1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/mmu_context.h> 72 #include <asm/tlb.h> 73 74 #include <trace/events/task.h> 75 #include "internal.h" 76 77 #include <trace/events/sched.h> 78 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 80 81 int suid_dumpable = 0; 82 83 static LIST_HEAD(formats); 84 static DEFINE_RWLOCK(binfmt_lock); 85 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 87 { 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * Check do_open_execat() for an explanation. 147 */ 148 error = -EACCES; 149 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 150 path_noexec(&file->f_path)) 151 goto exit; 152 153 error = -ENOEXEC; 154 155 read_lock(&binfmt_lock); 156 list_for_each_entry(fmt, &formats, lh) { 157 if (!fmt->load_shlib) 158 continue; 159 if (!try_module_get(fmt->module)) 160 continue; 161 read_unlock(&binfmt_lock); 162 error = fmt->load_shlib(file); 163 read_lock(&binfmt_lock); 164 put_binfmt(fmt); 165 if (error != -ENOEXEC) 166 break; 167 } 168 read_unlock(&binfmt_lock); 169 exit: 170 fput(file); 171 out: 172 return error; 173 } 174 #endif /* #ifdef CONFIG_USELIB */ 175 176 #ifdef CONFIG_MMU 177 /* 178 * The nascent bprm->mm is not visible until exec_mmap() but it can 179 * use a lot of memory, account these pages in current->mm temporary 180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 181 * change the counter back via acct_arg_size(0). 182 */ 183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 184 { 185 struct mm_struct *mm = current->mm; 186 long diff = (long)(pages - bprm->vma_pages); 187 188 if (!mm || !diff) 189 return; 190 191 bprm->vma_pages = pages; 192 add_mm_counter(mm, MM_ANONPAGES, diff); 193 } 194 195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 196 int write) 197 { 198 struct page *page; 199 struct vm_area_struct *vma = bprm->vma; 200 struct mm_struct *mm = bprm->mm; 201 int ret; 202 203 /* 204 * Avoid relying on expanding the stack down in GUP (which 205 * does not work for STACK_GROWSUP anyway), and just do it 206 * by hand ahead of time. 207 */ 208 if (write && pos < vma->vm_start) { 209 mmap_write_lock(mm); 210 ret = expand_downwards(vma, pos); 211 if (unlikely(ret < 0)) { 212 mmap_write_unlock(mm); 213 return NULL; 214 } 215 mmap_write_downgrade(mm); 216 } else 217 mmap_read_lock(mm); 218 219 /* 220 * We are doing an exec(). 'current' is the process 221 * doing the exec and 'mm' is the new process's mm. 222 */ 223 ret = get_user_pages_remote(mm, pos, 1, 224 write ? FOLL_WRITE : 0, 225 &page, NULL); 226 mmap_read_unlock(mm); 227 if (ret <= 0) 228 return NULL; 229 230 if (write) 231 acct_arg_size(bprm, vma_pages(vma)); 232 233 return page; 234 } 235 236 static void put_arg_page(struct page *page) 237 { 238 put_page(page); 239 } 240 241 static void free_arg_pages(struct linux_binprm *bprm) 242 { 243 } 244 245 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 246 struct page *page) 247 { 248 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 249 } 250 251 static int __bprm_mm_init(struct linux_binprm *bprm) 252 { 253 int err; 254 struct vm_area_struct *vma = NULL; 255 struct mm_struct *mm = bprm->mm; 256 257 bprm->vma = vma = vm_area_alloc(mm); 258 if (!vma) 259 return -ENOMEM; 260 vma_set_anonymous(vma); 261 262 if (mmap_write_lock_killable(mm)) { 263 err = -EINTR; 264 goto err_free; 265 } 266 267 /* 268 * Place the stack at the largest stack address the architecture 269 * supports. Later, we'll move this to an appropriate place. We don't 270 * use STACK_TOP because that can depend on attributes which aren't 271 * configured yet. 272 */ 273 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 274 vma->vm_end = STACK_TOP_MAX; 275 vma->vm_start = vma->vm_end - PAGE_SIZE; 276 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 277 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 278 279 err = insert_vm_struct(mm, vma); 280 if (err) 281 goto err; 282 283 mm->stack_vm = mm->total_vm = 1; 284 mmap_write_unlock(mm); 285 bprm->p = vma->vm_end - sizeof(void *); 286 return 0; 287 err: 288 mmap_write_unlock(mm); 289 err_free: 290 bprm->vma = NULL; 291 vm_area_free(vma); 292 return err; 293 } 294 295 static bool valid_arg_len(struct linux_binprm *bprm, long len) 296 { 297 return len <= MAX_ARG_STRLEN; 298 } 299 300 #else 301 302 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 303 { 304 } 305 306 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 307 int write) 308 { 309 struct page *page; 310 311 page = bprm->page[pos / PAGE_SIZE]; 312 if (!page && write) { 313 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 314 if (!page) 315 return NULL; 316 bprm->page[pos / PAGE_SIZE] = page; 317 } 318 319 return page; 320 } 321 322 static void put_arg_page(struct page *page) 323 { 324 } 325 326 static void free_arg_page(struct linux_binprm *bprm, int i) 327 { 328 if (bprm->page[i]) { 329 __free_page(bprm->page[i]); 330 bprm->page[i] = NULL; 331 } 332 } 333 334 static void free_arg_pages(struct linux_binprm *bprm) 335 { 336 int i; 337 338 for (i = 0; i < MAX_ARG_PAGES; i++) 339 free_arg_page(bprm, i); 340 } 341 342 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 343 struct page *page) 344 { 345 } 346 347 static int __bprm_mm_init(struct linux_binprm *bprm) 348 { 349 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 350 return 0; 351 } 352 353 static bool valid_arg_len(struct linux_binprm *bprm, long len) 354 { 355 return len <= bprm->p; 356 } 357 358 #endif /* CONFIG_MMU */ 359 360 /* 361 * Create a new mm_struct and populate it with a temporary stack 362 * vm_area_struct. We don't have enough context at this point to set the stack 363 * flags, permissions, and offset, so we use temporary values. We'll update 364 * them later in setup_arg_pages(). 365 */ 366 static int bprm_mm_init(struct linux_binprm *bprm) 367 { 368 int err; 369 struct mm_struct *mm = NULL; 370 371 bprm->mm = mm = mm_alloc(); 372 err = -ENOMEM; 373 if (!mm) 374 goto err; 375 376 /* Save current stack limit for all calculations made during exec. */ 377 task_lock(current->group_leader); 378 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 379 task_unlock(current->group_leader); 380 381 err = __bprm_mm_init(bprm); 382 if (err) 383 goto err; 384 385 return 0; 386 387 err: 388 if (mm) { 389 bprm->mm = NULL; 390 mmdrop(mm); 391 } 392 393 return err; 394 } 395 396 struct user_arg_ptr { 397 #ifdef CONFIG_COMPAT 398 bool is_compat; 399 #endif 400 union { 401 const char __user *const __user *native; 402 #ifdef CONFIG_COMPAT 403 const compat_uptr_t __user *compat; 404 #endif 405 } ptr; 406 }; 407 408 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 409 { 410 const char __user *native; 411 412 #ifdef CONFIG_COMPAT 413 if (unlikely(argv.is_compat)) { 414 compat_uptr_t compat; 415 416 if (get_user(compat, argv.ptr.compat + nr)) 417 return ERR_PTR(-EFAULT); 418 419 return compat_ptr(compat); 420 } 421 #endif 422 423 if (get_user(native, argv.ptr.native + nr)) 424 return ERR_PTR(-EFAULT); 