1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/perf_event.h> 37 #include <linux/highmem.h> 38 #include <linux/spinlock.h> 39 #include <linux/key.h> 40 #include <linux/personality.h> 41 #include <linux/binfmts.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 #include <linux/compat.h> 59 #include <linux/vmalloc.h> 60 61 #include <asm/uaccess.h> 62 #include <asm/mmu_context.h> 63 #include <asm/tlb.h> 64 65 #include <trace/events/task.h> 66 #include "internal.h" 67 68 #include <trace/events/sched.h> 69 70 int suid_dumpable = 0; 71 72 static LIST_HEAD(formats); 73 static DEFINE_RWLOCK(binfmt_lock); 74 75 void __register_binfmt(struct linux_binfmt * fmt, int insert) 76 { 77 BUG_ON(!fmt); 78 if (WARN_ON(!fmt->load_binary)) 79 return; 80 write_lock(&binfmt_lock); 81 insert ? list_add(&fmt->lh, &formats) : 82 list_add_tail(&fmt->lh, &formats); 83 write_unlock(&binfmt_lock); 84 } 85 86 EXPORT_SYMBOL(__register_binfmt); 87 88 void unregister_binfmt(struct linux_binfmt * fmt) 89 { 90 write_lock(&binfmt_lock); 91 list_del(&fmt->lh); 92 write_unlock(&binfmt_lock); 93 } 94 95 EXPORT_SYMBOL(unregister_binfmt); 96 97 static inline void put_binfmt(struct linux_binfmt * fmt) 98 { 99 module_put(fmt->module); 100 } 101 102 bool path_noexec(const struct path *path) 103 { 104 return (path->mnt->mnt_flags & MNT_NOEXEC) || 105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 106 } 107 108 #ifdef CONFIG_USELIB 109 /* 110 * Note that a shared library must be both readable and executable due to 111 * security reasons. 112 * 113 * Also note that we take the address to load from from the file itself. 114 */ 115 SYSCALL_DEFINE1(uselib, const char __user *, library) 116 { 117 struct linux_binfmt *fmt; 118 struct file *file; 119 struct filename *tmp = getname(library); 120 int error = PTR_ERR(tmp); 121 static const struct open_flags uselib_flags = { 122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 123 .acc_mode = MAY_READ | MAY_EXEC, 124 .intent = LOOKUP_OPEN, 125 .lookup_flags = LOOKUP_FOLLOW, 126 }; 127 128 if (IS_ERR(tmp)) 129 goto out; 130 131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 132 putname(tmp); 133 error = PTR_ERR(file); 134 if (IS_ERR(file)) 135 goto out; 136 137 error = -EINVAL; 138 if (!S_ISREG(file_inode(file)->i_mode)) 139 goto exit; 140 141 error = -EACCES; 142 if (path_noexec(&file->f_path)) 143 goto exit; 144 145 fsnotify_open(file); 146 147 error = -ENOEXEC; 148 149 read_lock(&binfmt_lock); 150 list_for_each_entry(fmt, &formats, lh) { 151 if (!fmt->load_shlib) 152 continue; 153 if (!try_module_get(fmt->module)) 154 continue; 155 read_unlock(&binfmt_lock); 156 error = fmt->load_shlib(file); 157 read_lock(&binfmt_lock); 158 put_binfmt(fmt); 159 if (error != -ENOEXEC) 160 break; 161 } 162 read_unlock(&binfmt_lock); 163 exit: 164 fput(file); 165 out: 166 return error; 167 } 168 #endif /* #ifdef CONFIG_USELIB */ 169 170 #ifdef CONFIG_MMU 171 /* 172 * The nascent bprm->mm is not visible until exec_mmap() but it can 173 * use a lot of memory, account these pages in current->mm temporary 174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 175 * change the counter back via acct_arg_size(0). 176 */ 177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 178 { 179 struct mm_struct *mm = current->mm; 180 long diff = (long)(pages - bprm->vma_pages); 181 182 if (!mm || !diff) 183 return; 184 185 bprm->vma_pages = pages; 186 add_mm_counter(mm, MM_ANONPAGES, diff); 187 } 188 189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 190 int write) 191 { 192 struct page *page; 193 int ret; 194 unsigned int gup_flags = FOLL_FORCE; 195 196 #ifdef CONFIG_STACK_GROWSUP 197 if (write) { 198 ret = expand_downwards(bprm->vma, pos); 199 if (ret < 0) 200 return NULL; 201 } 202 #endif 203 204 if (write) 205 gup_flags |= FOLL_WRITE; 206 207 /* 208 * We are doing an exec(). 'current' is the process 209 * doing the exec and bprm->mm is the new process's mm. 210 */ 211 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 212 &page, NULL); 213 if (ret <= 0) 214 return NULL; 215 216 if (write) { 217 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 218 struct rlimit *rlim; 219 220 acct_arg_size(bprm, size / PAGE_SIZE); 221 222 /* 223 * We've historically supported up to 32 pages (ARG_MAX) 224 * of argument strings even with small stacks 225 */ 226 if (size <= ARG_MAX) 227 return page; 228 229 /* 230 * Limit to 1/4-th the stack size for the argv+env strings. 231 * This ensures that: 232 * - the remaining binfmt code will not run out of stack space, 233 * - the program will have a reasonable amount of stack left 234 * to work from. 235 */ 236 rlim = current->signal->rlim; 237 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 238 put_page(page); 239 return NULL; 240 } 241 } 242 243 return page; 244 } 245 246 static void put_arg_page(struct page *page) 247 { 248 put_page(page); 249 } 250 251 static void free_arg_pages(struct linux_binprm *bprm) 252 { 253 } 254 255 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 256 struct page *page) 257 { 258 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 259 } 260 261 static int __bprm_mm_init(struct linux_binprm *bprm) 262 { 263 int err; 264 struct vm_area_struct *vma = NULL; 265 struct mm_struct *mm = bprm->mm; 266 267 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 268 if (!vma) 269 return -ENOMEM; 270 271 if (down_write_killable(&mm->mmap_sem)) { 272 err = -EINTR; 273 goto err_free; 274 } 275 vma->vm_mm = mm; 276 277 /* 278 * Place the stack at the largest stack address the architecture 279 * supports. Later, we'll move this to an appropriate place. We don't 280 * use STACK_TOP because that can depend on attributes which aren't 281 * configured yet. 282 */ 283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 284 vma->vm_end = STACK_TOP_MAX; 285 vma->vm_start = vma->vm_end - PAGE_SIZE; 286 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 287 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 288 INIT_LIST_HEAD(&vma->anon_vma_chain); 289 290 err = insert_vm_struct(mm, vma); 291 if (err) 292 goto err; 293 294 mm->stack_vm = mm->total_vm = 1; 295 arch_bprm_mm_init(mm, vma); 296 up_write(&mm->mmap_sem); 297 bprm->p = vma->vm_end - sizeof(void *); 298 return 0; 299 err: 300 up_write(&mm->mmap_sem); 301 err_free: 302 bprm->vma = NULL; 303 kmem_cache_free(vm_area_cachep, vma); 304 return err; 305 } 306 307 static bool valid_arg_len(struct linux_binprm *bprm, long len) 308 { 309 return len <= MAX_ARG_STRLEN; 310 } 311 312 #else 313 314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 315 { 316 } 317 318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 319 int write) 320 { 321 struct page *page; 322 323 page = bprm->page[pos / PAGE_SIZE]; 324 if (!page && write) { 325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 326 if (!page) 327 return NULL; 328 bprm->page[pos / PAGE_SIZE] = page; 329 } 330 331 return page; 332 } 333 334 static void put_arg_page(struct page *page) 335 { 336 } 337 338 static void free_arg_page(struct linux_binprm *bprm, int i) 339 { 340 if (bprm->page[i]) { 341 __free_page(bprm->page[i]); 342 bprm->page[i] = NULL; 343 } 344 } 345 346 static void free_arg_pages(struct linux_binprm *bprm) 347 { 348 int i; 349 350 for (i = 0; i < MAX_ARG_PAGES; i++) 351 free_arg_page(bprm, i); 352 } 353 354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 355 struct page *page) 356 { 357 } 358 359 static int __bprm_mm_init(struct linux_binprm *bprm) 360 { 361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 362 return 0; 363 } 364 365 static bool valid_arg_len(struct linux_binprm *bprm, long len) 366 { 367 return len <= bprm->p; 368 } 369 370 #endif /* CONFIG_MMU */ 371 372 /* 373 * Create a new mm_struct and populate it with a temporary stack 374 * vm_area_struct. We don't have enough context at this point to set the stack 375 * flags, permissions, and offset, so we use temporary values. We'll update 376 * them later in setup_arg_pages(). 377 */ 378 static int bprm_mm_init(struct linux_binprm *bprm) 379 { 380 int err; 381 struct mm_struct *mm = NULL; 382 383 bprm->mm = mm = mm_alloc(); 384 err = -ENOMEM; 385 if (!mm) 386 goto err; 387 388 err = __bprm_mm_init(bprm); 389 if (err) 390 goto err; 391 392 return 0; 393 394 err: 395 if (mm) { 396 bprm->mm = NULL; 397 mmdrop(mm); 398 } 399 400 return err; 401 } 402 403 struct user_arg_ptr { 404 #ifdef CONFIG_COMPAT 405 bool is_compat; 406 #endif 407 union { 408 const char __user *const __user *native; 409 #ifdef CONFIG_COMPAT 410 const compat_uptr_t __user *compat; 411 #endif 412 } ptr; 413 }; 414 415 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 416 { 417 const char __user *native; 418 419 #ifdef CONFIG_COMPAT 420 if (unlikely(argv.is_compat)) { 421 compat_uptr_t compat; 422 423 if (get_user(compat, argv.ptr.compat + nr)) 424 return ERR_PTR(-EFAULT); 425 426 return compat_ptr(compat); 427 } 428 #endif 429 430 if (get_user(native, argv.ptr.native + nr)) 431 return ERR_PTR(-EFAULT); 432 433 return native; 434 } 435 436 /* 437 * count() counts the number of strings in array ARGV. 438 */ 439 static int count(struct user_arg_ptr argv, int max) 440 { 441 int i = 0; 442 443 if (argv.ptr.native != NULL) { 444 for (;;) { 445 const char __user *p = get_user_arg_ptr(argv, i); 446 447 if (!p) 448 break; 449 450 if (IS_ERR(p)) 451 return -EFAULT; 452 453 if (i >= max) 454 return -E2BIG; 455 ++i; 456 457 if (fatal_signal_pending(current)) 458 return -ERESTARTNOHAND; 459 cond_resched(); 460 } 461 } 462 return i; 463 } 464 465 /* 466 * 'copy_strings()' copies argument/environment strings from the old 467 * processes's memory to the new process's stack. The call to get_user_pages() 468 * ensures the destination page is created and not swapped out. 469 */ 470 static int copy_strings(int argc, struct user_arg_ptr argv, 471 struct linux_binprm *bprm) 472 { 473 struct page *kmapped_page = NULL; 474 char *kaddr = NULL; 475 unsigned long kpos = 0; 476 int ret; 477 478 while (argc-- > 0) { 479 const char __user *str; 480 int len; 481 unsigned long pos; 482 483 ret = -EFAULT; 484 str = get_user_arg_ptr(argv, argc); 485 if (IS_ERR(str)) 486 goto out; 487 488 len = strnlen_user(str, MAX_ARG_STRLEN); 489 if (!len) 490 goto out; 491 492 ret = -E2BIG; 493 if (!valid_arg_len(bprm, len)) 494 goto out; 495 496 /* We're going to work our way backwords. */ 497 pos = bprm->p; 498 str += len; 499 bprm->p -= len; 500 501 while (len > 0) { 502 int offset, bytes_to_copy; 503 504 if (fatal_signal_pending(current)) { 505 ret = -ERESTARTNOHAND; 506 goto out; 507 } 508 cond_resched(); 509 510 offset = pos % PAGE_SIZE; 511 if (offset == 0) 512 offset = PAGE_SIZE; 513 514 bytes_to_copy = offset; 515 if (bytes_to_copy > len) 516 bytes_to_copy = len; 517 518 offset -= bytes_to_copy; 519 pos -= bytes_to_copy; 520 str -= bytes_to_copy; 521 len -= bytes_to_copy; 522 523 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 524 struct page *page; 525 526 page = get_arg_page(bprm, pos, 1); 527 if (!page) { 528 ret = -E2BIG; 529 goto out; 530 } 531 532 if (kmapped_page) { 533 flush_kernel_dcache_page(kmapped_page); 534 kunmap(kmapped_page); 535 put_arg_page(kmapped_page); 536 } 537 kmapped_page = page; 538 kaddr = kmap(kmapped_page); 539 kpos = pos & PAGE_MASK; 540 flush_arg_page(bprm, kpos, kmapped_page); 541 } 542 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 543 ret = -EFAULT; 544 goto out; 545 } 546 } 547 } 548 ret = 0; 549 out: 550 if (kmapped_page) { 551 flush_kernel_dcache_page(kmapped_page); 552 kunmap(kmapped_page); 553 put_arg_page(kmapped_page); 554 } 555 return ret; 556 } 557 558 /* 559 * Like copy_strings, but get argv and its values from kernel memory. 560 */ 561 int copy_strings_kernel(int argc, const char *const *__argv, 562 struct linux_binprm *bprm) 563 { 564 int r; 565 mm_segment_t oldfs = get_fs(); 566 struct user_arg_ptr argv = { 567 .ptr.native = (const char __user *const __user *)__argv, 568 }; 569 570 set_fs(KERNEL_DS); 571 r = copy_strings(argc, argv, bprm); 572 set_fs(oldfs); 573 574 return r; 575 } 576 EXPORT_SYMBOL(copy_strings_kernel); 577 578 #ifdef CONFIG_MMU 579 580 /* 581 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 582 * the binfmt code determines where the new stack should reside, we shift it to 583 * its final location. The process proceeds as follows: 584 * 585 * 1) Use shift to calculate the new vma endpoints. 