xref: /openbmc/linux/fs/exec.c (revision e1f7c9ee)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 
64 #include <trace/events/task.h>
65 #include "internal.h"
66 
67 #include <trace/events/sched.h>
68 
69 int suid_dumpable = 0;
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	BUG_ON(!fmt);
77 	if (WARN_ON(!fmt->load_binary))
78 		return;
79 	write_lock(&binfmt_lock);
80 	insert ? list_add(&fmt->lh, &formats) :
81 		 list_add_tail(&fmt->lh, &formats);
82 	write_unlock(&binfmt_lock);
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 #ifdef CONFIG_USELIB
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110 	struct linux_binfmt *fmt;
111 	struct file *file;
112 	struct filename *tmp = getname(library);
113 	int error = PTR_ERR(tmp);
114 	static const struct open_flags uselib_flags = {
115 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 		.intent = LOOKUP_OPEN,
118 		.lookup_flags = LOOKUP_FOLLOW,
119 	};
120 
121 	if (IS_ERR(tmp))
122 		goto out;
123 
124 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 	putname(tmp);
126 	error = PTR_ERR(file);
127 	if (IS_ERR(file))
128 		goto out;
129 
130 	error = -EINVAL;
131 	if (!S_ISREG(file_inode(file)->i_mode))
132 		goto exit;
133 
134 	error = -EACCES;
135 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 		goto exit;
137 
138 	fsnotify_open(file);
139 
140 	error = -ENOEXEC;
141 
142 	read_lock(&binfmt_lock);
143 	list_for_each_entry(fmt, &formats, lh) {
144 		if (!fmt->load_shlib)
145 			continue;
146 		if (!try_module_get(fmt->module))
147 			continue;
148 		read_unlock(&binfmt_lock);
149 		error = fmt->load_shlib(file);
150 		read_lock(&binfmt_lock);
151 		put_binfmt(fmt);
152 		if (error != -ENOEXEC)
153 			break;
154 	}
155 	read_unlock(&binfmt_lock);
156 exit:
157 	fput(file);
158 out:
159   	return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162 
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172 	struct mm_struct *mm = current->mm;
173 	long diff = (long)(pages - bprm->vma_pages);
174 
175 	if (!mm || !diff)
176 		return;
177 
178 	bprm->vma_pages = pages;
179 	add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181 
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 		int write)
184 {
185 	struct page *page;
186 	int ret;
187 
188 #ifdef CONFIG_STACK_GROWSUP
189 	if (write) {
190 		ret = expand_downwards(bprm->vma, pos);
191 		if (ret < 0)
192 			return NULL;
193 	}
194 #endif
195 	ret = get_user_pages(current, bprm->mm, pos,
196 			1, write, 1, &page, NULL);
197 	if (ret <= 0)
198 		return NULL;
199 
200 	if (write) {
201 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 		struct rlimit *rlim;
203 
204 		acct_arg_size(bprm, size / PAGE_SIZE);
205 
206 		/*
207 		 * We've historically supported up to 32 pages (ARG_MAX)
208 		 * of argument strings even with small stacks
209 		 */
210 		if (size <= ARG_MAX)
211 			return page;
212 
213 		/*
214 		 * Limit to 1/4-th the stack size for the argv+env strings.
215 		 * This ensures that:
216 		 *  - the remaining binfmt code will not run out of stack space,
217 		 *  - the program will have a reasonable amount of stack left
218 		 *    to work from.
219 		 */
220 		rlim = current->signal->rlim;
221 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 			put_page(page);
223 			return NULL;
224 		}
225 	}
226 
227 	return page;
228 }
229 
230 static void put_arg_page(struct page *page)
231 {
232 	put_page(page);
233 }
234 
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238 
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242 
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 		struct page *page)
245 {
246 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248 
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 	int err;
252 	struct vm_area_struct *vma = NULL;
253 	struct mm_struct *mm = bprm->mm;
254 
255 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 	if (!vma)
257 		return -ENOMEM;
258 
259 	down_write(&mm->mmap_sem);
260 	vma->vm_mm = mm;
261 
262 	/*
263 	 * Place the stack at the largest stack address the architecture
264 	 * supports. Later, we'll move this to an appropriate place. We don't
265 	 * use STACK_TOP because that can depend on attributes which aren't
266 	 * configured yet.
267 	 */
268 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 	vma->vm_end = STACK_TOP_MAX;
270 	vma->vm_start = vma->vm_end - PAGE_SIZE;
271 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 	INIT_LIST_HEAD(&vma->anon_vma_chain);
274 
275 	err = insert_vm_struct(mm, vma);
276 	if (err)
277 		goto err;
278 
279 	mm->stack_vm = mm->total_vm = 1;
280 	up_write(&mm->mmap_sem);
281 	bprm->p = vma->vm_end - sizeof(void *);
282 	return 0;
283 err:
284 	up_write(&mm->mmap_sem);
285 	bprm->vma = NULL;
286 	kmem_cache_free(vm_area_cachep, vma);
287 	return err;
288 }
289 
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292 	return len <= MAX_ARG_STRLEN;
293 }
294 
295 #else
296 
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300 
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 		int write)
303 {
304 	struct page *page;
305 
306 	page = bprm->page[pos / PAGE_SIZE];
307 	if (!page && write) {
308 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 		if (!page)
310 			return NULL;
311 		bprm->page[pos / PAGE_SIZE] = page;
312 	}
313 
314 	return page;
315 }
316 
317 static void put_arg_page(struct page *page)
318 {
319 }
320 
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323 	if (bprm->page[i]) {
324 		__free_page(bprm->page[i]);
325 		bprm->page[i] = NULL;
326 	}
327 }
328 
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331 	int i;
332 
333 	for (i = 0; i < MAX_ARG_PAGES; i++)
334 		free_arg_page(bprm, i);
335 }
336 
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 		struct page *page)
339 {
340 }
341 
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 	return 0;
346 }
347 
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350 	return len <= bprm->p;
351 }
352 
353 #endif /* CONFIG_MMU */
354 
355 /*
356  * Create a new mm_struct and populate it with a temporary stack
357  * vm_area_struct.  We don't have enough context at this point to set the stack
358  * flags, permissions, and offset, so we use temporary values.  We'll update
359  * them later in setup_arg_pages().
