1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 69 #include <linux/uaccess.h> 70 #include <asm/mmu_context.h> 71 #include <asm/tlb.h> 72 73 #include <trace/events/task.h> 74 #include "internal.h" 75 76 #include <trace/events/sched.h> 77 78 static int bprm_creds_from_file(struct linux_binprm *bprm); 79 80 int suid_dumpable = 0; 81 82 static LIST_HEAD(formats); 83 static DEFINE_RWLOCK(binfmt_lock); 84 85 void __register_binfmt(struct linux_binfmt * fmt, int insert) 86 { 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 /* 145 * may_open() has already checked for this, so it should be 146 * impossible to trip now. But we need to be extra cautious 147 * and check again at the very end too. 148 */ 149 error = -EACCES; 150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 151 path_noexec(&file->f_path))) 152 goto exit; 153 154 fsnotify_open(file); 155 156 error = -ENOEXEC; 157 158 read_lock(&binfmt_lock); 159 list_for_each_entry(fmt, &formats, lh) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 exit: 173 fput(file); 174 out: 175 return error; 176 } 177 #endif /* #ifdef CONFIG_USELIB */ 178 179 #ifdef CONFIG_MMU 180 /* 181 * The nascent bprm->mm is not visible until exec_mmap() but it can 182 * use a lot of memory, account these pages in current->mm temporary 183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 184 * change the counter back via acct_arg_size(0). 185 */ 186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 187 { 188 struct mm_struct *mm = current->mm; 189 long diff = (long)(pages - bprm->vma_pages); 190 191 if (!mm || !diff) 192 return; 193 194 bprm->vma_pages = pages; 195 add_mm_counter(mm, MM_ANONPAGES, diff); 196 } 197 198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 199 int write) 200 { 201 struct page *page; 202 int ret; 203 unsigned int gup_flags = 0; 204 205 #ifdef CONFIG_STACK_GROWSUP 206 if (write) { 207 ret = expand_downwards(bprm->vma, pos); 208 if (ret < 0) 209 return NULL; 210 } 211 #endif 212 213 if (write) 214 gup_flags |= FOLL_WRITE; 215 216 /* 217 * We are doing an exec(). 'current' is the process 218 * doing the exec and bprm->mm is the new process's mm. 219 */ 220 mmap_read_lock(bprm->mm); 221 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 222 &page, NULL, NULL); 223 mmap_read_unlock(bprm->mm); 224 if (ret <= 0) 225 return NULL; 226 227 if (write) 228 acct_arg_size(bprm, vma_pages(bprm->vma)); 229 230 return page; 231 } 232 233 static void put_arg_page(struct page *page) 234 { 235 put_page(page); 236 } 237 238 static void free_arg_pages(struct linux_binprm *bprm) 239 { 240 } 241 242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 243 struct page *page) 244 { 245 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 246 } 247 248 static int __bprm_mm_init(struct linux_binprm *bprm) 249 { 250 int err; 251 struct vm_area_struct *vma = NULL; 252 struct mm_struct *mm = bprm->mm; 253 254 bprm->vma = vma = vm_area_alloc(mm); 255 if (!vma) 256 return -ENOMEM; 257 vma_set_anonymous(vma); 258 259 if (mmap_write_lock_killable(mm)) { 260 err = -EINTR; 261 goto err_free; 262 } 263 264 /* 265 * Place the stack at the largest stack address the architecture 266 * supports. Later, we'll move this to an appropriate place. We don't 267 * use STACK_TOP because that can depend on attributes which aren't 268 * configured yet. 269 */ 270 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 271 vma->vm_end = STACK_TOP_MAX; 272 vma->vm_start = vma->vm_end - PAGE_SIZE; 273 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 274 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 275 276 err = insert_vm_struct(mm, vma); 277 if (err) 278 goto err; 279 280 mm->stack_vm = mm->total_vm = 1; 281 mmap_write_unlock(mm); 282 bprm->p = vma->vm_end - sizeof(void *); 283 return 0; 284 err: 285 mmap_write_unlock(mm); 286 err_free: 287 bprm->vma = NULL; 288 vm_area_free(vma); 289 return err; 290 } 291 292 static bool valid_arg_len(struct linux_binprm *bprm, long len) 293 { 294 return len <= MAX_ARG_STRLEN; 295 } 296 297 #else 298 299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 300 { 301 } 302 303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 304 int write) 305 { 306 struct page *page; 307 308 page = bprm->page[pos / PAGE_SIZE]; 309 if (!page && write) { 310 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 311 if (!page) 312 return NULL; 313 bprm->page[pos / PAGE_SIZE] = page; 314 } 315 316 return page; 317 } 318 319 static void put_arg_page(struct page *page) 320 { 321 } 322 323 static void free_arg_page(struct linux_binprm *bprm, int i) 324 { 325 if (bprm->page[i]) { 326 __free_page(bprm->page[i]); 327 bprm->page[i] = NULL; 328 } 329 } 330 331 static void free_arg_pages(struct linux_binprm *bprm) 332 { 333 int i; 334 335 for (i = 0; i < MAX_ARG_PAGES; i++) 336 free_arg_page(bprm, i); 337 } 338 339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 340 struct page *page) 341 { 342 } 343 344 static int __bprm_mm_init(struct linux_binprm *bprm) 345 { 346 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 347 return 0; 348 } 349 350 static bool valid_arg_len(struct linux_binprm *bprm, long len) 351 { 352 return len <= bprm->p; 353 } 354 355 #endif /* CONFIG_MMU */ 356 357 /* 358 * Create a new mm_struct and populate it with a temporary stack 359 * vm_area_struct. We don't have enough context at this point to set the stack 360 * flags, permissions, and offset, so we use temporary values. We'll update 361 * them later in setup_arg_pages(). 362 */ 363 static int bprm_mm_init(struct linux_binprm *bprm) 364 { 365 int err; 366 struct mm_struct *mm = NULL; 367 368 bprm->mm = mm = mm_alloc(); 369 err = -ENOMEM; 370 if (!mm) 371 goto err; 372 373 /* Save current stack limit for all calculations made during exec. */ 374 task_lock(current->group_leader); 375 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 376 task_unlock(current->group_leader); 377 378 err = __bprm_mm_init(bprm); 379 if (err) 380 goto err; 381 382 return 0; 383 384 err: 385 if (mm) { 386 bprm->mm = NULL; 387 mmdrop(mm); 388 } 389 390 return err; 391 } 392 393 struct user_arg_ptr { 394 #ifdef CONFIG_COMPAT 395 bool is_compat; 396 #endif 397 union { 398 const char __user *const __user *native; 399 #ifdef CONFIG_COMPAT 400 const compat_uptr_t __user *compat; 401 #endif 402 } ptr; 403 }; 404 405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 406 { 407 const char __user *native; 408 409 #ifdef CONFIG_COMPAT 410 if (unlikely(argv.is_compat)) { 411 compat_uptr_t compat; 412 413 if (get_user(compat, argv.ptr.compat + nr)) 414 return ERR_PTR(-EFAULT); 415 416 return compat_ptr(compat); 417 } 418 #endif 419 420 if (get_user(native, argv.ptr.native + nr)) 421 return ERR_PTR(-EFAULT); 422 423 return native; 424 } 425 426 /* 427 * count() counts the number of strings in array ARGV. 428 */ 429 static int count(struct user_arg_ptr argv, int max) 430 { 431 int i = 0; 432 433 if (argv.ptr.native != NULL) { 434 for (;;) { 435 const char __user *p = get_user_arg_ptr(argv, i); 436 437 if (!p) 438 break; 439 440 if (IS_ERR(p)) 441 return -EFAULT; 442 443 if (i >= max) 444 return -E2BIG; 445 ++i; 446 447 if (fatal_signal_pending(current)) 448 return -ERESTARTNOHAND; 449 cond_resched(); 450 } 451 } 452 return i; 453 } 454 455 static int count_strings_kernel(const char *const *argv) 456 { 457 int i; 458 459 if (!argv) 460 return 0; 461 462 for (i = 0; argv[i]; ++i) { 463 if (i >= MAX_ARG_STRINGS) 464 return -E2BIG; 465 if (fatal_signal_pending(current)) 466 return -ERESTARTNOHAND; 467 cond_resched(); 468 } 469 return i; 470 } 471 472 static int bprm_stack_limits(struct linux_binprm *bprm) 473 { 474 unsigned long limit, ptr_size; 475 476 /* 477 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 478 * (whichever is smaller) for the argv+env strings. 