xref: /openbmc/linux/fs/exec.c (revision e4c0d0e2)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 struct core_name {
70 	char *corename;
71 	int used, size;
72 };
73 static atomic_t call_count = ATOMIC_INIT(1);
74 
75 /* The maximal length of core_pattern is also specified in sysctl.c */
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	if (!fmt)
83 		return -EINVAL;
84 	write_lock(&binfmt_lock);
85 	insert ? list_add(&fmt->lh, &formats) :
86 		 list_add_tail(&fmt->lh, &formats);
87 	write_unlock(&binfmt_lock);
88 	return 0;
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 /*
108  * Note that a shared library must be both readable and executable due to
109  * security reasons.
110  *
111  * Also note that we take the address to load from from the file itself.
112  */
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
114 {
115 	struct file *file;
116 	char *tmp = getname(library);
117 	int error = PTR_ERR(tmp);
118 	static const struct open_flags uselib_flags = {
119 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121 		.intent = LOOKUP_OPEN
122 	};
123 
124 	if (IS_ERR(tmp))
125 		goto out;
126 
127 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
128 	putname(tmp);
129 	error = PTR_ERR(file);
130 	if (IS_ERR(file))
131 		goto out;
132 
133 	error = -EINVAL;
134 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
135 		goto exit;
136 
137 	error = -EACCES;
138 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
139 		goto exit;
140 
141 	fsnotify_open(file);
142 
143 	error = -ENOEXEC;
144 	if(file->f_op) {
145 		struct linux_binfmt * fmt;
146 
147 		read_lock(&binfmt_lock);
148 		list_for_each_entry(fmt, &formats, lh) {
149 			if (!fmt->load_shlib)
150 				continue;
151 			if (!try_module_get(fmt->module))
152 				continue;
153 			read_unlock(&binfmt_lock);
154 			error = fmt->load_shlib(file);
155 			read_lock(&binfmt_lock);
156 			put_binfmt(fmt);
157 			if (error != -ENOEXEC)
158 				break;
159 		}
160 		read_unlock(&binfmt_lock);
161 	}
162 exit:
163 	fput(file);
164 out:
165   	return error;
166 }
167 
168 #ifdef CONFIG_MMU
169 /*
170  * The nascent bprm->mm is not visible until exec_mmap() but it can
171  * use a lot of memory, account these pages in current->mm temporary
172  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173  * change the counter back via acct_arg_size(0).
174  */
175 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
176 {
177 	struct mm_struct *mm = current->mm;
178 	long diff = (long)(pages - bprm->vma_pages);
179 
180 	if (!mm || !diff)
181 		return;
182 
183 	bprm->vma_pages = pages;
184 
185 #ifdef SPLIT_RSS_COUNTING
186 	add_mm_counter(mm, MM_ANONPAGES, diff);
187 #else
188 	spin_lock(&mm->page_table_lock);
189 	add_mm_counter(mm, MM_ANONPAGES, diff);
190 	spin_unlock(&mm->page_table_lock);
191 #endif
192 }
193 
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 		int write)
196 {
197 	struct page *page;
198 	int ret;
199 
200 #ifdef CONFIG_STACK_GROWSUP
201 	if (write) {
202 		ret = expand_downwards(bprm->vma, pos);
203 		if (ret < 0)
204 			return NULL;
205 	}
206 #endif
207 	ret = get_user_pages(current, bprm->mm, pos,
208 			1, write, 1, &page, NULL);
209 	if (ret <= 0)
210 		return NULL;
211 
212 	if (write) {
213 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
214 		struct rlimit *rlim;
215 
216 		acct_arg_size(bprm, size / PAGE_SIZE);
217 
218 		/*
219 		 * We've historically supported up to 32 pages (ARG_MAX)
220 		 * of argument strings even with small stacks
221 		 */
222 		if (size <= ARG_MAX)
223 			return page;
224 
225 		/*
226 		 * Limit to 1/4-th the stack size for the argv+env strings.
227 		 * This ensures that:
228 		 *  - the remaining binfmt code will not run out of stack space,
229 		 *  - the program will have a reasonable amount of stack left
230 		 *    to work from.
231 		 */
232 		rlim = current->signal->rlim;
233 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
234 			put_page(page);
235 			return NULL;
236 		}
237 	}
238 
239 	return page;
240 }
241 
242 static void put_arg_page(struct page *page)
243 {
244 	put_page(page);
245 }
246 
247 static void free_arg_page(struct linux_binprm *bprm, int i)
248 {
249 }
250 
251 static void free_arg_pages(struct linux_binprm *bprm)
252 {
253 }
254 
255 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256 		struct page *page)
257 {
258 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259 }
260 
261 static int __bprm_mm_init(struct linux_binprm *bprm)
262 {
263 	int err;
264 	struct vm_area_struct *vma = NULL;
265 	struct mm_struct *mm = bprm->mm;
266 
267 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268 	if (!vma)
269 		return -ENOMEM;
270 
271 	down_write(&mm->mmap_sem);
272 	vma->vm_mm = mm;
273 
274 	/*
275 	 * Place the stack at the largest stack address the architecture
276 	 * supports. Later, we'll move this to an appropriate place. We don't
277 	 * use STACK_TOP because that can depend on attributes which aren't
278 	 * configured yet.
279 	 */
280 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
281 	vma->vm_end = STACK_TOP_MAX;
282 	vma->vm_start = vma->vm_end - PAGE_SIZE;
283 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
284 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
285 	INIT_LIST_HEAD(&vma->anon_vma_chain);
286 
287 	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
288 	if (err)
289 		goto err;
290 
291 	err = insert_vm_struct(mm, vma);
292 	if (err)
293 		goto err;
294 
295 	mm->stack_vm = mm->total_vm = 1;
296 	up_write(&mm->mmap_sem);
297 	bprm->p = vma->vm_end - sizeof(void *);
298 	return 0;
299 err:
300 	up_write(&mm->mmap_sem);
301 	bprm->vma = NULL;
302 	kmem_cache_free(vm_area_cachep, vma);
303 	return err;
304 }
305 
306 static bool valid_arg_len(struct linux_binprm *bprm, long len)
307 {
308 	return len <= MAX_ARG_STRLEN;
309 }
310 
311 #else
312 
313 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
314 {
315 }
316 
317 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
318 		int write)
319 {
320 	struct page *page;
321 
322 	page = bprm->page[pos / PAGE_SIZE];
323 	if (!page && write) {
324 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
325 		if (!page)
326 			return NULL;
327 		bprm->page[pos / PAGE_SIZE] = page;
328 	}
329 
330 	return page;
331 }
332 
333 static void put_arg_page(struct page *page)
334 {
335 }
336 
337 static void free_arg_page(struct linux_binprm *bprm, int i)
338 {
339 	if (bprm->page[i]) {
340 		__free_page(bprm->page[i]);
341 		bprm->page[i] = NULL;
342 	}
343 }
344 
345 static void free_arg_pages(struct linux_binprm *bprm)
346 {
347 	int i;
348 
349 	for (i = 0; i < MAX_ARG_PAGES; i++)
350 		free_arg_page(bprm, i);
351 }
352 
353 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
354 		struct page *page)
355 {
356 }
357 
358 static int __bprm_mm_init(struct linux_binprm *bprm)
359 {
360 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
361 	return 0;
362 }
363 
364 static bool valid_arg_len(struct linux_binprm *bprm, long len)
365 {
366 	return len <= bprm->p;
367 }
368 
369 #endif /* CONFIG_MMU */
370 
371 /*
372  * Create a new mm_struct and populate it with a temporary stack
373  * vm_area_struct.  We don't have enough context at this point to set the stack
374  * flags, permissions, and offset, so we use temporary values.  We'll update
375  * them later in setup_arg_pages().