360  */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	int err;
364 	struct mm_struct *mm = NULL;
365 
366 	bprm->mm = mm = mm_alloc();
367 	err = -ENOMEM;
368 	if (!mm)
369 		goto err;
370 
371 	err = __bprm_mm_init(bprm);
372 	if (err)
373 		goto err;
374 
375 	return 0;
376 
377 err:
378 	if (mm) {
379 		bprm->mm = NULL;
380 		mmdrop(mm);
381 	}
382 
383 	return err;
384 }
385 
386 struct user_arg_ptr {
387 #ifdef CONFIG_COMPAT
388 	bool is_compat;
389 #endif
390 	union {
391 		const char __user *const __user *native;
392 #ifdef CONFIG_COMPAT
393 		const compat_uptr_t __user *compat;
394 #endif
395 	} ptr;
396 };
397 
398 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
399 {
400 	const char __user *native;
401 
402 #ifdef CONFIG_COMPAT
403 	if (unlikely(argv.is_compat)) {
404 		compat_uptr_t compat;
405 
406 		if (get_user(compat, argv.ptr.compat + nr))
407 			return ERR_PTR(-EFAULT);
408 
409 		return compat_ptr(compat);
410 	}
411 #endif
412 
413 	if (get_user(native, argv.ptr.native + nr))
414 		return ERR_PTR(-EFAULT);
415 
416 	return native;
417 }
418 
419 /*
420  * count() counts the number of strings in array ARGV.
421  */
422 static int count(struct user_arg_ptr argv, int max)
423 {
424 	int i = 0;
425 
426 	if (argv.ptr.native != NULL) {
427 		for (;;) {
428 			const char __user *p = get_user_arg_ptr(argv, i);
429 
430 			if (!p)
431 				break;
432 
433 			if (IS_ERR(p))
434 				return -EFAULT;
435 
436 			if (i >= max)
437 				return -E2BIG;
438 			++i;
439 
440 			if (fatal_signal_pending(current))
441 				return -ERESTARTNOHAND;
442 			cond_resched();
443 		}
444 	}
445 	return i;
446 }
447 
448 /*
449  * 'copy_strings()' copies argument/environment strings from the old
450  * processes's memory to the new process's stack.  The call to get_user_pages()
451  * ensures the destination page is created and not swapped out.
452  */
453 static int copy_strings(int argc, struct user_arg_ptr argv,
454 			struct linux_binprm *bprm)
455 {
456 	struct page *kmapped_page = NULL;
457 	char *kaddr = NULL;
458 	unsigned long kpos = 0;
459 	int ret;
460 
461 	while (argc-- > 0) {
462 		const char __user *str;
463 		int len;
464 		unsigned long pos;
465 
466 		ret = -EFAULT;
467 		str = get_user_arg_ptr(argv, argc);
468 		if (IS_ERR(str))
469 			goto out;
470 
471 		len = strnlen_user(str, MAX_ARG_STRLEN);
472 		if (!len)
473 			goto out;
474 
475 		ret = -E2BIG;
476 		if (!valid_arg_len(bprm, len))
477 			goto out;
478 
479 		/* We're going to work our way backwords. */
480 		pos = bprm->p;
481 		str += len;
482 		bprm->p -= len;
483 
484 		while (len > 0) {
485 			int offset, bytes_to_copy;
486 
487 			if (fatal_signal_pending(current)) {
488 				ret = -ERESTARTNOHAND;
489 				goto out;
490 			}
491 			cond_resched();
492 
493 			offset = pos % PAGE_SIZE;
494 			if (offset == 0)
495 				offset = PAGE_SIZE;
496 
497 			bytes_to_copy = offset;
498 			if (bytes_to_copy > len)
499 				bytes_to_copy = len;
500 
501 			offset -= bytes_to_copy;
502 			pos -= bytes_to_copy;
503 			str -= bytes_to_copy;
504 			len -= bytes_to_copy;
505 
506 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
507 				struct page *page;
508 
509 				page = get_arg_page(bprm, pos, 1);
510 				if (!page) {
511 					ret = -E2BIG;
512 					goto out;
513 				}
514 
515 				if (kmapped_page) {
516 					flush_kernel_dcache_page(kmapped_page);
517 					kunmap(kmapped_page);
518 					put_arg_page(kmapped_page);
519 				}
520 				kmapped_page = page;
521 				kaddr = kmap(kmapped_page);
522 				kpos = pos & PAGE_MASK;
523 				flush_arg_page(bprm, kpos, kmapped_page);
524 			}
525 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
526 				ret = -EFAULT;
527 				goto out;
528 			}
529 		}
530 	}
531 	ret = 0;
532 out:
533 	if (kmapped_page) {
534 		flush_kernel_dcache_page(kmapped_page);
535 		kunmap(kmapped_page);
536 		put_arg_page(kmapped_page);
537 	}
538 	return ret;
539 }
540 
541 /*
542  * Like copy_strings, but get argv and its values from kernel memory.