479 * This ensures that: 480 * - the remaining binfmt code will not run out of stack space, 481 * - the program will have a reasonable amount of stack left 482 * to work from. 483 */ 484 limit = _STK_LIM / 4 * 3; 485 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 486 /* 487 * We've historically supported up to 32 pages (ARG_MAX) 488 * of argument strings even with small stacks 489 */ 490 limit = max_t(unsigned long, limit, ARG_MAX); 491 /* 492 * We must account for the size of all the argv and envp pointers to 493 * the argv and envp strings, since they will also take up space in 494 * the stack. They aren't stored until much later when we can't 495 * signal to the parent that the child has run out of stack space. 496 * Instead, calculate it here so it's possible to fail gracefully. 497 * 498 * In the case of argc = 0, make sure there is space for adding a 499 * empty string (which will bump argc to 1), to ensure confused 500 * userspace programs don't start processing from argv[1], thinking 501 * argc can never be 0, to keep them from walking envp by accident. 502 * See do_execveat_common(). 503 */ 504 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 505 if (limit <= ptr_size) 506 return -E2BIG; 507 limit -= ptr_size; 508 509 bprm->argmin = bprm->p - limit; 510 return 0; 511 } 512 513 /* 514 * 'copy_strings()' copies argument/environment strings from the old 515 * processes's memory to the new process's stack. The call to get_user_pages() 516 * ensures the destination page is created and not swapped out. 517 */ 518 static int copy_strings(int argc, struct user_arg_ptr argv, 519 struct linux_binprm *bprm) 520 { 521 struct page *kmapped_page = NULL; 522 char *kaddr = NULL; 523 unsigned long kpos = 0; 524 int ret; 525 526 while (argc-- > 0) { 527 const char __user *str; 528 int len; 529 unsigned long pos; 530 531 ret = -EFAULT; 532 str = get_user_arg_ptr(argv, argc); 533 if (IS_ERR(str)) 534 goto out; 535 536 len = strnlen_user(str, MAX_ARG_STRLEN); 537 if (!len) 538 goto out; 539 540 ret = -E2BIG; 541 if (!valid_arg_len(bprm, len)) 542 goto out; 543 544 /* We're going to work our way backwards. */ 545 pos = bprm->p; 546 str += len; 547 bprm->p -= len; 548 #ifdef CONFIG_MMU 549 if (bprm->p < bprm->argmin) 550 goto out; 551 #endif 552 553 while (len > 0) { 554 int offset, bytes_to_copy; 555 556 if (fatal_signal_pending(current)) { 557 ret = -ERESTARTNOHAND; 558 goto out; 559 } 560 cond_resched(); 561 562 offset = pos % PAGE_SIZE; 563 if (offset == 0) 564 offset = PAGE_SIZE; 565 566 bytes_to_copy = offset; 567 if (bytes_to_copy > len) 568 bytes_to_copy = len; 569 570 offset -= bytes_to_copy; 571 pos -= bytes_to_copy; 572 str -= bytes_to_copy; 573 len -= bytes_to_copy; 574 575 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 576 struct page *page; 577 578 page = get_arg_page(bprm, pos, 1); 579 if (!page) { 580 ret = -E2BIG; 581 goto out; 582 } 583 584 if (kmapped_page) { 585 flush_dcache_page(kmapped_page); 586 kunmap_local(kaddr); 587 put_arg_page(kmapped_page); 588 } 589 kmapped_page = page; 590 kaddr = kmap_local_page(kmapped_page); 591 kpos = pos & PAGE_MASK; 592 flush_arg_page(bprm, kpos, kmapped_page); 593 } 594 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 595 ret = -EFAULT; 596 goto out; 597 } 598 } 599 } 600 ret = 0; 601 out: 602 if (kmapped_page) { 603 flush_dcache_page(kmapped_page); 604 kunmap_local(kaddr); 605 put_arg_page(kmapped_page); 606 } 607 return ret; 608 } 609 610 /* 611 * Copy and argument/environment string from the kernel to the processes stack. 612 */ 613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 614 { 615 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 616 unsigned long pos = bprm->p; 617 618 if (len == 0) 619 return -EFAULT; 620 if (!valid_arg_len(bprm, len)) 621 return -E2BIG; 622 623 /* We're going to work our way backwards. */ 624 arg += len; 625 bprm->p -= len; 626 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 627 return -E2BIG; 628 629 while (len > 0) { 630 unsigned int bytes_to_copy = min_t(unsigned int, len, 631 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 632 struct page *page; 633 634 pos -= bytes_to_copy; 635 arg -= bytes_to_copy; 636 len -= bytes_to_copy; 637 638 page = get_arg_page(bprm, pos, 1); 639 if (!page) 640 return -E2BIG; 641 flush_arg_page(bprm, pos & PAGE_MASK, page); 642 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 643 put_arg_page(page); 644 } 645 646 return 0; 647 } 648 EXPORT_SYMBOL(copy_string_kernel); 649 650 static int copy_strings_kernel(int argc, const char *const *argv, 651 struct linux_binprm *bprm) 652 { 653 while (argc-- > 0) { 654 int ret = copy_string_kernel(argv[argc], bprm); 655 if (ret < 0) 656 return ret; 657 if (fatal_signal_pending(current)) 658 return -ERESTARTNOHAND; 659 cond_resched(); 660 } 661 return 0; 662 } 663 664 #ifdef CONFIG_MMU 665 666 /* 667 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 668 * the binfmt code determines where the new stack should reside, we shift it to 669 * its final location. The process proceeds as follows: 670 * 671 * 1) Use shift to calculate the new vma endpoints. 672 * 2) Extend vma to cover both the old and new ranges. This ensures the 673 * arguments passed to subsequent functions are consistent. 674 * 3) Move vma's page tables to the new range. 675 * 4) Free up any cleared pgd range. 676 * 5) Shrink the vma to cover only the new range. 