586 * 2) Extend vma to cover both the old and new ranges. This ensures the 587 * arguments passed to subsequent functions are consistent. 588 * 3) Move vma's page tables to the new range. 589 * 4) Free up any cleared pgd range. 590 * 5) Shrink the vma to cover only the new range. 591 */ 592 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 593 { 594 struct mm_struct *mm = vma->vm_mm; 595 unsigned long old_start = vma->vm_start; 596 unsigned long old_end = vma->vm_end; 597 unsigned long length = old_end - old_start; 598 unsigned long new_start = old_start - shift; 599 unsigned long new_end = old_end - shift; 600 struct mmu_gather tlb; 601 602 BUG_ON(new_start > new_end); 603 604 /* 605 * ensure there are no vmas between where we want to go 606 * and where we are 607 */ 608 if (vma != find_vma(mm, new_start)) 609 return -EFAULT; 610 611 /* 612 * cover the whole range: [new_start, old_end) 613 */ 614 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 615 return -ENOMEM; 616 617 /* 618 * move the page tables downwards, on failure we rely on 619 * process cleanup to remove whatever mess we made. 620 */ 621 if (length != move_page_tables(vma, old_start, 622 vma, new_start, length, false)) 623 return -ENOMEM; 624 625 lru_add_drain(); 626 tlb_gather_mmu(&tlb, mm, old_start, old_end); 627 if (new_end > old_start) { 628 /* 629 * when the old and new regions overlap clear from new_end. 630 */ 631 free_pgd_range(&tlb, new_end, old_end, new_end, 632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 633 } else { 634 /* 635 * otherwise, clean from old_start; this is done to not touch 636 * the address space in [new_end, old_start) some architectures 637 * have constraints on va-space that make this illegal (IA64) - 638 * for the others its just a little faster. 639 */ 640 free_pgd_range(&tlb, old_start, old_end, new_end, 641 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 642 } 643 tlb_finish_mmu(&tlb, old_start, old_end); 644 645 /* 646 * Shrink the vma to just the new range. Always succeeds. 647 */ 648 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 649 650 return 0; 651 } 652 653 /* 654 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 655 * the stack is optionally relocated, and some extra space is added. 656 */ 657 int setup_arg_pages(struct linux_binprm *bprm, 658 unsigned long stack_top, 659 int executable_stack) 660 { 661 unsigned long ret; 662 unsigned long stack_shift; 663 struct mm_struct *mm = current->mm; 664 struct vm_area_struct *vma = bprm->vma; 665 struct vm_area_struct *prev = NULL; 666 unsigned long vm_flags; 667 unsigned long stack_base; 668 unsigned long stack_size; 669 unsigned long stack_expand; 670 unsigned long rlim_stack; 671 672 #ifdef CONFIG_STACK_GROWSUP 673 /* Limit stack size */ 674 stack_base = rlimit_max(RLIMIT_STACK); 675 if (stack_base > STACK_SIZE_MAX) 676 stack_base = STACK_SIZE_MAX; 677 678 /* Add space for stack randomization. */ 679 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 680 681 /* Make sure we didn't let the argument array grow too large. */ 682 if (vma->vm_end - vma->vm_start > stack_base) 683 return -ENOMEM; 684 685 stack_base = PAGE_ALIGN(stack_top - stack_base); 686 687 stack_shift = vma->vm_start - stack_base; 688 mm->arg_start = bprm->p - stack_shift; 689 bprm->p = vma->vm_end - stack_shift; 690 #else 691 stack_top = arch_align_stack(stack_top); 692 stack_top = PAGE_ALIGN(stack_top); 693 694 if (unlikely(stack_top < mmap_min_addr) || 695 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 696 return -ENOMEM; 697 698 stack_shift = vma->vm_end - stack_top; 699 700 bprm->p -= stack_shift; 701 mm->arg_start = bprm->p; 702 #endif 703 704 if (bprm->loader) 705 bprm->loader -= stack_shift; 706 bprm->exec -= stack_shift; 707 708 if (down_write_killable(&mm->mmap_sem)) 709 return -EINTR; 710 711 vm_flags = VM_STACK_FLAGS; 712 713 /* 714 * Adjust stack execute permissions; explicitly enable for 715 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 716 * (arch default) otherwise. 717 */ 718 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 719 vm_flags |= VM_EXEC; 720 else if (executable_stack == EXSTACK_DISABLE_X) 721 vm_flags &= ~VM_EXEC; 722 vm_flags |= mm->def_flags; 723 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 724 725 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 726 vm_flags); 727 if (ret) 728 goto out_unlock; 729 BUG_ON(prev != vma); 730 731 /* Move stack pages down in memory. */ 732 if (stack_shift) { 733 ret = shift_arg_pages(vma, stack_shift); 734 if (ret) 735 goto out_unlock; 736 } 737 738 /* mprotect_fixup is overkill to remove the temporary stack flags */ 739 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 740 741 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 742 stack_size = vma->vm_end - vma->vm_start; 743 /* 744 * Align this down to a page boundary as expand_stack 745 * will align it up. 746 */ 747 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 748 #ifdef CONFIG_STACK_GROWSUP 749 if (stack_size + stack_expand > rlim_stack) 750 stack_base = vma->vm_start + rlim_stack; 751 else 752 stack_base = vma->vm_end + stack_expand; 753 #else 754 if (stack_size + stack_expand > rlim_stack) 755 stack_base = vma->vm_end - rlim_stack; 756 else 757 stack_base = vma->vm_start - stack_expand; 758 #endif 759 current->mm->start_stack = bprm->p; 760 ret = expand_stack(vma, stack_base); 761 if (ret) 762 ret = -EFAULT; 763 764 out_unlock: 765 up_write(&mm->mmap_sem); 766 return ret; 767 } 768 EXPORT_SYMBOL(setup_arg_pages); 769 770 #else 771 772 /* 773 * Transfer the program arguments and environment from the holding pages 774 * onto the stack. The provided stack pointer is adjusted accordingly. 