376  */
377 int bprm_mm_init(struct linux_binprm *bprm)
378 {
379 	int err;
380 	struct mm_struct *mm = NULL;
381 
382 	bprm->mm = mm = mm_alloc();
383 	err = -ENOMEM;
384 	if (!mm)
385 		goto err;
386 
387 	err = init_new_context(current, mm);
388 	if (err)
389 		goto err;
390 
391 	err = __bprm_mm_init(bprm);
392 	if (err)
393 		goto err;
394 
395 	return 0;
396 
397 err:
398 	if (mm) {
399 		bprm->mm = NULL;
400 		mmdrop(mm);
401 	}
402 
403 	return err;
404 }
405 
406 struct user_arg_ptr {
407 #ifdef CONFIG_COMPAT
408 	bool is_compat;
409 #endif
410 	union {
411 		const char __user *const __user *native;
412 #ifdef CONFIG_COMPAT
413 		compat_uptr_t __user *compat;
414 #endif
415 	} ptr;
416 };
417 
418 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
419 {
420 	const char __user *native;
421 
422 #ifdef CONFIG_COMPAT
423 	if (unlikely(argv.is_compat)) {
424 		compat_uptr_t compat;
425 
426 		if (get_user(compat, argv.ptr.compat + nr))
427 			return ERR_PTR(-EFAULT);
428 
429 		return compat_ptr(compat);
430 	}
431 #endif
432 
433 	if (get_user(native, argv.ptr.native + nr))
434 		return ERR_PTR(-EFAULT);
435 
436 	return native;
437 }
438 
439 /*
440  * count() counts the number of strings in array ARGV.
441  */
442 static int count(struct user_arg_ptr argv, int max)
443 {
444 	int i = 0;
445 
446 	if (argv.ptr.native != NULL) {
447 		for (;;) {
448 			const char __user *p = get_user_arg_ptr(argv, i);
449 
450 			if (!p)
451 				break;
452 
453 			if (IS_ERR(p))
454 				return -EFAULT;
455 
456 			if (i++ >= max)
457 				return -E2BIG;
458 
459 			if (fatal_signal_pending(current))
460 				return -ERESTARTNOHAND;
461 			cond_resched();
462 		}
463 	}
464 	return i;
465 }
466 
467 /*
468  * 'copy_strings()' copies argument/environment strings from the old
469  * processes's memory to the new process's stack.  The call to get_user_pages()
470  * ensures the destination page is created and not swapped out.
471  */
472 static int copy_strings(int argc, struct user_arg_ptr argv,
473 			struct linux_binprm *bprm)
474 {
475 	struct page *kmapped_page = NULL;
476 	char *kaddr = NULL;
477 	unsigned long kpos = 0;
478 	int ret;
479 
480 	while (argc-- > 0) {
481 		const char __user *str;
482 		int len;
483 		unsigned long pos;
484 
485 		ret = -EFAULT;
486 		str = get_user_arg_ptr(argv, argc);
487 		if (IS_ERR(str))
488 			goto out;
489 
490 		len = strnlen_user(str, MAX_ARG_STRLEN);
491 		if (!len)
492 			goto out;
493 
494 		ret = -E2BIG;
495 		if (!valid_arg_len(bprm, len))
496 			goto out;
497 
498 		/* We're going to work our way backwords. */
499 		pos = bprm->p;
500 		str += len;
501 		bprm->p -= len;
502 
503 		while (len > 0) {
504 			int offset, bytes_to_copy;
505 
506 			if (fatal_signal_pending(current)) {
507 				ret = -ERESTARTNOHAND;
508 				goto out;
509 			}
510 			cond_resched();
511 
512 			offset = pos % PAGE_SIZE;
513 			if (offset == 0)
514 				offset = PAGE_SIZE;
515 
516 			bytes_to_copy = offset;
517 			if (bytes_to_copy > len)
518 				bytes_to_copy = len;
519 
520 			offset -= bytes_to_copy;
521 			pos -= bytes_to_copy;
522 			str -= bytes_to_copy;
523 			len -= bytes_to_copy;
524 
525 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
526 				struct page *page;
527 
528 				page = get_arg_page(bprm, pos, 1);
529 				if (!page) {
530 					ret = -E2BIG;
531 					goto out;
532 				}
533 
534 				if (kmapped_page) {
535 					flush_kernel_dcache_page(kmapped_page);
536 					kunmap(kmapped_page);
537 					put_arg_page(kmapped_page);
538 				}
539 				kmapped_page = page;
540 				kaddr = kmap(kmapped_page);
541 				kpos = pos & PAGE_MASK;
542 				flush_arg_page(bprm, kpos, kmapped_page);
543 			}
544 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
545 				ret = -EFAULT;
546 				goto out;
547 			}
548 		}
549 	}
550 	ret = 0;
551 out:
552 	if (kmapped_page) {
553 		flush_kernel_dcache_page(kmapped_page);
554 		kunmap(kmapped_page);
555 		put_arg_page(kmapped_page);
556 	}
557 	return ret;
558 }
559 
560 /*
561  * Like copy_strings, but get argv and its values from kernel memory.
562  */
563 int copy_strings_kernel(int argc, const char *const *__argv,
564 			struct linux_binprm *bprm)
565 {
566 	int r;
567 	mm_segment_t oldfs = get_fs();
568 	struct user_arg_ptr argv = {
569 		.ptr.native = (const char __user *const  __user *)__argv,
570 	};
571 
572 	set_fs(KERNEL_DS);
573 	r = copy_strings(argc, argv, bprm);
574 	set_fs(oldfs);
575 
576 	return r;
577 }
578 EXPORT_SYMBOL(copy_strings_kernel);
579 
580 #ifdef CONFIG_MMU
581 
582 /*
583  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
584  * the binfmt code determines where the new stack should reside, we shift it to
585  * its final location.  The process proceeds as follows:
586  *
587  * 1) Use shift to calculate the new vma endpoints.
588  * 2) Extend vma to cover both the old and new ranges.  This ensures the
589  *    arguments passed to subsequent functions are consistent.
590  * 3) Move vma's page tables to the new range.
591  * 4) Free up any cleared pgd range.
592  * 5) Shrink the vma to cover only the new range.
593  */
594 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
595 {
596 	struct mm_struct *mm = vma->vm_mm;
597 	unsigned long old_start = vma->vm_start;
598 	unsigned long old_end = vma->vm_end;
599 	unsigned long length = old_end - old_start;
600 	unsigned long new_start = old_start - shift;
601 	unsigned long new_end = old_end - shift;
602 	struct mmu_gather tlb;
603 
604 	BUG_ON(new_start > new_end);
605 
606 	/*
607 	 * ensure there are no vmas between where we want to go
608 	 * and where we are
609 	 */
610 	if (vma != find_vma(mm, new_start))
611 		return -EFAULT;
612 
613 	/*
614 	 * cover the whole range: [new_start, old_end)
615 	 */
616 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
617 		return -ENOMEM;
618 
619 	/*
620 	 * move the page tables downwards, on failure we rely on
621 	 * process cleanup to remove whatever mess we made.
622 	 */
623 	if (length != move_page_tables(vma, old_start,
624 				       vma, new_start, length))
625 		return -ENOMEM;
626 
627 	lru_add_drain();
628 	tlb_gather_mmu(&tlb, mm, 0);
629 	if (new_end > old_start) {
630 		/*
631 		 * when the old and new regions overlap clear from new_end.
632 		 */
633 		free_pgd_range(&tlb, new_end, old_end, new_end,
634 			vma->vm_next ? vma->vm_next->vm_start : 0);
635 	} else {
636 		/*
637 		 * otherwise, clean from old_start; this is done to not touch
638 		 * the address space in [new_end, old_start) some architectures
639 		 * have constraints on va-space that make this illegal (IA64) -
640 		 * for the others its just a little faster.
641 		 */
642 		free_pgd_range(&tlb, old_start, old_end, new_end,
643 			vma->vm_next ? vma->vm_next->vm_start : 0);
644 	}
645 	tlb_finish_mmu(&tlb, new_end, old_end);
646 
647 	/*
648 	 * Shrink the vma to just the new range.  Always succeeds.
649 	 */
650 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
651 
652 	return 0;
653 }
654 
655 /*
656  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
657  * the stack is optionally relocated, and some extra space is added.