677 */ 678 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 679 { 680 struct mm_struct *mm = vma->vm_mm; 681 unsigned long old_start = vma->vm_start; 682 unsigned long old_end = vma->vm_end; 683 unsigned long length = old_end - old_start; 684 unsigned long new_start = old_start - shift; 685 unsigned long new_end = old_end - shift; 686 VMA_ITERATOR(vmi, mm, new_start); 687 struct vm_area_struct *next; 688 struct mmu_gather tlb; 689 690 BUG_ON(new_start > new_end); 691 692 /* 693 * ensure there are no vmas between where we want to go 694 * and where we are 695 */ 696 if (vma != vma_next(&vmi)) 697 return -EFAULT; 698 699 /* 700 * cover the whole range: [new_start, old_end) 701 */ 702 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 703 return -ENOMEM; 704 705 /* 706 * move the page tables downwards, on failure we rely on 707 * process cleanup to remove whatever mess we made. 708 */ 709 if (length != move_page_tables(vma, old_start, 710 vma, new_start, length, false)) 711 return -ENOMEM; 712 713 lru_add_drain(); 714 tlb_gather_mmu(&tlb, mm); 715 next = vma_next(&vmi); 716 if (new_end > old_start) { 717 /* 718 * when the old and new regions overlap clear from new_end. 719 */ 720 free_pgd_range(&tlb, new_end, old_end, new_end, 721 next ? next->vm_start : USER_PGTABLES_CEILING); 722 } else { 723 /* 724 * otherwise, clean from old_start; this is done to not touch 725 * the address space in [new_end, old_start) some architectures 726 * have constraints on va-space that make this illegal (IA64) - 727 * for the others its just a little faster. 728 */ 729 free_pgd_range(&tlb, old_start, old_end, new_end, 730 next ? next->vm_start : USER_PGTABLES_CEILING); 731 } 732 tlb_finish_mmu(&tlb); 733 734 /* 735 * Shrink the vma to just the new range. Always succeeds. 736 */ 737 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 738 739 return 0; 740 } 741 742 /* 743 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 744 * the stack is optionally relocated, and some extra space is added. 745 */ 746 int setup_arg_pages(struct linux_binprm *bprm, 747 unsigned long stack_top, 748 int executable_stack) 749 { 750 unsigned long ret; 751 unsigned long stack_shift; 752 struct mm_struct *mm = current->mm; 753 struct vm_area_struct *vma = bprm->vma; 754 struct vm_area_struct *prev = NULL; 755 unsigned long vm_flags; 756 unsigned long stack_base; 757 unsigned long stack_size; 758 unsigned long stack_expand; 759 unsigned long rlim_stack; 760 struct mmu_gather tlb; 761 762 #ifdef CONFIG_STACK_GROWSUP 763 /* Limit stack size */ 764 stack_base = bprm->rlim_stack.rlim_max; 765 766 stack_base = calc_max_stack_size(stack_base); 767 768 /* Add space for stack randomization. */ 769 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 770 771 /* Make sure we didn't let the argument array grow too large. */ 772 if (vma->vm_end - vma->vm_start > stack_base) 773 return -ENOMEM; 774 775 stack_base = PAGE_ALIGN(stack_top - stack_base); 776 777 stack_shift = vma->vm_start - stack_base; 778 mm->arg_start = bprm->p - stack_shift; 779 bprm->p = vma->vm_end - stack_shift; 780 #else 781 stack_top = arch_align_stack(stack_top); 782 stack_top = PAGE_ALIGN(stack_top); 783 784 if (unlikely(stack_top < mmap_min_addr) || 785 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 786 return -ENOMEM; 787 788 stack_shift = vma->vm_end - stack_top; 789 790 bprm->p -= stack_shift; 791 mm->arg_start = bprm->p; 792 #endif 793 794 if (bprm->loader) 795 bprm->loader -= stack_shift; 796 bprm->exec -= stack_shift; 797 798 if (mmap_write_lock_killable(mm)) 799 return -EINTR; 800 801 vm_flags = VM_STACK_FLAGS; 802 803 /* 804 * Adjust stack execute permissions; explicitly enable for 805 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 806 * (arch default) otherwise. 807 */ 808 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 809 vm_flags |= VM_EXEC; 810 else if (executable_stack == EXSTACK_DISABLE_X) 811 vm_flags &= ~VM_EXEC; 812 vm_flags |= mm->def_flags; 813 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 814 815 tlb_gather_mmu(&tlb, mm); 816 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end, 817 vm_flags); 818 tlb_finish_mmu(&tlb); 819 820 if (ret) 821 goto out_unlock; 822 BUG_ON(prev != vma); 823 824 if (unlikely(vm_flags & VM_EXEC)) { 825 pr_warn_once("process '%pD4' started with executable stack\n", 826 bprm->file); 827 } 828 829 /* Move stack pages down in memory. */ 830 if (stack_shift) { 831 ret = shift_arg_pages(vma, stack_shift); 832 if (ret) 833 goto out_unlock; 834 } 835 836 /* mprotect_fixup is overkill to remove the temporary stack flags */ 837 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 838 839 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 840 stack_size = vma->vm_end - vma->vm_start; 841 /* 842 * Align this down to a page boundary as expand_stack 843 * will align it up. 844 */ 845 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 846 847 stack_expand = min(rlim_stack, stack_size + stack_expand); 848 849 #ifdef CONFIG_STACK_GROWSUP 850 stack_base = vma->vm_start + stack_expand; 851 #else 852 stack_base = vma->vm_end - stack_expand; 853 #endif 854 current->mm->start_stack = bprm->p; 855 ret = expand_stack(vma, stack_base); 856 if (ret) 857 ret = -EFAULT; 858 859 out_unlock: 860 mmap_write_unlock(mm); 861 return ret; 862 } 863 EXPORT_SYMBOL(setup_arg_pages); 864 865 #else 866 867 /* 868 * Transfer the program arguments and environment from the holding pages 869 * onto the stack. The provided stack pointer is adjusted accordingly. 870 */ 871 int transfer_args_to_stack(struct linux_binprm *bprm, 872 unsigned long *sp_location) 873 { 874 unsigned long index, stop, sp; 875 int ret = 0; 876 877 stop = bprm->p >> PAGE_SHIFT; 878 sp = *sp_location; 879 880 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 881 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 882 char *src = kmap_local_page(bprm->page[index]) + offset; 883 sp -= PAGE_SIZE - offset; 884 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 885 ret = -EFAULT; 886 kunmap_local(src); 887 if (ret) 888 goto out; 889 } 890 891 *sp_location = sp; 892 893 out: 894 return ret; 895 } 896 EXPORT_SYMBOL(transfer_args_to_stack); 897 898 #endif /* CONFIG_MMU */ 899 900 static struct file *do_open_execat(int fd, struct filename *name, int flags) 901 { 902 struct file *file; 903 int err; 904 struct open_flags open_exec_flags = { 905 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 906 .acc_mode = MAY_EXEC, 907 .intent = LOOKUP_OPEN, 908 .lookup_flags = LOOKUP_FOLLOW, 909 }; 910 911 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 912 return ERR_PTR(-EINVAL); 913 if (flags & AT_SYMLINK_NOFOLLOW) 914 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 915 if (flags & AT_EMPTY_PATH) 916 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 917 918 file = do_filp_open(fd, name, &open_exec_flags); 919 if (IS_ERR(file)) 920 goto out; 921 922 /* 923 * may_open() has already checked for this, so it should be 924 * impossible to trip now. But we need to be extra cautious 925 * and check again at the very end too. 926 */ 927 err = -EACCES; 928 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 929 path_noexec(&file->f_path))) 930 goto exit; 931 932 err = deny_write_access(file); 933 if (err) 934 goto exit; 935 936 if (name->name[0] != '\0') 937 fsnotify_open(file); 938 939 out: 940 return file; 941 942 exit: 943 fput(file); 944 return ERR_PTR(err); 945 } 946 947 struct file *open_exec(const char *name) 948 { 949 struct filename *filename = getname_kernel(name); 950 struct file *f = ERR_CAST(filename); 951 952 if (!IS_ERR(filename)) { 953 f = do_open_execat(AT_FDCWD, filename, 0); 954 putname(filename); 955 } 956 return f; 957 } 958 EXPORT_SYMBOL(open_exec); 959 960 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 961 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 962 { 963 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 964 if (res > 0) 965 flush_icache_user_range(addr, addr + len); 966 return res; 967 } 968 EXPORT_SYMBOL(read_code); 969 #endif 970 971 /* 972 * Maps the mm_struct mm into the current task struct. 