425 426 return native; 427 } 428 429 /* 430 * count() counts the number of strings in array ARGV. 431 */ 432 static int count(struct user_arg_ptr argv, int max) 433 { 434 int i = 0; 435 436 if (argv.ptr.native != NULL) { 437 for (;;) { 438 const char __user *p = get_user_arg_ptr(argv, i); 439 440 if (!p) 441 break; 442 443 if (IS_ERR(p)) 444 return -EFAULT; 445 446 if (i >= max) 447 return -E2BIG; 448 ++i; 449 450 if (fatal_signal_pending(current)) 451 return -ERESTARTNOHAND; 452 cond_resched(); 453 } 454 } 455 return i; 456 } 457 458 static int count_strings_kernel(const char *const *argv) 459 { 460 int i; 461 462 if (!argv) 463 return 0; 464 465 for (i = 0; argv[i]; ++i) { 466 if (i >= MAX_ARG_STRINGS) 467 return -E2BIG; 468 if (fatal_signal_pending(current)) 469 return -ERESTARTNOHAND; 470 cond_resched(); 471 } 472 return i; 473 } 474 475 static int bprm_stack_limits(struct linux_binprm *bprm) 476 { 477 unsigned long limit, ptr_size; 478 479 /* 480 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 481 * (whichever is smaller) for the argv+env strings. 482 * This ensures that: 483 * - the remaining binfmt code will not run out of stack space, 484 * - the program will have a reasonable amount of stack left 485 * to work from. 486 */ 487 limit = _STK_LIM / 4 * 3; 488 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 489 /* 490 * We've historically supported up to 32 pages (ARG_MAX) 491 * of argument strings even with small stacks 492 */ 493 limit = max_t(unsigned long, limit, ARG_MAX); 494 /* 495 * We must account for the size of all the argv and envp pointers to 496 * the argv and envp strings, since they will also take up space in 497 * the stack. They aren't stored until much later when we can't 498 * signal to the parent that the child has run out of stack space. 499 * Instead, calculate it here so it's possible to fail gracefully. 500 * 501 * In the case of argc = 0, make sure there is space for adding a 502 * empty string (which will bump argc to 1), to ensure confused 503 * userspace programs don't start processing from argv[1], thinking 504 * argc can never be 0, to keep them from walking envp by accident. 505 * See do_execveat_common(). 506 */ 507 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 508 if (limit <= ptr_size) 509 return -E2BIG; 510 limit -= ptr_size; 511 512 bprm->argmin = bprm->p - limit; 513 return 0; 514 } 515 516 /* 517 * 'copy_strings()' copies argument/environment strings from the old 518 * processes's memory to the new process's stack. The call to get_user_pages() 519 * ensures the destination page is created and not swapped out. 520 */ 521 static int copy_strings(int argc, struct user_arg_ptr argv, 522 struct linux_binprm *bprm) 523 { 524 struct page *kmapped_page = NULL; 525 char *kaddr = NULL; 526 unsigned long kpos = 0; 527 int ret; 528 529 while (argc-- > 0) { 530 const char __user *str; 531 int len; 532 unsigned long pos; 533 534 ret = -EFAULT; 535 str = get_user_arg_ptr(argv, argc); 536 if (IS_ERR(str)) 537 goto out; 538 539 len = strnlen_user(str, MAX_ARG_STRLEN); 540 if (!len) 541 goto out; 542 543 ret = -E2BIG; 544 if (!valid_arg_len(bprm, len)) 545 goto out; 546 547 /* We're going to work our way backwards. */ 548 pos = bprm->p; 549 str += len; 550 bprm->p -= len; 551 #ifdef CONFIG_MMU 552 if (bprm->p < bprm->argmin) 553 goto out; 554 #endif 555 556 while (len > 0) { 557 int offset, bytes_to_copy; 558 559 if (fatal_signal_pending(current)) { 560 ret = -ERESTARTNOHAND; 561 goto out; 562 } 563 cond_resched(); 564 565 offset = pos % PAGE_SIZE; 566 if (offset == 0) 567 offset = PAGE_SIZE; 568 569 bytes_to_copy = offset; 570 if (bytes_to_copy > len) 571 bytes_to_copy = len; 572 573 offset -= bytes_to_copy; 574 pos -= bytes_to_copy; 575 str -= bytes_to_copy; 576 len -= bytes_to_copy; 577 578 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 579 struct page *page; 580 581 page = get_arg_page(bprm, pos, 1); 582 if (!page) { 583 ret = -E2BIG; 584 goto out; 585 } 586 587 if (kmapped_page) { 588 flush_dcache_page(kmapped_page); 589 kunmap_local(kaddr); 590 put_arg_page(kmapped_page); 591 } 592 kmapped_page = page; 593 kaddr = kmap_local_page(kmapped_page); 594 kpos = pos & PAGE_MASK; 595 flush_arg_page(bprm, kpos, kmapped_page); 596 } 597 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 598 ret = -EFAULT; 599 goto out; 600 } 601 } 602 } 603 ret = 0; 604 out: 605 if (kmapped_page) { 606 flush_dcache_page(kmapped_page); 607 kunmap_local(kaddr); 608 put_arg_page(kmapped_page); 609 } 610 return ret; 611 } 612 613 /* 614 * Copy and argument/environment string from the kernel to the processes stack. 615 */ 616 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 617 { 618 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 619 unsigned long pos = bprm->p; 620 621 if (len == 0) 622 return -EFAULT; 623 if (!valid_arg_len(bprm, len)) 624 return -E2BIG; 625 626 /* We're going to work our way backwards. */ 627 arg += len; 628 bprm->p -= len; 629 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 630 return -E2BIG; 631 632 while (len > 0) { 633 unsigned int bytes_to_copy = min_t(unsigned int, len, 634 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 635 struct page *page; 636 637 pos -= bytes_to_copy; 638 arg -= bytes_to_copy; 639 len -= bytes_to_copy; 640 641 page = get_arg_page(bprm, pos, 1); 642 if (!page) 643 return -E2BIG; 644 flush_arg_page(bprm, pos & PAGE_MASK, page); 645 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 646 put_arg_page(page); 647 } 648 649 return 0; 650 } 651 EXPORT_SYMBOL(copy_string_kernel); 652 653 static int copy_strings_kernel(int argc, const char *const *argv, 654 struct linux_binprm *bprm) 655 { 656 while (argc-- > 0) { 657 int ret = copy_string_kernel(argv[argc], bprm); 658 if (ret < 0) 659 return ret; 660 if (fatal_signal_pending(current)) 661 return -ERESTARTNOHAND; 662 cond_resched(); 663 } 664 return 0; 665 } 666 667 #ifdef CONFIG_MMU 668 669 /* 670 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 671 * the binfmt code determines where the new stack should reside, we shift it to 672 * its final location. The process proceeds as follows: 673 * 674 * 1) Use shift to calculate the new vma endpoints. 675 * 2) Extend vma to cover both the old and new ranges. This ensures the 676 * arguments passed to subsequent functions are consistent. 677 * 3) Move vma's page tables to the new range. 678 * 4) Free up any cleared pgd range. 679 * 5) Shrink the vma to cover only the new range. 