775 */ 776 int transfer_args_to_stack(struct linux_binprm *bprm, 777 unsigned long *sp_location) 778 { 779 unsigned long index, stop, sp; 780 int ret = 0; 781 782 stop = bprm->p >> PAGE_SHIFT; 783 sp = *sp_location; 784 785 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 786 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 787 char *src = kmap(bprm->page[index]) + offset; 788 sp -= PAGE_SIZE - offset; 789 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 790 ret = -EFAULT; 791 kunmap(bprm->page[index]); 792 if (ret) 793 goto out; 794 } 795 796 *sp_location = sp; 797 798 out: 799 return ret; 800 } 801 EXPORT_SYMBOL(transfer_args_to_stack); 802 803 #endif /* CONFIG_MMU */ 804 805 static struct file *do_open_execat(int fd, struct filename *name, int flags) 806 { 807 struct file *file; 808 int err; 809 struct open_flags open_exec_flags = { 810 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 811 .acc_mode = MAY_EXEC, 812 .intent = LOOKUP_OPEN, 813 .lookup_flags = LOOKUP_FOLLOW, 814 }; 815 816 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 817 return ERR_PTR(-EINVAL); 818 if (flags & AT_SYMLINK_NOFOLLOW) 819 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 820 if (flags & AT_EMPTY_PATH) 821 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 822 823 file = do_filp_open(fd, name, &open_exec_flags); 824 if (IS_ERR(file)) 825 goto out; 826 827 err = -EACCES; 828 if (!S_ISREG(file_inode(file)->i_mode)) 829 goto exit; 830 831 if (path_noexec(&file->f_path)) 832 goto exit; 833 834 err = deny_write_access(file); 835 if (err) 836 goto exit; 837 838 if (name->name[0] != '\0') 839 fsnotify_open(file); 840 841 out: 842 return file; 843 844 exit: 845 fput(file); 846 return ERR_PTR(err); 847 } 848 849 struct file *open_exec(const char *name) 850 { 851 struct filename *filename = getname_kernel(name); 852 struct file *f = ERR_CAST(filename); 853 854 if (!IS_ERR(filename)) { 855 f = do_open_execat(AT_FDCWD, filename, 0); 856 putname(filename); 857 } 858 return f; 859 } 860 EXPORT_SYMBOL(open_exec); 861 862 int kernel_read(struct file *file, loff_t offset, 863 char *addr, unsigned long count) 864 { 865 mm_segment_t old_fs; 866 loff_t pos = offset; 867 int result; 868 869 old_fs = get_fs(); 870 set_fs(get_ds()); 871 /* The cast to a user pointer is valid due to the set_fs() */ 872 result = vfs_read(file, (void __user *)addr, count, &pos); 873 set_fs(old_fs); 874 return result; 875 } 876 877 EXPORT_SYMBOL(kernel_read); 878 879 int kernel_read_file(struct file *file, void **buf, loff_t *size, 880 loff_t max_size, enum kernel_read_file_id id) 881 { 882 loff_t i_size, pos; 883 ssize_t bytes = 0; 884 int ret; 885 886 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 887 return -EINVAL; 888 889 ret = security_kernel_read_file(file, id); 890 if (ret) 891 return ret; 892 893 ret = deny_write_access(file); 894 if (ret) 895 return ret; 896 897 i_size = i_size_read(file_inode(file)); 898 if (max_size > 0 && i_size > max_size) { 899 ret = -EFBIG; 900 goto out; 901 } 902 if (i_size <= 0) { 903 ret = -EINVAL; 904 goto out; 905 } 906 907 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 908 *buf = vmalloc(i_size); 909 if (!*buf) { 910 ret = -ENOMEM; 911 goto out; 912 } 913 914 pos = 0; 915 while (pos < i_size) { 916 bytes = kernel_read(file, pos, (char *)(*buf) + pos, 917 i_size - pos); 918 if (bytes < 0) { 919 ret = bytes; 920 goto out; 921 } 922 923 if (bytes == 0) 924 break; 925 pos += bytes; 926 } 927 928 if (pos != i_size) { 929 ret = -EIO; 930 goto out_free; 931 } 932 933 ret = security_kernel_post_read_file(file, *buf, i_size, id); 934 if (!ret) 935 *size = pos; 936 937 out_free: 938 if (ret < 0) { 939 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 940 vfree(*buf); 941 *buf = NULL; 942 } 943 } 944 945 out: 946 allow_write_access(file); 947 return ret; 948 } 949 EXPORT_SYMBOL_GPL(kernel_read_file); 950 951 int kernel_read_file_from_path(char *path, void **buf, loff_t *size, 952 loff_t max_size, enum kernel_read_file_id id) 953 { 954 struct file *file; 955 int ret; 956 957 if (!path || !*path) 958 return -EINVAL; 959 960 file = filp_open(path, O_RDONLY, 0); 961 if (IS_ERR(file)) 962 return PTR_ERR(file); 963 964 ret = kernel_read_file(file, buf, size, max_size, id); 965 fput(file); 966 return ret; 967 } 968 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 969 970 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 971 enum kernel_read_file_id id) 972 { 973 struct fd f = fdget(fd); 974 int ret = -EBADF; 975 976 if (!f.file) 977 goto out; 978 979 ret = kernel_read_file(f.file, buf, size, max_size, id); 980 out: 981 fdput(f); 982 return ret; 983 } 984 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 985 986 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 987 { 988 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 989 if (res > 0) 990 flush_icache_range(addr, addr + len); 991 return res; 992 } 993 EXPORT_SYMBOL(read_code); 994 995 static int exec_mmap(struct mm_struct *mm) 996 { 997 struct task_struct *tsk; 998 struct mm_struct *old_mm, *active_mm; 999 1000 /* Notify parent that we're no longer interested in the old VM */ 1001 tsk = current; 1002 old_mm = current->mm; 1003 mm_release(tsk, old_mm); 1004 1005 if (old_mm) { 1006 sync_mm_rss(old_mm); 1007 /* 1008 * Make sure that if there is a core dump in progress 1009 * for the old mm, we get out and die instead of going 1010 * through with the exec. We must hold mmap_sem around 1011 * checking core_state and changing tsk->mm. 1012 */ 1013 down_read(&old_mm->mmap_sem); 1014 if (unlikely(old_mm->core_state)) { 1015 up_read(&old_mm->mmap_sem); 1016 return -EINTR; 1017 } 1018 } 1019 task_lock(tsk); 1020 active_mm = tsk->active_mm; 1021 tsk->mm = mm; 1022 tsk->active_mm = mm; 1023 activate_mm(active_mm, mm); 1024 tsk->mm->vmacache_seqnum = 0; 1025 vmacache_flush(tsk); 1026 task_unlock(tsk); 1027 if (old_mm) { 1028 up_read(&old_mm->mmap_sem); 1029 BUG_ON(active_mm != old_mm); 1030 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1031 mm_update_next_owner(old_mm); 1032 mmput(old_mm); 1033 return 0; 1034 } 1035 mmdrop(active_mm); 1036 return 0; 1037 } 1038 1039 /* 1040 * This function makes sure the current process has its own signal table, 1041 * so that flush_signal_handlers can later reset the handlers without 1042 * disturbing other processes. (Other processes might share the signal 1043 * table via the CLONE_SIGHAND option to clone().) 