658  */
659 int setup_arg_pages(struct linux_binprm *bprm,
660 		    unsigned long stack_top,
661 		    int executable_stack)
662 {
663 	unsigned long ret;
664 	unsigned long stack_shift;
665 	struct mm_struct *mm = current->mm;
666 	struct vm_area_struct *vma = bprm->vma;
667 	struct vm_area_struct *prev = NULL;
668 	unsigned long vm_flags;
669 	unsigned long stack_base;
670 	unsigned long stack_size;
671 	unsigned long stack_expand;
672 	unsigned long rlim_stack;
673 
674 #ifdef CONFIG_STACK_GROWSUP
675 	/* Limit stack size to 1GB */
676 	stack_base = rlimit_max(RLIMIT_STACK);
677 	if (stack_base > (1 << 30))
678 		stack_base = 1 << 30;
679 
680 	/* Make sure we didn't let the argument array grow too large. */
681 	if (vma->vm_end - vma->vm_start > stack_base)
682 		return -ENOMEM;
683 
684 	stack_base = PAGE_ALIGN(stack_top - stack_base);
685 
686 	stack_shift = vma->vm_start - stack_base;
687 	mm->arg_start = bprm->p - stack_shift;
688 	bprm->p = vma->vm_end - stack_shift;
689 #else
690 	stack_top = arch_align_stack(stack_top);
691 	stack_top = PAGE_ALIGN(stack_top);
692 
693 	if (unlikely(stack_top < mmap_min_addr) ||
694 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
695 		return -ENOMEM;
696 
697 	stack_shift = vma->vm_end - stack_top;
698 
699 	bprm->p -= stack_shift;
700 	mm->arg_start = bprm->p;
701 #endif
702 
703 	if (bprm->loader)
704 		bprm->loader -= stack_shift;
705 	bprm->exec -= stack_shift;
706 
707 	down_write(&mm->mmap_sem);
708 	vm_flags = VM_STACK_FLAGS;
709 
710 	/*
711 	 * Adjust stack execute permissions; explicitly enable for
712 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
713 	 * (arch default) otherwise.
714 	 */
715 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
716 		vm_flags |= VM_EXEC;
717 	else if (executable_stack == EXSTACK_DISABLE_X)
718 		vm_flags &= ~VM_EXEC;
719 	vm_flags |= mm->def_flags;
720 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
721 
722 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
723 			vm_flags);
724 	if (ret)
725 		goto out_unlock;
726 	BUG_ON(prev != vma);
727 
728 	/* Move stack pages down in memory. */
729 	if (stack_shift) {
730 		ret = shift_arg_pages(vma, stack_shift);
731 		if (ret)
732 			goto out_unlock;
733 	}
734 
735 	/* mprotect_fixup is overkill to remove the temporary stack flags */
736 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
737 
738 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
739 	stack_size = vma->vm_end - vma->vm_start;
740 	/*
741 	 * Align this down to a page boundary as expand_stack
742 	 * will align it up.
743 	 */
744 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
745 #ifdef CONFIG_STACK_GROWSUP
746 	if (stack_size + stack_expand > rlim_stack)
747 		stack_base = vma->vm_start + rlim_stack;
748 	else
749 		stack_base = vma->vm_end + stack_expand;
750 #else
751 	if (stack_size + stack_expand > rlim_stack)
752 		stack_base = vma->vm_end - rlim_stack;
753 	else
754 		stack_base = vma->vm_start - stack_expand;
755 #endif
756 	current->mm->start_stack = bprm->p;
757 	ret = expand_stack(vma, stack_base);
758 	if (ret)
759 		ret = -EFAULT;
760 
761 out_unlock:
762 	up_write(&mm->mmap_sem);
763 	return ret;
764 }
765 EXPORT_SYMBOL(setup_arg_pages);
766 
767 #endif /* CONFIG_MMU */
768 
769 struct file *open_exec(const char *name)
770 {
771 	struct file *file;
772 	int err;
773 	static const struct open_flags open_exec_flags = {
774 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
775 		.acc_mode = MAY_EXEC | MAY_OPEN,
776 		.intent = LOOKUP_OPEN
777 	};
778 
779 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
780 	if (IS_ERR(file))
781 		goto out;
782 
783 	err = -EACCES;
784 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
785 		goto exit;
786 
787 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
788 		goto exit;
789 
790 	fsnotify_open(file);
791 
792 	err = deny_write_access(file);
793 	if (err)
794 		goto exit;
795 
796 out:
797 	return file;
798 
799 exit:
800 	fput(file);
801 	return ERR_PTR(err);
802 }
803 EXPORT_SYMBOL(open_exec);
804 
805 int kernel_read(struct file *file, loff_t offset,
806 		char *addr, unsigned long count)
807 {
808 	mm_segment_t old_fs;
809 	loff_t pos = offset;
810 	int result;
811 
812 	old_fs = get_fs();
813 	set_fs(get_ds());
814 	/* The cast to a user pointer is valid due to the set_fs() */
815 	result = vfs_read(file, (void __user *)addr, count, &pos);
816 	set_fs(old_fs);
817 	return result;
818 }
819 
820 EXPORT_SYMBOL(kernel_read);
821 
822 static int exec_mmap(struct mm_struct *mm)
823 {
824 	struct task_struct *tsk;
825 	struct mm_struct * old_mm, *active_mm;
826 
827 	/* Notify parent that we're no longer interested in the old VM */
828 	tsk = current;
829 	old_mm = current->mm;
830 	sync_mm_rss(tsk, old_mm);
831 	mm_release(tsk, old_mm);
832 
833 	if (old_mm) {
834 		/*
835 		 * Make sure that if there is a core dump in progress
836 		 * for the old mm, we get out and die instead of going
837 		 * through with the exec.  We must hold mmap_sem around
838 		 * checking core_state and changing tsk->mm.
839 		 */
840 		down_read(&old_mm->mmap_sem);
841 		if (unlikely(old_mm->core_state)) {
842 			up_read(&old_mm->mmap_sem);
843 			return -EINTR;
844 		}
845 	}
846 	task_lock(tsk);
847 	active_mm = tsk->active_mm;
848 	tsk->mm = mm;
849 	tsk->active_mm = mm;
850 	activate_mm(active_mm, mm);
851 	if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
852 		atomic_dec(&old_mm->oom_disable_count);
853 		atomic_inc(&tsk->mm->oom_disable_count);
854 	}
855 	task_unlock(tsk);
856 	arch_pick_mmap_layout(mm);
857 	if (old_mm) {
858 		up_read(&old_mm->mmap_sem);
859 		BUG_ON(active_mm != old_mm);
860 		mm_update_next_owner(old_mm);
861 		mmput(old_mm);
862 		return 0;
863 	}
864 	mmdrop(active_mm);
865 	return 0;
866 }
867 
868 /*
869  * This function makes sure the current process has its own signal table,
870  * so that flush_signal_handlers can later reset the handlers without
871  * disturbing other processes.  (Other processes might share the signal
872  * table via the CLONE_SIGHAND option to clone().)
873  */
874 static int de_thread(struct task_struct *tsk)
875 {
876 	struct signal_struct *sig = tsk->signal;
877 	struct sighand_struct *oldsighand = tsk->sighand;
878 	spinlock_t *lock = &oldsighand->siglock;
879 
880 	if (thread_group_empty(tsk))
881 		goto no_thread_group;
882 
883 	/*
884 	 * Kill all other threads in the thread group.
885 	 */
886 	spin_lock_irq(lock);
887 	if (signal_group_exit(sig)) {
888 		/*
889 		 * Another group action in progress, just
890 		 * return so that the signal is processed.
891 		 */
892 		spin_unlock_irq(lock);
893 		return -EAGAIN;
894 	}
895 
896 	sig->group_exit_task = tsk;
897 	sig->notify_count = zap_other_threads(tsk);
898 	if (!thread_group_leader(tsk))
899 		sig->notify_count--;
900 
901 	while (sig->notify_count) {
902 		__set_current_state(TASK_UNINTERRUPTIBLE);
903 		spin_unlock_irq(lock);
904 		schedule();
905 		spin_lock_irq(lock);
906 	}
907 	spin_unlock_irq(lock);
908 
909 	/*
910 	 * At this point all other threads have exited, all we have to
911 	 * do is to wait for the thread group leader to become inactive,
912 	 * and to assume its PID:
913 	 */
914 	if (!thread_group_leader(tsk)) {
915 		struct task_struct *leader = tsk->group_leader;
916 
917 		sig->notify_count = -1;	/* for exit_notify() */
918 		for (;;) {
919 			write_lock_irq(&tasklist_lock);
920 			if (likely(leader->exit_state))
921 				break;
922 			__set_current_state(TASK_UNINTERRUPTIBLE);
923 			write_unlock_irq(&tasklist_lock);
924 			schedule();
925 		}
926 
927 		/*
928 		 * The only record we have of the real-time age of a
929 		 * process, regardless of execs it's done, is start_time.
930 		 * All the past CPU time is accumulated in signal_struct
931 		 * from sister threads now dead.  But in this non-leader
932 		 * exec, nothing survives from the original leader thread,
933 		 * whose birth marks the true age of this process now.
934 		 * When we take on its identity by switching to its PID, we
935 		 * also take its birthdate (always earlier than our own).