680 */ 681 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 682 { 683 struct mm_struct *mm = vma->vm_mm; 684 unsigned long old_start = vma->vm_start; 685 unsigned long old_end = vma->vm_end; 686 unsigned long length = old_end - old_start; 687 unsigned long new_start = old_start - shift; 688 unsigned long new_end = old_end - shift; 689 VMA_ITERATOR(vmi, mm, new_start); 690 struct vm_area_struct *next; 691 struct mmu_gather tlb; 692 693 BUG_ON(new_start > new_end); 694 695 /* 696 * ensure there are no vmas between where we want to go 697 * and where we are 698 */ 699 if (vma != vma_next(&vmi)) 700 return -EFAULT; 701 702 vma_iter_prev_range(&vmi); 703 /* 704 * cover the whole range: [new_start, old_end) 705 */ 706 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL)) 707 return -ENOMEM; 708 709 /* 710 * move the page tables downwards, on failure we rely on 711 * process cleanup to remove whatever mess we made. 712 */ 713 if (length != move_page_tables(vma, old_start, 714 vma, new_start, length, false)) 715 return -ENOMEM; 716 717 lru_add_drain(); 718 tlb_gather_mmu(&tlb, mm); 719 next = vma_next(&vmi); 720 if (new_end > old_start) { 721 /* 722 * when the old and new regions overlap clear from new_end. 723 */ 724 free_pgd_range(&tlb, new_end, old_end, new_end, 725 next ? next->vm_start : USER_PGTABLES_CEILING); 726 } else { 727 /* 728 * otherwise, clean from old_start; this is done to not touch 729 * the address space in [new_end, old_start) some architectures 730 * have constraints on va-space that make this illegal (IA64) - 731 * for the others its just a little faster. 732 */ 733 free_pgd_range(&tlb, old_start, old_end, new_end, 734 next ? next->vm_start : USER_PGTABLES_CEILING); 735 } 736 tlb_finish_mmu(&tlb); 737 738 vma_prev(&vmi); 739 /* Shrink the vma to just the new range */ 740 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 741 } 742 743 /* 744 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 745 * the stack is optionally relocated, and some extra space is added. 746 */ 747 int setup_arg_pages(struct linux_binprm *bprm, 748 unsigned long stack_top, 749 int executable_stack) 750 { 751 unsigned long ret; 752 unsigned long stack_shift; 753 struct mm_struct *mm = current->mm; 754 struct vm_area_struct *vma = bprm->vma; 755 struct vm_area_struct *prev = NULL; 756 unsigned long vm_flags; 757 unsigned long stack_base; 758 unsigned long stack_size; 759 unsigned long stack_expand; 760 unsigned long rlim_stack; 761 struct mmu_gather tlb; 762 struct vma_iterator vmi; 763 764 #ifdef CONFIG_STACK_GROWSUP 765 /* Limit stack size */ 766 stack_base = bprm->rlim_stack.rlim_max; 767 768 stack_base = calc_max_stack_size(stack_base); 769 770 /* Add space for stack randomization. */ 771 if (current->flags & PF_RANDOMIZE) 772 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 773 774 /* Make sure we didn't let the argument array grow too large. */ 775 if (vma->vm_end - vma->vm_start > stack_base) 776 return -ENOMEM; 777 778 stack_base = PAGE_ALIGN(stack_top - stack_base); 779 780 stack_shift = vma->vm_start - stack_base; 781 mm->arg_start = bprm->p - stack_shift; 782 bprm->p = vma->vm_end - stack_shift; 783 #else 784 stack_top = arch_align_stack(stack_top); 785 stack_top = PAGE_ALIGN(stack_top); 786 787 if (unlikely(stack_top < mmap_min_addr) || 788 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 789 return -ENOMEM; 790 791 stack_shift = vma->vm_end - stack_top; 792 793 bprm->p -= stack_shift; 794 mm->arg_start = bprm->p; 795 #endif 796 797 if (bprm->loader) 798 bprm->loader -= stack_shift; 799 bprm->exec -= stack_shift; 800 801 if (mmap_write_lock_killable(mm)) 802 return -EINTR; 803 804 vm_flags = VM_STACK_FLAGS; 805 806 /* 807 * Adjust stack execute permissions; explicitly enable for 808 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 809 * (arch default) otherwise. 810 */ 811 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 812 vm_flags |= VM_EXEC; 813 else if (executable_stack == EXSTACK_DISABLE_X) 814 vm_flags &= ~VM_EXEC; 815 vm_flags |= mm->def_flags; 816 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 817 818 vma_iter_init(&vmi, mm, vma->vm_start); 819 820 tlb_gather_mmu(&tlb, mm); 821 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 822 vm_flags); 823 tlb_finish_mmu(&tlb); 824 825 if (ret) 826 goto out_unlock; 827 BUG_ON(prev != vma); 828 829 if (unlikely(vm_flags & VM_EXEC)) { 830 pr_warn_once("process '%pD4' started with executable stack\n", 831 bprm->file); 832 } 833 834 /* Move stack pages down in memory. */ 835 if (stack_shift) { 836 ret = shift_arg_pages(vma, stack_shift); 837 if (ret) 838 goto out_unlock; 839 } 840 841 /* mprotect_fixup is overkill to remove the temporary stack flags */ 842 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 843 844 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 845 stack_size = vma->vm_end - vma->vm_start; 846 /* 847 * Align this down to a page boundary as expand_stack 848 * will align it up. 849 */ 850 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 851 852 stack_expand = min(rlim_stack, stack_size + stack_expand); 853 854 #ifdef CONFIG_STACK_GROWSUP 855 stack_base = vma->vm_start + stack_expand; 856 #else 857 stack_base = vma->vm_end - stack_expand; 858 #endif 859 current->mm->start_stack = bprm->p; 860 ret = expand_stack_locked(vma, stack_base); 861 if (ret) 862 ret = -EFAULT; 863 864 out_unlock: 865 mmap_write_unlock(mm); 866 return ret; 867 } 868 EXPORT_SYMBOL(setup_arg_pages); 869 870 #else 871 872 /* 873 * Transfer the program arguments and environment from the holding pages 874 * onto the stack. The provided stack pointer is adjusted accordingly. 875 */ 876 int transfer_args_to_stack(struct linux_binprm *bprm, 877 unsigned long *sp_location) 878 { 879 unsigned long index, stop, sp; 880 int ret = 0; 881 882 stop = bprm->p >> PAGE_SHIFT; 883 sp = *sp_location; 884 885 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 886 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 887 char *src = kmap_local_page(bprm->page[index]) + offset; 888 sp -= PAGE_SIZE - offset; 889 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 890 ret = -EFAULT; 891 kunmap_local(src); 892 if (ret) 893 goto out; 894 } 895 896 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE; 897 *sp_location = sp; 898 899 out: 900 return ret; 901 } 902 EXPORT_SYMBOL(transfer_args_to_stack); 903 904 #endif /* CONFIG_MMU */ 905 906 static struct file *do_open_execat(int fd, struct filename *name, int flags) 907 { 908 struct file *file; 909 int err; 910 struct open_flags open_exec_flags = { 911 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 912 .acc_mode = MAY_EXEC, 913 .intent = LOOKUP_OPEN, 914 .lookup_flags = LOOKUP_FOLLOW, 915 }; 916 917 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 918 return ERR_PTR(-EINVAL); 919 if (flags & AT_SYMLINK_NOFOLLOW) 920 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 921 if (flags & AT_EMPTY_PATH) 922 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 923 924 file = do_filp_open(fd, name, &open_exec_flags); 925 if (IS_ERR(file)) 926 return file; 927 928 /* 929 * In the past the regular type check was here. It moved to may_open() in 930 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is 931 * an invariant that all non-regular files error out before we get here. 932 */ 933 err = -EACCES; 934 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) || 935 path_noexec(&file->f_path)) 936 goto exit; 937 938 err = deny_write_access(file); 939 if (err) 940 goto exit; 941 942 return file; 943 944 exit: 945 fput(file); 946 return ERR_PTR(err); 947 } 948 949 struct file *open_exec(const char *name) 950 { 951 struct filename *filename = getname_kernel(name); 952 struct file *f = ERR_CAST(filename); 953 954 if (!IS_ERR(filename)) { 955 f = do_open_execat(AT_FDCWD, filename, 0); 956 putname(filename); 957 } 958 return f; 959 } 960 EXPORT_SYMBOL(open_exec); 961 962 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 964 { 965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 966 if (res > 0) 967 flush_icache_user_range(addr, addr + len); 968 return res; 969 } 970 EXPORT_SYMBOL(read_code); 971 #endif 972 973 /* 974 * Maps the mm_struct mm into the current task struct. 