bprm)
1252 {
1253 	struct task_struct *p = current, *t;
1254 	unsigned n_fs;
1255 
1256 	if (p->ptrace) {
1257 		if (p->ptrace & PT_PTRACE_CAP)
1258 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1259 		else
1260 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1261 	}
1262 
1263 	/*
1264 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1265 	 * mess up.
1266 	 */
1267 	if (task_no_new_privs(current))
1268 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1269 
1270 	t = p;
1271 	n_fs = 1;
1272 	spin_lock(&p->fs->lock);
1273 	rcu_read_lock();
1274 	while_each_thread(p, t) {
1275 		if (t->fs == p->fs)
1276 			n_fs++;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	if (p->fs->users > n_fs)
1281 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1282 	else
1283 		p->fs->in_exec = 1;
1284 	spin_unlock(&p->fs->lock);
1285 }
1286 
1287 static void bprm_fill_uid(struct linux_binprm *bprm)
1288 {
1289 	struct inode *inode;
1290 	unsigned int mode;
1291 	kuid_t uid;
1292 	kgid_t gid;
1293 
1294 	/* clear any previous set[ug]id data from a previous binary */
1295 	bprm->cred->euid = current_euid();
1296 	bprm->cred->egid = current_egid();
1297 
1298 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1299 		return;
1300 
1301 	if (task_no_new_privs(current))
1302 		return;
1303 
1304 	inode = file_inode(bprm->file);
1305 	mode = READ_ONCE(inode->i_mode);
1306 	if (!(mode & (S_ISUID|S_ISGID)))
1307 		return;
1308 
1309 	/* Be careful if suid/sgid is set */
1310 	mutex_lock(&inode->i_mutex);
1311 
1312 	/* reload atomically mode/uid/gid now that lock held */
1313 	mode = inode->i_mode;
1314 	uid = inode->i_uid;
1315 	gid = inode->i_gid;
1316 	mutex_unlock(&inode->i_mutex);
1317 
1318 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1319 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1320 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1321 		return;
1322 
1323 	if (mode & S_ISUID) {
1324 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1325 		bprm->cred->euid = uid;
1326 	}
1327 
1328 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1329 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1330 		bprm->cred->egid = gid;
1331 	}
1332 }
1333 
1334 /*
1335  * Fill the binprm structure from the inode.
1336  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1337  *
1338  * This may be called multiple times for binary chains (scripts for example).
1339  */
1340 int prepare_binprm(struct linux_binprm *bprm)
1341 {
1342 	int retval;
1343 
1344 	bprm_fill_uid(bprm);
1345 
1346 	/* fill in binprm security blob */
1347 	retval = security_bprm_set_creds(bprm);
1348 	if (retval)
1349 		return retval;
1350 	bprm->cred_prepared = 1;
1351 
1352 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1353 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1354 }
1355 
1356 EXPORT_SYMBOL(prepare_binprm);
1357 
1358 /*
1359  * Arguments are '\0' separated strings found at the location bprm->p
1360  * points to; chop off the first by relocating brpm->p to right after
1361  * the first '\0' encountered.
1362  */
1363 int remove_arg_zero(struct linux_binprm *bprm)
1364 {
1365 	int ret = 0;
1366 	unsigned long offset;
1367 	char *kaddr;
1368 	struct page *page;
1369 
1370 	if (!bprm->argc)
1371 		return 0;
1372 
1373 	do {
1374 		offset = bprm->p & ~PAGE_MASK;
1375 		page = get_arg_page(bprm, bprm->p, 0);
1376 		if (!page) {
1377 			ret = -EFAULT;
1378 			goto out;
1379 		}
1380 		kaddr = kmap_atomic(page);
1381 
1382 		for (; offset < PAGE_SIZE && kaddr[offset];
1383 				offset++, bprm->p++)
1384 			;
1385 
1386 		kunmap_atomic(kaddr);
1387 		put_arg_page(page);
1388 
1389 		if (offset == PAGE_SIZE)
1390 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1391 	} while (offset == PAGE_SIZE);
1392 
1393 	bprm->p++;
1394 	bprm->argc--;
1395 	ret = 0;
1396 
1397 out:
1398 	return ret;
1399 }
1400 EXPORT_SYMBOL(remove_arg_zero);
1401 
1402 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1403 /*
1404  * cycle the list of binary formats handler, until one recognizes the image
1405  */
1406 int search_binary_handler(struct linux_binprm *bprm)
1407 {
1408 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1409 	struct linux_binfmt *fmt;
