1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/perf_event.h> 37 #include <linux/highmem.h> 38 #include <linux/spinlock.h> 39 #include <linux/key.h> 40 #include <linux/personality.h> 41 #include <linux/binfmts.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 #include <linux/compat.h> 59 60 #include <asm/uaccess.h> 61 #include <asm/mmu_context.h> 62 #include <asm/tlb.h> 63 64 #include <trace/events/task.h> 65 #include "internal.h" 66 67 #include <trace/events/sched.h> 68 69 int suid_dumpable = 0; 70 71 static LIST_HEAD(formats); 72 static DEFINE_RWLOCK(binfmt_lock); 73 74 void __register_binfmt(struct linux_binfmt * fmt, int insert) 75 { 76 BUG_ON(!fmt); 77 if (WARN_ON(!fmt->load_binary)) 78 return; 79 write_lock(&binfmt_lock); 80 insert ? list_add(&fmt->lh, &formats) : 81 list_add_tail(&fmt->lh, &formats); 82 write_unlock(&binfmt_lock); 83 } 84 85 EXPORT_SYMBOL(__register_binfmt); 86 87 void unregister_binfmt(struct linux_binfmt * fmt) 88 { 89 write_lock(&binfmt_lock); 90 list_del(&fmt->lh); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(unregister_binfmt); 95 96 static inline void put_binfmt(struct linux_binfmt * fmt) 97 { 98 module_put(fmt->module); 99 } 100 101 bool path_noexec(const struct path *path) 102 { 103 return (path->mnt->mnt_flags & MNT_NOEXEC) || 104 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 105 } 106 107 #ifdef CONFIG_USELIB 108 /* 109 * Note that a shared library must be both readable and executable due to 110 * security reasons. 111 * 112 * Also note that we take the address to load from from the file itself. 113 */ 114 SYSCALL_DEFINE1(uselib, const char __user *, library) 115 { 116 struct linux_binfmt *fmt; 117 struct file *file; 118 struct filename *tmp = getname(library); 119 int error = PTR_ERR(tmp); 120 static const struct open_flags uselib_flags = { 121 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 122 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 123 .intent = LOOKUP_OPEN, 124 .lookup_flags = LOOKUP_FOLLOW, 125 }; 126 127 if (IS_ERR(tmp)) 128 goto out; 129 130 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 131 putname(tmp); 132 error = PTR_ERR(file); 133 if (IS_ERR(file)) 134 goto out; 135 136 error = -EINVAL; 137 if (!S_ISREG(file_inode(file)->i_mode)) 138 goto exit; 139 140 error = -EACCES; 141 if (path_noexec(&file->f_path)) 142 goto exit; 143 144 fsnotify_open(file); 145 146 error = -ENOEXEC; 147 148 read_lock(&binfmt_lock); 149 list_for_each_entry(fmt, &formats, lh) { 150 if (!fmt->load_shlib) 151 continue; 152 if (!try_module_get(fmt->module)) 153 continue; 154 read_unlock(&binfmt_lock); 155 error = fmt->load_shlib(file); 156 read_lock(&binfmt_lock); 157 put_binfmt(fmt); 158 if (error != -ENOEXEC) 159 break; 160 } 161 read_unlock(&binfmt_lock); 162 exit: 163 fput(file); 164 out: 165 return error; 166 } 167 #endif /* #ifdef CONFIG_USELIB */ 168 169 #ifdef CONFIG_MMU 170 /* 171 * The nascent bprm->mm is not visible until exec_mmap() but it can 172 * use a lot of memory, account these pages in current->mm temporary 173 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 174 * change the counter back via acct_arg_size(0). 175 */ 176 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 177 { 178 struct mm_struct *mm = current->mm; 179 long diff = (long)(pages - bprm->vma_pages); 180 181 if (!mm || !diff) 182 return; 183 184 bprm->vma_pages = pages; 185 add_mm_counter(mm, MM_ANONPAGES, diff); 186 } 187 188 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 189 int write) 190 { 191 struct page *page; 192 int ret; 193 194 #ifdef CONFIG_STACK_GROWSUP 195 if (write) { 196 ret = expand_downwards(bprm->vma, pos); 197 if (ret < 0) 198 return NULL; 199 } 200 #endif 201 ret = get_user_pages(current, bprm->mm, pos, 202 1, write, 1, &page, NULL); 203 if (ret <= 0) 204 return NULL; 205 206 if (write) { 207 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 208 struct rlimit *rlim; 209 210 acct_arg_size(bprm, size / PAGE_SIZE); 211 212 /* 213 * We've historically supported up to 32 pages (ARG_MAX) 214 * of argument strings even with small stacks 215 */ 216 if (size <= ARG_MAX) 217 return page; 218 219 /* 220 * Limit to 1/4-th the stack size for the argv+env strings. 221 * This ensures that: 222 * - the remaining binfmt code will not run out of stack space, 223 * - the program will have a reasonable amount of stack left 224 * to work from. 225 */ 226 rlim = current->signal->rlim; 227 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 228 put_page(page); 229 return NULL; 230 } 231 } 232 233 return page; 234 } 235 236 static void put_arg_page(struct page *page) 237 { 238 put_page(page); 239 } 240 241 static void free_arg_page(struct linux_binprm *bprm, int i) 242 { 243 } 244 245 static void free_arg_pages(struct linux_binprm *bprm) 246 { 247 } 248 249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 250 struct page *page) 251 { 252 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 253 } 254 255 static int __bprm_mm_init(struct linux_binprm *bprm) 256 { 257 int err; 258 struct vm_area_struct *vma = NULL; 259 struct mm_struct *mm = bprm->mm; 260 261 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 262 if (!vma) 263 return -ENOMEM; 264 265 down_write(&mm->mmap_sem); 266 vma->vm_mm = mm; 267 268 /* 269 * Place the stack at the largest stack address the architecture 270 * supports. Later, we'll move this to an appropriate place. We don't 271 * use STACK_TOP because that can depend on attributes which aren't 272 * configured yet. 273 */ 274 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 275 vma->vm_end = STACK_TOP_MAX; 276 