975 * On success, this function returns with exec_update_lock 976 * held for writing. 977 */ 978 static int exec_mmap(struct mm_struct *mm) 979 { 980 struct task_struct *tsk; 981 struct mm_struct *old_mm, *active_mm; 982 int ret; 983 984 /* Notify parent that we're no longer interested in the old VM */ 985 tsk = current; 986 old_mm = current->mm; 987 exec_mm_release(tsk, old_mm); 988 if (old_mm) 989 sync_mm_rss(old_mm); 990 991 ret = down_write_killable(&tsk->signal->exec_update_lock); 992 if (ret) 993 return ret; 994 995 if (old_mm) { 996 /* 997 * If there is a pending fatal signal perhaps a signal 998 * whose default action is to create a coredump get 999 * out and die instead of going through with the exec. 1000 */ 1001 ret = mmap_read_lock_killable(old_mm); 1002 if (ret) { 1003 up_write(&tsk->signal->exec_update_lock); 1004 return ret; 1005 } 1006 } 1007 1008 task_lock(tsk); 1009 membarrier_exec_mmap(mm); 1010 1011 local_irq_disable(); 1012 active_mm = tsk->active_mm; 1013 tsk->active_mm = mm; 1014 tsk->mm = mm; 1015 mm_init_cid(mm); 1016 /* 1017 * This prevents preemption while active_mm is being loaded and 1018 * it and mm are being updated, which could cause problems for 1019 * lazy tlb mm refcounting when these are updated by context 1020 * switches. Not all architectures can handle irqs off over 1021 * activate_mm yet. 1022 */ 1023 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1024 local_irq_enable(); 1025 activate_mm(active_mm, mm); 1026 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1027 local_irq_enable(); 1028 lru_gen_add_mm(mm); 1029 task_unlock(tsk); 1030 lru_gen_use_mm(mm); 1031 if (old_mm) { 1032 mmap_read_unlock(old_mm); 1033 BUG_ON(active_mm != old_mm); 1034 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1035 mm_update_next_owner(old_mm); 1036 mmput(old_mm); 1037 return 0; 1038 } 1039 mmdrop_lazy_tlb(active_mm); 1040 return 0; 1041 } 1042 1043 static int de_thread(struct task_struct *tsk) 1044 { 1045 struct signal_struct *sig = tsk->signal; 1046 struct sighand_struct *oldsighand = tsk->sighand; 1047 spinlock_t *lock = &oldsighand->siglock; 1048 1049 if (thread_group_empty(tsk)) 1050 goto no_thread_group; 1051 1052 /* 1053 * Kill all other threads in the thread group. 1054 */ 1055 spin_lock_irq(lock); 1056 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1057 /* 1058 * Another group action in progress, just 1059 * return so that the signal is processed. 1060 */ 1061 spin_unlock_irq(lock); 1062 return -EAGAIN; 1063 } 1064 1065 sig->group_exec_task = tsk; 1066 sig->notify_count = zap_other_threads(tsk); 1067 if (!thread_group_leader(tsk)) 1068 sig->notify_count--; 1069 1070 while (sig->notify_count) { 1071 __set_current_state(TASK_KILLABLE); 1072 spin_unlock_irq(lock); 1073 schedule(); 1074 if (__fatal_signal_pending(tsk)) 1075 goto killed; 1076 spin_lock_irq(lock); 1077 } 1078 spin_unlock_irq(lock); 1079 1080 /* 1081 * At this point all other threads have exited, all we have to 1082 * do is to wait for the thread group leader to become inactive, 1083 * and to assume its PID: 1084 */ 1085 if (!thread_group_leader(tsk)) { 1086 struct task_struct *leader = tsk->group_leader; 1087 1088 for (;;) { 1089 cgroup_threadgroup_change_begin(tsk); 1090 write_lock_irq(&tasklist_lock); 1091 /* 1092 * Do this under tasklist_lock to ensure that 1093 * exit_notify() can't miss ->group_exec_task 1094 */ 1095 sig->notify_count = -1; 1096 if (likely(leader->exit_state)) 1097 break; 1098 __set_current_state(TASK_KILLABLE); 1099 write_unlock_irq(&tasklist_lock); 1100 cgroup_threadgroup_change_end(tsk); 1101 schedule(); 1102 if (__fatal_signal_pending(tsk)) 1103 goto killed; 1104 } 1105 1106 /* 1107 * The only record we have of the real-time age of a 1108 * process, regardless of execs it's done, is start_time. 1109 * All the past CPU time is accumulated in signal_struct 1110 * from sister threads now dead. But in this non-leader 1111 * exec, nothing survives from the original leader thread, 1112 * whose birth marks the true age of this process now. 1113 * When we take on its identity by switching to its PID, we 1114 * also take its birthdate (always earlier than our own). 1115 */ 1116 tsk->start_time = leader->start_time; 1117 tsk->start_boottime = leader->start_boottime; 1118 1119 BUG_ON(!same_thread_group(leader, tsk)); 1120 /* 1121 * An exec() starts a new thread group with the 1122 * TGID of the previous thread group. Rehash the 1123 * two threads with a switched PID, and release 1124 * the former thread group leader: 1125 */ 1126 1127 /* Become a process group leader with the old leader's pid. 1128 * The old leader becomes a thread of the this thread group. 1129 */ 1130 exchange_tids(tsk, leader); 1131 transfer_pid(leader, tsk, PIDTYPE_TGID); 1132 transfer_pid(leader, tsk, PIDTYPE_PGID); 1133 transfer_pid(leader, tsk, PIDTYPE_SID); 1134 1135 list_replace_rcu(&leader->tasks, &tsk->tasks); 1136 list_replace_init(&leader->sibling, &tsk->sibling); 1137 1138 tsk->group_leader = tsk; 1139 leader->group_leader = tsk; 1140 1141 tsk->exit_signal = SIGCHLD; 1142 leader->exit_signal = -1; 1143 1144 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1145 leader->exit_state = EXIT_DEAD; 1146 1147 /* 1148 * We are going to release_task()->ptrace_unlink() silently, 1149 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1150 * the tracer won't block again waiting for this thread. 1151 */ 1152 if (unlikely(leader->ptrace)) 1153 __wake_up_parent(leader, leader->parent); 1154 write_unlock_irq(&tasklist_lock); 1155 cgroup_threadgroup_change_end(tsk); 1156 1157 release_task(leader); 1158 } 1159 1160 sig->group_exec_task = NULL; 1161 sig->notify_count = 0; 1162 1163 no_thread_group: 1164 /* we have changed execution domain */ 1165 tsk->exit_signal = SIGCHLD; 1166 1167 BUG_ON(!thread_group_leader(tsk)); 1168 return 0; 1169 1170 killed: 1171 /* protects against exit_notify() and __exit_signal() */ 1172 read_lock(&tasklist_lock); 1173 sig->group_exec_task = NULL; 1174 sig->notify_count = 0; 1175 read_unlock(&tasklist_lock); 1176 return -EAGAIN; 1177 } 1178 1179 1180 /* 1181 * This function makes sure the current process has its own signal table, 1182 * so that flush_signal_handlers can later reset the handlers without 1183 * disturbing other processes. (Other processes might share the signal 1184 * table via the CLONE_SIGHAND option to clone().) 