1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 #include <linux/kmod.h> 53 #include <linux/fsnotify.h> 54 #include <linux/fs_struct.h> 55 #include <linux/pipe_fs_i.h> 56 #include <linux/oom.h> 57 #include <linux/compat.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include "internal.h" 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 unsigned int core_pipe_limit; 67 int suid_dumpable = 0; 68 69 struct core_name { 70 char *corename; 71 int used, size; 72 }; 73 static atomic_t call_count = ATOMIC_INIT(1); 74 75 /* The maximal length of core_pattern is also specified in sysctl.c */ 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 int __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 if (!fmt) 83 return -EINVAL; 84 write_lock(&binfmt_lock); 85 insert ? list_add(&fmt->lh, &formats) : 86 list_add_tail(&fmt->lh, &formats); 87 write_unlock(&binfmt_lock); 88 return 0; 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 /* 108 * Note that a shared library must be both readable and executable due to 109 * security reasons. 110 * 111 * Also note that we take the address to load from from the file itself. 112 */ 113 SYSCALL_DEFINE1(uselib, const char __user *, library) 114 { 115 struct file *file; 116 char *tmp = getname(library); 117 int error = PTR_ERR(tmp); 118 static const struct open_flags uselib_flags = { 119 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 120 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 121 .intent = LOOKUP_OPEN 122 }; 123 124 if (IS_ERR(tmp)) 125 goto out; 126 127 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); 128 putname(tmp); 129 error = PTR_ERR(file); 130 if (IS_ERR(file)) 131 goto out; 132 133 error = -EINVAL; 134 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 135 goto exit; 136 137 error = -EACCES; 138 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 139 goto exit; 140 141 fsnotify_open(file); 142 143 error = -ENOEXEC; 144 if(file->f_op) { 145 struct linux_binfmt * fmt; 146 147 read_lock(&binfmt_lock); 148 list_for_each_entry(fmt, &formats, lh) { 149 if (!fmt->load_shlib) 150 continue; 151 if (!try_module_get(fmt->module)) 152 continue; 153 read_unlock(&binfmt_lock); 154 error = fmt->load_shlib(file); 155 read_lock(&binfmt_lock); 156 put_binfmt(fmt); 157 if (error != -ENOEXEC) 158 break; 159 } 160 read_unlock(&binfmt_lock); 161 } 162 exit: 163 fput(file); 164 out: 165 return error; 166 } 167 168 #ifdef CONFIG_MMU 169 /* 170 * The nascent bprm->mm is not visible until exec_mmap() but it can 171 * use a lot of memory, account these pages in current->mm temporary 172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 173 * change the counter back via acct_arg_size(0). 174 */ 175 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 176 { 177 struct mm_struct *mm = current->mm; 178 long diff = (long)(pages - bprm->vma_pages); 179 180 if (!mm || !diff) 181 return; 182 183 bprm->vma_pages = pages; 184 add_mm_counter(mm, MM_ANONPAGES, diff); 185 } 186 187 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 188 int write) 189 { 190 struct page *page; 191 int ret; 192 193 #ifdef CONFIG_STACK_GROWSUP 194 if (write) { 195 ret = expand_downwards(bprm->vma, pos); 196 if (ret < 0) 197 return NULL; 198 } 199 #endif 200 ret = get_user_pages(current, bprm->mm, pos, 201 1, write, 1, &page, NULL); 202 if (ret <= 0) 203 return NULL; 204 205 if (write) { 206 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 207 struct rlimit *rlim; 208 209 acct_arg_size(bprm, size / PAGE_SIZE); 210 211 /* 212 * We've historically supported up to 32 pages (ARG_MAX) 213 * of argument strings even with small stacks 214 */ 215 if (size <= ARG_MAX) 216 return page; 217 218 /* 219 * Limit to 1/4-th the stack size for the argv+env strings. 