1044 */ 1045 static int de_thread(struct task_struct *tsk) 1046 { 1047 struct signal_struct *sig = tsk->signal; 1048 struct sighand_struct *oldsighand = tsk->sighand; 1049 spinlock_t *lock = &oldsighand->siglock; 1050 1051 if (thread_group_empty(tsk)) 1052 goto no_thread_group; 1053 1054 /* 1055 * Kill all other threads in the thread group. 1056 */ 1057 spin_lock_irq(lock); 1058 if (signal_group_exit(sig)) { 1059 /* 1060 * Another group action in progress, just 1061 * return so that the signal is processed. 1062 */ 1063 spin_unlock_irq(lock); 1064 return -EAGAIN; 1065 } 1066 1067 sig->group_exit_task = tsk; 1068 sig->notify_count = zap_other_threads(tsk); 1069 if (!thread_group_leader(tsk)) 1070 sig->notify_count--; 1071 1072 while (sig->notify_count) { 1073 __set_current_state(TASK_KILLABLE); 1074 spin_unlock_irq(lock); 1075 schedule(); 1076 if (unlikely(__fatal_signal_pending(tsk))) 1077 goto killed; 1078 spin_lock_irq(lock); 1079 } 1080 spin_unlock_irq(lock); 1081 1082 /* 1083 * At this point all other threads have exited, all we have to 1084 * do is to wait for the thread group leader to become inactive, 1085 * and to assume its PID: 1086 */ 1087 if (!thread_group_leader(tsk)) { 1088 struct task_struct *leader = tsk->group_leader; 1089 1090 for (;;) { 1091 threadgroup_change_begin(tsk); 1092 write_lock_irq(&tasklist_lock); 1093 /* 1094 * Do this under tasklist_lock to ensure that 1095 * exit_notify() can't miss ->group_exit_task 1096 */ 1097 sig->notify_count = -1; 1098 if (likely(leader->exit_state)) 1099 break; 1100 __set_current_state(TASK_KILLABLE); 1101 write_unlock_irq(&tasklist_lock); 1102 threadgroup_change_end(tsk); 1103 schedule(); 1104 if (unlikely(__fatal_signal_pending(tsk))) 1105 goto killed; 1106 } 1107 1108 /* 1109 * The only record we have of the real-time age of a 1110 * process, regardless of execs it's done, is start_time. 1111 * All the past CPU time is accumulated in signal_struct 1112 * from sister threads now dead. But in this non-leader 1113 * exec, nothing survives from the original leader thread, 1114 * whose birth marks the true age of this process now. 1115 * When we take on its identity by switching to its PID, we 1116 * also take its birthdate (always earlier than our own). 1117 */ 1118 tsk->start_time = leader->start_time; 1119 tsk->real_start_time = leader->real_start_time; 1120 1121 BUG_ON(!same_thread_group(leader, tsk)); 1122 BUG_ON(has_group_leader_pid(tsk)); 1123 /* 1124 * An exec() starts a new thread group with the 1125 * TGID of the previous thread group. Rehash the 1126 * two threads with a switched PID, and release 1127 * the former thread group leader: 1128 */ 1129 1130 /* Become a process group leader with the old leader's pid. 1131 * The old leader becomes a thread of the this thread group. 1132 * Note: The old leader also uses this pid until release_task 1133 * is called. Odd but simple and correct. 1134 */ 1135 tsk->pid = leader->pid; 1136 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1137 transfer_pid(leader, tsk, PIDTYPE_PGID); 1138 transfer_pid(leader, tsk, PIDTYPE_SID); 1139 1140 list_replace_rcu(&leader->tasks, &tsk->tasks); 1141 list_replace_init(&leader->sibling, &tsk->sibling); 1142 1143 tsk->group_leader = tsk; 1144 leader->group_leader = tsk; 1145 1146 tsk->exit_signal = SIGCHLD; 1147 leader->exit_signal = -1; 1148 1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1150 leader->exit_state = EXIT_DEAD; 1151 1152 /* 1153 * We are going to release_task()->ptrace_unlink() silently, 1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1155 * the tracer wont't block again waiting for this thread. 1156 */ 1157 if (unlikely(leader->ptrace)) 1158 __wake_up_parent(leader, leader->parent); 1159 write_unlock_irq(&tasklist_lock); 1160 threadgroup_change_end(tsk); 1161 1162 release_task(leader); 1163 } 1164 1165 sig->group_exit_task = NULL; 1166 sig->notify_count = 0; 1167 1168 no_thread_group: 1169 /* we have changed execution domain */ 1170 tsk->exit_signal = SIGCHLD; 1171 1172 exit_itimers(sig); 1173 flush_itimer_signals(); 1174 1175 if (atomic_read(&oldsighand->count) != 1) { 1176 struct sighand_struct *newsighand; 1177 /* 1178 * This ->sighand is shared with the CLONE_SIGHAND 1179 * but not CLONE_THREAD task, switch to the new one. 1180 */ 1181 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1182 if (!newsighand) 1183 return -ENOMEM; 1184 1185 atomic_set(&newsighand->count, 1); 1186 memcpy(newsighand->action, oldsighand->action, 1187 sizeof(newsighand->action)); 1188 1189 write_lock_irq(&tasklist_lock); 1190 spin_lock(&oldsighand->siglock); 1191 rcu_assign_pointer(tsk->sighand, newsighand); 1192 spin_unlock(&oldsighand->siglock); 1193 write_unlock_irq(&tasklist_lock); 1194 1195 __cleanup_sighand(oldsighand); 1196 } 1197 1198 BUG_ON(!thread_group_leader(tsk)); 1199 return 0; 1200 1201 killed: 1202 /* protects against exit_notify() and __exit_signal() */ 1203 read_lock(&tasklist_lock); 1204 sig->group_exit_task = NULL; 1205 sig->notify_count = 0; 1206 read_unlock(&tasklist_lock); 1207 return -EAGAIN; 1208 } 1209 1210 char *get_task_comm(char *buf, struct task_struct *tsk) 1211 { 1212 /* buf must be at least sizeof(tsk->comm) in size */ 1213 task_lock(tsk); 1214 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1215 task_unlock(tsk); 1216 return buf; 1217 } 1218 EXPORT_SYMBOL_GPL(get_task_comm); 1219 1220 /* 1221 * These functions flushes out all traces of the currently running executable 1222 * so that a new one can be started 1223 */ 1224 1225 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1226 { 1227 task_lock(tsk); 1228 trace_task_rename(tsk, buf); 1229 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1230 task_unlock(tsk); 1231 perf_event_comm(tsk, exec); 1232 } 1233 1234 int flush_old_exec(struct linux_binprm * bprm) 1235 { 1236 int retval; 1237 1238 /* 1239 * Make sure we have a private signal table and that 1240 * we are unassociated from the previous thread group. 