973 * On success, this function returns with exec_update_lock 974 * held for writing. 975 */ 976 static int exec_mmap(struct mm_struct *mm) 977 { 978 struct task_struct *tsk; 979 struct mm_struct *old_mm, *active_mm; 980 int ret; 981 982 /* Notify parent that we're no longer interested in the old VM */ 983 tsk = current; 984 old_mm = current->mm; 985 exec_mm_release(tsk, old_mm); 986 if (old_mm) 987 sync_mm_rss(old_mm); 988 989 ret = down_write_killable(&tsk->signal->exec_update_lock); 990 if (ret) 991 return ret; 992 993 if (old_mm) { 994 /* 995 * If there is a pending fatal signal perhaps a signal 996 * whose default action is to create a coredump get 997 * out and die instead of going through with the exec. 998 */ 999 ret = mmap_read_lock_killable(old_mm); 1000 if (ret) { 1001 up_write(&tsk->signal->exec_update_lock); 1002 return ret; 1003 } 1004 } 1005 1006 task_lock(tsk); 1007 membarrier_exec_mmap(mm); 1008 1009 local_irq_disable(); 1010 active_mm = tsk->active_mm; 1011 tsk->active_mm = mm; 1012 tsk->mm = mm; 1013 mm_init_cid(mm); 1014 /* 1015 * This prevents preemption while active_mm is being loaded and 1016 * it and mm are being updated, which could cause problems for 1017 * lazy tlb mm refcounting when these are updated by context 1018 * switches. Not all architectures can handle irqs off over 1019 * activate_mm yet. 1020 */ 1021 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1022 local_irq_enable(); 1023 activate_mm(active_mm, mm); 1024 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1025 local_irq_enable(); 1026 lru_gen_add_mm(mm); 1027 task_unlock(tsk); 1028 lru_gen_use_mm(mm); 1029 if (old_mm) { 1030 mmap_read_unlock(old_mm); 1031 BUG_ON(active_mm != old_mm); 1032 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1033 mm_update_next_owner(old_mm); 1034 mmput(old_mm); 1035 return 0; 1036 } 1037 mmdrop(active_mm); 1038 return 0; 1039 } 1040 1041 static int de_thread(struct task_struct *tsk) 1042 { 1043 struct signal_struct *sig = tsk->signal; 1044 struct sighand_struct *oldsighand = tsk->sighand; 1045 spinlock_t *lock = &oldsighand->siglock; 1046 1047 if (thread_group_empty(tsk)) 1048 goto no_thread_group; 1049 1050 /* 1051 * Kill all other threads in the thread group. 1052 */ 1053 spin_lock_irq(lock); 1054 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1055 /* 1056 * Another group action in progress, just 1057 * return so that the signal is processed. 1058 */ 1059 spin_unlock_irq(lock); 1060 return -EAGAIN; 1061 } 1062 1063 sig->group_exec_task = tsk; 1064 sig->notify_count = zap_other_threads(tsk); 1065 if (!thread_group_leader(tsk)) 1066 sig->notify_count--; 1067 1068 while (sig->notify_count) { 1069 __set_current_state(TASK_KILLABLE); 1070 spin_unlock_irq(lock); 1071 schedule(); 1072 if (__fatal_signal_pending(tsk)) 1073 goto killed; 1074 spin_lock_irq(lock); 1075 } 1076 spin_unlock_irq(lock); 1077 1078 /* 1079 * At this point all other threads have exited, all we have to 1080 * do is to wait for the thread group leader to become inactive, 1081 * and to assume its PID: 1082 */ 1083 if (!thread_group_leader(tsk)) { 1084 struct task_struct *leader = tsk->group_leader; 1085 1086 for (;;) { 1087 cgroup_threadgroup_change_begin(tsk); 1088 write_lock_irq(&tasklist_lock); 1089 /* 1090 * Do this under tasklist_lock to ensure that 1091 * exit_notify() can't miss ->group_exec_task 1092 */ 1093 sig->notify_count = -1; 1094 if (likely(leader->exit_state)) 1095 break; 1096 __set_current_state(TASK_KILLABLE); 1097 write_unlock_irq(&tasklist_lock); 1098 cgroup_threadgroup_change_end(tsk); 1099 schedule(); 1100 if (__fatal_signal_pending(tsk)) 1101 goto killed; 1102 } 1103 1104 /* 1105 * The only record we have of the real-time age of a 1106 * process, regardless of execs it's done, is start_time. 1107 * All the past CPU time is accumulated in signal_struct 1108 * from sister threads now dead. But in this non-leader 1109 * exec, nothing survives from the original leader thread, 1110 * whose birth marks the true age of this process now. 1111 * When we take on its identity by switching to its PID, we 1112 * also take its birthdate (always earlier than our own). 1113 */ 1114 tsk->start_time = leader->start_time; 1115 tsk->start_boottime = leader->start_boottime; 1116 1117 BUG_ON(!same_thread_group(leader, tsk)); 1118 /* 1119 * An exec() starts a new thread group with the 1120 * TGID of the previous thread group. Rehash the 1121 * two threads with a switched PID, and release 1122 * the former thread group leader: 1123 */ 1124 1125 /* Become a process group leader with the old leader's pid. 1126 * The old leader becomes a thread of the this thread group. 1127 */ 1128 exchange_tids(tsk, leader); 1129 transfer_pid(leader, tsk, PIDTYPE_TGID); 1130 transfer_pid(leader, tsk, PIDTYPE_PGID); 1131 transfer_pid(leader, tsk, PIDTYPE_SID); 1132 1133 list_replace_rcu(&leader->tasks, &tsk->tasks); 1134 list_replace_init(&leader->sibling, &tsk->sibling); 1135 1136 tsk->group_leader = tsk; 1137 leader->group_leader = tsk; 1138 1139 tsk->exit_signal = SIGCHLD; 1140 leader->exit_signal = -1; 1141 1142 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1143 leader->exit_state = EXIT_DEAD; 1144 1145 /* 1146 * We are going to release_task()->ptrace_unlink() silently, 1147 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1148 * the tracer won't block again waiting for this thread. 1149 */ 1150 if (unlikely(leader->ptrace)) 1151 __wake_up_parent(leader, leader->parent); 1152 write_unlock_irq(&tasklist_lock); 1153 cgroup_threadgroup_change_end(tsk); 1154 1155 release_task(leader); 1156 } 1157 1158 sig->group_exec_task = NULL; 1159 sig->notify_count = 0; 1160 1161 no_thread_group: 1162 /* we have changed execution domain */ 1163 tsk->exit_signal = SIGCHLD; 1164 1165 BUG_ON(!thread_group_leader(tsk)); 1166 return 0; 1167 1168 killed: 1169 /* protects against exit_notify() and __exit_signal() */ 1170 read_lock(&tasklist_lock); 1171 sig->group_exec_task = NULL; 1172 sig->notify_count = 0; 1173 read_unlock(&tasklist_lock); 1174 return -EAGAIN; 1175 } 1176 1177 1178 /* 1179 * This function makes sure the current process has its own signal table, 1180 * so that flush_signal_handlers can later reset the handlers without 1181 * disturbing other processes. (Other processes might share the signal 1182 * table via the CLONE_SIGHAND option to clone().) 