vma->vm_start = vma->vm_end - PAGE_SIZE; 277 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 278 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 279 INIT_LIST_HEAD(&vma->anon_vma_chain); 280 281 err = insert_vm_struct(mm, vma); 282 if (err) 283 goto err; 284 285 mm->stack_vm = mm->total_vm = 1; 286 arch_bprm_mm_init(mm, vma); 287 up_write(&mm->mmap_sem); 288 bprm->p = vma->vm_end - sizeof(void *); 289 return 0; 290 err: 291 up_write(&mm->mmap_sem); 292 bprm->vma = NULL; 293 kmem_cache_free(vm_area_cachep, vma); 294 return err; 295 } 296 297 static bool valid_arg_len(struct linux_binprm *bprm, long len) 298 { 299 return len <= MAX_ARG_STRLEN; 300 } 301 302 #else 303 304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 305 { 306 } 307 308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 309 int write) 310 { 311 struct page *page; 312 313 page = bprm->page[pos / PAGE_SIZE]; 314 if (!page && write) { 315 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 316 if (!page) 317 return NULL; 318 bprm->page[pos / PAGE_SIZE] = page; 319 } 320 321 return page; 322 } 323 324 static void put_arg_page(struct page *page) 325 { 326 } 327 328 static void free_arg_page(struct linux_binprm *bprm, int i) 329 { 330 if (bprm->page[i]) { 331 __free_page(bprm->page[i]); 332 bprm->page[i] = NULL; 333 } 334 } 335 336 static void free_arg_pages(struct linux_binprm *bprm) 337 { 338 int i; 339 340 for (i = 0; i < MAX_ARG_PAGES; i++) 341 free_arg_page(bprm, i); 342 } 343 344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 345 struct page *page) 346 { 347 } 348 349 static int __bprm_mm_init(struct linux_binprm *bprm) 350 { 351 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 352 return 0; 353 } 354 355 static bool valid_arg_len(struct linux_binprm *bprm, long len) 356 { 357 return len <= bprm->p; 358 } 359 360 #endif /* CONFIG_MMU */ 361 362 /* 363 * Create a new mm_struct and populate it with a temporary stack 364 * vm_area_struct. We don't have enough context at this point to set the stack 365 * flags, permissions, and offset, so we use temporary values. We'll update 366 * them later in setup_arg_pages(). 367 */ 368 static int bprm_mm_init(struct linux_binprm *bprm) 369 { 370 int err; 371 struct mm_struct *mm = NULL; 372 373 bprm->mm = mm = mm_alloc(); 374 err = -ENOMEM; 375 if (!mm) 376 goto err; 377 378 err = __bprm_mm_init(bprm); 379 if (err) 380 goto err; 381 382 return 0; 383 384 err: 385 if (mm) { 386 bprm->mm = NULL; 387 mmdrop(mm); 388 } 389 390 return err; 391 } 392 393 struct user_arg_ptr { 394 #ifdef CONFIG_COMPAT 395 bool is_compat; 396 #endif 397 union { 398 const char __user *const __user *native; 399 #ifdef CONFIG_COMPAT 400 const compat_uptr_t __user *compat; 401 #endif 402 } ptr; 403 }; 404 405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 406 { 407 const char __user *native; 408 409 #ifdef CONFIG_COMPAT 410 if (unlikely(argv.is_compat)) { 411 compat_uptr_t compat; 412 413 if (get_user(compat, argv.ptr.compat + nr)) 414 return ERR_PTR(-EFAULT); 415 416 return compat_ptr(compat); 417 } 418 #endif 419 420 if (get_user(native, argv.ptr.native + nr)) 421 return ERR_PTR(-EFAULT); 422 423 return native; 424 } 425 426 /* 427 * count() counts the number of strings in array ARGV. 428 */ 429 static int count(struct user_arg_ptr argv, int max) 430 { 431 int i = 0; 432 433 if (argv.ptr.native != NULL) { 434 for (;;) { 435 const char __user *p = get_user_arg_ptr(argv, i); 436 437 if (!p) 438 break; 439 440 if (IS_ERR(p)) 441 return -EFAULT; 442 443 if (i >= max) 444 return -E2BIG; 445 ++i; 446 447 if (fatal_signal_pending(current)) 448 return -ERESTARTNOHAND; 449 cond_resched(); 450 } 451 } 452 return i; 453 } 454 455 /* 456 * 'copy_strings()' copies argument/environment strings from the old 457 * processes's memory to the new process's stack. The call to get_user_pages() 458 * ensures the destination page is created and not swapped out. 459 */ 460 static int copy_strings(int argc, struct user_arg_ptr argv, 461 struct linux_binprm *bprm) 462 { 463 struct page *kmapped_page = NULL; 464 char *kaddr = NULL; 465 unsigned long kpos = 0; 466 int ret; 467 468 while (argc-- > 0) { 469 const char __user *str; 470 int len; 471 unsigned long pos; 472 473 ret = -EFAULT; 474 str = get_user_arg_ptr(argv, argc); 475 if (IS_ERR(str)) 476 goto out; 477 478 len = strnlen_user(str, MAX_ARG_STRLEN); 479 if (!len) 480 goto out; 481 482 ret = -E2BIG; 483 if (!valid_arg_len(bprm, len)) 484 goto out; 485 486 /* We're going to work our way backwords. */ 487 pos = bprm->p; 488 str += len; 489 bprm->p -= len; 490 491 while (len > 0) { 492 int offset, bytes_to_copy; 493 494 if (fatal_signal_pending(current)) { 495 ret = -ERESTARTNOHAND; 496 goto out; 497 } 498 cond_resched(); 499 500 offset = pos % PAGE_SIZE; 501 if (offset == 0) 502 offset = PAGE_SIZE; 503 504 bytes_to_copy = offset; 505 if (bytes_to_copy > len) 506 bytes_to_copy = len; 507 508 offset -= bytes_to_copy; 509 pos -= bytes_to_copy; 510 str -= bytes_to_copy; 511 len -= bytes_to_copy; 512 513 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 514 struct page *page; 515 516 page = get_arg_page(bprm, pos, 1); 517 if (!page) { 518 ret = -E2BIG; 519 goto out; 520 } 521 522 if (kmapped_page) { 523 flush_kernel_dcache_page(kmapped_page); 524 kunmap(kmapped_page); 525 put_arg_page(kmapped_page); 526 } 527 kmapped_page = page; 528 kaddr = kmap(kmapped_page); 529 kpos = pos & PAGE_MASK; 530 flush_arg_page(bprm, kpos, kmapped_page); 531 } 532 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 533 ret = -EFAULT; 534 goto out; 535 } 536 } 537 } 538 ret = 0; 539 out: 540 if (kmapped_page) { 541 flush_kernel_dcache_page(kmapped_page); 542 kunmap(kmapped_page); 543 put_arg_page(kmapped_page); 544 } 545 return ret; 546 } 547 548 /* 549 * Like copy_strings, but get argv and its values from kernel memory. 