1241 */ 1242 retval = de_thread(current); 1243 if (retval) 1244 goto out; 1245 1246 /* 1247 * Must be called _before_ exec_mmap() as bprm->mm is 1248 * not visibile until then. This also enables the update 1249 * to be lockless. 1250 */ 1251 set_mm_exe_file(bprm->mm, bprm->file); 1252 1253 /* 1254 * Release all of the old mmap stuff 1255 */ 1256 acct_arg_size(bprm, 0); 1257 retval = exec_mmap(bprm->mm); 1258 if (retval) 1259 goto out; 1260 1261 bprm->mm = NULL; /* We're using it now */ 1262 1263 set_fs(USER_DS); 1264 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1265 PF_NOFREEZE | PF_NO_SETAFFINITY); 1266 flush_thread(); 1267 current->personality &= ~bprm->per_clear; 1268 1269 return 0; 1270 1271 out: 1272 return retval; 1273 } 1274 EXPORT_SYMBOL(flush_old_exec); 1275 1276 void would_dump(struct linux_binprm *bprm, struct file *file) 1277 { 1278 if (inode_permission(file_inode(file), MAY_READ) < 0) 1279 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1280 } 1281 EXPORT_SYMBOL(would_dump); 1282 1283 void setup_new_exec(struct linux_binprm * bprm) 1284 { 1285 arch_pick_mmap_layout(current->mm); 1286 1287 /* This is the point of no return */ 1288 current->sas_ss_sp = current->sas_ss_size = 0; 1289 1290 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1291 set_dumpable(current->mm, SUID_DUMP_USER); 1292 else 1293 set_dumpable(current->mm, suid_dumpable); 1294 1295 perf_event_exec(); 1296 __set_task_comm(current, kbasename(bprm->filename), true); 1297 1298 /* Set the new mm task size. We have to do that late because it may 1299 * depend on TIF_32BIT which is only updated in flush_thread() on 1300 * some architectures like powerpc 1301 */ 1302 current->mm->task_size = TASK_SIZE; 1303 1304 /* install the new credentials */ 1305 if (!uid_eq(bprm->cred->uid, current_euid()) || 1306 !gid_eq(bprm->cred->gid, current_egid())) { 1307 current->pdeath_signal = 0; 1308 } else { 1309 would_dump(bprm, bprm->file); 1310 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1311 set_dumpable(current->mm, suid_dumpable); 1312 } 1313 1314 /* An exec changes our domain. We are no longer part of the thread 1315 group */ 1316 current->self_exec_id++; 1317 flush_signal_handlers(current, 0); 1318 do_close_on_exec(current->files); 1319 } 1320 EXPORT_SYMBOL(setup_new_exec); 1321 1322 /* 1323 * Prepare credentials and lock ->cred_guard_mutex. 1324 * install_exec_creds() commits the new creds and drops the lock. 1325 * Or, if exec fails before, free_bprm() should release ->cred and 1326 * and unlock. 1327 */ 1328 int prepare_bprm_creds(struct linux_binprm *bprm) 1329 { 1330 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1331 return -ERESTARTNOINTR; 1332 1333 bprm->cred = prepare_exec_creds(); 1334 if (likely(bprm->cred)) 1335 return 0; 1336 1337 mutex_unlock(¤t->signal->cred_guard_mutex); 1338 return -ENOMEM; 1339 } 1340 1341 static void free_bprm(struct linux_binprm *bprm) 1342 { 1343 free_arg_pages(bprm); 1344 if (bprm->cred) { 1345 mutex_unlock(¤t->signal->cred_guard_mutex); 1346 abort_creds(bprm->cred); 1347 } 1348 if (bprm->file) { 1349 allow_write_access(bprm->file); 1350 fput(bprm->file); 1351 } 1352 /* If a binfmt changed the interp, free it. */ 1353 if (bprm->interp != bprm->filename) 1354 kfree(bprm->interp); 1355 kfree(bprm); 1356 } 1357 1358 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1359 { 1360 /* If a binfmt changed the interp, free it first. */ 1361 if (bprm->interp != bprm->filename) 1362 kfree(bprm->interp); 1363 bprm->interp = kstrdup(interp, GFP_KERNEL); 1364 if (!bprm->interp) 1365 return -ENOMEM; 1366 return 0; 1367 } 1368 EXPORT_SYMBOL(bprm_change_interp); 1369 1370 /* 1371 * install the new credentials for this executable 1372 */ 1373 void install_exec_creds(struct linux_binprm *bprm) 1374 { 1375 security_bprm_committing_creds(bprm); 1376 1377 commit_creds(bprm->cred); 1378 bprm->cred = NULL; 1379 1380 /* 1381 * Disable monitoring for regular users 1382 * when executing setuid binaries. Must 1383 * wait until new credentials are committed 1384 * by commit_creds() above 1385 */ 1386 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1387 perf_event_exit_task(current); 1388 /* 1389 * cred_guard_mutex must be held at least to this point to prevent 1390 * ptrace_attach() from altering our determination of the task's 1391 * credentials; any time after this it may be unlocked. 1392 */ 1393 security_bprm_committed_creds(bprm); 1394 mutex_unlock(¤t->signal->cred_guard_mutex); 1395 } 1396 EXPORT_SYMBOL(install_exec_creds); 1397 1398 /* 1399 * determine how safe it is to execute the proposed program 1400 * - the caller must hold ->cred_guard_mutex to protect against 1401 * PTRACE_ATTACH or seccomp thread-sync 1402 */ 1403 static void check_unsafe_exec(struct linux_binprm *bprm) 1404 { 1405 struct task_struct *p = current, *t; 1406 unsigned n_fs; 1407 1408 if (p->ptrace) { 1409 if (p->ptrace & PT_PTRACE_CAP) 1410 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1411 else 1412 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1413 } 1414 1415 /* 1416 * This isn't strictly necessary, but it makes it harder for LSMs to 1417 * mess up. 1418 */ 1419 if (task_no_new_privs(current)) 1420 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1421 1422 t = p; 1423 n_fs = 1; 1424 spin_lock(&p->fs->lock); 1425 rcu_read_lock(); 1426 while_each_thread(p, t) { 1427 if (t->fs == p->fs) 1428 n_fs++; 1429 } 1430 rcu_read_unlock(); 1431 1432 if (p->fs->users > n_fs) 1433 bprm->unsafe |= LSM_UNSAFE_SHARE; 1434 else 1435 p->fs->in_exec = 1; 1436 spin_unlock(&p->fs->lock); 1437 } 1438 1439 static void bprm_fill_uid(struct linux_binprm *bprm) 1440 { 1441 struct inode *inode; 1442 unsigned int mode; 1443 kuid_t uid; 1444 kgid_t gid; 1445 1446 /* 1447 * Since this can be called multiple times (via prepare_binprm), 1448 * we must clear any previous work done when setting set[ug]id 1449 * bits from any earlier bprm->file uses (for example when run 1450 * first for a setuid script then again for its interpreter). 