1410 	int retval;
1411 
1412 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1413 	if (bprm->recursion_depth > 5)
1414 		return -ELOOP;
1415 
1416 	retval = security_bprm_check(bprm);
1417 	if (retval)
1418 		return retval;
1419 
1420 	retval = -ENOENT;
1421  retry:
1422 	read_lock(&binfmt_lock);
1423 	list_for_each_entry(fmt, &formats, lh) {
1424 		if (!try_module_get(fmt->module))
1425 			continue;
1426 		read_unlock(&binfmt_lock);
1427 		bprm->recursion_depth++;
1428 		retval = fmt->load_binary(bprm);
1429 		read_lock(&binfmt_lock);
1430 		put_binfmt(fmt);
1431 		bprm->recursion_depth--;
1432 		if (retval < 0 && !bprm->mm) {
1433 			/* we got to flush_old_exec() and failed after it */
1434 			read_unlock(&binfmt_lock);
1435 			force_sigsegv(SIGSEGV, current);
1436 			return retval;
1437 		}
1438 		if (retval != -ENOEXEC || !bprm->file) {
1439 			read_unlock(&binfmt_lock);
1440 			return retval;
1441 		}
1442 	}
1443 	read_unlock(&binfmt_lock);
1444 
1445 	if (need_retry) {
1446 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1447 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1448 			return retval;
1449 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1450 			return retval;
1451 		need_retry = false;
1452 		goto retry;
1453 	}
1454 
1455 	return retval;
1456 }
1457 EXPORT_SYMBOL(search_binary_handler);
1458 
1459 static int exec_binprm(struct linux_binprm *bprm)
1460 {
1461 	pid_t old_pid, old_vpid;
1462 	int ret;
1463 
1464 	/* Need to fetch pid before load_binary changes it */
1465 	old_pid = current->pid;
1466 	rcu_read_lock();
1467 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1468 	rcu_read_unlock();
1469 
1470 	ret = search_binary_handler(bprm);
1471 	if (ret >= 0) {
1472 		audit_bprm(bprm);
1473 		trace_sched_process_exec(current, old_pid, bprm);
1474 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1475 		proc_exec_connector(current);
1476 	}
1477 
1478 	return ret;
1479 }
1480 
1481 /*
1482  * sys_execve() executes a new program.
1483  */
1484 static int do_execveat_common(int fd, struct filename *filename,
1485 			      struct user_arg_ptr argv,
1486 			      struct user_arg_ptr envp,
1487 			      int flags)
1488 {
1489 	char *pathbuf = NULL;
1490 	struct linux_binprm *bprm;
1491 	struct file *file;
1492 	struct files_struct *displaced;
1493 	int retval;
1494 
1495 	if (IS_ERR(filename))
1496 		return PTR_ERR(filename);
1497 
1498 	/*
1499 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1500 	 * set*uid() to execve() because too many poorly written programs
1501 	 * don't check setuid() return code.  Here we additionally recheck
1502 	 * whether NPROC limit is still exceeded.
1503 	 */
1504 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1505 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1506 		retval = -EAGAIN;
1507 		goto out_ret;
1508 	}
1509 
1510 	/* We're below the limit (still or again), so we don't want to make
1511 	 * further execve() calls fail. */
1512 	current->flags &= ~PF_NPROC_EXCEEDED;
1513 
1514 	retval = unshare_files(&displaced);
1515 	if (retval)
1516 		goto out_ret;
1517 
1518 	retval = -ENOMEM;
1519 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1520 	if (!bprm)
1521 		goto out_files;
1522 
1523 	retval = prepare_bprm_creds(bprm);
1524 	if (retval)
1525 		goto out_free;
1526 
1527 	check_unsafe_exec(bprm);
1528 	current->in_execve = 1;
1529 
1530 	file = do_open_execat(fd, filename, flags);
1531 	retval = PTR_ERR(file);
1532 	if (IS_ERR(file))
1533 		goto out_unmark;
1534 
1535 	sched_exec();
1536 
1537 	bprm->file = file;
1538 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1539 		bprm->filename = filename->name;
1540 	} else {
1541 		if (filename->name[0] == '\0')
1542 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1543 		else
1544 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1545 					    fd, filename->name);
1546 		if (!pathbuf) {
1547 			retval = -ENOMEM;
1548 			goto out_unmark;
1549 		}
1550 		/*
1551 		 * Record that a name derived from an O_CLOEXEC fd will be
1552 		 * inaccessible after exec. Relies on having exclusive access to
1553 		 * current->files (due to unshare_files above).