550 */ 551 int copy_strings_kernel(int argc, const char *const *__argv, 552 struct linux_binprm *bprm) 553 { 554 int r; 555 mm_segment_t oldfs = get_fs(); 556 struct user_arg_ptr argv = { 557 .ptr.native = (const char __user *const __user *)__argv, 558 }; 559 560 set_fs(KERNEL_DS); 561 r = copy_strings(argc, argv, bprm); 562 set_fs(oldfs); 563 564 return r; 565 } 566 EXPORT_SYMBOL(copy_strings_kernel); 567 568 #ifdef CONFIG_MMU 569 570 /* 571 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 572 * the binfmt code determines where the new stack should reside, we shift it to 573 * its final location. The process proceeds as follows: 574 * 575 * 1) Use shift to calculate the new vma endpoints. 576 * 2) Extend vma to cover both the old and new ranges. This ensures the 577 * arguments passed to subsequent functions are consistent. 578 * 3) Move vma's page tables to the new range. 579 * 4) Free up any cleared pgd range. 580 * 5) Shrink the vma to cover only the new range. 581 */ 582 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 583 { 584 struct mm_struct *mm = vma->vm_mm; 585 unsigned long old_start = vma->vm_start; 586 unsigned long old_end = vma->vm_end; 587 unsigned long length = old_end - old_start; 588 unsigned long new_start = old_start - shift; 589 unsigned long new_end = old_end - shift; 590 struct mmu_gather tlb; 591 592 BUG_ON(new_start > new_end); 593 594 /* 595 * ensure there are no vmas between where we want to go 596 * and where we are 597 */ 598 if (vma != find_vma(mm, new_start)) 599 return -EFAULT; 600 601 /* 602 * cover the whole range: [new_start, old_end) 603 */ 604 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 605 return -ENOMEM; 606 607 /* 608 * move the page tables downwards, on failure we rely on 609 * process cleanup to remove whatever mess we made. 610 */ 611 if (length != move_page_tables(vma, old_start, 612 vma, new_start, length, false)) 613 return -ENOMEM; 614 615 lru_add_drain(); 616 tlb_gather_mmu(&tlb, mm, old_start, old_end); 617 if (new_end > old_start) { 618 /* 619 * when the old and new regions overlap clear from new_end. 620 */ 621 free_pgd_range(&tlb, new_end, old_end, new_end, 622 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 623 } else { 624 /* 625 * otherwise, clean from old_start; this is done to not touch 626 * the address space in [new_end, old_start) some architectures 627 * have constraints on va-space that make this illegal (IA64) - 628 * for the others its just a little faster. 629 */ 630 free_pgd_range(&tlb, old_start, old_end, new_end, 631 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 632 } 633 tlb_finish_mmu(&tlb, old_start, old_end); 634 635 /* 636 * Shrink the vma to just the new range. Always succeeds. 637 */ 638 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 639 640 return 0; 641 } 642 643 /* 644 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 645 * the stack is optionally relocated, and some extra space is added. 646 */ 647 int setup_arg_pages(struct linux_binprm *bprm, 648 unsigned long stack_top, 649 int executable_stack) 650 { 651 unsigned long ret; 652 unsigned long stack_shift; 653 struct mm_struct *mm = current->mm; 654 struct vm_area_struct *vma = bprm->vma; 655 struct vm_area_struct *prev = NULL; 656 unsigned long vm_flags; 657 unsigned long stack_base; 658 unsigned long stack_size; 659 unsigned long stack_expand; 660 unsigned long rlim_stack; 661 662 #ifdef CONFIG_STACK_GROWSUP 663 /* Limit stack size */ 664 stack_base = rlimit_max(RLIMIT_STACK); 665 if (stack_base > STACK_SIZE_MAX) 666 stack_base = STACK_SIZE_MAX; 667 668 /* Add space for stack randomization. */ 669 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 670 671 /* Make sure we didn't let the argument array grow too large. */ 672 if (vma->vm_end - vma->vm_start > stack_base) 673 return -ENOMEM; 674 675 stack_base = PAGE_ALIGN(stack_top - stack_base); 676 677 stack_shift = vma->vm_start - stack_base; 678 mm->arg_start = bprm->p - stack_shift; 679 bprm->p = vma->vm_end - stack_shift; 680 #else 681 stack_top = arch_align_stack(stack_top); 682 stack_top = PAGE_ALIGN(stack_top); 683 684 if (unlikely(stack_top < mmap_min_addr) || 685 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 686 return -ENOMEM; 687 688 stack_shift = vma->vm_end - stack_top; 689 690 bprm->p -= stack_shift; 691 mm->arg_start = bprm->p; 692 #endif 693 694 if (bprm->loader) 695 bprm->loader -= stack_shift; 696 bprm->exec -= stack_shift; 697 698 down_write(&mm->mmap_sem); 699 vm_flags = VM_STACK_FLAGS; 700 701 /* 702 * Adjust stack execute permissions; explicitly enable for 703 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 704 * (arch default) otherwise. 