1451 */ 1452 bprm->cred->euid = current_euid(); 1453 bprm->cred->egid = current_egid(); 1454 1455 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1456 return; 1457 1458 if (task_no_new_privs(current)) 1459 return; 1460 1461 inode = file_inode(bprm->file); 1462 mode = READ_ONCE(inode->i_mode); 1463 if (!(mode & (S_ISUID|S_ISGID))) 1464 return; 1465 1466 /* Be careful if suid/sgid is set */ 1467 inode_lock(inode); 1468 1469 /* reload atomically mode/uid/gid now that lock held */ 1470 mode = inode->i_mode; 1471 uid = inode->i_uid; 1472 gid = inode->i_gid; 1473 inode_unlock(inode); 1474 1475 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1476 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1477 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1478 return; 1479 1480 if (mode & S_ISUID) { 1481 bprm->per_clear |= PER_CLEAR_ON_SETID; 1482 bprm->cred->euid = uid; 1483 } 1484 1485 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1486 bprm->per_clear |= PER_CLEAR_ON_SETID; 1487 bprm->cred->egid = gid; 1488 } 1489 } 1490 1491 /* 1492 * Fill the binprm structure from the inode. 1493 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1494 * 1495 * This may be called multiple times for binary chains (scripts for example). 1496 */ 1497 int prepare_binprm(struct linux_binprm *bprm) 1498 { 1499 int retval; 1500 1501 bprm_fill_uid(bprm); 1502 1503 /* fill in binprm security blob */ 1504 retval = security_bprm_set_creds(bprm); 1505 if (retval) 1506 return retval; 1507 bprm->cred_prepared = 1; 1508 1509 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1510 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1511 } 1512 1513 EXPORT_SYMBOL(prepare_binprm); 1514 1515 /* 1516 * Arguments are '\0' separated strings found at the location bprm->p 1517 * points to; chop off the first by relocating brpm->p to right after 1518 * the first '\0' encountered. 1519 */ 1520 int remove_arg_zero(struct linux_binprm *bprm) 1521 { 1522 int ret = 0; 1523 unsigned long offset; 1524 char *kaddr; 1525 struct page *page; 1526 1527 if (!bprm->argc) 1528 return 0; 1529 1530 do { 1531 offset = bprm->p & ~PAGE_MASK; 1532 page = get_arg_page(bprm, bprm->p, 0); 1533 if (!page) { 1534 ret = -EFAULT; 1535 goto out; 1536 } 1537 kaddr = kmap_atomic(page); 1538 1539 for (; offset < PAGE_SIZE && kaddr[offset]; 1540 offset++, bprm->p++) 1541 ; 1542 1543 kunmap_atomic(kaddr); 1544 put_arg_page(page); 1545 } while (offset == PAGE_SIZE); 1546 1547 bprm->p++; 1548 bprm->argc--; 1549 ret = 0; 1550 1551 out: 1552 return ret; 1553 } 1554 EXPORT_SYMBOL(remove_arg_zero); 1555 1556 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1557 /* 1558 * cycle the list of binary formats handler, until one recognizes the image 1559 */ 1560 int search_binary_handler(struct linux_binprm *bprm) 1561 { 1562 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1563 struct linux_binfmt *fmt; 1564 int retval; 1565 1566 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1567 if (bprm->recursion_depth > 5) 1568 return -ELOOP; 1569 1570 retval = security_bprm_check(bprm); 1571 if (retval) 1572 return retval; 1573 1574 retval = -ENOENT; 1575 retry: 1576 read_lock(&binfmt_lock); 1577 list_for_each_entry(fmt, &formats, lh) { 1578 if (!try_module_get(fmt->module)) 1579 continue; 1580 read_unlock(&binfmt_lock); 1581 bprm->recursion_depth++; 1582 retval = fmt->load_binary(bprm); 1583 read_lock(&binfmt_lock); 1584 put_binfmt(fmt); 1585 bprm->recursion_depth--; 1586 if (retval < 0 && !bprm->mm) { 1587 /* we got to flush_old_exec() and failed after it */ 1588 read_unlock(&binfmt_lock); 1589 force_sigsegv(SIGSEGV, current); 1590 return retval; 1591 } 1592 if (retval != -ENOEXEC || !bprm->file) { 1593 read_unlock(&binfmt_lock); 1594 return retval; 1595 } 1596 } 1597 read_unlock(&binfmt_lock); 1598 1599 if (need_retry) { 1600 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1601 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1602 return retval; 1603 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1604 return retval; 1605 need_retry = false; 1606 goto retry; 1607 } 1608 1609 return retval; 1610 } 1611 EXPORT_SYMBOL(search_binary_handler); 1612 1613 static int exec_binprm(struct linux_binprm *bprm) 1614 { 1615 pid_t old_pid, old_vpid; 1616 int ret; 1617 1618 /* Need to fetch pid before load_binary changes it */ 1619 old_pid = current->pid; 1620 rcu_read_lock(); 1621 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1622 rcu_read_unlock(); 1623 1624 ret = search_binary_handler(bprm); 1625 if (ret >= 0) { 1626 audit_bprm(bprm); 1627 trace_sched_process_exec(current, old_pid, bprm); 1628 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1629 proc_exec_connector(current); 1630 } 1631 1632 return ret; 1633 } 1634 1635 /* 1636 * sys_execve() executes a new program. 1637 */ 1638 static int do_execveat_common(int fd, struct filename *filename, 1639 struct user_arg_ptr argv, 1640 struct user_arg_ptr envp, 1641 int flags) 1642 { 1643 char *pathbuf = NULL; 1644 struct linux_binprm *bprm; 1645 struct file *file; 1646 struct files_struct *displaced; 1647 int retval; 1648 1649 if (IS_ERR(filename)) 1650 return PTR_ERR(filename); 1651 1652 /* 1653 * We move the actual failure in case of RLIMIT_NPROC excess from 1654 * set*uid() to execve() because too many poorly written programs 1655 * don't check setuid() return code. Here we additionally recheck 1656 * whether NPROC limit is still exceeded. 