220 * This ensures that: 221 * - the remaining binfmt code will not run out of stack space, 222 * - the program will have a reasonable amount of stack left 223 * to work from. 224 */ 225 rlim = current->signal->rlim; 226 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 227 put_page(page); 228 return NULL; 229 } 230 } 231 232 return page; 233 } 234 235 static void put_arg_page(struct page *page) 236 { 237 put_page(page); 238 } 239 240 static void free_arg_page(struct linux_binprm *bprm, int i) 241 { 242 } 243 244 static void free_arg_pages(struct linux_binprm *bprm) 245 { 246 } 247 248 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 249 struct page *page) 250 { 251 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 252 } 253 254 static int __bprm_mm_init(struct linux_binprm *bprm) 255 { 256 int err; 257 struct vm_area_struct *vma = NULL; 258 struct mm_struct *mm = bprm->mm; 259 260 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 261 if (!vma) 262 return -ENOMEM; 263 264 down_write(&mm->mmap_sem); 265 vma->vm_mm = mm; 266 267 /* 268 * Place the stack at the largest stack address the architecture 269 * supports. Later, we'll move this to an appropriate place. We don't 270 * use STACK_TOP because that can depend on attributes which aren't 271 * configured yet. 272 */ 273 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 274 vma->vm_end = STACK_TOP_MAX; 275 vma->vm_start = vma->vm_end - PAGE_SIZE; 276 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 277 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 278 INIT_LIST_HEAD(&vma->anon_vma_chain); 279 280 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 281 if (err) 282 goto err; 283 284 err = insert_vm_struct(mm, vma); 285 if (err) 286 goto err; 287 288 mm->stack_vm = mm->total_vm = 1; 289 up_write(&mm->mmap_sem); 290 bprm->p = vma->vm_end - sizeof(void *); 291 return 0; 292 err: 293 up_write(&mm->mmap_sem); 294 bprm->vma = NULL; 295 kmem_cache_free(vm_area_cachep, vma); 296 return err; 297 } 298 299 static bool valid_arg_len(struct linux_binprm *bprm, long len) 300 { 301 return len <= MAX_ARG_STRLEN; 302 } 303 304 #else 305 306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 307 { 308 } 309 310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 311 int write) 312 { 313 struct page *page; 314 315 page = bprm->page[pos / PAGE_SIZE]; 316 if (!page && write) { 317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 318 if (!page) 319 return NULL; 320 bprm->page[pos / PAGE_SIZE] = page; 321 } 322 323 return page; 324 } 325 326 static void put_arg_page(struct page *page) 327 { 328 } 329 330 static void free_arg_page(struct linux_binprm *bprm, int i) 331 { 332 if (bprm->page[i]) { 333 __free_page(bprm->page[i]); 334 bprm->page[i] = NULL; 335 } 336 } 337 338 static void free_arg_pages(struct linux_binprm *bprm) 339 { 340 int i; 341 342 for (i = 0; i < MAX_ARG_PAGES; i++) 343 free_arg_page(bprm, i); 344 } 345 346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 347 struct page *page) 348 { 349 } 350 351 static int __bprm_mm_init(struct linux_binprm *bprm) 352 { 353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 354 return 0; 355 } 356 357 static bool valid_arg_len(struct linux_binprm *bprm, long len) 358 { 359 return len <= bprm->p; 360 } 361 362 #endif /* CONFIG_MMU */ 363 364 /* 365 * Create a new mm_struct and populate it with a temporary stack 366 * vm_area_struct. We don't have enough context at this point to set the stack 367 * flags, permissions, and offset, so we use temporary values. We'll update 368 * them later in setup_arg_pages(). 369 */ 370 int bprm_mm_init(struct linux_binprm *bprm) 371 { 372 int err; 373 struct mm_struct *mm = NULL; 374 375 bprm->mm = mm = mm_alloc(); 376 err = -ENOMEM; 377 if (!mm) 378 goto err; 379 380 err = init_new_context(current, mm); 381 if (err) 382 goto err; 383 384 err = __bprm_mm_init(bprm); 385 if (err) 386 goto err; 387 388 return 0; 389 390 err: 391 if (mm) { 392 bprm->mm = NULL; 393 mmdrop(mm); 394 } 395 396 return err; 397 } 398 399 struct user_arg_ptr { 400 #ifdef CONFIG_COMPAT 401 bool is_compat; 402 #endif 403 union { 404 const char __user *const __user *native; 405 #ifdef CONFIG_COMPAT 406 compat_uptr_t __user *compat; 407 #endif 