936 		 */
937 		tsk->start_time = leader->start_time;
938 
939 		BUG_ON(!same_thread_group(leader, tsk));
940 		BUG_ON(has_group_leader_pid(tsk));
941 		/*
942 		 * An exec() starts a new thread group with the
943 		 * TGID of the previous thread group. Rehash the
944 		 * two threads with a switched PID, and release
945 		 * the former thread group leader:
946 		 */
947 
948 		/* Become a process group leader with the old leader's pid.
949 		 * The old leader becomes a thread of the this thread group.
950 		 * Note: The old leader also uses this pid until release_task
951 		 *       is called.  Odd but simple and correct.
952 		 */
953 		detach_pid(tsk, PIDTYPE_PID);
954 		tsk->pid = leader->pid;
955 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
956 		transfer_pid(leader, tsk, PIDTYPE_PGID);
957 		transfer_pid(leader, tsk, PIDTYPE_SID);
958 
959 		list_replace_rcu(&leader->tasks, &tsk->tasks);
960 		list_replace_init(&leader->sibling, &tsk->sibling);
961 
962 		tsk->group_leader = tsk;
963 		leader->group_leader = tsk;
964 
965 		tsk->exit_signal = SIGCHLD;
966 
967 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
968 		leader->exit_state = EXIT_DEAD;
969 		write_unlock_irq(&tasklist_lock);
970 
971 		release_task(leader);
972 	}
973 
974 	sig->group_exit_task = NULL;
975 	sig->notify_count = 0;
976 
977 no_thread_group:
978 	if (current->mm)
979 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
980 
981 	exit_itimers(sig);
982 	flush_itimer_signals();
983 
984 	if (atomic_read(&oldsighand->count) != 1) {
985 		struct sighand_struct *newsighand;
986 		/*
987 		 * This ->sighand is shared with the CLONE_SIGHAND
988 		 * but not CLONE_THREAD task, switch to the new one.
989 		 */
990 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
991 		if (!newsighand)
992 			return -ENOMEM;
993 
994 		atomic_set(&newsighand->count, 1);
995 		memcpy(newsighand->action, oldsighand->action,
996 		       sizeof(newsighand->action));
997 
998 		write_lock_irq(&tasklist_lock);
999 		spin_lock(&oldsighand->siglock);
1000 		rcu_assign_pointer(tsk->sighand, newsighand);
1001 		spin_unlock(&oldsighand->siglock);
1002 		write_unlock_irq(&tasklist_lock);
1003 
1004 		__cleanup_sighand(oldsighand);
1005 	}
1006 
1007 	BUG_ON(!thread_group_leader(tsk));
1008 	return 0;
1009 }
1010 
1011 /*
1012  * These functions flushes out all traces of the currently running executable
1013  * so that a new one can be started
1014  */
1015 static void flush_old_files(struct files_struct * files)
1016 {
1017 	long j = -1;
1018 	struct fdtable *fdt;
1019 
1020 	spin_lock(&files->file_lock);
1021 	for (;;) {
1022 		unsigned long set, i;
1023 
1024 		j++;
1025 		i = j * __NFDBITS;
1026 		fdt = files_fdtable(files);
1027 		if (i >= fdt->max_fds)
1028 			break;
1029 		set = fdt->close_on_exec->fds_bits[j];
1030 		if (!set)
1031 			continue;
1032 		fdt->close_on_exec->fds_bits[j] = 0;
1033 		spin_unlock(&files->file_lock);
1034 		for ( ; set ; i++,set >>= 1) {
1035 			if (set & 1) {
1036 				sys_close(i);
1037 			}
1038 		}
1039 		spin_lock(&files->file_lock);
1040 
1041 	}
1042 	spin_unlock(&files->file_lock);
1043 }
1044 
1045 char *get_task_comm(char *buf, struct task_struct *tsk)
1046 {
1047 	/* buf must be at least sizeof(tsk->comm) in size */
1048 	task_lock(tsk);
1049 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1050 	task_unlock(tsk);
1051 	return buf;
1052 }
1053 EXPORT_SYMBOL_GPL(get_task_comm);
1054 
1055 void set_task_comm(struct task_struct *tsk, char *buf)
1056 {
1057 	task_lock(tsk);
1058 
1059 	/*
1060 	 * Threads may access current->comm without holding
1061 	 * the task lock, so write the string carefully.
1062 	 * Readers without a lock may see incomplete new
1063 	 * names but are safe from non-terminating string reads.
1064 	 */
1065 	memset(tsk->comm, 0, TASK_COMM_LEN);
1066 	wmb();
1067 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1068 	task_unlock(tsk);
1069 	perf_event_comm(tsk);
1070 }
1071 
1072 int flush_old_exec(struct linux_binprm * bprm)
1073 {
1074 	int retval;
1075 
1076 	/*
1077 	 * Make sure we have a private signal table and that
1078 	 * we are unassociated from the previous thread group.
1079 	 */
1080 	retval = de_thread(current);
1081 	if (retval)
1082 		goto out;
1083 
1084 	set_mm_exe_file(bprm->mm, bprm->file);
1085 
1086 	/*
1087 	 * Release all of the old mmap stuff
1088 	 */
1089 	acct_arg_size(bprm, 0);
1090 	retval = exec_mmap(bprm->mm);
1091 	if (retval)
1092 		goto out;
1093 
1094 	bprm->mm = NULL;		/* We're using it now */
1095 
1096 	set_fs(USER_DS);
1097 	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1098 	flush_thread();
1099 	current->personality &= ~bprm->per_clear;
1100 
1101 	return 0;
1102 
1103 out:
1104 	return retval;
1105 }
1106 EXPORT_SYMBOL(flush_old_exec);
1107 
1108 void setup_new_exec(struct linux_binprm * bprm)
1109 {
1110 	int i, ch;
1111 	const char *name;
1112 	char tcomm[sizeof(current->comm)];
1113 
1114 	arch_pick_mmap_layout(current->mm);
1115 
1116 	/* This is the point of no return */
1117 	current->sas_ss_sp = current->sas_ss_size = 0;
1118 
1119 	if (current_euid() == current_uid() && current_egid() == current_gid())
1120 		set_dumpable(current->mm, 1);
1121 	else
1122 		set_dumpable(current->mm, suid_dumpable);
1123 
1124 	name = bprm->filename;
1125 
1126 	/* Copies the binary name from after last slash */
1127 	for (i=0; (ch = *(name++)) != '\0';) {
1128 		if (ch == '/')
1129 			i = 0; /* overwrite what we wrote */
1130 		else
1131 			if (i < (sizeof(tcomm) - 1))
1132 				tcomm[i++] = ch;
1133 	}
1134 	tcomm[i] = '\0';
1135 	set_task_comm(current, tcomm);
1136 
1137 	/* Set the new mm task size. We have to do that late because it may
1138 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1139 	 * some architectures like powerpc
1140 	 */
1141 	current->mm->task_size = TASK_SIZE;
1142 
1143 	/* install the new credentials */
1144 	if (bprm->cred->uid != current_euid() ||
1145 	    bprm->cred->gid != current_egid()) {
1146 		current->pdeath_signal = 0;
1147 	} else if (file_permission(bprm->file, MAY_READ) ||
1148 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1149 		set_dumpable(current->mm, suid_dumpable);
1150 	}
1151 
1152 	/*
1153 	 * Flush performance counters when crossing a
1154 	 * security domain:
1155 	 */
1156 	if (!get_dumpable(current->mm))
1157 		perf_event_exit_task(current);
1158 
1159 	/* An exec changes our domain. We are no longer part of the thread
1160 	   group */
1161 
1162 	current->self_exec_id++;
1163 
1164 	flush_signal_handlers(current, 0);
1165 	flush_old_files(current->files);
1166 }
1167 EXPORT_SYMBOL(setup_new_exec);
1168 
1169 /*
1170  * Prepare credentials and lock ->cred_guard_mutex.
1171  * install_exec_creds() commits the new creds and drops the lock.
1172  * Or, if exec fails before, free_bprm() should release ->cred and
1173  * and unlock.