1183 */ 1184 static int unshare_sighand(struct task_struct *me) 1185 { 1186 struct sighand_struct *oldsighand = me->sighand; 1187 1188 if (refcount_read(&oldsighand->count) != 1) { 1189 struct sighand_struct *newsighand; 1190 /* 1191 * This ->sighand is shared with the CLONE_SIGHAND 1192 * but not CLONE_THREAD task, switch to the new one. 1193 */ 1194 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1195 if (!newsighand) 1196 return -ENOMEM; 1197 1198 refcount_set(&newsighand->count, 1); 1199 1200 write_lock_irq(&tasklist_lock); 1201 spin_lock(&oldsighand->siglock); 1202 memcpy(newsighand->action, oldsighand->action, 1203 sizeof(newsighand->action)); 1204 rcu_assign_pointer(me->sighand, newsighand); 1205 spin_unlock(&oldsighand->siglock); 1206 write_unlock_irq(&tasklist_lock); 1207 1208 __cleanup_sighand(oldsighand); 1209 } 1210 return 0; 1211 } 1212 1213 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1214 { 1215 task_lock(tsk); 1216 /* Always NUL terminated and zero-padded */ 1217 strscpy_pad(buf, tsk->comm, buf_size); 1218 task_unlock(tsk); 1219 return buf; 1220 } 1221 EXPORT_SYMBOL_GPL(__get_task_comm); 1222 1223 /* 1224 * These functions flushes out all traces of the currently running executable 1225 * so that a new one can be started 1226 */ 1227 1228 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1229 { 1230 task_lock(tsk); 1231 trace_task_rename(tsk, buf); 1232 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1233 task_unlock(tsk); 1234 perf_event_comm(tsk, exec); 1235 } 1236 1237 /* 1238 * Calling this is the point of no return. None of the failures will be 1239 * seen by userspace since either the process is already taking a fatal 1240 * signal (via de_thread() or coredump), or will have SEGV raised 1241 * (after exec_mmap()) by search_binary_handler (see below). 1242 */ 1243 int begin_new_exec(struct linux_binprm * bprm) 1244 { 1245 struct task_struct *me = current; 1246 int retval; 1247 1248 /* Once we are committed compute the creds */ 1249 retval = bprm_creds_from_file(bprm); 1250 if (retval) 1251 return retval; 1252 1253 /* 1254 * Ensure all future errors are fatal. 1255 */ 1256 bprm->point_of_no_return = true; 1257 1258 /* 1259 * Make this the only thread in the thread group. 1260 */ 1261 retval = de_thread(me); 1262 if (retval) 1263 goto out; 1264 1265 /* 1266 * Cancel any io_uring activity across execve 1267 */ 1268 io_uring_task_cancel(); 1269 1270 /* Ensure the files table is not shared. */ 1271 retval = unshare_files(); 1272 if (retval) 1273 goto out; 1274 1275 /* 1276 * Must be called _before_ exec_mmap() as bprm->mm is 1277 * not visible until then. This also enables the update 1278 * to be lockless. 1279 */ 1280 retval = set_mm_exe_file(bprm->mm, bprm->file); 1281 if (retval) 1282 goto out; 1283 1284 /* If the binary is not readable then enforce mm->dumpable=0 */ 1285 would_dump(bprm, bprm->file); 1286 if (bprm->have_execfd) 1287 would_dump(bprm, bprm->executable); 1288 1289 /* 1290 * Release all of the old mmap stuff 1291 */ 1292 acct_arg_size(bprm, 0); 1293 retval = exec_mmap(bprm->mm); 1294 if (retval) 1295 goto out; 1296 1297 bprm->mm = NULL; 1298 1299 retval = exec_task_namespaces(); 1300 if (retval) 1301 goto out_unlock; 1302 1303 #ifdef CONFIG_POSIX_TIMERS 1304 spin_lock_irq(&me->sighand->siglock); 1305 posix_cpu_timers_exit(me); 1306 spin_unlock_irq(&me->sighand->siglock); 1307 exit_itimers(me); 1308 flush_itimer_signals(); 1309 #endif 1310 1311 /* 1312 * Make the signal table private. 1313 */ 1314 retval = unshare_sighand(me); 1315 if (retval) 1316 goto out_unlock; 1317 1318 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1319 PF_NOFREEZE | PF_NO_SETAFFINITY); 1320 flush_thread(); 1321 me->personality &= ~bprm->per_clear; 1322 1323 clear_syscall_work_syscall_user_dispatch(me); 1324 1325 /* 1326 * We have to apply CLOEXEC before we change whether the process is 1327 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1328 * trying to access the should-be-closed file descriptors of a process 1329 * undergoing exec(2). 1330 */ 1331 do_close_on_exec(me->files); 1332 1333 if (bprm->secureexec) { 1334 /* Make sure parent cannot signal privileged process. */ 1335 me->pdeath_signal = 0; 1336 1337 /* 1338 * For secureexec, reset the stack limit to sane default to 1339 * avoid bad behavior from the prior rlimits. This has to 1340 * happen before arch_pick_mmap_layout(), which examines 1341 * RLIMIT_STACK, but after the point of no return to avoid 1342 * needing to clean up the change on failure. 1343 */ 1344 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1345 bprm->rlim_stack.rlim_cur = _STK_LIM; 1346 } 1347 1348 me->sas_ss_sp = me->sas_ss_size = 0; 1349 1350 /* 1351 * Figure out dumpability. Note that this checking only of current 1352 * is wrong, but userspace depends on it. This should be testing 1353 * bprm->secureexec instead. 1354 */ 1355 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1356 !(uid_eq(current_euid(), current_uid()) && 1357 gid_eq(current_egid(), current_gid()))) 1358 set_dumpable(current->mm, suid_dumpable); 1359 else 1360 set_dumpable(current->mm, SUID_DUMP_USER); 1361 1362 perf_event_exec(); 1363 __set_task_comm(me, kbasename(bprm->filename), true); 1364 1365 /* An exec changes our domain. We are no longer part of the thread 1366 group */ 1367 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1368 flush_signal_handlers(me, 0); 1369 1370 retval = set_cred_ucounts(bprm->cred); 1371 if (retval < 0) 1372 goto out_unlock; 1373 1374 /* 1375 * install the new credentials for this executable 1376 */ 1377 security_bprm_committing_creds(bprm); 1378 1379 commit_creds(bprm->cred); 1380 bprm->cred = NULL; 1381 1382 /* 1383 * Disable monitoring for regular users 1384 * when executing setuid binaries. Must 1385 * wait until new credentials are committed 1386 * by commit_creds() above 1387 */ 1388 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1389 perf_event_exit_task(me); 1390 /* 1391 * cred_guard_mutex must be held at least to this point to prevent 1392 * ptrace_attach() from altering our determination of the task's 1393 * credentials; any time after this it may be unlocked. 