408 } ptr; 409 }; 410 411 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 412 { 413 const char __user *native; 414 415 #ifdef CONFIG_COMPAT 416 if (unlikely(argv.is_compat)) { 417 compat_uptr_t compat; 418 419 if (get_user(compat, argv.ptr.compat + nr)) 420 return ERR_PTR(-EFAULT); 421 422 return compat_ptr(compat); 423 } 424 #endif 425 426 if (get_user(native, argv.ptr.native + nr)) 427 return ERR_PTR(-EFAULT); 428 429 return native; 430 } 431 432 /* 433 * count() counts the number of strings in array ARGV. 434 */ 435 static int count(struct user_arg_ptr argv, int max) 436 { 437 int i = 0; 438 439 if (argv.ptr.native != NULL) { 440 for (;;) { 441 const char __user *p = get_user_arg_ptr(argv, i); 442 443 if (!p) 444 break; 445 446 if (IS_ERR(p)) 447 return -EFAULT; 448 449 if (i++ >= max) 450 return -E2BIG; 451 452 if (fatal_signal_pending(current)) 453 return -ERESTARTNOHAND; 454 cond_resched(); 455 } 456 } 457 return i; 458 } 459 460 /* 461 * 'copy_strings()' copies argument/environment strings from the old 462 * processes's memory to the new process's stack. The call to get_user_pages() 463 * ensures the destination page is created and not swapped out. 464 */ 465 static int copy_strings(int argc, struct user_arg_ptr argv, 466 struct linux_binprm *bprm) 467 { 468 struct page *kmapped_page = NULL; 469 char *kaddr = NULL; 470 unsigned long kpos = 0; 471 int ret; 472 473 while (argc-- > 0) { 474 const char __user *str; 475 int len; 476 unsigned long pos; 477 478 ret = -EFAULT; 479 str = get_user_arg_ptr(argv, argc); 480 if (IS_ERR(str)) 481 goto out; 482 483 len = strnlen_user(str, MAX_ARG_STRLEN); 484 if (!len) 485 goto out; 486 487 ret = -E2BIG; 488 if (!valid_arg_len(bprm, len)) 489 goto out; 490 491 /* We're going to work our way backwords. */ 492 pos = bprm->p; 493 str += len; 494 bprm->p -= len; 495 496 while (len > 0) { 497 int offset, bytes_to_copy; 498 499 if (fatal_signal_pending(current)) { 500 ret = -ERESTARTNOHAND; 501 goto out; 502 } 503 cond_resched(); 504 505 offset = pos % PAGE_SIZE; 506 if (offset == 0) 507 offset = PAGE_SIZE; 508 509 bytes_to_copy = offset; 510 if (bytes_to_copy > len) 511 bytes_to_copy = len; 512 513 offset -= bytes_to_copy; 514 pos -= bytes_to_copy; 515 str -= bytes_to_copy; 516 len -= bytes_to_copy; 517 518 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 519 struct page *page; 520 521 page = get_arg_page(bprm, pos, 1); 522 if (!page) { 523 ret = -E2BIG; 524 goto out; 525 } 526 527 if (kmapped_page) { 528 flush_kernel_dcache_page(kmapped_page); 529 kunmap(kmapped_page); 530 put_arg_page(kmapped_page); 531 } 532 kmapped_page = page; 533 kaddr = kmap(kmapped_page); 534 kpos = pos & PAGE_MASK; 535 flush_arg_page(bprm, kpos, kmapped_page); 536 } 537 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 538 ret = -EFAULT; 539 goto out; 540 } 541 } 542 } 543 ret = 0; 544 out: 545 if (kmapped_page) { 546 flush_kernel_dcache_page(kmapped_page); 547 kunmap(kmapped_page); 548 put_arg_page(kmapped_page); 549 } 550 return ret; 551 } 552 553 /* 554 * Like copy_strings, but get argv and its values from kernel memory. 555 */ 556 int copy_strings_kernel(int argc, const char *const *__argv, 557 struct linux_binprm *bprm) 558 { 559 int r; 560 mm_segment_t oldfs = get_fs(); 561 struct user_arg_ptr argv = { 562 .ptr.native = (const char __user *const __user *)__argv, 563 }; 564 565 set_fs(KERNEL_DS); 566 r = copy_strings(argc, argv, bprm); 567 set_fs(oldfs); 568 569 return r; 570 } 571 EXPORT_SYMBOL(copy_strings_kernel); 572 573 #ifdef CONFIG_MMU 574 575 /* 576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 577 * the binfmt code determines where the new stack should reside, we shift it to 578 * its final location. The process proceeds as follows: 579 * 580 * 1) Use shift to calculate the new vma endpoints. 581 * 2) Extend vma to cover both the old and new ranges. This ensures the 582 * arguments passed to subsequent functions are consistent. 583 * 3) Move vma's page tables to the new range. 