1174  */
1175 int prepare_bprm_creds(struct linux_binprm *bprm)
1176 {
1177 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1178 		return -ERESTARTNOINTR;
1179 
1180 	bprm->cred = prepare_exec_creds();
1181 	if (likely(bprm->cred))
1182 		return 0;
1183 
1184 	mutex_unlock(&current->signal->cred_guard_mutex);
1185 	return -ENOMEM;
1186 }
1187 
1188 void free_bprm(struct linux_binprm *bprm)
1189 {
1190 	free_arg_pages(bprm);
1191 	if (bprm->cred) {
1192 		mutex_unlock(&current->signal->cred_guard_mutex);
1193 		abort_creds(bprm->cred);
1194 	}
1195 	kfree(bprm);
1196 }
1197 
1198 /*
1199  * install the new credentials for this executable
1200  */
1201 void install_exec_creds(struct linux_binprm *bprm)
1202 {
1203 	security_bprm_committing_creds(bprm);
1204 
1205 	commit_creds(bprm->cred);
1206 	bprm->cred = NULL;
1207 	/*
1208 	 * cred_guard_mutex must be held at least to this point to prevent
1209 	 * ptrace_attach() from altering our determination of the task's
1210 	 * credentials; any time after this it may be unlocked.
1211 	 */
1212 	security_bprm_committed_creds(bprm);
1213 	mutex_unlock(&current->signal->cred_guard_mutex);
1214 }
1215 EXPORT_SYMBOL(install_exec_creds);
1216 
1217 /*
1218  * determine how safe it is to execute the proposed program
1219  * - the caller must hold ->cred_guard_mutex to protect against
1220  *   PTRACE_ATTACH
1221  */
1222 int check_unsafe_exec(struct linux_binprm *bprm)
1223 {
1224 	struct task_struct *p = current, *t;
1225 	unsigned n_fs;
1226 	int res = 0;
1227 
1228 	bprm->unsafe = tracehook_unsafe_exec(p);
1229 
1230 	n_fs = 1;
1231 	spin_lock(&p->fs->lock);
1232 	rcu_read_lock();
1233 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1234 		if (t->fs == p->fs)
1235 			n_fs++;
1236 	}
1237 	rcu_read_unlock();
1238 
1239 	if (p->fs->users > n_fs) {
1240 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1241 	} else {
1242 		res = -EAGAIN;
1243 		if (!p->fs->in_exec) {
1244 			p->fs->in_exec = 1;
1245 			res = 1;
1246 		}
1247 	}
1248 	spin_unlock(&p->fs->lock);
1249 
1250 	return res;
1251 }
1252 
1253 /*
1254  * Fill the binprm structure from the inode.
1255  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1256  *
1257  * This may be called multiple times for binary chains (scripts for example).
1258  */
1259 int prepare_binprm(struct linux_binprm *bprm)
1260 {
1261 	umode_t mode;
1262 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1263 	int retval;
1264 
1265 	mode = inode->i_mode;
1266 	if (bprm->file->f_op == NULL)
1267 		return -EACCES;
1268 
1269 	/* clear any previous set[ug]id data from a previous binary */
1270 	bprm->cred->euid = current_euid();
1271 	bprm->cred->egid = current_egid();
1272 
1273 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1274 		/* Set-uid? */
1275 		if (mode & S_ISUID) {
1276 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1277 			bprm->cred->euid = inode->i_uid;
1278 		}
1279 
1280 		/* Set-gid? */
1281 		/*
1282 		 * If setgid is set but no group execute bit then this
1283 		 * is a candidate for mandatory locking, not a setgid
1284 		 * executable.
1285 		 */
1286 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1287 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1288 			bprm->cred->egid = inode->i_gid;
1289 		}
1290 	}
1291 
1292 	/* fill in binprm security blob */
1293 	retval = security_bprm_set_creds(bprm);
1294 	if (retval)
1295 		return retval;
1296 	bprm->cred_prepared = 1;
1297 
1298 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1299 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1300 }
1301 
1302 EXPORT_SYMBOL(prepare_binprm);
1303 
1304 /*
1305  * Arguments are '\0' separated strings found at the location bprm->p
1306  * points to; chop off the first by relocating brpm->p to right after
1307  * the first '\0' encountered.
1308  */
1309 int remove_arg_zero(struct linux_binprm *bprm)
1310 {
1311 	int ret = 0;
1312 	unsigned long offset;
1313 	char *kaddr;
1314 	struct page *page;
1315 
1316 	if (!bprm->argc)
1317 		return 0;
1318 
1319 	do {
1320 		offset = bprm->p & ~PAGE_MASK;
1321 		page = get_arg_page(bprm, bprm->p, 0);
1322 		if (!page) {
1323 			ret = -EFAULT;
1324 			goto out;
1325 		}
1326 		kaddr = kmap_atomic(page, KM_USER0);
1327 
1328 		for (; offset < PAGE_SIZE && kaddr[offset];
1329 				offset++, bprm->p++)
1330 			;
1331 
1332 		kunmap_atomic(kaddr, KM_USER0);
1333 		put_arg_page(page);
1334 
1335 		if (offset == PAGE_SIZE)
1336 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1337 	} while (offset == PAGE_SIZE);
1338 
1339 	bprm->p++;
1340 	bprm->argc--;
1341 	ret = 0;
1342 
1343 out:
1344 	return ret;
1345 }
1346 EXPORT_SYMBOL(remove_arg_zero);
1347 
1348 /*
1349  * cycle the list of binary formats handler, until one recognizes the image
1350  */
1351 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1352 {
1353 	unsigned int depth = bprm->recursion_depth;
1354 	int try,retval;
1355 	struct linux_binfmt *fmt;
1356 
1357 	retval = security_bprm_check(bprm);
1358 	if (retval)
1359 		return retval;
1360 
1361 	retval = audit_bprm(bprm);
1362 	if (retval)
1363 		return retval;
1364 
1365 	retval = -ENOENT;
1366 	for (try=0; try<2; try++) {
1367 		read_lock(&binfmt_lock);
1368 		list_for_each_entry(fmt, &formats, lh) {
1369 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1370 			if (!fn)
1371 				continue;
1372 			if (!try_module_get(fmt->module))
1373 				continue;
1374 			read_unlock(&binfmt_lock);
1375 			retval = fn(bprm, regs);
1376 			/*
1377 			 * Restore the depth counter to its starting value
1378 			 * in this call, so we don't have to rely on every
1379 			 * load_binary function to restore it on return.
1380 			 */
1381 			bprm->recursion_depth = depth;
1382 			if (retval >= 0) {
1383 				if (depth == 0)
1384 					tracehook_report_exec(fmt, bprm, regs);
1385 				put_binfmt(fmt);
1386 				allow_write_access(bprm->file);
1387 				if (bprm->file)
1388 					fput(bprm->file);
1389 				bprm->file = NULL;
1390 				current->did_exec = 1;
1391 				proc_exec_connector(current);
1392 				return retval;
1393 			}
1394 			read_lock(&binfmt_lock);
1395 			put_binfmt(fmt);
1396 			if (retval != -ENOEXEC || bprm->mm == NULL)
1397 				break;
1398 			if (!bprm->file) {
1399 				read_unlock(&binfmt_lock);
1400 				return retval;
1401 			}
1402 		}
1403 		read_unlock(&binfmt_lock);
1404 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1405 			break;
1406 #ifdef CONFIG_MODULES
1407 		} else {
1408 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1409 			if (printable(bprm->buf[0]) &&
1410 			    printable(bprm->buf[1]) &&
1411 			    printable(bprm->buf[2]) &&
1412 			    printable(bprm->buf[3]))
1413 				break; /* -ENOEXEC */
1414 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1415 #endif
1416 		}
1417 	}
1418 	return retval;
1419 }
1420 
1421 EXPORT_SYMBOL(search_binary_handler);
1422 
1423 /*
1424  * sys_execve() executes a new program.