543  */
544 int copy_strings_kernel(int argc, const char *const *__argv,
545 			struct linux_binprm *bprm)
546 {
547 	int r;
548 	mm_segment_t oldfs = get_fs();
549 	struct user_arg_ptr argv = {
550 		.ptr.native = (const char __user *const  __user *)__argv,
551 	};
552 
553 	set_fs(KERNEL_DS);
554 	r = copy_strings(argc, argv, bprm);
555 	set_fs(oldfs);
556 
557 	return r;
558 }
559 EXPORT_SYMBOL(copy_strings_kernel);
560 
561 #ifdef CONFIG_MMU
562 
563 /*
564  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
565  * the binfmt code determines where the new stack should reside, we shift it to
566  * its final location.  The process proceeds as follows:
567  *
568  * 1) Use shift to calculate the new vma endpoints.
569  * 2) Extend vma to cover both the old and new ranges.  This ensures the
570  *    arguments passed to subsequent functions are consistent.
571  * 3) Move vma's page tables to the new range.
572  * 4) Free up any cleared pgd range.
573  * 5) Shrink the vma to cover only the new range.
574  */
575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
576 {
577 	struct mm_struct *mm = vma->vm_mm;
578 	unsigned long old_start = vma->vm_start;
579 	unsigned long old_end = vma->vm_end;
580 	unsigned long length = old_end - old_start;
581 	unsigned long new_start = old_start - shift;
582 	unsigned long new_end = old_end - shift;
583 	struct mmu_gather tlb;
584 
585 	BUG_ON(new_start > new_end);
586 
587 	/*
588 	 * ensure there are no vmas between where we want to go
589 	 * and where we are
590 	 */
591 	if (vma != find_vma(mm, new_start))
592 		return -EFAULT;
593 
594 	/*
595 	 * cover the whole range: [new_start, old_end)
596 	 */
597 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
598 		return -ENOMEM;
599 
600 	/*
601 	 * move the page tables downwards, on failure we rely on
602 	 * process cleanup to remove whatever mess we made.
603 	 */
604 	if (length != move_page_tables(vma, old_start,
605 				       vma, new_start, length, false))
606 		return -ENOMEM;
607 
608 	lru_add_drain();
609 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
610 	if (new_end > old_start) {
611 		/*
612 		 * when the old and new regions overlap clear from new_end.
613 		 */
614 		free_pgd_range(&tlb, new_end, old_end, new_end,
615 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
616 	} else {
617 		/*
618 		 * otherwise, clean from old_start; this is done to not touch
619 		 * the address space in [new_end, old_start) some architectures
620 		 * have constraints on va-space that make this illegal (IA64) -
621 		 * for the others its just a little faster.
622 		 */
623 		free_pgd_range(&tlb, old_start, old_end, new_end,
624 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
625 	}
626 	tlb_finish_mmu(&tlb, old_start, old_end);
627 
628 	/*
629 	 * Shrink the vma to just the new range.  Always succeeds.
630 	 */
631 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
632 
633 	return 0;
634 }
635 
636 /*
637  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
638  * the stack is optionally relocated, and some extra space is added.
639  */
640 int setup_arg_pages(struct linux_binprm *bprm,
641 		    unsigned long stack_top,
642 		    int executable_stack)
643 {
644 	unsigned long ret;
645 	unsigned long stack_shift;
646 	struct mm_struct *mm = current->mm;
647 	struct vm_area_struct *vma = bprm->vma;
648 	struct vm_area_struct *prev = NULL;
649 	unsigned long vm_flags;
650 	unsigned long stack_base;
651 	unsigned long stack_size;
652 	unsigned long stack_expand;
653 	unsigned long rlim_stack;
654 
655 #ifdef CONFIG_STACK_GROWSUP
656 	/* Limit stack size */
657 	stack_base = rlimit_max(RLIMIT_STACK);
658 	if (stack_base > STACK_SIZE_MAX)
659 		stack_base = STACK_SIZE_MAX;
660 
661 	/* Make sure we didn't let the argument array grow too large. */
662 	if (vma->vm_end - vma->vm_start > stack_base)
663 		return -ENOMEM;
664 
665 	stack_base = PAGE_ALIGN(stack_top - stack_base);
666 
667 	stack_shift = vma->vm_start - stack_base;
668 	mm->arg_start = bprm->p - stack_shift;
669 	bprm->p = vma->vm_end - stack_shift;
670 #else
671 	stack_top = arch_align_stack(stack_top);
672 	stack_top = PAGE_ALIGN(stack_top);
673 
674 	if (unlikely(stack_top < mmap_min_addr) ||
675 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
676 		return -ENOMEM;
677 
678 	stack_shift = vma->vm_end - stack_top;
679 
680 	bprm->p -= stack_shift;
681 	mm->arg_start = bprm->p;
682 #endif
683 
684 	if (bprm->loader)
685 		bprm->loader -= stack_shift;
686 	bprm->exec -= stack_shift;
687 
688 	down_write(&mm->mmap_sem);
689 	vm_flags = VM_STACK_FLAGS;
690 
691 	/*
692 	 * Adjust stack execute permissions; explicitly enable for
693 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
694 	 * (arch default) otherwise.
695 	 */
696 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
697 		vm_flags |= VM_EXEC;
698 	else if (executable_stack == EXSTACK_DISABLE_X)
699 		vm_flags &= ~VM_EXEC;
700 	vm_flags |= mm->def_flags;
701 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
702 
703 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
704 			vm_flags);
705 	if (ret)
706 		goto out_unlock;
707 	BUG_ON(prev != vma);
708 
709 	/* Move stack pages down in memory. */
710 	if (stack_shift) {
711 		ret = shift_arg_pages(vma, stack_shift);
712 		if (ret)
713 			goto out_unlock;
714 	}
715 
716 	/* mprotect_fixup is overkill to remove the temporary stack flags */
717 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
718 
719 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
720 	stack_size = vma->vm_end - vma->vm_start;
721 	/*
722 	 * Align this down to a page boundary as expand_stack
723 	 * will align it up.