584 * 4) Free up any cleared pgd range. 585 * 5) Shrink the vma to cover only the new range. 586 */ 587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 588 { 589 struct mm_struct *mm = vma->vm_mm; 590 unsigned long old_start = vma->vm_start; 591 unsigned long old_end = vma->vm_end; 592 unsigned long length = old_end - old_start; 593 unsigned long new_start = old_start - shift; 594 unsigned long new_end = old_end - shift; 595 struct mmu_gather tlb; 596 597 BUG_ON(new_start > new_end); 598 599 /* 600 * ensure there are no vmas between where we want to go 601 * and where we are 602 */ 603 if (vma != find_vma(mm, new_start)) 604 return -EFAULT; 605 606 /* 607 * cover the whole range: [new_start, old_end) 608 */ 609 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 610 return -ENOMEM; 611 612 /* 613 * move the page tables downwards, on failure we rely on 614 * process cleanup to remove whatever mess we made. 615 */ 616 if (length != move_page_tables(vma, old_start, 617 vma, new_start, length)) 618 return -ENOMEM; 619 620 lru_add_drain(); 621 tlb_gather_mmu(&tlb, mm, 0); 622 if (new_end > old_start) { 623 /* 624 * when the old and new regions overlap clear from new_end. 625 */ 626 free_pgd_range(&tlb, new_end, old_end, new_end, 627 vma->vm_next ? vma->vm_next->vm_start : 0); 628 } else { 629 /* 630 * otherwise, clean from old_start; this is done to not touch 631 * the address space in [new_end, old_start) some architectures 632 * have constraints on va-space that make this illegal (IA64) - 633 * for the others its just a little faster. 634 */ 635 free_pgd_range(&tlb, old_start, old_end, new_end, 636 vma->vm_next ? vma->vm_next->vm_start : 0); 637 } 638 tlb_finish_mmu(&tlb, new_end, old_end); 639 640 /* 641 * Shrink the vma to just the new range. Always succeeds. 642 */ 643 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 644 645 return 0; 646 } 647 648 /* 649 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 650 * the stack is optionally relocated, and some extra space is added. 651 */ 652 int setup_arg_pages(struct linux_binprm *bprm, 653 unsigned long stack_top, 654 int executable_stack) 655 { 656 unsigned long ret; 657 unsigned long stack_shift; 658 struct mm_struct *mm = current->mm; 659 struct vm_area_struct *vma = bprm->vma; 660 struct vm_area_struct *prev = NULL; 661 unsigned long vm_flags; 662 unsigned long stack_base; 663 unsigned long stack_size; 664 unsigned long stack_expand; 665 unsigned long rlim_stack; 666 667 #ifdef CONFIG_STACK_GROWSUP 668 /* Limit stack size to 1GB */ 669 stack_base = rlimit_max(RLIMIT_STACK); 670 if (stack_base > (1 << 30)) 671 stack_base = 1 << 30; 672 673 /* Make sure we didn't let the argument array grow too large. */ 674 if (vma->vm_end - vma->vm_start > stack_base) 675 return -ENOMEM; 676 677 stack_base = PAGE_ALIGN(stack_top - stack_base); 678 679 stack_shift = vma->vm_start - stack_base; 680 mm->arg_start = bprm->p - stack_shift; 681 bprm->p = vma->vm_end - stack_shift; 682 #else 683 stack_top = arch_align_stack(stack_top); 684 stack_top = PAGE_ALIGN(stack_top); 685 686 if (unlikely(stack_top < mmap_min_addr) || 687 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 688 return -ENOMEM; 689 690 stack_shift = vma->vm_end - stack_top; 691 692 bprm->p -= stack_shift; 693 mm->arg_start = bprm->p; 694 #endif 695 696 if (bprm->loader) 697 bprm->loader -= stack_shift; 698 bprm->exec -= stack_shift; 699 700 down_write(&mm->mmap_sem); 701 vm_flags = VM_STACK_FLAGS; 702 703 /* 704 * Adjust stack execute permissions; explicitly enable for 705 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 706 * (arch default) otherwise. 