1425  */
1426 static int do_execve_common(const char *filename,
1427 				struct user_arg_ptr argv,
1428 				struct user_arg_ptr envp,
1429 				struct pt_regs *regs)
1430 {
1431 	struct linux_binprm *bprm;
1432 	struct file *file;
1433 	struct files_struct *displaced;
1434 	bool clear_in_exec;
1435 	int retval;
1436 
1437 	retval = unshare_files(&displaced);
1438 	if (retval)
1439 		goto out_ret;
1440 
1441 	retval = -ENOMEM;
1442 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1443 	if (!bprm)
1444 		goto out_files;
1445 
1446 	retval = prepare_bprm_creds(bprm);
1447 	if (retval)
1448 		goto out_free;
1449 
1450 	retval = check_unsafe_exec(bprm);
1451 	if (retval < 0)
1452 		goto out_free;
1453 	clear_in_exec = retval;
1454 	current->in_execve = 1;
1455 
1456 	file = open_exec(filename);
1457 	retval = PTR_ERR(file);
1458 	if (IS_ERR(file))
1459 		goto out_unmark;
1460 
1461 	sched_exec();
1462 
1463 	bprm->file = file;
1464 	bprm->filename = filename;
1465 	bprm->interp = filename;
1466 
1467 	retval = bprm_mm_init(bprm);
1468 	if (retval)
1469 		goto out_file;
1470 
1471 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1472 	if ((retval = bprm->argc) < 0)
1473 		goto out;
1474 
1475 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1476 	if ((retval = bprm->envc) < 0)
1477 		goto out;
1478 
1479 	retval = prepare_binprm(bprm);
1480 	if (retval < 0)
1481 		goto out;
1482 
1483 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1484 	if (retval < 0)
1485 		goto out;
1486 
1487 	bprm->exec = bprm->p;
1488 	retval = copy_strings(bprm->envc, envp, bprm);
1489 	if (retval < 0)
1490 		goto out;
1491 
1492 	retval = copy_strings(bprm->argc, argv, bprm);
1493 	if (retval < 0)
1494 		goto out;
1495 
1496 	retval = search_binary_handler(bprm,regs);
1497 	if (retval < 0)
1498 		goto out;
1499 
1500 	/* execve succeeded */
1501 	current->fs->in_exec = 0;
1502 	current->in_execve = 0;
1503 	acct_update_integrals(current);
1504 	free_bprm(bprm);
1505 	if (displaced)
1506 		put_files_struct(displaced);
1507 	return retval;
1508 
1509 out:
1510 	if (bprm->mm) {
1511 		acct_arg_size(bprm, 0);
1512 		mmput(bprm->mm);
1513 	}
1514 
1515 out_file:
1516 	if (bprm->file) {
1517 		allow_write_access(bprm->file);
1518 		fput(bprm->file);
1519 	}
1520 
1521 out_unmark:
1522 	if (clear_in_exec)
1523 		current->fs->in_exec = 0;
1524 	current->in_execve = 0;
1525 
1526 out_free:
1527 	free_bprm(bprm);
1528 
1529 out_files:
1530 	if (displaced)
1531 		reset_files_struct(displaced);
1532 out_ret:
1533 	return retval;
1534 }
1535 
1536 int do_execve(const char *filename,
1537 	const char __user *const __user *__argv,
1538 	const char __user *const __user *__envp,
1539 	struct pt_regs *regs)
1540 {
1541 	struct user_arg_ptr argv = { .ptr.native = __argv };
1542 	struct user_arg_ptr envp = { .ptr.native = __envp };
1543 	return do_execve_common(filename, argv, envp, regs);
1544 }
1545 
1546 #ifdef CONFIG_COMPAT
1547 int compat_do_execve(char *filename,
1548 	compat_uptr_t __user *__argv,
1549 	compat_uptr_t __user *__envp,
1550 	struct pt_regs *regs)
1551 {
1552 	struct user_arg_ptr argv = {
1553 		.is_compat = true,
1554 		.ptr.compat = __argv,
1555 	};
1556 	struct user_arg_ptr envp = {
1557 		.is_compat = true,
1558 		.ptr.compat = __envp,
1559 	};
1560 	return do_execve_common(filename, argv, envp, regs);
1561 }
1562 #endif
1563 
1564 void set_binfmt(struct linux_binfmt *new)
1565 {
1566 	struct mm_struct *mm = current->mm;
1567 
1568 	if (mm->binfmt)
1569 		module_put(mm->binfmt->module);
1570 
1571 	mm->binfmt = new;
1572 	if (new)
1573 		__module_get(new->module);
1574 }
1575 
1576 EXPORT_SYMBOL(set_binfmt);
1577 
1578 static int expand_corename(struct core_name *cn)
1579 {
1580 	char *old_corename = cn->corename;
1581 
1582 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1583 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1584 
1585 	if (!cn->corename) {
1586 		kfree(old_corename);
1587 		return -ENOMEM;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1594 {
1595 	char *cur;
1596 	int need;
1597 	int ret;
1598 	va_list arg;
1599 
1600 	va_start(arg, fmt);
1601 	need = vsnprintf(NULL, 0, fmt, arg);
1602 	va_end(arg);
1603 
1604 	if (likely(need < cn->size - cn->used - 1))
1605 		goto out_printf;
1606 
1607 	ret = expand_corename(cn);
1608 	if (ret)
1609 		goto expand_fail;
1610 
1611 out_printf:
1612 	cur = cn->corename + cn->used;
1613 	va_start(arg, fmt);
1614 	vsnprintf(cur, need + 1, fmt, arg);
1615 	va_end(arg);
1616 	cn->used += need;
1617 	return 0;
1618 
1619 expand_fail:
1620 	return ret;
1621 }
1622 
1623 static int cn_print_exe_file(struct core_name *cn)
1624 {
1625 	struct file *exe_file;
1626 	char *pathbuf, *path, *p;
1627 	int ret;
1628 
1629 	exe_file = get_mm_exe_file(current->mm);
1630 	if (!exe_file)
1631 		return cn_printf(cn, "(unknown)");
1632 
1633 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1634 	if (!pathbuf) {
1635 		ret = -ENOMEM;
1636 		goto put_exe_file;
1637 	}
1638 
1639 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1640 	if (IS_ERR(path)) {
1641 		ret = PTR_ERR(path);
1642 		goto free_buf;
1643 	}
1644 
1645 	for (p = path; *p; p++)
1646 		if (*p == '/')
1647 			*p = '!';
1648 
1649 	ret = cn_printf(cn, "%s", path);
1650 
1651 free_buf:
1652 	kfree(pathbuf);
1653 put_exe_file:
1654 	fput(exe_file);
1655 	return ret;
1656 }
1657 
1658 /* format_corename will inspect the pattern parameter, and output a
1659  * name into corename, which must have space for at least
1660  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1661  */
1662 static int format_corename(struct core_name *cn, long signr)
1663 {
1664 	const struct cred *cred = current_cred();
1665 	const char *pat_ptr = core_pattern;
1666 	int ispipe = (*pat_ptr == '|');
1667 	int pid_in_pattern = 0;
1668 	int err = 0;
1669 
1670 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1671 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1672 	cn->used = 0;
1673 
1674 	if (!cn->corename)
1675 		return -ENOMEM;
1676 
1677 	/* Repeat as long as we have more pattern to process and more output
1678 	   space */
1679 	while (*pat_ptr) {
1680 		if (*pat_ptr != '%') {
1681 			if (*pat_ptr == 0)
1682 				goto out;
1683 			err = cn_printf(cn, "%c", *pat_ptr++);
1684 		} else {
1685 			switch (*++pat_ptr) {
1686 			/* single % at the end, drop that */
1687 			case 0:
1688 				goto out;
1689 			/* Double percent, output one percent */
1690 			case '%':
1691 				err = cn_printf(cn, "%c", '%');
1692 				break;
1693 			/* pid */
1694 			case 'p':
1695 				pid_in_pattern = 1;
1696 				err = cn_printf(cn, "%d",
1697 					      task_tgid_vnr(current));
1698 				break;
1699 			/* uid */
1700 			case 'u':
1701 				err = cn_printf(cn, "%d", cred->uid);
1702 				break;
1703 			/* gid */
1704 			case 'g':
1705 				err = cn_printf(cn, "%d", cred->gid);
1706 				break;
1707 			/* signal that caused the coredump */
1708 			case 's':
1709 				err = cn_printf(cn, "%ld", signr);
1710 				break;
1711 			/* UNIX time of coredump */
1712 			case 't': {
1713 				struct timeval tv;
1714 				do_gettimeofday(&tv);
1715 				err = cn_printf(cn, "%lu", tv.tv_sec);
1716 				break;
1717 			}
1718 			/* hostname */
1719 			case 'h':
1720 				down_read(&uts_sem);
1721 				err = cn_printf(cn, "%s",
1722 					      utsname()->nodename);
1723 				up_read(&uts_sem);
1724 				break;
1725 			/* executable */
1726 			case 'e':
1727 				err = cn_printf(cn, "%s", current->comm);
1728 				break;
1729 			case 'E':
1730 				err = cn_print_exe_file(cn);
1731 				break;
1732 			/* core limit size */
1733 			case 'c':