724 	 */
725 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
726 #ifdef CONFIG_STACK_GROWSUP
727 	if (stack_size + stack_expand > rlim_stack)
728 		stack_base = vma->vm_start + rlim_stack;
729 	else
730 		stack_base = vma->vm_end + stack_expand;
731 #else
732 	if (stack_size + stack_expand > rlim_stack)
733 		stack_base = vma->vm_end - rlim_stack;
734 	else
735 		stack_base = vma->vm_start - stack_expand;
736 #endif
737 	current->mm->start_stack = bprm->p;
738 	ret = expand_stack(vma, stack_base);
739 	if (ret)
740 		ret = -EFAULT;
741 
742 out_unlock:
743 	up_write(&mm->mmap_sem);
744 	return ret;
745 }
746 EXPORT_SYMBOL(setup_arg_pages);
747 
748 #endif /* CONFIG_MMU */
749 
750 static struct file *do_open_exec(struct filename *name)
751 {
752 	struct file *file;
753 	int err;
754 	static const struct open_flags open_exec_flags = {
755 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
756 		.acc_mode = MAY_EXEC | MAY_OPEN,
757 		.intent = LOOKUP_OPEN,
758 		.lookup_flags = LOOKUP_FOLLOW,
759 	};
760 
761 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
762 	if (IS_ERR(file))
763 		goto out;
764 
765 	err = -EACCES;
766 	if (!S_ISREG(file_inode(file)->i_mode))
767 		goto exit;
768 
769 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
770 		goto exit;
771 
772 	fsnotify_open(file);
773 
774 	err = deny_write_access(file);
775 	if (err)
776 		goto exit;
777 
778 out:
779 	return file;
780 
781 exit:
782 	fput(file);
783 	return ERR_PTR(err);
784 }
785 
786 struct file *open_exec(const char *name)
787 {
788 	struct filename tmp = { .name = name };
789 	return do_open_exec(&tmp);
790 }
791 EXPORT_SYMBOL(open_exec);
792 
793 int kernel_read(struct file *file, loff_t offset,
794 		char *addr, unsigned long count)
795 {
796 	mm_segment_t old_fs;
797 	loff_t pos = offset;
798 	int result;
799 
800 	old_fs = get_fs();
801 	set_fs(get_ds());
802 	/* The cast to a user pointer is valid due to the set_fs() */
803 	result = vfs_read(file, (void __user *)addr, count, &pos);
804 	set_fs(old_fs);
805 	return result;
806 }
807 
808 EXPORT_SYMBOL(kernel_read);
809 
810 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
811 {
812 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
813 	if (res > 0)
814 		flush_icache_range(addr, addr + len);
815 	return res;
816 }
817 EXPORT_SYMBOL(read_code);
818 
819 static int exec_mmap(struct mm_struct *mm)
820 {
821 	struct task_struct *tsk;
822 	struct mm_struct *old_mm, *active_mm;
823 
824 	/* Notify parent that we're no longer interested in the old VM */
825 	tsk = current;
826 	old_mm = current->mm;
827 	mm_release(tsk, old_mm);
828 
829 	if (old_mm) {
830 		sync_mm_rss(old_mm);
831 		/*
832 		 * Make sure that if there is a core dump in progress
833 		 * for the old mm, we get out and die instead of going
834 		 * through with the exec.  We must hold mmap_sem around
835 		 * checking core_state and changing tsk->mm.
836 		 */
837 		down_read(&old_mm->mmap_sem);
838 		if (unlikely(old_mm->core_state)) {
839 			up_read(&old_mm->mmap_sem);
840 			return -EINTR;
841 		}
842 	}
843 	task_lock(tsk);
844 	active_mm = tsk->active_mm;
845 	tsk->mm = mm;
846 	tsk->active_mm = mm;
847 	activate_mm(active_mm, mm);
848 	tsk->mm->vmacache_seqnum = 0;
849 	vmacache_flush(tsk);
850 	task_unlock(tsk);
851 	if (old_mm) {
852 		up_read(&old_mm->mmap_sem);
853 		BUG_ON(active_mm != old_mm);
854 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
855 		mm_update_next_owner(old_mm);
856 		mmput(old_mm);
857 		return 0;
858 	}
859 	mmdrop(active_mm);
860 	return 0;
861 }
862 
863 /*
864  * This function makes sure the current process has its own signal table,
865  * so that flush_signal_handlers can later reset the handlers without
866  * disturbing other processes.  (Other processes might share the signal
867  * table via the CLONE_SIGHAND option to clone().)
868  */
869 static int de_thread(struct task_struct *tsk)
870 {
871 	struct signal_struct *sig = tsk->signal;
872 	struct sighand_struct *oldsighand = tsk->sighand;
873 	spinlock_t *lock = &oldsighand->siglock;
874 
875 	if (thread_group_empty(tsk))
876 		goto no_thread_group;
877 
878 	/*
879 	 * Kill all other threads in the thread group.
880 	 */
881 	spin_lock_irq(lock);
882 	if (signal_group_exit(sig)) {
883 		/*
884 		 * Another group action in progress, just
885 		 * return so that the signal is processed.