705 */ 706 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 707 vm_flags |= VM_EXEC; 708 else if (executable_stack == EXSTACK_DISABLE_X) 709 vm_flags &= ~VM_EXEC; 710 vm_flags |= mm->def_flags; 711 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 712 713 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 714 vm_flags); 715 if (ret) 716 goto out_unlock; 717 BUG_ON(prev != vma); 718 719 /* Move stack pages down in memory. */ 720 if (stack_shift) { 721 ret = shift_arg_pages(vma, stack_shift); 722 if (ret) 723 goto out_unlock; 724 } 725 726 /* mprotect_fixup is overkill to remove the temporary stack flags */ 727 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 728 729 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 730 stack_size = vma->vm_end - vma->vm_start; 731 /* 732 * Align this down to a page boundary as expand_stack 733 * will align it up. 734 */ 735 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 736 #ifdef CONFIG_STACK_GROWSUP 737 if (stack_size + stack_expand > rlim_stack) 738 stack_base = vma->vm_start + rlim_stack; 739 else 740 stack_base = vma->vm_end + stack_expand; 741 #else 742 if (stack_size + stack_expand > rlim_stack) 743 stack_base = vma->vm_end - rlim_stack; 744 else 745 stack_base = vma->vm_start - stack_expand; 746 #endif 747 current->mm->start_stack = bprm->p; 748 ret = expand_stack(vma, stack_base); 749 if (ret) 750 ret = -EFAULT; 751 752 out_unlock: 753 up_write(&mm->mmap_sem); 754 return ret; 755 } 756 EXPORT_SYMBOL(setup_arg_pages); 757 758 #endif /* CONFIG_MMU */ 759 760 static struct file *do_open_execat(int fd, struct filename *name, int flags) 761 { 762 struct file *file; 763 int err; 764 struct open_flags open_exec_flags = { 765 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 766 .acc_mode = MAY_EXEC | MAY_OPEN, 767 .intent = LOOKUP_OPEN, 768 .lookup_flags = LOOKUP_FOLLOW, 769 }; 770 771 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 772 return ERR_PTR(-EINVAL); 773 if (flags & AT_SYMLINK_NOFOLLOW) 774 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 775 if (flags & AT_EMPTY_PATH) 776 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 777 778 file = do_filp_open(fd, name, &open_exec_flags); 779 if (IS_ERR(file)) 780 goto out; 781 782 err = -EACCES; 783 if (!S_ISREG(file_inode(file)->i_mode)) 784 goto exit; 785 786 if (path_noexec(&file->f_path)) 787 goto exit; 788 789 err = deny_write_access(file); 790 if (err) 791 goto exit; 792 793 if (name->name[0] != '\0') 794 fsnotify_open(file); 795 796 out: 797 return file; 798 799 exit: 800 fput(file); 801 return ERR_PTR(err); 802 } 803 804 struct file *open_exec(const char *name) 805 { 806 struct filename *filename = getname_kernel(name); 807 struct file *f = ERR_CAST(filename); 808 809 if (!IS_ERR(filename)) { 810 f = do_open_execat(AT_FDCWD, filename, 0); 811 putname(filename); 812 } 813 return f; 814 } 815 EXPORT_SYMBOL(open_exec); 816 817 int kernel_read(struct file *file, loff_t offset, 818 char *addr, unsigned long count) 819 { 820 mm_segment_t old_fs; 821 loff_t pos = offset; 822 int result; 823 824 old_fs = get_fs(); 825 set_fs(get_ds()); 826 /* The cast to a user pointer is valid due to the set_fs() */ 827 result = vfs_read(file, (void __user *)addr, count, &pos); 828 set_fs(old_fs); 829 return result; 830 } 831 832 EXPORT_SYMBOL(kernel_read); 833 834 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 835 { 836 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 837 if (res > 0) 838 flush_icache_range(addr, addr + len); 839 return res; 840 } 841 EXPORT_SYMBOL(read_code); 842 843 static int exec_mmap(struct mm_struct *mm) 844 { 845 struct task_struct *tsk; 846 struct mm_struct *old_mm, *active_mm; 847 848 /* Notify parent that we're no longer interested in the old VM */ 849 tsk = current; 850 old_mm = current->mm; 851 mm_release(tsk, old_mm); 852 853 if (old_mm) { 854 sync_mm_rss(old_mm); 855 /* 856 * Make sure that if there is a core dump in progress 857 * for the old mm, we get out and die instead of going 858 * through with the exec. We must hold mmap_sem around 859 * checking core_state and changing tsk->mm. 860 */ 861 down_read(&old_mm->mmap_sem); 862 if (unlikely(old_mm->core_state)) { 863 up_read(&old_mm->mmap_sem); 864 return -EINTR; 865 } 866 } 867 task_lock(tsk); 868 active_mm = tsk->active_mm; 869 tsk->mm = mm; 870 tsk->active_mm = mm; 871 activate_mm(active_mm, mm); 872 tsk->mm->vmacache_seqnum = 0; 873 vmacache_flush(tsk); 874 task_unlock(tsk); 875 if (old_mm) { 876 up_read(&old_mm->mmap_sem); 877 BUG_ON(active_mm != old_mm); 878 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 879 mm_update_next_owner(old_mm); 880 mmput(old_mm); 881 return 0; 882 } 883 mmdrop(active_mm); 884 return 0; 885 } 886 887 /* 888 * This function makes sure the current process has its own signal table, 889 * so that flush_signal_handlers can later reset the handlers without 890 * disturbing other processes. (Other processes might share the signal 891 * table via the CLONE_SIGHAND option to clone().) 892 */ 893 static int de_thread(struct task_struct *tsk) 894 { 895 struct signal_struct *sig = tsk->signal; 896 struct sighand_struct *oldsighand = tsk->sighand; 897 spinlock_t *lock = &oldsighand->siglock; 898 899 if (thread_group_empty(tsk)) 900 goto no_thread_group; 901 902 /* 903 * Kill all other threads in the thread group. 904 */ 905 spin_lock_irq(lock); 906 if (signal_group_exit(sig)) { 907 /* 908 * Another group action in progress, just 909 * return so that the signal is processed. 