1394 */ 1395 security_bprm_committed_creds(bprm); 1396 1397 /* Pass the opened binary to the interpreter. */ 1398 if (bprm->have_execfd) { 1399 retval = get_unused_fd_flags(0); 1400 if (retval < 0) 1401 goto out_unlock; 1402 fd_install(retval, bprm->executable); 1403 bprm->executable = NULL; 1404 bprm->execfd = retval; 1405 } 1406 return 0; 1407 1408 out_unlock: 1409 up_write(&me->signal->exec_update_lock); 1410 out: 1411 return retval; 1412 } 1413 EXPORT_SYMBOL(begin_new_exec); 1414 1415 void would_dump(struct linux_binprm *bprm, struct file *file) 1416 { 1417 struct inode *inode = file_inode(file); 1418 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1419 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1420 struct user_namespace *old, *user_ns; 1421 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1422 1423 /* Ensure mm->user_ns contains the executable */ 1424 user_ns = old = bprm->mm->user_ns; 1425 while ((user_ns != &init_user_ns) && 1426 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1427 user_ns = user_ns->parent; 1428 1429 if (old != user_ns) { 1430 bprm->mm->user_ns = get_user_ns(user_ns); 1431 put_user_ns(old); 1432 } 1433 } 1434 } 1435 EXPORT_SYMBOL(would_dump); 1436 1437 void setup_new_exec(struct linux_binprm * bprm) 1438 { 1439 /* Setup things that can depend upon the personality */ 1440 struct task_struct *me = current; 1441 1442 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1443 1444 arch_setup_new_exec(); 1445 1446 /* Set the new mm task size. We have to do that late because it may 1447 * depend on TIF_32BIT which is only updated in flush_thread() on 1448 * some architectures like powerpc 1449 */ 1450 me->mm->task_size = TASK_SIZE; 1451 up_write(&me->signal->exec_update_lock); 1452 mutex_unlock(&me->signal->cred_guard_mutex); 1453 } 1454 EXPORT_SYMBOL(setup_new_exec); 1455 1456 /* Runs immediately before start_thread() takes over. */ 1457 void finalize_exec(struct linux_binprm *bprm) 1458 { 1459 /* Store any stack rlimit changes before starting thread. */ 1460 task_lock(current->group_leader); 1461 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1462 task_unlock(current->group_leader); 1463 } 1464 EXPORT_SYMBOL(finalize_exec); 1465 1466 /* 1467 * Prepare credentials and lock ->cred_guard_mutex. 1468 * setup_new_exec() commits the new creds and drops the lock. 1469 * Or, if exec fails before, free_bprm() should release ->cred 1470 * and unlock. 1471 */ 1472 static int prepare_bprm_creds(struct linux_binprm *bprm) 1473 { 1474 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1475 return -ERESTARTNOINTR; 1476 1477 bprm->cred = prepare_exec_creds(); 1478 if (likely(bprm->cred)) 1479 return 0; 1480 1481 mutex_unlock(¤t->signal->cred_guard_mutex); 1482 return -ENOMEM; 1483 } 1484 1485 static void free_bprm(struct linux_binprm *bprm) 1486 { 1487 if (bprm->mm) { 1488 acct_arg_size(bprm, 0); 1489 mmput(bprm->mm); 1490 } 1491 free_arg_pages(bprm); 1492 if (bprm->cred) { 1493 mutex_unlock(¤t->signal->cred_guard_mutex); 1494 abort_creds(bprm->cred); 1495 } 1496 if (bprm->file) { 1497 allow_write_access(bprm->file); 1498 fput(bprm->file); 1499 } 1500 if (bprm->executable) 1501 fput(bprm->executable); 1502 /* If a binfmt changed the interp, free it. */ 1503 if (bprm->interp != bprm->filename) 1504 kfree(bprm->interp); 1505 kfree(bprm->fdpath); 1506 kfree(bprm); 1507 } 1508 1509 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1510 { 1511 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1512 int retval = -ENOMEM; 1513 if (!bprm) 1514 goto out; 1515 1516 if (fd == AT_FDCWD || filename->name[0] == '/') { 1517 bprm->filename = filename->name; 1518 } else { 1519 if (filename->name[0] == '\0') 1520 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1521 else 1522 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1523 fd, filename->name); 1524 if (!bprm->fdpath) 1525 goto out_free; 1526 1527 bprm->filename = bprm->fdpath; 1528 } 1529 bprm->interp = bprm->filename; 1530 1531 retval = bprm_mm_init(bprm); 1532 if (retval) 1533 goto out_free; 1534 return bprm; 1535 1536 out_free: 1537 free_bprm(bprm); 1538 out: 1539 return ERR_PTR(retval); 1540 } 1541 1542 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1543 { 1544 /* If a binfmt changed the interp, free it first. */ 1545 if (bprm->interp != bprm->filename) 1546 kfree(bprm->interp); 1547 bprm->interp = kstrdup(interp, GFP_KERNEL); 1548 if (!bprm->interp) 1549 return -ENOMEM; 1550 return 0; 1551 } 1552 EXPORT_SYMBOL(bprm_change_interp); 1553 1554 /* 1555 * determine how safe it is to execute the proposed program 1556 * - the caller must hold ->cred_guard_mutex to protect against 1557 * PTRACE_ATTACH or seccomp thread-sync 1558 */ 1559 static void check_unsafe_exec(struct linux_binprm *bprm) 1560 { 1561 struct task_struct *p = current, *t; 1562 unsigned n_fs; 1563 1564 if (p->ptrace) 1565 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1566 1567 /* 1568 * This isn't strictly necessary, but it makes it harder for LSMs to 1569 * mess up. 1570 */ 1571 if (task_no_new_privs(current)) 1572 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1573 1574 /* 1575 * If another task is sharing our fs, we cannot safely 1576 * suid exec because the differently privileged task 1577 * will be able to manipulate the current directory, etc. 1578 * It would be nice to force an unshare instead... 1579 */ 1580 t = p; 1581 n_fs = 1; 1582 spin_lock(&p->fs->lock); 1583 rcu_read_lock(); 1584 while_each_thread(p, t) { 1585 if (t->fs == p->fs) 1586 n_fs++; 1587 } 1588 rcu_read_unlock(); 1589 1590 if (p->fs->users > n_fs) 1591 bprm->unsafe |= LSM_UNSAFE_SHARE; 1592 else 1593 p->fs->in_exec = 1; 1594 spin_unlock(&p->fs->lock); 1595 } 1596 1597 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1598 { 1599 /* Handle suid and sgid on files */ 1600 struct user_namespace *mnt_userns; 1601 struct inode *inode = file_inode(file); 1602 unsigned int mode; 1603 vfsuid_t vfsuid; 1604 vfsgid_t vfsgid; 1605 1606 if (!mnt_may_suid(file->f_path.mnt)) 1607 return; 1608 1609 if (task_no_new_privs(current)) 1610 return; 1611 1612 mode = READ_ONCE(inode->i_mode); 1613 if (!(mode & (S_ISUID|S_ISGID))) 1614 return; 1615 1616 mnt_userns = file_mnt_user_ns(file); 1617 1618 /* Be careful if suid/sgid is set */ 1619 inode_lock(inode); 1620 1621 /* reload atomically mode/uid/gid now that lock held */ 1622 mode = inode->i_mode; 1623 vfsuid = i_uid_into_vfsuid(mnt_userns, inode); 1624 vfsgid = i_gid_into_vfsgid(mnt_userns, inode); 1625 inode_unlock(inode); 1626 1627 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1628 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1629 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1630 return; 1631 1632 if (mode & S_ISUID) { 1633 bprm->per_clear |= PER_CLEAR_ON_SETID; 1634 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1635 } 1636 1637 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1638 bprm->per_clear |= PER_CLEAR_ON_SETID; 1639 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1640 } 1641 } 1642 1643 /* 1644 * Compute brpm->cred based upon the final binary. 1645 */ 1646 static int bprm_creds_from_file(struct linux_binprm *bprm) 1647 { 1648 /* Compute creds based on which file? */ 1649 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1650 1651 bprm_fill_uid(bprm, file); 1652 return security_bprm_creds_from_file(bprm, file); 1653 } 1654 1655 /* 1656 * Fill the binprm structure from the inode. 