886 		 */
887 		spin_unlock_irq(lock);
888 		return -EAGAIN;
889 	}
890 
891 	sig->group_exit_task = tsk;
892 	sig->notify_count = zap_other_threads(tsk);
893 	if (!thread_group_leader(tsk))
894 		sig->notify_count--;
895 
896 	while (sig->notify_count) {
897 		__set_current_state(TASK_KILLABLE);
898 		spin_unlock_irq(lock);
899 		schedule();
900 		if (unlikely(__fatal_signal_pending(tsk)))
901 			goto killed;
902 		spin_lock_irq(lock);
903 	}
904 	spin_unlock_irq(lock);
905 
906 	/*
907 	 * At this point all other threads have exited, all we have to
908 	 * do is to wait for the thread group leader to become inactive,
909 	 * and to assume its PID:
910 	 */
911 	if (!thread_group_leader(tsk)) {
912 		struct task_struct *leader = tsk->group_leader;
913 
914 		sig->notify_count = -1;	/* for exit_notify() */
915 		for (;;) {
916 			threadgroup_change_begin(tsk);
917 			write_lock_irq(&tasklist_lock);
918 			if (likely(leader->exit_state))
919 				break;
920 			__set_current_state(TASK_KILLABLE);
921 			write_unlock_irq(&tasklist_lock);
922 			threadgroup_change_end(tsk);
923 			schedule();
924 			if (unlikely(__fatal_signal_pending(tsk)))
925 				goto killed;
926 		}
927 
928 		/*
929 		 * The only record we have of the real-time age of a
930 		 * process, regardless of execs it's done, is start_time.
931 		 * All the past CPU time is accumulated in signal_struct
932 		 * from sister threads now dead.  But in this non-leader
933 		 * exec, nothing survives from the original leader thread,
934 		 * whose birth marks the true age of this process now.
935 		 * When we take on its identity by switching to its PID, we
936 		 * also take its birthdate (always earlier than our own).
937 		 */
938 		tsk->start_time = leader->start_time;
939 		tsk->real_start_time = leader->real_start_time;
940 
941 		BUG_ON(!same_thread_group(leader, tsk));
942 		BUG_ON(has_group_leader_pid(tsk));
943 		/*
944 		 * An exec() starts a new thread group with the
945 		 * TGID of the previous thread group. Rehash the
946 		 * two threads with a switched PID, and release
947 		 * the former thread group leader:
948 		 */
949 
950 		/* Become a process group leader with the old leader's pid.
951 		 * The old leader becomes a thread of the this thread group.
952 		 * Note: The old leader also uses this pid until release_task
953 		 *       is called.  Odd but simple and correct.
954 		 */
955 		tsk->pid = leader->pid;
956 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
957 		transfer_pid(leader, tsk, PIDTYPE_PGID);
958 		transfer_pid(leader, tsk, PIDTYPE_SID);
959 
960 		list_replace_rcu(&leader->tasks, &tsk->tasks);
961 		list_replace_init(&leader->sibling, &tsk->sibling);
962 
963 		tsk->group_leader = tsk;
964 		leader->group_leader = tsk;
965 
966 		tsk->exit_signal = SIGCHLD;
967 		leader->exit_signal = -1;
968 
969 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
970 		leader->exit_state = EXIT_DEAD;
971 
972 		/*
973 		 * We are going to release_task()->ptrace_unlink() silently,
974 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
975 		 * the tracer wont't block again waiting for this thread.
976 		 */
977 		if (unlikely(leader->ptrace))
978 			__wake_up_parent(leader, leader->parent);
979 		write_unlock_irq(&tasklist_lock);
980 		threadgroup_change_end(tsk);
981 
982 		release_task(leader);
983 	}
984 
985 	sig->group_exit_task = NULL;
986 	sig->notify_count = 0;
987 
988 no_thread_group:
989 	/* we have changed execution domain */
990 	tsk->exit_signal = SIGCHLD;
991 
992 	exit_itimers(sig);
993 	flush_itimer_signals();
994 
995 	if (atomic_read(&oldsighand->count) != 1) {
996 		struct sighand_struct *newsighand;
997 		/*
998 		 * This ->sighand is shared with the CLONE_SIGHAND
999 		 * but not CLONE_THREAD task, switch to the new one.
1000 		 */
1001 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1002 		if (!newsighand)
1003 			return -ENOMEM;
1004 
1005 		atomic_set(&newsighand->count, 1);
1006 		memcpy(newsighand->action, oldsighand->action,
1007 		       sizeof(newsighand->action));
1008 
1009 		write_lock_irq(&tasklist_lock);
1010 		spin_lock(&oldsighand->siglock);
1011 		rcu_assign_pointer(tsk->sighand, newsighand);
1012 		spin_unlock(&oldsighand->siglock);
1013 		write_unlock_irq(&tasklist_lock);
1014 
1015 		__cleanup_sighand(oldsighand);
1016 	}
1017 
1018 	BUG_ON(!thread_group_leader(tsk));
1019 	return 0;
1020 
1021 killed:
1022 	/* protects against exit_notify() and __exit_signal() */
1023 	read_lock(&tasklist_lock);
1024 	sig->group_exit_task = NULL;
1025 	sig->notify_count = 0;
1026 	read_unlock(&tasklist_lock);
1027 	return -EAGAIN;
1028 }
1029 
1030 char *get_task_comm(char *buf, struct task_struct *tsk)
1031 {
1032 	/* buf must be at least sizeof(tsk->comm) in size */
1033 	task_lock(tsk);
1034 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1035 	task_unlock(tsk);
1036 	return buf;
1037 }
1038 EXPORT_SYMBOL_GPL(get_task_comm);
1039 
1040 /*
1041  * These functions flushes out all traces of the currently running executable
1042  * so that a new one can be started
1043  */
1044 
1045 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1046 {
1047 	task_lock(tsk);
1048 	trace_task_rename(tsk, buf);
1049 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1050 	task_unlock(tsk);
1051 	perf_event_comm(tsk, exec);
1052 }
1053 
1054 int flush_old_exec(struct linux_binprm * bprm)
1055 {
1056 	int retval;
1057 
1058 	/*
1059 	 * Make sure we have a private signal table and that
1060 	 * we are unassociated from the previous thread group.