1734 				err = cn_printf(cn, "%lu",
1735 					      rlimit(RLIMIT_CORE));
1736 				break;
1737 			default:
1738 				break;
1739 			}
1740 			++pat_ptr;
1741 		}
1742 
1743 		if (err)
1744 			return err;
1745 	}
1746 
1747 	/* Backward compatibility with core_uses_pid:
1748 	 *
1749 	 * If core_pattern does not include a %p (as is the default)
1750 	 * and core_uses_pid is set, then .%pid will be appended to
1751 	 * the filename. Do not do this for piped commands. */
1752 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1753 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1754 		if (err)
1755 			return err;
1756 	}
1757 out:
1758 	return ispipe;
1759 }
1760 
1761 static int zap_process(struct task_struct *start, int exit_code)
1762 {
1763 	struct task_struct *t;
1764 	int nr = 0;
1765 
1766 	start->signal->flags = SIGNAL_GROUP_EXIT;
1767 	start->signal->group_exit_code = exit_code;
1768 	start->signal->group_stop_count = 0;
1769 
1770 	t = start;
1771 	do {
1772 		task_clear_group_stop_pending(t);
1773 		if (t != current && t->mm) {
1774 			sigaddset(&t->pending.signal, SIGKILL);
1775 			signal_wake_up(t, 1);
1776 			nr++;
1777 		}
1778 	} while_each_thread(start, t);
1779 
1780 	return nr;
1781 }
1782 
1783 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1784 				struct core_state *core_state, int exit_code)
1785 {
1786 	struct task_struct *g, *p;
1787 	unsigned long flags;
1788 	int nr = -EAGAIN;
1789 
1790 	spin_lock_irq(&tsk->sighand->siglock);
1791 	if (!signal_group_exit(tsk->signal)) {
1792 		mm->core_state = core_state;
1793 		nr = zap_process(tsk, exit_code);
1794 	}
1795 	spin_unlock_irq(&tsk->sighand->siglock);
1796 	if (unlikely(nr < 0))
1797 		return nr;
1798 
1799 	if (atomic_read(&mm->mm_users) == nr + 1)
1800 		goto done;
1801 	/*
1802 	 * We should find and kill all tasks which use this mm, and we should
1803 	 * count them correctly into ->nr_threads. We don't take tasklist
1804 	 * lock, but this is safe wrt:
1805 	 *
1806 	 * fork:
1807 	 *	None of sub-threads can fork after zap_process(leader). All
1808 	 *	processes which were created before this point should be
1809 	 *	visible to zap_threads() because copy_process() adds the new
1810 	 *	process to the tail of init_task.tasks list, and lock/unlock
1811 	 *	of ->siglock provides a memory barrier.
1812 	 *
1813 	 * do_exit:
1814 	 *	The caller holds mm->mmap_sem. This means that the task which
1815 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1816 	 *	its ->mm.
1817 	 *
1818 	 * de_thread:
1819 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1820 	 *	we must see either old or new leader, this does not matter.
1821 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1822 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1823 	 *	it can't fail.
1824 	 *
1825 	 *	Note also that "g" can be the old leader with ->mm == NULL
1826 	 *	and already unhashed and thus removed from ->thread_group.
1827 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1828 	 *	clear the ->next pointer, we will find the new leader via
1829 	 *	next_thread().
1830 	 */
1831 	rcu_read_lock();
1832 	for_each_process(g) {
1833 		if (g == tsk->group_leader)
1834 			continue;
1835 		if (g->flags & PF_KTHREAD)
1836 			continue;
1837 		p = g;
1838 		do {
1839 			if (p->mm) {
1840 				if (unlikely(p->mm == mm)) {
1841 					lock_task_sighand(p, &flags);
1842 					nr += zap_process(p, exit_code);
1843 					unlock_task_sighand(p, &flags);
1844 				}
1845 				break;
1846 			}
1847 		} while_each_thread(g, p);
1848 	}
1849 	rcu_read_unlock();
1850 done:
1851 	atomic_set(&core_state->nr_threads, nr);
1852 	return nr;
1853 }
1854 
1855 static int coredump_wait(int exit_code, struct core_state *core_state)
1856 {
1857 	struct task_struct *tsk = current;
1858 	struct mm_struct *mm = tsk->mm;
1859 	struct completion *vfork_done;
1860 	int core_waiters = -EBUSY;
1861 
1862 	init_completion(&core_state->startup);
1863 	core_state->dumper.task = tsk;
1864 	core_state->dumper.next = NULL;
1865 
1866 	down_write(&mm->mmap_sem);
1867 	if (!mm->core_state)
1868 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1869 	up_write(&mm->mmap_sem);
1870 
1871 	if (unlikely(core_waiters < 0))
1872 		goto fail;
1873 
1874 	/*
1875 	 * Make sure nobody is waiting for us to release the VM,
1876 	 * otherwise we can deadlock when we wait on each other
1877 	 */
1878 	vfork_done = tsk->vfork_done;
1879 	if (vfork_done) {
1880 		tsk->vfork_done = NULL;
1881 		complete(vfork_done);
1882 	}
1883 
1884 	if (core_waiters)
1885 		wait_for_completion(&core_state->startup);
1886 fail:
1887 	return core_waiters;
1888 }
1889 
1890 static void coredump_finish(struct mm_struct *mm)
1891 {
1892 	struct core_thread *curr, *next;
1893 	struct task_struct *task;
1894 
1895 	next = mm->core_state->dumper.next;
1896 	while ((curr = next) != NULL) {
1897 		next = curr->next;
1898 		task = curr->task;
1899 		/*
1900 		 * see exit_mm(), curr->task must not see
1901 		 * ->task == NULL before we read ->next.
1902 		 */
1903 		smp_mb();
1904 		curr->task = NULL;
1905 		wake_up_process(task);
1906 	}
1907 
1908 	mm->core_state = NULL;
1909 }
1910 
1911 /*
1912  * set_dumpable converts traditional three-value dumpable to two flags and
1913  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1914  * these bits are not changed atomically.  So get_dumpable can observe the
1915  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1916  * return either old dumpable or new one by paying attention to the order of
1917  * modifying the bits.
1918  *
1919  * dumpable |   mm->flags (binary)
1920  * old  new | initial interim  final
1921  * ---------+-----------------------
1922  *  0    1  |   00      01      01
1923  *  0    2  |   00      10(*)   11
1924  *  1    0  |   01      00      00
1925  *  1    2  |   01      11      11
1926  *  2    0  |   11      10(*)   00
1927  *  2    1  |   11      11      01
1928  *
1929  * (*) get_dumpable regards interim value of 10 as 11.
1930  */
1931 void set_dumpable(struct mm_struct *mm, int value)
1932 {
1933 	switch (value) {
1934 	case 0:
1935 		clear_bit(MMF_DUMPABLE, &mm->flags);
1936 		smp_wmb();
1937 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1938 		break;
1939 	case 1:
1940 		set_bit(MMF_DUMPABLE, &mm->flags);
1941 		smp_wmb();
1942 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1943 		break;
1944 	case 2:
1945 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1946 		smp_wmb();
1947 		set_bit(MMF_DUMPABLE, &mm->flags);
1948 		break;
1949 	}
1950 }
1951 
1952 static int __get_dumpable(unsigned long mm_flags)
1953 {
1954 	int ret;
1955 
1956 	ret = mm_flags & MMF_DUMPABLE_MASK;
1957 	return (ret >= 2) ? 2 : ret;
1958 }
1959 
1960 int get_dumpable(struct mm_struct *mm)
1961 {
1962 	return __get_dumpable(mm->flags);
1963 }
1964 
1965 static void wait_for_dump_helpers(struct file *file)
1966 {
1967 	struct pipe_inode_info *pipe;
1968 
1969 	pipe = file->f_path.dentry->d_inode->i_pipe;
1970 
1971 	pipe_lock(pipe);
1972 	pipe->readers++;
1973 	pipe->writers--;
1974 
1975 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1976 		wake_up_interruptible_sync(&pipe->wait);
1977 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1978 		pipe_wait(pipe);
1979 	}
1980 
1981 	pipe->readers--;
1982 	pipe->writers++;
1983 	pipe_unlock(pipe);
1984 
1985 }
1986 
1987 
1988 /*
1989  * umh_pipe_setup
1990  * helper function to customize the process used
1991  * to collect the core in userspace.  Specifically
1992  * it sets up a pipe and installs it as fd 0 (stdin)
1993  * for the process.  Returns 0 on success, or
1994  * PTR_ERR on failure.