1554 		 */
1555 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1556 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1557 		bprm->filename = pathbuf;
1558 	}
1559 	bprm->interp = bprm->filename;
1560 
1561 	retval = bprm_mm_init(bprm);
1562 	if (retval)
1563 		goto out_unmark;
1564 
1565 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1566 	if ((retval = bprm->argc) < 0)
1567 		goto out;
1568 
1569 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1570 	if ((retval = bprm->envc) < 0)
1571 		goto out;
1572 
1573 	retval = prepare_binprm(bprm);
1574 	if (retval < 0)
1575 		goto out;
1576 
1577 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1578 	if (retval < 0)
1579 		goto out;
1580 
1581 	bprm->exec = bprm->p;
1582 	retval = copy_strings(bprm->envc, envp, bprm);
1583 	if (retval < 0)
1584 		goto out;
1585 
1586 	retval = copy_strings(bprm->argc, argv, bprm);
1587 	if (retval < 0)
1588 		goto out;
1589 
1590 	retval = exec_binprm(bprm);
1591 	if (retval < 0)
1592 		goto out;
1593 
1594 	/* execve succeeded */
1595 	current->fs->in_exec = 0;
1596 	current->in_execve = 0;
1597 	acct_update_integrals(current);
1598 	task_numa_free(current);
1599 	free_bprm(bprm);
1600 	kfree(pathbuf);
1601 	putname(filename);
1602 	if (displaced)
1603 		put_files_struct(displaced);
1604 	return retval;
1605 
1606 out:
1607 	if (bprm->mm) {
1608 		acct_arg_size(bprm, 0);
1609 		mmput(bprm->mm);
1610 	}
1611 
1612 out_unmark:
1613 	current->fs->in_exec = 0;
1614 	current->in_execve = 0;
1615 
1616 out_free:
1617 	free_bprm(bprm);
1618 	kfree(pathbuf);
1619 
1620 out_files:
1621 	if (displaced)
1622 		reset_files_struct(displaced);
1623 out_ret:
1624 	putname(filename);
1625 	return retval;
1626 }
1627 
1628 int do_execve(struct filename *filename,
1629 	const char __user *const __user *__argv,
1630 	const char __user *const __user *__envp)
1631 {
1632 	struct user_arg_ptr argv = { .ptr.native = __argv };
1633 	struct user_arg_ptr envp = { .ptr.native = __envp };
1634 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1635 }
1636 
1637 int do_execveat(int fd, struct filename *filename,
1638 		const char __user *const __user *__argv,
1639 		const char __user *const __user *__envp,
1640 		int flags)
1641 {
1642 	struct user_arg_ptr argv = { .ptr.native = __argv };
1643 	struct user_arg_ptr envp = { .ptr.native = __envp };
1644 
1645 	return do_execveat_common(fd, filename, argv, envp, flags);
1646 }
1647 
1648 #ifdef CONFIG_COMPAT
1649 static int compat_do_execve(struct filename *filename,
1650 	const compat_uptr_t __user *__argv,
1651 	const compat_uptr_t __user *__envp)
1652 {
1653 	struct user_arg_ptr argv = {
1654 		.is_compat = true,
1655 		.ptr.compat = __argv,
1656 	};
1657 	struct user_arg_ptr envp = {
1658 		.is_compat = true,
1659 		.ptr.compat = __envp,
1660 	};
1661 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1662 }
1663 
1664 static int compat_do_execveat(int fd, struct filename *filename,
1665 			      const compat_uptr_t __user *__argv,
1666 			      const compat_uptr_t __user *__envp,
1667 			      int flags)
1668 {
1669 	struct user_arg_ptr argv = {
1670 		.is_compat = true,
1671 		.ptr.compat = __argv,
1672 	};
1673 	struct user_arg_ptr envp = {
1674 		.is_compat = true,
1675 		.ptr.compat = __envp,
1676 	};
1677 	return do_execveat_common(fd, filename, argv, envp, flags);
1678 }
1679 #endif
1680 
1681 void set_binfmt(struct linux_binfmt *new)
1682 {
1683 	struct mm_struct *mm = current->mm;
1684 
1685 	if (mm->binfmt)
1686 		module_put(mm->binfmt->module);
1687 
1688 	mm->binfmt = new;
1689 	if (new)
1690 		__module_get(new->module);
1691 }
1692 EXPORT_SYMBOL(set_binfmt);
1693 
1694 /*
1695  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1696  */
1697 void set_dumpable(struct mm_struct *mm, int value)
1698 {
1699 	unsigned long old, new;
1700 
1701 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1702 		return;
1703 
1704 	do {
1705 		old = ACCESS_ONCE(mm->flags);
1706 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1707 	} while (cmpxchg(&mm->flags, old, new) != old);
1708 }
1709 
1710 SYSCALL_DEFINE3(execve,
1711 		const char __user *, filename,
1712 		const char __user *const __user *, argv,
1713 		const char __user *const __user *, envp)
1714 {
1715 	return do_execve(getname(filename), argv, envp);
1716 }
1717 
1718 SYSCALL_DEFINE5(execveat,
1719 		int, fd, const char __user *, filename,
1720 		const char __user *const __user *, argv,
1721 		const char __user *const __user *, envp,
1722 		int, flags)
1723 {
1724 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1725 
1726 	return do_execveat(fd,
1727 			   getname_flags(filename, lookup_flags, NULL),
1728 			   argv, envp, flags);
1729 }
1730 
1731 #ifdef CONFIG_COMPAT
1732 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1733 	const compat_uptr_t __user *, argv,
1734 	const compat_uptr_t __user *, envp)
1735 {
1736 	return compat_do_execve(getname(filename), argv, envp);
1737 }
1738 
1739 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1740 		       const char __user *, filename,
1741 		       const compat_uptr_t __user *, argv,
1742 		       const compat_uptr_t __user *, envp,
1743 		       int,  flags)
1744 {
1745 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1746 
1747 	return compat_do_execveat(fd,
1748 				  getname_flags(filename, lookup_flags, NULL),
1749 				  argv, envp, flags);
1750 }
1751 #endif
1752