1061 	 */
1062 	retval = de_thread(current);
1063 	if (retval)
1064 		goto out;
1065 
1066 	set_mm_exe_file(bprm->mm, bprm->file);
1067 	/*
1068 	 * Release all of the old mmap stuff
1069 	 */
1070 	acct_arg_size(bprm, 0);
1071 	retval = exec_mmap(bprm->mm);
1072 	if (retval)
1073 		goto out;
1074 
1075 	bprm->mm = NULL;		/* We're using it now */
1076 
1077 	set_fs(USER_DS);
1078 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1079 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1080 	flush_thread();
1081 	current->personality &= ~bprm->per_clear;
1082 
1083 	return 0;
1084 
1085 out:
1086 	return retval;
1087 }
1088 EXPORT_SYMBOL(flush_old_exec);
1089 
1090 void would_dump(struct linux_binprm *bprm, struct file *file)
1091 {
1092 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1093 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1094 }
1095 EXPORT_SYMBOL(would_dump);
1096 
1097 void setup_new_exec(struct linux_binprm * bprm)
1098 {
1099 	arch_pick_mmap_layout(current->mm);
1100 
1101 	/* This is the point of no return */
1102 	current->sas_ss_sp = current->sas_ss_size = 0;
1103 
1104 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1105 		set_dumpable(current->mm, SUID_DUMP_USER);
1106 	else
1107 		set_dumpable(current->mm, suid_dumpable);
1108 
1109 	perf_event_exec();
1110 	__set_task_comm(current, kbasename(bprm->filename), true);
1111 
1112 	/* Set the new mm task size. We have to do that late because it may
1113 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1114 	 * some architectures like powerpc
1115 	 */
1116 	current->mm->task_size = TASK_SIZE;
1117 
1118 	/* install the new credentials */
1119 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1120 	    !gid_eq(bprm->cred->gid, current_egid())) {
1121 		current->pdeath_signal = 0;
1122 	} else {
1123 		would_dump(bprm, bprm->file);
1124 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1125 			set_dumpable(current->mm, suid_dumpable);
1126 	}
1127 
1128 	/* An exec changes our domain. We are no longer part of the thread
1129 	   group */
1130 	current->self_exec_id++;
1131 	flush_signal_handlers(current, 0);
1132 	do_close_on_exec(current->files);
1133 }
1134 EXPORT_SYMBOL(setup_new_exec);
1135 
1136 /*
1137  * Prepare credentials and lock ->cred_guard_mutex.
1138  * install_exec_creds() commits the new creds and drops the lock.
1139  * Or, if exec fails before, free_bprm() should release ->cred and
1140  * and unlock.
1141  */
1142 int prepare_bprm_creds(struct linux_binprm *bprm)
1143 {
1144 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1145 		return -ERESTARTNOINTR;
1146 
1147 	bprm->cred = prepare_exec_creds();
1148 	if (likely(bprm->cred))
1149 		return 0;
1150 
1151 	mutex_unlock(&current->signal->cred_guard_mutex);
1152 	return -ENOMEM;
1153 }
1154 
1155 static void free_bprm(struct linux_binprm *bprm)
1156 {
1157 	free_arg_pages(bprm);
1158 	if (bprm->cred) {
1159 		mutex_unlock(&current->signal->cred_guard_mutex);
1160 		abort_creds(bprm->cred);
1161 	}
1162 	if (bprm->file) {
1163 		allow_write_access(bprm->file);
1164 		fput(bprm->file);
1165 	}
1166 	/* If a binfmt changed the interp, free it. */
1167 	if (bprm->interp != bprm->filename)
1168 		kfree(bprm->interp);
1169 	kfree(bprm);
1170 }
1171 
1172 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1173 {
1174 	/* If a binfmt changed the interp, free it first. */
1175 	if (bprm->interp != bprm->filename)
1176 		kfree(bprm->interp);
1177 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1178 	if (!bprm->interp)
1179 		return -ENOMEM;
1180 	return 0;
1181 }
1182 EXPORT_SYMBOL(bprm_change_interp);
1183 
1184 /*
1185  * install the new credentials for this executable
1186  */
1187 void install_exec_creds(struct linux_binprm *bprm)
1188 {
1189 	security_bprm_committing_creds(bprm);
1190 
1191 	commit_creds(bprm->cred);
1192 	bprm->cred = NULL;
1193 
1194 	/*
1195 	 * Disable monitoring for regular users
1196 	 * when executing setuid binaries. Must
1197 	 * wait until new credentials are committed
1198 	 * by commit_creds() above
1199 	 */
1200 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1201 		perf_event_exit_task(current);
1202 	/*
1203 	 * cred_guard_mutex must be held at least to this point to prevent
1204 	 * ptrace_attach() from altering our determination of the task's
1205 	 * credentials; any time after this it may be unlocked.
1206 	 */
1207 	security_bprm_committed_creds(bprm);
1208 	mutex_unlock(&current->signal->cred_guard_mutex);
1209 }
1210 EXPORT_SYMBOL(install_exec_creds);
1211 
1212 /*
1213  * determine how safe it is to execute the proposed program
1214  * - the caller must hold ->cred_guard_mutex to protect against
1215  *   PTRACE_ATTACH or seccomp thread-sync
1216  */
1217 static void check_unsafe_exec(struct linux_binprm *bprm)
1218 {
1219 	struct task_struct *p = current, *t;
1220 	unsigned n_fs;
1221 
1222 	if (p->ptrace) {
1223 		if (p->ptrace & PT_PTRACE_CAP)
1224 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1225 		else
1226 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1227 	}
1228 
1229 	/*
1230 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1231 	 * mess up.