1185 */ 1186 static int unshare_sighand(struct task_struct *me) 1187 { 1188 struct sighand_struct *oldsighand = me->sighand; 1189 1190 if (refcount_read(&oldsighand->count) != 1) { 1191 struct sighand_struct *newsighand; 1192 /* 1193 * This ->sighand is shared with the CLONE_SIGHAND 1194 * but not CLONE_THREAD task, switch to the new one. 1195 */ 1196 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1197 if (!newsighand) 1198 return -ENOMEM; 1199 1200 refcount_set(&newsighand->count, 1); 1201 1202 write_lock_irq(&tasklist_lock); 1203 spin_lock(&oldsighand->siglock); 1204 memcpy(newsighand->action, oldsighand->action, 1205 sizeof(newsighand->action)); 1206 rcu_assign_pointer(me->sighand, newsighand); 1207 spin_unlock(&oldsighand->siglock); 1208 write_unlock_irq(&tasklist_lock); 1209 1210 __cleanup_sighand(oldsighand); 1211 } 1212 return 0; 1213 } 1214 1215 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1216 { 1217 task_lock(tsk); 1218 /* Always NUL terminated and zero-padded */ 1219 strscpy_pad(buf, tsk->comm, buf_size); 1220 task_unlock(tsk); 1221 return buf; 1222 } 1223 EXPORT_SYMBOL_GPL(__get_task_comm); 1224 1225 /* 1226 * These functions flushes out all traces of the currently running executable 1227 * so that a new one can be started 1228 */ 1229 1230 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1231 { 1232 task_lock(tsk); 1233 trace_task_rename(tsk, buf); 1234 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1235 task_unlock(tsk); 1236 perf_event_comm(tsk, exec); 1237 } 1238 1239 /* 1240 * Calling this is the point of no return. None of the failures will be 1241 * seen by userspace since either the process is already taking a fatal 1242 * signal (via de_thread() or coredump), or will have SEGV raised 1243 * (after exec_mmap()) by search_binary_handler (see below). 1244 */ 1245 int begin_new_exec(struct linux_binprm * bprm) 1246 { 1247 struct task_struct *me = current; 1248 int retval; 1249 1250 /* Once we are committed compute the creds */ 1251 retval = bprm_creds_from_file(bprm); 1252 if (retval) 1253 return retval; 1254 1255 /* 1256 * Ensure all future errors are fatal. 1257 */ 1258 bprm->point_of_no_return = true; 1259 1260 /* 1261 * Make this the only thread in the thread group. 1262 */ 1263 retval = de_thread(me); 1264 if (retval) 1265 goto out; 1266 1267 /* 1268 * Cancel any io_uring activity across execve 1269 */ 1270 io_uring_task_cancel(); 1271 1272 /* Ensure the files table is not shared. */ 1273 retval = unshare_files(); 1274 if (retval) 1275 goto out; 1276 1277 /* 1278 * Must be called _before_ exec_mmap() as bprm->mm is 1279 * not visible until then. Doing it here also ensures 1280 * we don't race against replace_mm_exe_file(). 1281 */ 1282 retval = set_mm_exe_file(bprm->mm, bprm->file); 1283 if (retval) 1284 goto out; 1285 1286 /* If the binary is not readable then enforce mm->dumpable=0 */ 1287 would_dump(bprm, bprm->file); 1288 if (bprm->have_execfd) 1289 would_dump(bprm, bprm->executable); 1290 1291 /* 1292 * Release all of the old mmap stuff 1293 */ 1294 acct_arg_size(bprm, 0); 1295 retval = exec_mmap(bprm->mm); 1296 if (retval) 1297 goto out; 1298 1299 bprm->mm = NULL; 1300 1301 retval = exec_task_namespaces(); 1302 if (retval) 1303 goto out_unlock; 1304 1305 #ifdef CONFIG_POSIX_TIMERS 1306 spin_lock_irq(&me->sighand->siglock); 1307 posix_cpu_timers_exit(me); 1308 spin_unlock_irq(&me->sighand->siglock); 1309 exit_itimers(me); 1310 flush_itimer_signals(); 1311 #endif 1312 1313 /* 1314 * Make the signal table private. 1315 */ 1316 retval = unshare_sighand(me); 1317 if (retval) 1318 goto out_unlock; 1319 1320 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1321 PF_NOFREEZE | PF_NO_SETAFFINITY); 1322 flush_thread(); 1323 me->personality &= ~bprm->per_clear; 1324 1325 clear_syscall_work_syscall_user_dispatch(me); 1326 1327 /* 1328 * We have to apply CLOEXEC before we change whether the process is 1329 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1330 * trying to access the should-be-closed file descriptors of a process 1331 * undergoing exec(2). 1332 */ 1333 do_close_on_exec(me->files); 1334 1335 if (bprm->secureexec) { 1336 /* Make sure parent cannot signal privileged process. */ 1337 me->pdeath_signal = 0; 1338 1339 /* 1340 * For secureexec, reset the stack limit to sane default to 1341 * avoid bad behavior from the prior rlimits. This has to 1342 * happen before arch_pick_mmap_layout(), which examines 1343 * RLIMIT_STACK, but after the point of no return to avoid 1344 * needing to clean up the change on failure. 1345 */ 1346 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1347 bprm->rlim_stack.rlim_cur = _STK_LIM; 1348 } 1349 1350 me->sas_ss_sp = me->sas_ss_size = 0; 1351 1352 /* 1353 * Figure out dumpability. Note that this checking only of current 1354 * is wrong, but userspace depends on it. This should be testing 1355 * bprm->secureexec instead. 1356 */ 1357 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1358 !(uid_eq(current_euid(), current_uid()) && 1359 gid_eq(current_egid(), current_gid()))) 1360 set_dumpable(current->mm, suid_dumpable); 1361 else 1362 set_dumpable(current->mm, SUID_DUMP_USER); 1363 1364 perf_event_exec(); 1365 __set_task_comm(me, kbasename(bprm->filename), true); 1366 1367 /* An exec changes our domain. We are no longer part of the thread 1368 group */ 1369 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1370 flush_signal_handlers(me, 0); 1371 1372 retval = set_cred_ucounts(bprm->cred); 1373 if (retval < 0) 1374 goto out_unlock; 1375 1376 /* 1377 * install the new credentials for this executable 1378 */ 1379 security_bprm_committing_creds(bprm); 1380 1381 commit_creds(bprm->cred); 1382 bprm->cred = NULL; 1383 1384 /* 1385 * Disable monitoring for regular users 1386 * when executing setuid binaries. Must 1387 * wait until new credentials are committed 1388 * by commit_creds() above 1389 */ 1390 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1391 perf_event_exit_task(me); 1392 /* 1393 * cred_guard_mutex must be held at least to this point to prevent 1394 * ptrace_attach() from altering our determination of the task's 1395 * credentials; any time after this it may be unlocked. 