1657 * Read the first BINPRM_BUF_SIZE bytes 1658 * 1659 * This may be called multiple times for binary chains (scripts for example). 1660 */ 1661 static int prepare_binprm(struct linux_binprm *bprm) 1662 { 1663 loff_t pos = 0; 1664 1665 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1666 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1667 } 1668 1669 /* 1670 * Arguments are '\0' separated strings found at the location bprm->p 1671 * points to; chop off the first by relocating brpm->p to right after 1672 * the first '\0' encountered. 1673 */ 1674 int remove_arg_zero(struct linux_binprm *bprm) 1675 { 1676 int ret = 0; 1677 unsigned long offset; 1678 char *kaddr; 1679 struct page *page; 1680 1681 if (!bprm->argc) 1682 return 0; 1683 1684 do { 1685 offset = bprm->p & ~PAGE_MASK; 1686 page = get_arg_page(bprm, bprm->p, 0); 1687 if (!page) { 1688 ret = -EFAULT; 1689 goto out; 1690 } 1691 kaddr = kmap_local_page(page); 1692 1693 for (; offset < PAGE_SIZE && kaddr[offset]; 1694 offset++, bprm->p++) 1695 ; 1696 1697 kunmap_local(kaddr); 1698 put_arg_page(page); 1699 } while (offset == PAGE_SIZE); 1700 1701 bprm->p++; 1702 bprm->argc--; 1703 ret = 0; 1704 1705 out: 1706 return ret; 1707 } 1708 EXPORT_SYMBOL(remove_arg_zero); 1709 1710 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1711 /* 1712 * cycle the list of binary formats handler, until one recognizes the image 1713 */ 1714 static int search_binary_handler(struct linux_binprm *bprm) 1715 { 1716 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1717 struct linux_binfmt *fmt; 1718 int retval; 1719 1720 retval = prepare_binprm(bprm); 1721 if (retval < 0) 1722 return retval; 1723 1724 retval = security_bprm_check(bprm); 1725 if (retval) 1726 return retval; 1727 1728 retval = -ENOENT; 1729 retry: 1730 read_lock(&binfmt_lock); 1731 list_for_each_entry(fmt, &formats, lh) { 1732 if (!try_module_get(fmt->module)) 1733 continue; 1734 read_unlock(&binfmt_lock); 1735 1736 retval = fmt->load_binary(bprm); 1737 1738 read_lock(&binfmt_lock); 1739 put_binfmt(fmt); 1740 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1741 read_unlock(&binfmt_lock); 1742 return retval; 1743 } 1744 } 1745 read_unlock(&binfmt_lock); 1746 1747 if (need_retry) { 1748 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1749 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1750 return retval; 1751 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1752 return retval; 1753 need_retry = false; 1754 goto retry; 1755 } 1756 1757 return retval; 1758 } 1759 1760 /* binfmt handlers will call back into begin_new_exec() on success. */ 1761 static int exec_binprm(struct linux_binprm *bprm) 1762 { 1763 pid_t old_pid, old_vpid; 1764 int ret, depth; 1765 1766 /* Need to fetch pid before load_binary changes it */ 1767 old_pid = current->pid; 1768 rcu_read_lock(); 1769 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1770 rcu_read_unlock(); 1771 1772 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1773 for (depth = 0;; depth++) { 1774 struct file *exec; 1775 if (depth > 5) 1776 return -ELOOP; 1777 1778 ret = search_binary_handler(bprm); 1779 if (ret < 0) 1780 return ret; 1781 if (!bprm->interpreter) 1782 break; 1783 1784 exec = bprm->file; 1785 bprm->file = bprm->interpreter; 1786 bprm->interpreter = NULL; 1787 1788 allow_write_access(exec); 1789 if (unlikely(bprm->have_execfd)) { 1790 if (bprm->executable) { 1791 fput(exec); 1792 return -ENOEXEC; 1793 } 1794 bprm->executable = exec; 1795 } else 1796 fput(exec); 1797 } 1798 1799 audit_bprm(bprm); 1800 trace_sched_process_exec(current, old_pid, bprm); 1801 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1802 proc_exec_connector(current); 1803 return 0; 1804 } 1805 1806 /* 1807 * sys_execve() executes a new program. 1808 */ 1809 static int bprm_execve(struct linux_binprm *bprm, 1810 int fd, struct filename *filename, int flags) 1811 { 1812 struct file *file; 1813 int retval; 1814 1815 retval = prepare_bprm_creds(bprm); 1816 if (retval) 1817 return retval; 1818 1819 /* 1820 * Check for unsafe execution states before exec_binprm(), which 1821 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1822 * where setuid-ness is evaluated. 1823 */ 1824 check_unsafe_exec(bprm); 1825 current->in_execve = 1; 1826 sched_mm_cid_before_execve(current); 1827 1828 file = do_open_execat(fd, filename, flags); 1829 retval = PTR_ERR(file); 1830 if (IS_ERR(file)) 1831 goto out_unmark; 1832 1833 sched_exec(); 1834 1835 bprm->file = file; 1836 /* 1837 * Record that a name derived from an O_CLOEXEC fd will be 1838 * inaccessible after exec. This allows the code in exec to 1839 * choose to fail when the executable is not mmaped into the 1840 * interpreter and an open file descriptor is not passed to 1841 * the interpreter. This makes for a better user experience 1842 * than having the interpreter start and then immediately fail 1843 * when it finds the executable is inaccessible. 1844 */ 1845 if (bprm->fdpath && get_close_on_exec(fd)) 1846 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1847 1848 /* Set the unchanging part of bprm->cred */ 1849 retval = security_bprm_creds_for_exec(bprm); 1850 if (retval) 1851 goto out; 1852 1853 retval = exec_binprm(bprm); 1854 if (retval < 0) 1855 goto out; 1856 1857 sched_mm_cid_after_execve(current); 1858 /* execve succeeded */ 1859 current->fs->in_exec = 0; 1860 current->in_execve = 0; 1861 rseq_execve(current); 1862 acct_update_integrals(current); 1863 task_numa_free(current, false); 1864 return retval; 1865 1866 out: 1867 /* 1868 * If past the point of no return ensure the code never 1869 * returns to the userspace process. Use an existing fatal 1870 * signal if present otherwise terminate the process with 1871 * SIGSEGV. 1872 */ 1873 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1874 force_fatal_sig(SIGSEGV); 1875 1876 out_unmark: 1877 sched_mm_cid_after_execve(current); 1878 current->fs->in_exec = 0; 1879 current->in_execve = 0; 1880 1881 return retval; 1882 } 1883 1884 static int do_execveat_common(int fd, struct filename *filename, 1885 struct user_arg_ptr argv, 1886 struct user_arg_ptr envp, 1887 int flags) 1888 { 1889 struct linux_binprm *bprm; 1890 int retval; 1891 1892 if (IS_ERR(filename)) 1893 return PTR_ERR(filename); 1894 1895 /* 1896 * We move the actual failure in case of RLIMIT_NPROC excess from 1897 * set*uid() to execve() because too many poorly written programs 1898 * don't check setuid() return code. Here we additionally recheck 1899 * whether NPROC limit is still exceeded. 