910 */ 911 spin_unlock_irq(lock); 912 return -EAGAIN; 913 } 914 915 sig->group_exit_task = tsk; 916 sig->notify_count = zap_other_threads(tsk); 917 if (!thread_group_leader(tsk)) 918 sig->notify_count--; 919 920 while (sig->notify_count) { 921 __set_current_state(TASK_KILLABLE); 922 spin_unlock_irq(lock); 923 schedule(); 924 if (unlikely(__fatal_signal_pending(tsk))) 925 goto killed; 926 spin_lock_irq(lock); 927 } 928 spin_unlock_irq(lock); 929 930 /* 931 * At this point all other threads have exited, all we have to 932 * do is to wait for the thread group leader to become inactive, 933 * and to assume its PID: 934 */ 935 if (!thread_group_leader(tsk)) { 936 struct task_struct *leader = tsk->group_leader; 937 938 for (;;) { 939 threadgroup_change_begin(tsk); 940 write_lock_irq(&tasklist_lock); 941 /* 942 * Do this under tasklist_lock to ensure that 943 * exit_notify() can't miss ->group_exit_task 944 */ 945 sig->notify_count = -1; 946 if (likely(leader->exit_state)) 947 break; 948 __set_current_state(TASK_KILLABLE); 949 write_unlock_irq(&tasklist_lock); 950 threadgroup_change_end(tsk); 951 schedule(); 952 if (unlikely(__fatal_signal_pending(tsk))) 953 goto killed; 954 } 955 956 /* 957 * The only record we have of the real-time age of a 958 * process, regardless of execs it's done, is start_time. 959 * All the past CPU time is accumulated in signal_struct 960 * from sister threads now dead. But in this non-leader 961 * exec, nothing survives from the original leader thread, 962 * whose birth marks the true age of this process now. 963 * When we take on its identity by switching to its PID, we 964 * also take its birthdate (always earlier than our own). 965 */ 966 tsk->start_time = leader->start_time; 967 tsk->real_start_time = leader->real_start_time; 968 969 BUG_ON(!same_thread_group(leader, tsk)); 970 BUG_ON(has_group_leader_pid(tsk)); 971 /* 972 * An exec() starts a new thread group with the 973 * TGID of the previous thread group. Rehash the 974 * two threads with a switched PID, and release 975 * the former thread group leader: 976 */ 977 978 /* Become a process group leader with the old leader's pid. 979 * The old leader becomes a thread of the this thread group. 980 * Note: The old leader also uses this pid until release_task 981 * is called. Odd but simple and correct. 982 */ 983 tsk->pid = leader->pid; 984 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 985 transfer_pid(leader, tsk, PIDTYPE_PGID); 986 transfer_pid(leader, tsk, PIDTYPE_SID); 987 988 list_replace_rcu(&leader->tasks, &tsk->tasks); 989 list_replace_init(&leader->sibling, &tsk->sibling); 990 991 tsk->group_leader = tsk; 992 leader->group_leader = tsk; 993 994 tsk->exit_signal = SIGCHLD; 995 leader->exit_signal = -1; 996 997 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 998 leader->exit_state = EXIT_DEAD; 999 1000 /* 1001 * We are going to release_task()->ptrace_unlink() silently, 1002 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1003 * the tracer wont't block again waiting for this thread. 1004 */ 1005 if (unlikely(leader->ptrace)) 1006 __wake_up_parent(leader, leader->parent); 1007 write_unlock_irq(&tasklist_lock); 1008 threadgroup_change_end(tsk); 1009 1010 release_task(leader); 1011 } 1012 1013 sig->group_exit_task = NULL; 1014 sig->notify_count = 0; 1015 1016 no_thread_group: 1017 /* we have changed execution domain */ 1018 tsk->exit_signal = SIGCHLD; 1019 1020 exit_itimers(sig); 1021 flush_itimer_signals(); 1022 1023 if (atomic_read(&oldsighand->count) != 1) { 1024 struct sighand_struct *newsighand; 1025 /* 1026 * This ->sighand is shared with the CLONE_SIGHAND 1027 * but not CLONE_THREAD task, switch to the new one. 1028 */ 1029 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1030 if (!newsighand) 1031 return -ENOMEM; 1032 1033 atomic_set(&newsighand->count, 1); 1034 memcpy(newsighand->action, oldsighand->action, 1035 sizeof(newsighand->action)); 1036 1037 write_lock_irq(&tasklist_lock); 1038 spin_lock(&oldsighand->siglock); 1039 rcu_assign_pointer(tsk->sighand, newsighand); 1040 spin_unlock(&oldsighand->siglock); 1041 write_unlock_irq(&tasklist_lock); 1042 1043 __cleanup_sighand(oldsighand); 1044 } 1045 1046 BUG_ON(!thread_group_leader(tsk)); 1047 return 0; 1048 1049 killed: 1050 /* protects against exit_notify() and __exit_signal() */ 1051 read_lock(&tasklist_lock); 1052 sig->group_exit_task = NULL; 1053 sig->notify_count = 0; 1054 read_unlock(&tasklist_lock); 1055 return -EAGAIN; 1056 } 1057 1058 char *get_task_comm(char *buf, struct task_struct *tsk) 1059 { 1060 /* buf must be at least sizeof(tsk->comm) in size */ 1061 task_lock(tsk); 1062 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1063 task_unlock(tsk); 1064 return buf; 1065 } 1066 EXPORT_SYMBOL_GPL(get_task_comm); 1067 1068 /* 1069 * These functions flushes out all traces of the currently running executable 1070 * so that a new one can be started 1071 */ 1072 1073 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1074 { 1075 task_lock(tsk); 1076 trace_task_rename(tsk, buf); 1077 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1078 task_unlock(tsk); 1079 perf_event_comm(tsk, exec); 1080 } 1081 1082 int flush_old_exec(struct linux_binprm * bprm) 1083 { 1084 int retval; 1085 1086 /* 1087 * Make sure we have a private signal table and that 1088 * we are unassociated from the previous thread group. 1089 */ 1090 retval = de_thread(current); 1091 if (retval) 1092 goto out; 1093 1094 /* 1095 * Must be called _before_ exec_mmap() as bprm->mm is 1096 * not visibile until then. This also enables the update 1097 * to be lockless. 