1396 */ 1397 security_bprm_committed_creds(bprm); 1398 1399 /* Pass the opened binary to the interpreter. */ 1400 if (bprm->have_execfd) { 1401 retval = get_unused_fd_flags(0); 1402 if (retval < 0) 1403 goto out_unlock; 1404 fd_install(retval, bprm->executable); 1405 bprm->executable = NULL; 1406 bprm->execfd = retval; 1407 } 1408 return 0; 1409 1410 out_unlock: 1411 up_write(&me->signal->exec_update_lock); 1412 if (!bprm->cred) 1413 mutex_unlock(&me->signal->cred_guard_mutex); 1414 1415 out: 1416 return retval; 1417 } 1418 EXPORT_SYMBOL(begin_new_exec); 1419 1420 void would_dump(struct linux_binprm *bprm, struct file *file) 1421 { 1422 struct inode *inode = file_inode(file); 1423 struct mnt_idmap *idmap = file_mnt_idmap(file); 1424 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1425 struct user_namespace *old, *user_ns; 1426 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1427 1428 /* Ensure mm->user_ns contains the executable */ 1429 user_ns = old = bprm->mm->user_ns; 1430 while ((user_ns != &init_user_ns) && 1431 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1432 user_ns = user_ns->parent; 1433 1434 if (old != user_ns) { 1435 bprm->mm->user_ns = get_user_ns(user_ns); 1436 put_user_ns(old); 1437 } 1438 } 1439 } 1440 EXPORT_SYMBOL(would_dump); 1441 1442 void setup_new_exec(struct linux_binprm * bprm) 1443 { 1444 /* Setup things that can depend upon the personality */ 1445 struct task_struct *me = current; 1446 1447 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1448 1449 arch_setup_new_exec(); 1450 1451 /* Set the new mm task size. We have to do that late because it may 1452 * depend on TIF_32BIT which is only updated in flush_thread() on 1453 * some architectures like powerpc 1454 */ 1455 me->mm->task_size = TASK_SIZE; 1456 up_write(&me->signal->exec_update_lock); 1457 mutex_unlock(&me->signal->cred_guard_mutex); 1458 } 1459 EXPORT_SYMBOL(setup_new_exec); 1460 1461 /* Runs immediately before start_thread() takes over. */ 1462 void finalize_exec(struct linux_binprm *bprm) 1463 { 1464 /* Store any stack rlimit changes before starting thread. */ 1465 task_lock(current->group_leader); 1466 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1467 task_unlock(current->group_leader); 1468 } 1469 EXPORT_SYMBOL(finalize_exec); 1470 1471 /* 1472 * Prepare credentials and lock ->cred_guard_mutex. 1473 * setup_new_exec() commits the new creds and drops the lock. 1474 * Or, if exec fails before, free_bprm() should release ->cred 1475 * and unlock. 1476 */ 1477 static int prepare_bprm_creds(struct linux_binprm *bprm) 1478 { 1479 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1480 return -ERESTARTNOINTR; 1481 1482 bprm->cred = prepare_exec_creds(); 1483 if (likely(bprm->cred)) 1484 return 0; 1485 1486 mutex_unlock(¤t->signal->cred_guard_mutex); 1487 return -ENOMEM; 1488 } 1489 1490 static void free_bprm(struct linux_binprm *bprm) 1491 { 1492 if (bprm->mm) { 1493 acct_arg_size(bprm, 0); 1494 mmput(bprm->mm); 1495 } 1496 free_arg_pages(bprm); 1497 if (bprm->cred) { 1498 mutex_unlock(¤t->signal->cred_guard_mutex); 1499 abort_creds(bprm->cred); 1500 } 1501 if (bprm->file) { 1502 allow_write_access(bprm->file); 1503 fput(bprm->file); 1504 } 1505 if (bprm->executable) 1506 fput(bprm->executable); 1507 /* If a binfmt changed the interp, free it. */ 1508 if (bprm->interp != bprm->filename) 1509 kfree(bprm->interp); 1510 kfree(bprm->fdpath); 1511 kfree(bprm); 1512 } 1513 1514 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1515 { 1516 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1517 int retval = -ENOMEM; 1518 if (!bprm) 1519 goto out; 1520 1521 if (fd == AT_FDCWD || filename->name[0] == '/') { 1522 bprm->filename = filename->name; 1523 } else { 1524 if (filename->name[0] == '\0') 1525 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1526 else 1527 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1528 fd, filename->name); 1529 if (!bprm->fdpath) 1530 goto out_free; 1531 1532 bprm->filename = bprm->fdpath; 1533 } 1534 bprm->interp = bprm->filename; 1535 1536 retval = bprm_mm_init(bprm); 1537 if (retval) 1538 goto out_free; 1539 return bprm; 1540 1541 out_free: 1542 free_bprm(bprm); 1543 out: 1544 return ERR_PTR(retval); 1545 } 1546 1547 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1548 { 1549 /* If a binfmt changed the interp, free it first. */ 1550 if (bprm->interp != bprm->filename) 1551 kfree(bprm->interp); 1552 bprm->interp = kstrdup(interp, GFP_KERNEL); 1553 if (!bprm->interp) 1554 return -ENOMEM; 1555 return 0; 1556 } 1557 EXPORT_SYMBOL(bprm_change_interp); 1558 1559 /* 1560 * determine how safe it is to execute the proposed program 1561 * - the caller must hold ->cred_guard_mutex to protect against 1562 * PTRACE_ATTACH or seccomp thread-sync 1563 */ 1564 static void check_unsafe_exec(struct linux_binprm *bprm) 1565 { 1566 struct task_struct *p = current, *t; 1567 unsigned n_fs; 1568 1569 if (p->ptrace) 1570 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1571 1572 /* 1573 * This isn't strictly necessary, but it makes it harder for LSMs to 1574 * mess up. 1575 */ 1576 if (task_no_new_privs(current)) 1577 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1578 1579 /* 1580 * If another task is sharing our fs, we cannot safely 1581 * suid exec because the differently privileged task 1582 * will be able to manipulate the current directory, etc. 1583 * It would be nice to force an unshare instead... 1584 */ 1585 t = p; 1586 n_fs = 1; 1587 spin_lock(&p->fs->lock); 1588 rcu_read_lock(); 1589 while_each_thread(p, t) { 1590 if (t->fs == p->fs) 1591 n_fs++; 1592 } 1593 rcu_read_unlock(); 1594 1595 if (p->fs->users > n_fs) 1596 bprm->unsafe |= LSM_UNSAFE_SHARE; 1597 else 1598 p->fs->in_exec = 1; 1599 spin_unlock(&p->fs->lock); 1600 } 1601 1602 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1603 { 1604 /* Handle suid and sgid on files */ 1605 struct mnt_idmap *idmap; 1606 struct inode *inode = file_inode(file); 1607 unsigned int mode; 1608 vfsuid_t vfsuid; 1609 vfsgid_t vfsgid; 1610 int err; 1611 1612 if (!mnt_may_suid(file->f_path.mnt)) 1613 return; 1614 1615 if (task_no_new_privs(current)) 1616 return; 1617 1618 mode = READ_ONCE(inode->i_mode); 1619 if (!(mode & (S_ISUID|S_ISGID))) 1620 return; 1621 1622 idmap = file_mnt_idmap(file); 1623 1624 /* Be careful if suid/sgid is set */ 1625 inode_lock(inode); 1626 1627 /* Atomically reload and check mode/uid/gid now that lock held. */ 1628 mode = inode->i_mode; 1629 vfsuid = i_uid_into_vfsuid(idmap, inode); 1630 vfsgid = i_gid_into_vfsgid(idmap, inode); 1631 err = inode_permission(idmap, inode, MAY_EXEC); 1632 inode_unlock(inode); 1633 1634 /* Did the exec bit vanish out from under us? Give up. */ 1635 if (err) 1636 return; 1637 1638 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1639 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1640 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1641 return; 1642 1643 if (mode & S_ISUID) { 1644 bprm->per_clear |= PER_CLEAR_ON_SETID; 1645 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1646 } 1647 1648 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1649 bprm->per_clear |= PER_CLEAR_ON_SETID; 1650 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1651 } 1652 } 1653 1654 /* 1655 * Compute brpm->cred based upon the final binary. 1656 */ 1657 static int bprm_creds_from_file(struct linux_binprm *bprm) 1658 { 1659 /* Compute creds based on which file? */ 1660 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1661 1662 bprm_fill_uid(bprm, file); 1663 return security_bprm_creds_from_file(bprm, file); 1664 } 1665 1666 /* 1667 * Fill the binprm structure from the inode. 