1232 	 */
1233 	if (task_no_new_privs(current))
1234 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1235 
1236 	t = p;
1237 	n_fs = 1;
1238 	spin_lock(&p->fs->lock);
1239 	rcu_read_lock();
1240 	while_each_thread(p, t) {
1241 		if (t->fs == p->fs)
1242 			n_fs++;
1243 	}
1244 	rcu_read_unlock();
1245 
1246 	if (p->fs->users > n_fs)
1247 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1248 	else
1249 		p->fs->in_exec = 1;
1250 	spin_unlock(&p->fs->lock);
1251 }
1252 
1253 /*
1254  * Fill the binprm structure from the inode.
1255  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1256  *
1257  * This may be called multiple times for binary chains (scripts for example).
1258  */
1259 int prepare_binprm(struct linux_binprm *bprm)
1260 {
1261 	struct inode *inode = file_inode(bprm->file);
1262 	umode_t mode = inode->i_mode;
1263 	int retval;
1264 
1265 
1266 	/* clear any previous set[ug]id data from a previous binary */
1267 	bprm->cred->euid = current_euid();
1268 	bprm->cred->egid = current_egid();
1269 
1270 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1271 	    !task_no_new_privs(current) &&
1272 	    kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1273 	    kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1274 		/* Set-uid? */
1275 		if (mode & S_ISUID) {
1276 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1277 			bprm->cred->euid = inode->i_uid;
1278 		}
1279 
1280 		/* Set-gid? */
1281 		/*
1282 		 * If setgid is set but no group execute bit then this
1283 		 * is a candidate for mandatory locking, not a setgid
1284 		 * executable.
1285 		 */
1286 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1287 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1288 			bprm->cred->egid = inode->i_gid;
1289 		}
1290 	}
1291 
1292 	/* fill in binprm security blob */
1293 	retval = security_bprm_set_creds(bprm);
1294 	if (retval)
1295 		return retval;
1296 	bprm->cred_prepared = 1;
1297 
1298 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1299 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1300 }
1301 
1302 EXPORT_SYMBOL(prepare_binprm);
1303 
1304 /*
1305  * Arguments are '\0' separated strings found at the location bprm->p
1306  * points to; chop off the first by relocating brpm->p to right after
1307  * the first '\0' encountered.
1308  */
1309 int remove_arg_zero(struct linux_binprm *bprm)
1310 {
1311 	int ret = 0;
1312 	unsigned long offset;
1313 	char *kaddr;
1314 	struct page *page;
1315 
1316 	if (!bprm->argc)
1317 		return 0;
1318 
1319 	do {
1320 		offset = bprm->p & ~PAGE_MASK;
1321 		page = get_arg_page(bprm, bprm->p, 0);
1322 		if (!page) {
1323 			ret = -EFAULT;
1324 			goto out;
1325 		}
1326 		kaddr = kmap_atomic(page);
1327 
1328 		for (; offset < PAGE_SIZE && kaddr[offset];
1329 				offset++, bprm->p++)
1330 			;
1331 
1332 		kunmap_atomic(kaddr);
1333 		put_arg_page(page);
1334 
1335 		if (offset == PAGE_SIZE)
1336 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1337 	} while (offset == PAGE_SIZE);
1338 
1339 	bprm->p++;
1340 	bprm->argc--;
1341 	ret = 0;
1342 
1343 out:
1344 	return ret;
1345 }
1346 EXPORT_SYMBOL(remove_arg_zero);
1347 
1348 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1349 /*
1350  * cycle the list of binary formats handler, until one recognizes the image
1351  */
1352 int search_binary_handler(struct linux_binprm *bprm)
1353 {
1354 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1355 	struct linux_binfmt *fmt;
1356 	int retval;
1357 
1358 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1359 	if (bprm->recursion_depth > 5)
1360 		return -ELOOP;
1361 
1362 	retval = security_bprm_check(bprm);
1363 	if (retval)
1364 		return retval;
1365 
1366 	retval = -ENOENT;
1367  retry:
1368 	read_lock(&binfmt_lock);
1369 	list_for_each_entry(fmt, &formats, lh) {
1370 		if (!try_module_get(fmt->module))
1371 			continue;
1372 		read_unlock(&binfmt_lock);
1373 		bprm->recursion_depth++;
1374 		retval = fmt->load_binary(bprm);
1375 		read_lock(&binfmt_lock);
1376 		put_binfmt(fmt);
1377 		bprm->recursion_depth--;
1378 		if (retval < 0 && !bprm->mm) {
1379 			/* we got to flush_old_exec() and failed after it */
1380 			read_unlock(&binfmt_lock);
1381 			force_sigsegv(SIGSEGV, current);
1382 			return retval;
1383 		}
1384 		if (retval != -ENOEXEC || !bprm->file) {
1385 			read_unlock(&binfmt_lock);
1386 			return retval;
1387 		}
1388 	}
1389 	read_unlock(&binfmt_lock);
1390 
1391 	if (need_retry) {
1392 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1393 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1394 			return retval;
1395 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1396 			return retval;
1397 		need_retry = false;
1398 		goto retry;
1399 	}
1400 
1401 	return retval;
1402 }
1403 EXPORT_SYMBOL(search_binary_handler);
1404 
1405 static int exec_binprm(struct linux_binprm *bprm)
1406 {
1407 	pid_t old_pid, old_vpid;
1408 	int ret;
1409 
1410 	/* Need to fetch pid before load_binary changes it */
1411 	old_pid = current->pid;
1412 	rcu_read_lock();
1413 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1414 	rcu_read_unlock();
1415 
1416 	ret = search_binary_handler(bprm);
1417 	if (ret >= 0) {
1418 		audit_bprm(bprm);
1419 		trace_sched_process_exec(current, old_pid, bprm);
1420 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1421 		proc_exec_connector(current);
1422 	}
1423 
1424 	return ret;
1425 }
1426 
1427 /*
1428  * sys_execve() executes a new program.