1098 */ 1099 set_mm_exe_file(bprm->mm, bprm->file); 1100 1101 /* 1102 * Release all of the old mmap stuff 1103 */ 1104 acct_arg_size(bprm, 0); 1105 retval = exec_mmap(bprm->mm); 1106 if (retval) 1107 goto out; 1108 1109 bprm->mm = NULL; /* We're using it now */ 1110 1111 set_fs(USER_DS); 1112 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1113 PF_NOFREEZE | PF_NO_SETAFFINITY); 1114 flush_thread(); 1115 current->personality &= ~bprm->per_clear; 1116 1117 return 0; 1118 1119 out: 1120 return retval; 1121 } 1122 EXPORT_SYMBOL(flush_old_exec); 1123 1124 void would_dump(struct linux_binprm *bprm, struct file *file) 1125 { 1126 if (inode_permission(file_inode(file), MAY_READ) < 0) 1127 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1128 } 1129 EXPORT_SYMBOL(would_dump); 1130 1131 void setup_new_exec(struct linux_binprm * bprm) 1132 { 1133 arch_pick_mmap_layout(current->mm); 1134 1135 /* This is the point of no return */ 1136 current->sas_ss_sp = current->sas_ss_size = 0; 1137 1138 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1139 set_dumpable(current->mm, SUID_DUMP_USER); 1140 else 1141 set_dumpable(current->mm, suid_dumpable); 1142 1143 perf_event_exec(); 1144 __set_task_comm(current, kbasename(bprm->filename), true); 1145 1146 /* Set the new mm task size. We have to do that late because it may 1147 * depend on TIF_32BIT which is only updated in flush_thread() on 1148 * some architectures like powerpc 1149 */ 1150 current->mm->task_size = TASK_SIZE; 1151 1152 /* install the new credentials */ 1153 if (!uid_eq(bprm->cred->uid, current_euid()) || 1154 !gid_eq(bprm->cred->gid, current_egid())) { 1155 current->pdeath_signal = 0; 1156 } else { 1157 would_dump(bprm, bprm->file); 1158 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1159 set_dumpable(current->mm, suid_dumpable); 1160 } 1161 1162 /* An exec changes our domain. We are no longer part of the thread 1163 group */ 1164 current->self_exec_id++; 1165 flush_signal_handlers(current, 0); 1166 do_close_on_exec(current->files); 1167 } 1168 EXPORT_SYMBOL(setup_new_exec); 1169 1170 /* 1171 * Prepare credentials and lock ->cred_guard_mutex. 1172 * install_exec_creds() commits the new creds and drops the lock. 1173 * Or, if exec fails before, free_bprm() should release ->cred and 1174 * and unlock. 1175 */ 1176 int prepare_bprm_creds(struct linux_binprm *bprm) 1177 { 1178 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1179 return -ERESTARTNOINTR; 1180 1181 bprm->cred = prepare_exec_creds(); 1182 if (likely(bprm->cred)) 1183 return 0; 1184 1185 mutex_unlock(¤t->signal->cred_guard_mutex); 1186 return -ENOMEM; 1187 } 1188 1189 static void free_bprm(struct linux_binprm *bprm) 1190 { 1191 free_arg_pages(bprm); 1192 if (bprm->cred) { 1193 mutex_unlock(¤t->signal->cred_guard_mutex); 1194 abort_creds(bprm->cred); 1195 } 1196 if (bprm->file) { 1197 allow_write_access(bprm->file); 1198 fput(bprm->file); 1199 } 1200 /* If a binfmt changed the interp, free it. */ 1201 if (bprm->interp != bprm->filename) 1202 kfree(bprm->interp); 1203 kfree(bprm); 1204 } 1205 1206 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1207 { 1208 /* If a binfmt changed the interp, free it first. */ 1209 if (bprm->interp != bprm->filename) 1210 kfree(bprm->interp); 1211 bprm->interp = kstrdup(interp, GFP_KERNEL); 1212 if (!bprm->interp) 1213 return -ENOMEM; 1214 return 0; 1215 } 1216 EXPORT_SYMBOL(bprm_change_interp); 1217 1218 /* 1219 * install the new credentials for this executable 1220 */ 1221 void install_exec_creds(struct linux_binprm *bprm) 1222 { 1223 security_bprm_committing_creds(bprm); 1224 1225 commit_creds(bprm->cred); 1226 bprm->cred = NULL; 1227 1228 /* 1229 * Disable monitoring for regular users 1230 * when executing setuid binaries. Must 1231 * wait until new credentials are committed 1232 * by commit_creds() above 1233 */ 1234 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1235 perf_event_exit_task(current); 1236 /* 1237 * cred_guard_mutex must be held at least to this point to prevent 1238 * ptrace_attach() from altering our determination of the task's 1239 * credentials; any time after this it may be unlocked. 1240 */ 1241 security_bprm_committed_creds(bprm); 1242 mutex_unlock(¤t->signal->cred_guard_mutex); 1243 } 1244 EXPORT_SYMBOL(install_exec_creds); 1245 1246 /* 1247 * determine how safe it is to execute the proposed program 1248 * - the caller must hold ->cred_guard_mutex to protect against 1249 * PTRACE_ATTACH or seccomp thread-sync 1250 */ 1251 static void check_unsafe_exec(struct linux_binprm *bprm) 1252 { 1253 struct task_struct *p = current, *t; 1254 unsigned n_fs; 1255 1256 if (p->ptrace) { 1257 if (p->ptrace & PT_PTRACE_CAP) 1258 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1259 else 1260 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1261 } 1262 1263 /* 1264 * This isn't strictly necessary, but it makes it harder for LSMs to 1265 * mess up. 1266 */ 1267 if (task_no_new_privs(current)) 1268 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1269 1270 t = p; 1271 n_fs = 1; 1272 spin_lock(&p->fs->lock); 1273 rcu_read_lock(); 1274 while_each_thread(p, t) { 1275 if (t->fs == p->fs) 1276 n_fs++; 1277 } 1278 rcu_read_unlock(); 1279 1280 if (p->fs->users > n_fs) 1281 bprm->unsafe |= LSM_UNSAFE_SHARE; 1282 else 1283 p->fs->in_exec = 1; 1284 spin_unlock(&p->fs->lock); 1285 } 1286 1287 static void bprm_fill_uid(struct linux_binprm *bprm) 1288 { 1289 struct inode *inode; 1290 unsigned int mode; 1291 kuid_t uid; 1292 kgid_t gid; 1293 1294 /* clear any previous set[ug]id data from a previous binary */ 1295 bprm->cred->euid = current_euid(); 1296 bprm->cred->egid = current_egid(); 1297 1298 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 1299 return; 1300 1301 if (task_no_new_privs(current)) 1302 return; 1303 1304 inode = file_inode(bprm->file); 1305 mode = READ_ONCE(inode->i_mode); 1306 if (!(mode & (S_ISUID|S_ISGID))) 1307 return; 1308 1309 /* Be careful if suid/sgid is set */ 1310 mutex_lock(&inode->i_mutex); 1311 1312 /* reload atomically mode/uid/gid now that lock held */ 1313 mode = inode->i_mode; 1314 uid = inode->i_uid; 1315 gid = inode->i_gid; 1316 mutex_unlock(&inode->i_mutex); 1317 1318 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1319 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1320 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1321 return; 1322 1323 if (mode & S_ISUID) { 1324 bprm->per_clear |= PER_CLEAR_ON_SETID; 1325 bprm->cred->euid = uid; 1326 } 1327 1328 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1329 bprm->per_clear |= PER_CLEAR_ON_SETID; 1330 bprm->cred->egid = gid; 1331 } 1332 } 1333 1334 /* 1335 * Fill the binprm structure from the inode. 