1657 */ 1658 if ((current->flags & PF_NPROC_EXCEEDED) && 1659 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1660 retval = -EAGAIN; 1661 goto out_ret; 1662 } 1663 1664 /* We're below the limit (still or again), so we don't want to make 1665 * further execve() calls fail. */ 1666 current->flags &= ~PF_NPROC_EXCEEDED; 1667 1668 retval = unshare_files(&displaced); 1669 if (retval) 1670 goto out_ret; 1671 1672 retval = -ENOMEM; 1673 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1674 if (!bprm) 1675 goto out_files; 1676 1677 retval = prepare_bprm_creds(bprm); 1678 if (retval) 1679 goto out_free; 1680 1681 check_unsafe_exec(bprm); 1682 current->in_execve = 1; 1683 1684 file = do_open_execat(fd, filename, flags); 1685 retval = PTR_ERR(file); 1686 if (IS_ERR(file)) 1687 goto out_unmark; 1688 1689 sched_exec(); 1690 1691 bprm->file = file; 1692 if (fd == AT_FDCWD || filename->name[0] == '/') { 1693 bprm->filename = filename->name; 1694 } else { 1695 if (filename->name[0] == '\0') 1696 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd); 1697 else 1698 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s", 1699 fd, filename->name); 1700 if (!pathbuf) { 1701 retval = -ENOMEM; 1702 goto out_unmark; 1703 } 1704 /* 1705 * Record that a name derived from an O_CLOEXEC fd will be 1706 * inaccessible after exec. Relies on having exclusive access to 1707 * current->files (due to unshare_files above). 1708 */ 1709 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1710 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1711 bprm->filename = pathbuf; 1712 } 1713 bprm->interp = bprm->filename; 1714 1715 retval = bprm_mm_init(bprm); 1716 if (retval) 1717 goto out_unmark; 1718 1719 bprm->argc = count(argv, MAX_ARG_STRINGS); 1720 if ((retval = bprm->argc) < 0) 1721 goto out; 1722 1723 bprm->envc = count(envp, MAX_ARG_STRINGS); 1724 if ((retval = bprm->envc) < 0) 1725 goto out; 1726 1727 retval = prepare_binprm(bprm); 1728 if (retval < 0) 1729 goto out; 1730 1731 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1732 if (retval < 0) 1733 goto out; 1734 1735 bprm->exec = bprm->p; 1736 retval = copy_strings(bprm->envc, envp, bprm); 1737 if (retval < 0) 1738 goto out; 1739 1740 retval = copy_strings(bprm->argc, argv, bprm); 1741 if (retval < 0) 1742 goto out; 1743 1744 retval = exec_binprm(bprm); 1745 if (retval < 0) 1746 goto out; 1747 1748 /* execve succeeded */ 1749 current->fs->in_exec = 0; 1750 current->in_execve = 0; 1751 acct_update_integrals(current); 1752 task_numa_free(current); 1753 free_bprm(bprm); 1754 kfree(pathbuf); 1755 putname(filename); 1756 if (displaced) 1757 put_files_struct(displaced); 1758 return retval; 1759 1760 out: 1761 if (bprm->mm) { 1762 acct_arg_size(bprm, 0); 1763 mmput(bprm->mm); 1764 } 1765 1766 out_unmark: 1767 current->fs->in_exec = 0; 1768 current->in_execve = 0; 1769 1770 out_free: 1771 free_bprm(bprm); 1772 kfree(pathbuf); 1773 1774 out_files: 1775 if (displaced) 1776 reset_files_struct(displaced); 1777 out_ret: 1778 putname(filename); 1779 return retval; 1780 } 1781 1782 int do_execve(struct filename *filename, 1783 const char __user *const __user *__argv, 1784 const char __user *const __user *__envp) 1785 { 1786 struct user_arg_ptr argv = { .ptr.native = __argv }; 1787 struct user_arg_ptr envp = { .ptr.native = __envp }; 1788 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1789 } 1790 1791 int do_execveat(int fd, struct filename *filename, 1792 const char __user *const __user *__argv, 1793 const char __user *const __user *__envp, 1794 int flags) 1795 { 1796 struct user_arg_ptr argv = { .ptr.native = __argv }; 1797 struct user_arg_ptr envp = { .ptr.native = __envp }; 1798 1799 return do_execveat_common(fd, filename, argv, envp, flags); 1800 } 1801 1802 #ifdef CONFIG_COMPAT 1803 static int compat_do_execve(struct filename *filename, 1804 const compat_uptr_t __user *__argv, 1805 const compat_uptr_t __user *__envp) 1806 { 1807 struct user_arg_ptr argv = { 1808 .is_compat = true, 1809 .ptr.compat = __argv, 1810 }; 1811 struct user_arg_ptr envp = { 1812 .is_compat = true, 1813 .ptr.compat = __envp, 1814 }; 1815 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1816 } 1817 1818 static int compat_do_execveat(int fd, struct filename *filename, 1819 const compat_uptr_t __user *__argv, 1820 const compat_uptr_t __user *__envp, 1821 int flags) 1822 { 1823 struct user_arg_ptr argv = { 1824 .is_compat = true, 1825 .ptr.compat = __argv, 1826 }; 1827 struct user_arg_ptr envp = { 1828 .is_compat = true, 1829 .ptr.compat = __envp, 1830 }; 1831 return do_execveat_common(fd, filename, argv, envp, flags); 1832 } 1833 #endif 1834 1835 void set_binfmt(struct linux_binfmt *new) 1836 { 1837 struct mm_struct *mm = current->mm; 1838 1839 if (mm->binfmt) 1840 module_put(mm->binfmt->module); 1841 1842 mm->binfmt = new; 1843 if (new) 1844 __module_get(new->module); 1845 } 1846 EXPORT_SYMBOL(set_binfmt); 1847 1848 /* 1849 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1850 */ 1851 void set_dumpable(struct mm_struct *mm, int value) 1852 { 1853 unsigned long old, new; 1854 1855 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1856 return; 1857 1858 do { 1859 old = ACCESS_ONCE(mm->flags); 1860 new = (old & ~MMF_DUMPABLE_MASK) | value; 1861 } while (cmpxchg(&mm->flags, old, new) != old); 1862 } 1863 1864 SYSCALL_DEFINE3(execve, 1865 const char __user *, filename, 1866 const char __user *const __user *, argv, 1867 const char __user *const __user *, envp) 1868 { 1869 return do_execve(getname(filename), argv, envp); 1870 } 1871 1872 SYSCALL_DEFINE5(execveat, 1873 int, fd, const char __user *, filename, 1874 const char __user *const __user *, argv, 1875 const char __user *const __user *, envp, 1876 int, flags) 1877 { 1878 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1879 1880 return do_execveat(fd, 1881 getname_flags(filename, lookup_flags, NULL), 1882 argv, envp, flags); 1883 } 1884 1885 #ifdef CONFIG_COMPAT 1886 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1887 const compat_uptr_t __user *, argv, 1888 const compat_uptr_t __user *, envp) 1889 { 1890 return compat_do_execve(getname(filename), argv, envp); 1891 } 1892 1893 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1894 const char __user *, filename, 1895 const compat_uptr_t __user *, argv, 1896 const compat_uptr_t __user *, envp, 1897 int, flags) 1898 { 1899 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1900 1901 return compat_do_execveat(fd, 1902 getname_flags(filename, lookup_flags, NULL), 1903 argv, envp, flags); 1904 } 1905 #endif 1906