1995  * Note that it also sets the core limit to 1.  This
1996  * is a special value that we use to trap recursive
1997  * core dumps
1998  */
1999 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2000 {
2001 	struct file *rp, *wp;
2002 	struct fdtable *fdt;
2003 	struct coredump_params *cp = (struct coredump_params *)info->data;
2004 	struct files_struct *cf = current->files;
2005 
2006 	wp = create_write_pipe(0);
2007 	if (IS_ERR(wp))
2008 		return PTR_ERR(wp);
2009 
2010 	rp = create_read_pipe(wp, 0);
2011 	if (IS_ERR(rp)) {
2012 		free_write_pipe(wp);
2013 		return PTR_ERR(rp);
2014 	}
2015 
2016 	cp->file = wp;
2017 
2018 	sys_close(0);
2019 	fd_install(0, rp);
2020 	spin_lock(&cf->file_lock);
2021 	fdt = files_fdtable(cf);
2022 	FD_SET(0, fdt->open_fds);
2023 	FD_CLR(0, fdt->close_on_exec);
2024 	spin_unlock(&cf->file_lock);
2025 
2026 	/* and disallow core files too */
2027 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2028 
2029 	return 0;
2030 }
2031 
2032 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2033 {
2034 	struct core_state core_state;
2035 	struct core_name cn;
2036 	struct mm_struct *mm = current->mm;
2037 	struct linux_binfmt * binfmt;
2038 	const struct cred *old_cred;
2039 	struct cred *cred;
2040 	int retval = 0;
2041 	int flag = 0;
2042 	int ispipe;
2043 	static atomic_t core_dump_count = ATOMIC_INIT(0);
2044 	struct coredump_params cprm = {
2045 		.signr = signr,
2046 		.regs = regs,
2047 		.limit = rlimit(RLIMIT_CORE),
2048 		/*
2049 		 * We must use the same mm->flags while dumping core to avoid
2050 		 * inconsistency of bit flags, since this flag is not protected
2051 		 * by any locks.
2052 		 */
2053 		.mm_flags = mm->flags,
2054 	};
2055 
2056 	audit_core_dumps(signr);
2057 
2058 	binfmt = mm->binfmt;
2059 	if (!binfmt || !binfmt->core_dump)
2060 		goto fail;
2061 	if (!__get_dumpable(cprm.mm_flags))
2062 		goto fail;
2063 
2064 	cred = prepare_creds();
2065 	if (!cred)
2066 		goto fail;
2067 	/*
2068 	 *	We cannot trust fsuid as being the "true" uid of the
2069 	 *	process nor do we know its entire history. We only know it
2070 	 *	was tainted so we dump it as root in mode 2.
2071 	 */
2072 	if (__get_dumpable(cprm.mm_flags) == 2) {
2073 		/* Setuid core dump mode */
2074 		flag = O_EXCL;		/* Stop rewrite attacks */
2075 		cred->fsuid = 0;	/* Dump root private */
2076 	}
2077 
2078 	retval = coredump_wait(exit_code, &core_state);
2079 	if (retval < 0)
2080 		goto fail_creds;
2081 
2082 	old_cred = override_creds(cred);
2083 
2084 	/*
2085 	 * Clear any false indication of pending signals that might
2086 	 * be seen by the filesystem code called to write the core file.
2087 	 */
2088 	clear_thread_flag(TIF_SIGPENDING);
2089 
2090 	ispipe = format_corename(&cn, signr);
2091 
2092 	if (ispipe == -ENOMEM) {
2093 		printk(KERN_WARNING "format_corename failed\n");
2094 		printk(KERN_WARNING "Aborting core\n");
2095 		goto fail_corename;
2096 	}
2097 
2098  	if (ispipe) {
2099 		int dump_count;
2100 		char **helper_argv;
2101 
2102 		if (cprm.limit == 1) {
2103 			/*
2104 			 * Normally core limits are irrelevant to pipes, since
2105 			 * we're not writing to the file system, but we use
2106 			 * cprm.limit of 1 here as a speacial value. Any
2107 			 * non-1 limit gets set to RLIM_INFINITY below, but
2108 			 * a limit of 0 skips the dump.  This is a consistent
2109 			 * way to catch recursive crashes.  We can still crash
2110 			 * if the core_pattern binary sets RLIM_CORE =  !1
2111 			 * but it runs as root, and can do lots of stupid things
2112 			 * Note that we use task_tgid_vnr here to grab the pid
2113 			 * of the process group leader.  That way we get the
2114 			 * right pid if a thread in a multi-threaded
2115 			 * core_pattern process dies.
2116 			 */
2117 			printk(KERN_WARNING
2118 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2119 				task_tgid_vnr(current), current->comm);
2120 			printk(KERN_WARNING "Aborting core\n");
2121 			goto fail_unlock;
2122 		}
2123 		cprm.limit = RLIM_INFINITY;
2124 
2125 		dump_count = atomic_inc_return(&core_dump_count);
2126 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2127 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2128 			       task_tgid_vnr(current), current->comm);
2129 			printk(KERN_WARNING "Skipping core dump\n");
2130 			goto fail_dropcount;
2131 		}
2132 
2133 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2134 		if (!helper_argv) {
2135 			printk(KERN_WARNING "%s failed to allocate memory\n",
2136 			       __func__);
2137 			goto fail_dropcount;
2138 		}
2139 
2140 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2141 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2142 					NULL, &cprm);
2143 		argv_free(helper_argv);
2144 		if (retval) {
2145  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2146 			       cn.corename);
2147 			goto close_fail;
2148  		}
2149 	} else {
2150 		struct inode *inode;
2151 
2152 		if (cprm.limit < binfmt->min_coredump)
2153 			goto fail_unlock;
2154 
2155 		cprm.file = filp_open(cn.corename,
2156 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2157 				 0600);
2158 		if (IS_ERR(cprm.file))
2159 			goto fail_unlock;
2160 
2161 		inode = cprm.file->f_path.dentry->d_inode;
2162 		if (inode->i_nlink > 1)
2163 			goto close_fail;
2164 		if (d_unhashed(cprm.file->f_path.dentry))
2165 			goto close_fail;
2166 		/*
2167 		 * AK: actually i see no reason to not allow this for named
2168 		 * pipes etc, but keep the previous behaviour for now.
2169 		 */
2170 		if (!S_ISREG(inode->i_mode))
2171 			goto close_fail;
2172 		/*
2173 		 * Dont allow local users get cute and trick others to coredump
2174 		 * into their pre-created files.
2175 		 */
2176 		if (inode->i_uid != current_fsuid())
2177 			goto close_fail;
2178 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2179 			goto close_fail;
2180 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2181 			goto close_fail;
2182 	}
2183 
2184 	retval = binfmt->core_dump(&cprm);
2185 	if (retval)
2186 		current->signal->group_exit_code |= 0x80;
2187 
2188 	if (ispipe && core_pipe_limit)
2189 		wait_for_dump_helpers(cprm.file);
2190 close_fail:
2191 	if (cprm.file)
2192 		filp_close(cprm.file, NULL);
2193 fail_dropcount:
2194 	if (ispipe)
2195 		atomic_dec(&core_dump_count);
2196 fail_unlock:
2197 	kfree(cn.corename);
2198 fail_corename:
2199 	coredump_finish(mm);
2200 	revert_creds(old_cred);
2201 fail_creds:
2202 	put_cred(cred);
2203 fail:
2204 	return;
2205 }
2206 
2207 /*
2208  * Core dumping helper functions.  These are the only things you should
2209  * do on a core-file: use only these functions to write out all the
2210  * necessary info.
2211  */
2212 int dump_write(struct file *file, const void *addr, int nr)
2213 {
2214 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2215 }
2216 EXPORT_SYMBOL(dump_write);
2217 
2218 int dump_seek(struct file *file, loff_t off)
2219 {
2220 	int ret = 1;
2221 
2222 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2223 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2224 			return 0;
2225 	} else {
2226 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2227 
2228 		if (!buf)
2229 			return 0;
2230 		while (off > 0) {
2231 			unsigned long n = off;
2232 
2233 			if (n > PAGE_SIZE)
2234 				n = PAGE_SIZE;
2235 			if (!dump_write(file, buf, n)) {
2236 				ret = 0;
2237 				break;
2238 			}
2239 			off -= n;
2240 		}
2241 		free_page((unsigned long)buf);
2242 	}
2243 	return ret;
2244 }
2245 EXPORT_SYMBOL(dump_seek);
2246