1336 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1337 * 1338 * This may be called multiple times for binary chains (scripts for example). 1339 */ 1340 int prepare_binprm(struct linux_binprm *bprm) 1341 { 1342 int retval; 1343 1344 bprm_fill_uid(bprm); 1345 1346 /* fill in binprm security blob */ 1347 retval = security_bprm_set_creds(bprm); 1348 if (retval) 1349 return retval; 1350 bprm->cred_prepared = 1; 1351 1352 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1353 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1354 } 1355 1356 EXPORT_SYMBOL(prepare_binprm); 1357 1358 /* 1359 * Arguments are '\0' separated strings found at the location bprm->p 1360 * points to; chop off the first by relocating brpm->p to right after 1361 * the first '\0' encountered. 1362 */ 1363 int remove_arg_zero(struct linux_binprm *bprm) 1364 { 1365 int ret = 0; 1366 unsigned long offset; 1367 char *kaddr; 1368 struct page *page; 1369 1370 if (!bprm->argc) 1371 return 0; 1372 1373 do { 1374 offset = bprm->p & ~PAGE_MASK; 1375 page = get_arg_page(bprm, bprm->p, 0); 1376 if (!page) { 1377 ret = -EFAULT; 1378 goto out; 1379 } 1380 kaddr = kmap_atomic(page); 1381 1382 for (; offset < PAGE_SIZE && kaddr[offset]; 1383 offset++, bprm->p++) 1384 ; 1385 1386 kunmap_atomic(kaddr); 1387 put_arg_page(page); 1388 1389 if (offset == PAGE_SIZE) 1390 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1391 } while (offset == PAGE_SIZE); 1392 1393 bprm->p++; 1394 bprm->argc--; 1395 ret = 0; 1396 1397 out: 1398 return ret; 1399 } 1400 EXPORT_SYMBOL(remove_arg_zero); 1401 1402 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1403 /* 1404 * cycle the list of binary formats handler, until one recognizes the image 1405 */ 1406 int search_binary_handler(struct linux_binprm *bprm) 1407 { 1408 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1409 struct linux_binfmt *fmt; 1410 int retval; 1411 1412 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1413 if (bprm->recursion_depth > 5) 1414 return -ELOOP; 1415 1416 retval = security_bprm_check(bprm); 1417 if (retval) 1418 return retval; 1419 1420 retval = -ENOENT; 1421 retry: 1422 read_lock(&binfmt_lock); 1423 list_for_each_entry(fmt, &formats, lh) { 1424 if (!try_module_get(fmt->module)) 1425 continue; 1426 read_unlock(&binfmt_lock); 1427 bprm->recursion_depth++; 1428 retval = fmt->load_binary(bprm); 1429 read_lock(&binfmt_lock); 1430 put_binfmt(fmt); 1431 bprm->recursion_depth--; 1432 if (retval < 0 && !bprm->mm) { 1433 /* we got to flush_old_exec() and failed after it */ 1434 read_unlock(&binfmt_lock); 1435 force_sigsegv(SIGSEGV, current); 1436 return retval; 1437 } 1438 if (retval != -ENOEXEC || !bprm->file) { 1439 read_unlock(&binfmt_lock); 1440 return retval; 1441 } 1442 } 1443 read_unlock(&binfmt_lock); 1444 1445 if (need_retry) { 1446 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1447 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1448 return retval; 1449 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1450 return retval; 1451 need_retry = false; 1452 goto retry; 1453 } 1454 1455 return retval; 1456 } 1457 EXPORT_SYMBOL(search_binary_handler); 1458 1459 static int exec_binprm(struct linux_binprm *bprm) 1460 { 1461 pid_t old_pid, old_vpid; 1462 int ret; 1463 1464 /* Need to fetch pid before load_binary changes it */ 1465 old_pid = current->pid; 1466 rcu_read_lock(); 1467 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1468 rcu_read_unlock(); 1469 1470 ret = search_binary_handler(bprm); 1471 if (ret >= 0) { 1472 audit_bprm(bprm); 1473 trace_sched_process_exec(current, old_pid, bprm); 1474 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1475 proc_exec_connector(current); 1476 } 1477 1478 return ret; 1479 } 1480 1481 /* 1482 * sys_execve() executes a new program. 1483 */ 1484 static int do_execveat_common(int fd, struct filename *filename, 1485 struct user_arg_ptr argv, 1486 struct user_arg_ptr envp, 1487 int flags) 1488 { 1489 char *pathbuf = NULL; 1490 struct linux_binprm *bprm; 1491 struct file *file; 1492 struct files_struct *displaced; 1493 int retval; 1494 1495 if (IS_ERR(filename)) 1496 return PTR_ERR(filename); 1497 1498 /* 1499 * We move the actual failure in case of RLIMIT_NPROC excess from 1500 * set*uid() to execve() because too many poorly written programs 1501 * don't check setuid() return code. Here we additionally recheck 1502 * whether NPROC limit is still exceeded. 1503 */ 1504 if ((current->flags & PF_NPROC_EXCEEDED) && 1505 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1506 retval = -EAGAIN; 1507 goto out_ret; 1508 } 1509 1510 /* We're below the limit (still or again), so we don't want to make 1511 * further execve() calls fail. */ 1512 current->flags &= ~PF_NPROC_EXCEEDED; 1513 1514 retval = unshare_files(&displaced); 1515 if (retval) 1516 goto out_ret; 1517 1518 retval = -ENOMEM; 1519 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1520 if (!bprm) 1521 goto out_files; 1522 1523 retval = prepare_bprm_creds(bprm); 1524 if (retval) 1525 goto out_free; 1526 1527 check_unsafe_exec(bprm); 1528 current->in_execve = 1; 1529 1530 file = do_open_execat(fd, filename, flags); 1531 retval = PTR_ERR(file); 1532 if (IS_ERR(file)) 1533 goto out_unmark; 1534 1535 sched_exec(); 1536 1537 bprm->file = file; 1538 if (fd == AT_FDCWD || filename->name[0] == '/') { 1539 bprm->filename = filename->name; 1540 } else { 1541 if (filename->name[0] == '\0') 1542 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd); 1543 else 1544 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s", 1545 fd, filename->name); 1546 if (!pathbuf) { 1547 retval = -ENOMEM; 1548 goto out_unmark; 1549 } 1550 /* 1551 * Record that a name derived from an O_CLOEXEC fd will be 1552 * inaccessible after exec. Relies on having exclusive access to 1553 * current->files (due to unshare_files above). 