1429  */
1430 static int do_execve_common(struct filename *filename,
1431 				struct user_arg_ptr argv,
1432 				struct user_arg_ptr envp)
1433 {
1434 	struct linux_binprm *bprm;
1435 	struct file *file;
1436 	struct files_struct *displaced;
1437 	int retval;
1438 
1439 	if (IS_ERR(filename))
1440 		return PTR_ERR(filename);
1441 
1442 	/*
1443 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1444 	 * set*uid() to execve() because too many poorly written programs
1445 	 * don't check setuid() return code.  Here we additionally recheck
1446 	 * whether NPROC limit is still exceeded.
1447 	 */
1448 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1449 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1450 		retval = -EAGAIN;
1451 		goto out_ret;
1452 	}
1453 
1454 	/* We're below the limit (still or again), so we don't want to make
1455 	 * further execve() calls fail. */
1456 	current->flags &= ~PF_NPROC_EXCEEDED;
1457 
1458 	retval = unshare_files(&displaced);
1459 	if (retval)
1460 		goto out_ret;
1461 
1462 	retval = -ENOMEM;
1463 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1464 	if (!bprm)
1465 		goto out_files;
1466 
1467 	retval = prepare_bprm_creds(bprm);
1468 	if (retval)
1469 		goto out_free;
1470 
1471 	check_unsafe_exec(bprm);
1472 	current->in_execve = 1;
1473 
1474 	file = do_open_exec(filename);
1475 	retval = PTR_ERR(file);
1476 	if (IS_ERR(file))
1477 		goto out_unmark;
1478 
1479 	sched_exec();
1480 
1481 	bprm->file = file;
1482 	bprm->filename = bprm->interp = filename->name;
1483 
1484 	retval = bprm_mm_init(bprm);
1485 	if (retval)
1486 		goto out_unmark;
1487 
1488 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1489 	if ((retval = bprm->argc) < 0)
1490 		goto out;
1491 
1492 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1493 	if ((retval = bprm->envc) < 0)
1494 		goto out;
1495 
1496 	retval = prepare_binprm(bprm);
1497 	if (retval < 0)
1498 		goto out;
1499 
1500 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1501 	if (retval < 0)
1502 		goto out;
1503 
1504 	bprm->exec = bprm->p;
1505 	retval = copy_strings(bprm->envc, envp, bprm);
1506 	if (retval < 0)
1507 		goto out;
1508 
1509 	retval = copy_strings(bprm->argc, argv, bprm);
1510 	if (retval < 0)
1511 		goto out;
1512 
1513 	retval = exec_binprm(bprm);
1514 	if (retval < 0)
1515 		goto out;
1516 
1517 	/* execve succeeded */
1518 	current->fs->in_exec = 0;
1519 	current->in_execve = 0;
1520 	acct_update_integrals(current);
1521 	task_numa_free(current);
1522 	free_bprm(bprm);
1523 	putname(filename);
1524 	if (displaced)
1525 		put_files_struct(displaced);
1526 	return retval;
1527 
1528 out:
1529 	if (bprm->mm) {
1530 		acct_arg_size(bprm, 0);
1531 		mmput(bprm->mm);
1532 	}
1533 
1534 out_unmark:
1535 	current->fs->in_exec = 0;
1536 	current->in_execve = 0;
1537 
1538 out_free:
1539 	free_bprm(bprm);
1540 
1541 out_files:
1542 	if (displaced)
1543 		reset_files_struct(displaced);
1544 out_ret:
1545 	putname(filename);
1546 	return retval;
1547 }
1548 
1549 int do_execve(struct filename *filename,
1550 	const char __user *const __user *__argv,
1551 	const char __user *const __user *__envp)
1552 {
1553 	struct user_arg_ptr argv = { .ptr.native = __argv };
1554 	struct user_arg_ptr envp = { .ptr.native = __envp };
1555 	return do_execve_common(filename, argv, envp);
1556 }
1557 
1558 #ifdef CONFIG_COMPAT
1559 static int compat_do_execve(struct filename *filename,
1560 	const compat_uptr_t __user *__argv,
1561 	const compat_uptr_t __user *__envp)
1562 {
1563 	struct user_arg_ptr argv = {
1564 		.is_compat = true,
1565 		.ptr.compat = __argv,
1566 	};
1567 	struct user_arg_ptr envp = {
1568 		.is_compat = true,
1569 		.ptr.compat = __envp,
1570 	};
1571 	return do_execve_common(filename, argv, envp);
1572 }
1573 #endif
1574 
1575 void set_binfmt(struct linux_binfmt *new)
1576 {
1577 	struct mm_struct *mm = current->mm;
1578 
1579 	if (mm->binfmt)
1580 		module_put(mm->binfmt->module);
1581 
1582 	mm->binfmt = new;
1583 	if (new)
1584 		__module_get(new->module);
1585 }
1586 EXPORT_SYMBOL(set_binfmt);
1587 
1588 /*
1589  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1590  */
1591 void set_dumpable(struct mm_struct *mm, int value)
1592 {
1593 	unsigned long old, new;
1594 
1595 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1596 		return;
1597 
1598 	do {
1599 		old = ACCESS_ONCE(mm->flags);
1600 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1601 	} while (cmpxchg(&mm->flags, old, new) != old);
1602 }
1603 
1604 SYSCALL_DEFINE3(execve,
1605 		const char __user *, filename,
1606 		const char __user *const __user *, argv,
1607 		const char __user *const __user *, envp)
1608 {
1609 	return do_execve(getname(filename), argv, envp);
1610 }
1611 #ifdef CONFIG_COMPAT
1612 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1613 	const compat_uptr_t __user *, argv,
1614 	const compat_uptr_t __user *, envp)
1615 {
1616 	return compat_do_execve(getname(filename), argv, envp);
1617 }
1618 #endif
1619