1900 */ 1901 if ((current->flags & PF_NPROC_EXCEEDED) && 1902 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1903 retval = -EAGAIN; 1904 goto out_ret; 1905 } 1906 1907 /* We're below the limit (still or again), so we don't want to make 1908 * further execve() calls fail. */ 1909 current->flags &= ~PF_NPROC_EXCEEDED; 1910 1911 bprm = alloc_bprm(fd, filename); 1912 if (IS_ERR(bprm)) { 1913 retval = PTR_ERR(bprm); 1914 goto out_ret; 1915 } 1916 1917 retval = count(argv, MAX_ARG_STRINGS); 1918 if (retval == 0) 1919 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1920 current->comm, bprm->filename); 1921 if (retval < 0) 1922 goto out_free; 1923 bprm->argc = retval; 1924 1925 retval = count(envp, MAX_ARG_STRINGS); 1926 if (retval < 0) 1927 goto out_free; 1928 bprm->envc = retval; 1929 1930 retval = bprm_stack_limits(bprm); 1931 if (retval < 0) 1932 goto out_free; 1933 1934 retval = copy_string_kernel(bprm->filename, bprm); 1935 if (retval < 0) 1936 goto out_free; 1937 bprm->exec = bprm->p; 1938 1939 retval = copy_strings(bprm->envc, envp, bprm); 1940 if (retval < 0) 1941 goto out_free; 1942 1943 retval = copy_strings(bprm->argc, argv, bprm); 1944 if (retval < 0) 1945 goto out_free; 1946 1947 /* 1948 * When argv is empty, add an empty string ("") as argv[0] to 1949 * ensure confused userspace programs that start processing 1950 * from argv[1] won't end up walking envp. See also 1951 * bprm_stack_limits(). 1952 */ 1953 if (bprm->argc == 0) { 1954 retval = copy_string_kernel("", bprm); 1955 if (retval < 0) 1956 goto out_free; 1957 bprm->argc = 1; 1958 } 1959 1960 retval = bprm_execve(bprm, fd, filename, flags); 1961 out_free: 1962 free_bprm(bprm); 1963 1964 out_ret: 1965 putname(filename); 1966 return retval; 1967 } 1968 1969 int kernel_execve(const char *kernel_filename, 1970 const char *const *argv, const char *const *envp) 1971 { 1972 struct filename *filename; 1973 struct linux_binprm *bprm; 1974 int fd = AT_FDCWD; 1975 int retval; 1976 1977 /* It is non-sense for kernel threads to call execve */ 1978 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1979 return -EINVAL; 1980 1981 filename = getname_kernel(kernel_filename); 1982 if (IS_ERR(filename)) 1983 return PTR_ERR(filename); 1984 1985 bprm = alloc_bprm(fd, filename); 1986 if (IS_ERR(bprm)) { 1987 retval = PTR_ERR(bprm); 1988 goto out_ret; 1989 } 1990 1991 retval = count_strings_kernel(argv); 1992 if (WARN_ON_ONCE(retval == 0)) 1993 retval = -EINVAL; 1994 if (retval < 0) 1995 goto out_free; 1996 bprm->argc = retval; 1997 1998 retval = count_strings_kernel(envp); 1999 if (retval < 0) 2000 goto out_free; 2001 bprm->envc = retval; 2002 2003 retval = bprm_stack_limits(bprm); 2004 if (retval < 0) 2005 goto out_free; 2006 2007 retval = copy_string_kernel(bprm->filename, bprm); 2008 if (retval < 0) 2009 goto out_free; 2010 bprm->exec = bprm->p; 2011 2012 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2013 if (retval < 0) 2014 goto out_free; 2015 2016 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2017 if (retval < 0) 2018 goto out_free; 2019 2020 retval = bprm_execve(bprm, fd, filename, 0); 2021 out_free: 2022 free_bprm(bprm); 2023 out_ret: 2024 putname(filename); 2025 return retval; 2026 } 2027 2028 static int do_execve(struct filename *filename, 2029 const char __user *const __user *__argv, 2030 const char __user *const __user *__envp) 2031 { 2032 struct user_arg_ptr argv = { .ptr.native = __argv }; 2033 struct user_arg_ptr envp = { .ptr.native = __envp }; 2034 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2035 } 2036 2037 static int do_execveat(int fd, struct filename *filename, 2038 const char __user *const __user *__argv, 2039 const char __user *const __user *__envp, 2040 int flags) 2041 { 2042 struct user_arg_ptr argv = { .ptr.native = __argv }; 2043 struct user_arg_ptr envp = { .ptr.native = __envp }; 2044 2045 return do_execveat_common(fd, filename, argv, envp, flags); 2046 } 2047 2048 #ifdef CONFIG_COMPAT 2049 static int compat_do_execve(struct filename *filename, 2050 const compat_uptr_t __user *__argv, 2051 const compat_uptr_t __user *__envp) 2052 { 2053 struct user_arg_ptr argv = { 2054 .is_compat = true, 2055 .ptr.compat = __argv, 2056 }; 2057 struct user_arg_ptr envp = { 2058 .is_compat = true, 2059 .ptr.compat = __envp, 2060 }; 2061 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2062 } 2063 2064 static int compat_do_execveat(int fd, struct filename *filename, 2065 const compat_uptr_t __user *__argv, 2066 const compat_uptr_t __user *__envp, 2067 int flags) 2068 { 2069 struct user_arg_ptr argv = { 2070 .is_compat = true, 2071 .ptr.compat = __argv, 2072 }; 2073 struct user_arg_ptr envp = { 2074 .is_compat = true, 2075 .ptr.compat = __envp, 2076 }; 2077 return do_execveat_common(fd, filename, argv, envp, flags); 2078 } 2079 #endif 2080 2081 void set_binfmt(struct linux_binfmt *new) 2082 { 2083 struct mm_struct *mm = current->mm; 2084 2085 if (mm->binfmt) 2086 module_put(mm->binfmt->module); 2087 2088 mm->binfmt = new; 2089 if (new) 2090 __module_get(new->module); 2091 } 2092 EXPORT_SYMBOL(set_binfmt); 2093 2094 /* 2095 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2096 */ 2097 void set_dumpable(struct mm_struct *mm, int value) 2098 { 2099 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2100 return; 2101 2102 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2103 } 2104 2105 SYSCALL_DEFINE3(execve, 2106 const char __user *, filename, 2107 const char __user *const __user *, argv, 2108 const char __user *const __user *, envp) 2109 { 2110 return do_execve(getname(filename), argv, envp); 2111 } 2112 2113 SYSCALL_DEFINE5(execveat, 2114 int, fd, const char __user *, filename, 2115 const char __user *const __user *, argv, 2116 const char __user *const __user *, envp, 2117 int, flags) 2118 { 2119 return do_execveat(fd, 2120 getname_uflags(filename, flags), 2121 argv, envp, flags); 2122 } 2123 2124 #ifdef CONFIG_COMPAT 2125 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2126 const compat_uptr_t __user *, argv, 2127 const compat_uptr_t __user *, envp) 2128 { 2129 return compat_do_execve(getname(filename), argv, envp); 2130 } 2131 2132 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2133 const char __user *, filename, 2134 const compat_uptr_t __user *, argv, 2135 const compat_uptr_t __user *, envp, 2136 int, flags) 2137 { 2138 return compat_do_execveat(fd, 2139 getname_uflags(filename, flags), 2140 argv, envp, flags); 2141 } 2142 #endif 2143 2144 #ifdef CONFIG_SYSCTL 2145 2146 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2147 void *buffer, size_t *lenp, loff_t *ppos) 2148 { 2149 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2150 2151 if (!error) 2152 validate_coredump_safety(); 2153 return error; 2154 } 2155 2156 static struct ctl_table fs_exec_sysctls[] = { 2157 { 2158 .procname = "suid_dumpable", 2159 .data = &suid_dumpable, 2160 .maxlen = sizeof(int), 2161 .mode = 0644, 2162 .proc_handler = proc_dointvec_minmax_coredump, 2163 .extra1 = SYSCTL_ZERO, 2164 .extra2 = SYSCTL_TWO, 2165 }, 2166 { } 2167 }; 2168 2169 static int __init init_fs_exec_sysctls(void) 2170 { 2171 register_sysctl_init("fs", fs_exec_sysctls); 2172 return 0; 2173 } 2174 2175 fs_initcall(init_fs_exec_sysctls); 2176 #endif /* CONFIG_SYSCTL */ 2177