1554 */ 1555 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1556 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1557 bprm->filename = pathbuf; 1558 } 1559 bprm->interp = bprm->filename; 1560 1561 retval = bprm_mm_init(bprm); 1562 if (retval) 1563 goto out_unmark; 1564 1565 bprm->argc = count(argv, MAX_ARG_STRINGS); 1566 if ((retval = bprm->argc) < 0) 1567 goto out; 1568 1569 bprm->envc = count(envp, MAX_ARG_STRINGS); 1570 if ((retval = bprm->envc) < 0) 1571 goto out; 1572 1573 retval = prepare_binprm(bprm); 1574 if (retval < 0) 1575 goto out; 1576 1577 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1578 if (retval < 0) 1579 goto out; 1580 1581 bprm->exec = bprm->p; 1582 retval = copy_strings(bprm->envc, envp, bprm); 1583 if (retval < 0) 1584 goto out; 1585 1586 retval = copy_strings(bprm->argc, argv, bprm); 1587 if (retval < 0) 1588 goto out; 1589 1590 retval = exec_binprm(bprm); 1591 if (retval < 0) 1592 goto out; 1593 1594 /* execve succeeded */ 1595 current->fs->in_exec = 0; 1596 current->in_execve = 0; 1597 acct_update_integrals(current); 1598 task_numa_free(current); 1599 free_bprm(bprm); 1600 kfree(pathbuf); 1601 putname(filename); 1602 if (displaced) 1603 put_files_struct(displaced); 1604 return retval; 1605 1606 out: 1607 if (bprm->mm) { 1608 acct_arg_size(bprm, 0); 1609 mmput(bprm->mm); 1610 } 1611 1612 out_unmark: 1613 current->fs->in_exec = 0; 1614 current->in_execve = 0; 1615 1616 out_free: 1617 free_bprm(bprm); 1618 kfree(pathbuf); 1619 1620 out_files: 1621 if (displaced) 1622 reset_files_struct(displaced); 1623 out_ret: 1624 putname(filename); 1625 return retval; 1626 } 1627 1628 int do_execve(struct filename *filename, 1629 const char __user *const __user *__argv, 1630 const char __user *const __user *__envp) 1631 { 1632 struct user_arg_ptr argv = { .ptr.native = __argv }; 1633 struct user_arg_ptr envp = { .ptr.native = __envp }; 1634 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1635 } 1636 1637 int do_execveat(int fd, struct filename *filename, 1638 const char __user *const __user *__argv, 1639 const char __user *const __user *__envp, 1640 int flags) 1641 { 1642 struct user_arg_ptr argv = { .ptr.native = __argv }; 1643 struct user_arg_ptr envp = { .ptr.native = __envp }; 1644 1645 return do_execveat_common(fd, filename, argv, envp, flags); 1646 } 1647 1648 #ifdef CONFIG_COMPAT 1649 static int compat_do_execve(struct filename *filename, 1650 const compat_uptr_t __user *__argv, 1651 const compat_uptr_t __user *__envp) 1652 { 1653 struct user_arg_ptr argv = { 1654 .is_compat = true, 1655 .ptr.compat = __argv, 1656 }; 1657 struct user_arg_ptr envp = { 1658 .is_compat = true, 1659 .ptr.compat = __envp, 1660 }; 1661 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1662 } 1663 1664 static int compat_do_execveat(int fd, struct filename *filename, 1665 const compat_uptr_t __user *__argv, 1666 const compat_uptr_t __user *__envp, 1667 int flags) 1668 { 1669 struct user_arg_ptr argv = { 1670 .is_compat = true, 1671 .ptr.compat = __argv, 1672 }; 1673 struct user_arg_ptr envp = { 1674 .is_compat = true, 1675 .ptr.compat = __envp, 1676 }; 1677 return do_execveat_common(fd, filename, argv, envp, flags); 1678 } 1679 #endif 1680 1681 void set_binfmt(struct linux_binfmt *new) 1682 { 1683 struct mm_struct *mm = current->mm; 1684 1685 if (mm->binfmt) 1686 module_put(mm->binfmt->module); 1687 1688 mm->binfmt = new; 1689 if (new) 1690 __module_get(new->module); 1691 } 1692 EXPORT_SYMBOL(set_binfmt); 1693 1694 /* 1695 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1696 */ 1697 void set_dumpable(struct mm_struct *mm, int value) 1698 { 1699 unsigned long old, new; 1700 1701 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1702 return; 1703 1704 do { 1705 old = ACCESS_ONCE(mm->flags); 1706 new = (old & ~MMF_DUMPABLE_MASK) | value; 1707 } while (cmpxchg(&mm->flags, old, new) != old); 1708 } 1709 1710 SYSCALL_DEFINE3(execve, 1711 const char __user *, filename, 1712 const char __user *const __user *, argv, 1713 const char __user *const __user *, envp) 1714 { 1715 return do_execve(getname(filename), argv, envp); 1716 } 1717 1718 SYSCALL_DEFINE5(execveat, 1719 int, fd, const char __user *, filename, 1720 const char __user *const __user *, argv, 1721 const char __user *const __user *, envp, 1722 int, flags) 1723 { 1724 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1725 1726 return do_execveat(fd, 1727 getname_flags(filename, lookup_flags, NULL), 1728 argv, envp, flags); 1729 } 1730 1731 #ifdef CONFIG_COMPAT 1732 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1733 const compat_uptr_t __user *, argv, 1734 const compat_uptr_t __user *, envp) 1735 { 1736 return compat_do_execve(getname(filename), argv, envp); 1737 } 1738 1739 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1740 const char __user *, filename, 1741 const compat_uptr_t __user *, argv, 1742 const compat_uptr_t __user *, envp, 1743 int, flags) 1744 { 1745 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1746 1747 return compat_do_execveat(fd, 1748 getname_flags(filename, lookup_flags, NULL), 1749 argv, envp, flags); 1750 } 1751 #endif 1752