1668 * Read the first BINPRM_BUF_SIZE bytes 1669 * 1670 * This may be called multiple times for binary chains (scripts for example). 1671 */ 1672 static int prepare_binprm(struct linux_binprm *bprm) 1673 { 1674 loff_t pos = 0; 1675 1676 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1677 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1678 } 1679 1680 /* 1681 * Arguments are '\0' separated strings found at the location bprm->p 1682 * points to; chop off the first by relocating brpm->p to right after 1683 * the first '\0' encountered. 1684 */ 1685 int remove_arg_zero(struct linux_binprm *bprm) 1686 { 1687 int ret = 0; 1688 unsigned long offset; 1689 char *kaddr; 1690 struct page *page; 1691 1692 if (!bprm->argc) 1693 return 0; 1694 1695 do { 1696 offset = bprm->p & ~PAGE_MASK; 1697 page = get_arg_page(bprm, bprm->p, 0); 1698 if (!page) { 1699 ret = -EFAULT; 1700 goto out; 1701 } 1702 kaddr = kmap_local_page(page); 1703 1704 for (; offset < PAGE_SIZE && kaddr[offset]; 1705 offset++, bprm->p++) 1706 ; 1707 1708 kunmap_local(kaddr); 1709 put_arg_page(page); 1710 } while (offset == PAGE_SIZE); 1711 1712 bprm->p++; 1713 bprm->argc--; 1714 ret = 0; 1715 1716 out: 1717 return ret; 1718 } 1719 EXPORT_SYMBOL(remove_arg_zero); 1720 1721 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1722 /* 1723 * cycle the list of binary formats handler, until one recognizes the image 1724 */ 1725 static int search_binary_handler(struct linux_binprm *bprm) 1726 { 1727 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1728 struct linux_binfmt *fmt; 1729 int retval; 1730 1731 retval = prepare_binprm(bprm); 1732 if (retval < 0) 1733 return retval; 1734 1735 retval = security_bprm_check(bprm); 1736 if (retval) 1737 return retval; 1738 1739 retval = -ENOENT; 1740 retry: 1741 read_lock(&binfmt_lock); 1742 list_for_each_entry(fmt, &formats, lh) { 1743 if (!try_module_get(fmt->module)) 1744 continue; 1745 read_unlock(&binfmt_lock); 1746 1747 retval = fmt->load_binary(bprm); 1748 1749 read_lock(&binfmt_lock); 1750 put_binfmt(fmt); 1751 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1752 read_unlock(&binfmt_lock); 1753 return retval; 1754 } 1755 } 1756 read_unlock(&binfmt_lock); 1757 1758 if (need_retry) { 1759 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1760 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1761 return retval; 1762 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1763 return retval; 1764 need_retry = false; 1765 goto retry; 1766 } 1767 1768 return retval; 1769 } 1770 1771 /* binfmt handlers will call back into begin_new_exec() on success. */ 1772 static int exec_binprm(struct linux_binprm *bprm) 1773 { 1774 pid_t old_pid, old_vpid; 1775 int ret, depth; 1776 1777 /* Need to fetch pid before load_binary changes it */ 1778 old_pid = current->pid; 1779 rcu_read_lock(); 1780 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1781 rcu_read_unlock(); 1782 1783 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1784 for (depth = 0;; depth++) { 1785 struct file *exec; 1786 if (depth > 5) 1787 return -ELOOP; 1788 1789 ret = search_binary_handler(bprm); 1790 if (ret < 0) 1791 return ret; 1792 if (!bprm->interpreter) 1793 break; 1794 1795 exec = bprm->file; 1796 bprm->file = bprm->interpreter; 1797 bprm->interpreter = NULL; 1798 1799 allow_write_access(exec); 1800 if (unlikely(bprm->have_execfd)) { 1801 if (bprm->executable) { 1802 fput(exec); 1803 return -ENOEXEC; 1804 } 1805 bprm->executable = exec; 1806 } else 1807 fput(exec); 1808 } 1809 1810 audit_bprm(bprm); 1811 trace_sched_process_exec(current, old_pid, bprm); 1812 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1813 proc_exec_connector(current); 1814 return 0; 1815 } 1816 1817 /* 1818 * sys_execve() executes a new program. 1819 */ 1820 static int bprm_execve(struct linux_binprm *bprm, 1821 int fd, struct filename *filename, int flags) 1822 { 1823 struct file *file; 1824 int retval; 1825 1826 retval = prepare_bprm_creds(bprm); 1827 if (retval) 1828 return retval; 1829 1830 /* 1831 * Check for unsafe execution states before exec_binprm(), which 1832 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1833 * where setuid-ness is evaluated. 1834 */ 1835 check_unsafe_exec(bprm); 1836 current->in_execve = 1; 1837 sched_mm_cid_before_execve(current); 1838 1839 file = do_open_execat(fd, filename, flags); 1840 retval = PTR_ERR(file); 1841 if (IS_ERR(file)) 1842 goto out_unmark; 1843 1844 sched_exec(); 1845 1846 bprm->file = file; 1847 /* 1848 * Record that a name derived from an O_CLOEXEC fd will be 1849 * inaccessible after exec. This allows the code in exec to 1850 * choose to fail when the executable is not mmaped into the 1851 * interpreter and an open file descriptor is not passed to 1852 * the interpreter. This makes for a better user experience 1853 * than having the interpreter start and then immediately fail 1854 * when it finds the executable is inaccessible. 1855 */ 1856 if (bprm->fdpath && get_close_on_exec(fd)) 1857 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1858 1859 /* Set the unchanging part of bprm->cred */ 1860 retval = security_bprm_creds_for_exec(bprm); 1861 if (retval) 1862 goto out; 1863 1864 retval = exec_binprm(bprm); 1865 if (retval < 0) 1866 goto out; 1867 1868 sched_mm_cid_after_execve(current); 1869 /* execve succeeded */ 1870 current->fs->in_exec = 0; 1871 current->in_execve = 0; 1872 rseq_execve(current); 1873 user_events_execve(current); 1874 acct_update_integrals(current); 1875 task_numa_free(current, false); 1876 return retval; 1877 1878 out: 1879 /* 1880 * If past the point of no return ensure the code never 1881 * returns to the userspace process. Use an existing fatal 1882 * signal if present otherwise terminate the process with 1883 * SIGSEGV. 1884 */ 1885 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1886 force_fatal_sig(SIGSEGV); 1887 1888 out_unmark: 1889 sched_mm_cid_after_execve(current); 1890 current->fs->in_exec = 0; 1891 current->in_execve = 0; 1892 1893 return retval; 1894 } 1895 1896 static int do_execveat_common(int fd, struct filename *filename, 1897 struct user_arg_ptr argv, 1898 struct user_arg_ptr envp, 1899 int flags) 1900 { 1901 struct linux_binprm *bprm; 1902 int retval; 1903 1904 if (IS_ERR(filename)) 1905 return PTR_ERR(filename); 1906 1907 /* 1908 * We move the actual failure in case of RLIMIT_NPROC excess from 1909 * set*uid() to execve() because too many poorly written programs 1910 * don't check setuid() return code. Here we additionally recheck 1911 * whether NPROC limit is still exceeded. 1912 */ 1913 if ((current->flags & PF_NPROC_EXCEEDED) && 1914 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1915 retval = -EAGAIN; 1916 goto out_ret; 1917 } 1918 1919 /* We're below the limit (still or again), so we don't want to make 1920 * further execve() calls fail. */ 1921 current->flags &= ~PF_NPROC_EXCEEDED; 1922 1923 bprm = alloc_bprm(fd, filename); 1924 if (IS_ERR(bprm)) { 1925 retval = PTR_ERR(bprm); 1926 goto out_ret; 1927 } 1928 1929 retval = count(argv, MAX_ARG_STRINGS); 1930 if (retval == 0) 1931 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1932 current->comm, bprm->filename); 1933 if (retval < 0) 1934 goto out_free; 1935 bprm->argc = retval; 1936 1937 retval = count(envp, MAX_ARG_STRINGS); 1938 if (retval < 0) 1939 goto out_free; 1940 bprm->envc = retval; 1941 1942 retval = bprm_stack_limits(bprm); 1943 if (retval < 0) 1944 goto out_free; 1945 1946 retval = copy_string_kernel(bprm->filename, bprm); 1947 if (retval < 0) 1948 goto out_free; 1949 bprm->exec = bprm->p; 1950 1951 retval = copy_strings(bprm->envc, envp, bprm); 1952 if (retval < 0) 1953 goto out_free; 1954 1955 retval = copy_strings(bprm->argc, argv, bprm); 1956 if (retval < 0) 1957 goto out_free; 1958 1959 /* 1960 * When argv is empty, add an empty string ("") as argv[0] to 1961 * ensure confused userspace programs that start processing 1962 * from argv[1] won't end up walking envp. See also 1963 * bprm_stack_limits(). 1964 */ 1965 if (bprm->argc == 0) { 1966 retval = copy_string_kernel("", bprm); 1967 if (retval < 0) 1968 goto out_free; 1969 bprm->argc = 1; 1970 } 1971 1972 retval = bprm_execve(bprm, fd, filename, flags); 1973 out_free: 1974 free_bprm(bprm); 1975 1976 out_ret: 1977 putname(filename); 1978 return retval; 1979 } 1980 1981 int kernel_execve(const char *kernel_filename, 1982 const char *const *argv, const char *const *envp) 1983 { 1984 struct filename *filename; 1985 struct linux_binprm *bprm; 1986 int fd = AT_FDCWD; 1987 int retval; 1988 1989 /* It is non-sense for kernel threads to call execve */ 1990 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1991 return -EINVAL; 1992 1993 filename = getname_kernel(kernel_filename); 1994 if (IS_ERR(filename)) 1995 return PTR_ERR(filename); 1996 1997 bprm = alloc_bprm(fd, filename); 1998 if (IS_ERR(bprm)) { 1999 retval = PTR_ERR(bprm); 2000 goto out_ret; 2001 } 2002 2003 retval = count_strings_kernel(argv); 2004 if (WARN_ON_ONCE(retval == 0)) 2005 retval = -EINVAL; 2006 if (retval < 0) 2007 goto out_free; 2008 bprm->argc = retval; 2009 2010 retval = count_strings_kernel(envp); 2011 if (retval < 0) 2012 goto out_free; 2013 bprm->envc = retval; 2014 2015 retval = bprm_stack_limits(bprm); 2016 if (retval < 0) 2017 goto out_free; 2018 2019 retval = copy_string_kernel(bprm->filename, bprm); 2020 if (retval < 0) 2021 goto out_free; 2022 bprm->exec = bprm->p; 2023 2024 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2025 if (retval < 0) 2026 goto out_free; 2027 2028 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2029 if (retval < 0) 2030 goto out_free; 2031 2032 retval = bprm_execve(bprm, fd, filename, 0); 2033 out_free: 2034 free_bprm(bprm); 2035 out_ret: 2036 putname(filename); 2037 return retval; 2038 } 2039 2040 static int do_execve(struct filename *filename, 2041 const char __user *const __user *__argv, 2042 const char __user *const __user *__envp) 2043 { 2044 struct user_arg_ptr argv = { .ptr.native = __argv }; 2045 struct user_arg_ptr envp = { .ptr.native = __envp }; 2046 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2047 } 2048 2049 static int do_execveat(int fd, struct filename *filename, 2050 const char __user *const __user *__argv, 2051 const char __user *const __user *__envp, 2052 int flags) 2053 { 2054 struct user_arg_ptr argv = { .ptr.native = __argv }; 2055 struct user_arg_ptr envp = { .ptr.native = __envp }; 2056 2057 return do_execveat_common(fd, filename, argv, envp, flags); 2058 } 2059 2060 #ifdef CONFIG_COMPAT 2061 static int compat_do_execve(struct filename *filename, 2062 const compat_uptr_t __user *__argv, 2063 const compat_uptr_t __user *__envp) 2064 { 2065 struct user_arg_ptr argv = { 2066 .is_compat = true, 2067 .ptr.compat = __argv, 2068 }; 2069 struct user_arg_ptr envp = { 2070 .is_compat = true, 2071 .ptr.compat = __envp, 2072 }; 2073 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2074 } 2075 2076 static int compat_do_execveat(int fd, struct filename *filename, 2077 const compat_uptr_t __user *__argv, 2078 const compat_uptr_t __user *__envp, 2079 int flags) 2080 { 2081 struct user_arg_ptr argv = { 2082 .is_compat = true, 2083 .ptr.compat = __argv, 2084 }; 2085 struct user_arg_ptr envp = { 2086 .is_compat = true, 2087 .ptr.compat = __envp, 2088 }; 2089 return do_execveat_common(fd, filename, argv, envp, flags); 2090 } 2091 #endif 2092 2093 void set_binfmt(struct linux_binfmt *new) 2094 { 2095 struct mm_struct *mm = current->mm; 2096 2097 if (mm->binfmt) 2098 module_put(mm->binfmt->module); 2099 2100 mm->binfmt = new; 2101 if (new) 2102 __module_get(new->module); 2103 } 2104 EXPORT_SYMBOL(set_binfmt); 2105 2106 /* 2107 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2108 */ 2109 void set_dumpable(struct mm_struct *mm, int value) 2110 { 2111 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2112 return; 2113 2114 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2115 } 2116 2117 SYSCALL_DEFINE3(execve, 2118 const char __user *, filename, 2119 const char __user *const __user *, argv, 2120 const char __user *const __user *, envp) 2121 { 2122 return do_execve(getname(filename), argv, envp); 2123 } 2124 2125 SYSCALL_DEFINE5(execveat, 2126 int, fd, const char __user *, filename, 2127 const char __user *const __user *, argv, 2128 const char __user *const __user *, envp, 2129 int, flags) 2130 { 2131 return do_execveat(fd, 2132 getname_uflags(filename, flags), 2133 argv, envp, flags); 2134 } 2135 2136 #ifdef CONFIG_COMPAT 2137 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2138 const compat_uptr_t __user *, argv, 2139 const compat_uptr_t __user *, envp) 2140 { 2141 return compat_do_execve(getname(filename), argv, envp); 2142 } 2143 2144 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2145 const char __user *, filename, 2146 const compat_uptr_t __user *, argv, 2147 const compat_uptr_t __user *, envp, 2148 int, flags) 2149 { 2150 return compat_do_execveat(fd, 2151 getname_uflags(filename, flags), 2152 argv, envp, flags); 2153 } 2154 #endif 2155 2156 #ifdef CONFIG_SYSCTL 2157 2158 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2159 void *buffer, size_t *lenp, loff_t *ppos) 2160 { 2161 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2162 2163 if (!error) 2164 validate_coredump_safety(); 2165 return error; 2166 } 2167 2168 static struct ctl_table fs_exec_sysctls[] = { 2169 { 2170 .procname = "suid_dumpable", 2171 .data = &suid_dumpable, 2172 .maxlen = sizeof(int), 2173 .mode = 0644, 2174 .proc_handler = proc_dointvec_minmax_coredump, 2175 .extra1 = SYSCTL_ZERO, 2176 .extra2 = SYSCTL_TWO, 2177 }, 2178 { } 2179 }; 2180 2181 static int __init init_fs_exec_sysctls(void) 2182 { 2183 register_sysctl_init("fs", fs_exec_sysctls); 2184 return 0; 2185 } 2186 2187 fs_initcall(init_fs_exec_sysctls); 2188 #endif /* CONFIG_SYSCTL */ 2189