707 */ 708 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 709 vm_flags |= VM_EXEC; 710 else if (executable_stack == EXSTACK_DISABLE_X) 711 vm_flags &= ~VM_EXEC; 712 vm_flags |= mm->def_flags; 713 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 714 715 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 716 vm_flags); 717 if (ret) 718 goto out_unlock; 719 BUG_ON(prev != vma); 720 721 /* Move stack pages down in memory. */ 722 if (stack_shift) { 723 ret = shift_arg_pages(vma, stack_shift); 724 if (ret) 725 goto out_unlock; 726 } 727 728 /* mprotect_fixup is overkill to remove the temporary stack flags */ 729 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 730 731 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 732 stack_size = vma->vm_end - vma->vm_start; 733 /* 734 * Align this down to a page boundary as expand_stack 735 * will align it up. 736 */ 737 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 738 #ifdef CONFIG_STACK_GROWSUP 739 if (stack_size + stack_expand > rlim_stack) 740 stack_base = vma->vm_start + rlim_stack; 741 else 742 stack_base = vma->vm_end + stack_expand; 743 #else 744 if (stack_size + stack_expand > rlim_stack) 745 stack_base = vma->vm_end - rlim_stack; 746 else 747 stack_base = vma->vm_start - stack_expand; 748 #endif 749 current->mm->start_stack = bprm->p; 750 ret = expand_stack(vma, stack_base); 751 if (ret) 752 ret = -EFAULT; 753 754 out_unlock: 755 up_write(&mm->mmap_sem); 756 return ret; 757 } 758 EXPORT_SYMBOL(setup_arg_pages); 759 760 #endif /* CONFIG_MMU */ 761 762 struct file *open_exec(const char *name) 763 { 764 struct file *file; 765 int err; 766 static const struct open_flags open_exec_flags = { 767 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 768 .acc_mode = MAY_EXEC | MAY_OPEN, 769 .intent = LOOKUP_OPEN 770 }; 771 772 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW); 773 if (IS_ERR(file)) 774 goto out; 775 776 err = -EACCES; 777 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 778 goto exit; 779 780 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 781 goto exit; 782 783 fsnotify_open(file); 784 785 err = deny_write_access(file); 786 if (err) 787 goto exit; 788 789 out: 790 return file; 791 792 exit: 793 fput(file); 794 return ERR_PTR(err); 795 } 796 EXPORT_SYMBOL(open_exec); 797 798 int kernel_read(struct file *file, loff_t offset, 799 char *addr, unsigned long count) 800 { 801 mm_segment_t old_fs; 802 loff_t pos = offset; 803 int result; 804 805 old_fs = get_fs(); 806 set_fs(get_ds()); 807 /* The cast to a user pointer is valid due to the set_fs() */ 808 result = vfs_read(file, (void __user *)addr, count, &pos); 809 set_fs(old_fs); 810 return result; 811 } 812 813 EXPORT_SYMBOL(kernel_read); 814 815 static int exec_mmap(struct mm_struct *mm) 816 { 817 struct task_struct *tsk; 818 struct mm_struct * old_mm, *active_mm; 819 820 /* Notify parent that we're no longer interested in the old VM */ 821 tsk = current; 822 old_mm = current->mm; 823 sync_mm_rss(tsk, old_mm); 824 mm_release(tsk, old_mm); 825 826 if (old_mm) { 827 /* 828 * Make sure that if there is a core dump in progress 829 * for the old mm, we get out and die instead of going 830 * through with the exec. We must hold mmap_sem around 831 * checking core_state and changing tsk->mm. 832 */ 833 down_read(&old_mm->mmap_sem); 834 if (unlikely(old_mm->core_state)) { 835 up_read(&old_mm->mmap_sem); 836 return -EINTR; 837 } 838 } 839 task_lock(tsk); 840 active_mm = tsk->active_mm; 841 tsk->mm = mm; 842 tsk->active_mm = mm; 843 activate_mm(active_mm, mm); 844 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 845 atomic_dec(&old_mm->oom_disable_count); 846 atomic_inc(&tsk->mm->oom_disable_count); 847 } 848 task_unlock(tsk); 849 arch_pick_mmap_layout(mm); 850 if (old_mm) { 851 up_read(&old_mm->mmap_sem); 852 BUG_ON(active_mm != old_mm); 853 mm_update_next_owner(old_mm); 854 mmput(old_mm); 855 return 0; 856 } 857 mmdrop(active_mm); 858 return 0; 859 } 860 861 /* 862 * This function makes sure the current process has its own signal table, 863 * so that flush_signal_handlers can later reset the handlers without 864 * disturbing other processes. (Other processes might share the signal 865 * table via the CLONE_SIGHAND option to clone().) 866 */ 867 static int de_thread(struct task_struct *tsk) 868 { 869 struct signal_struct *sig = tsk->signal; 870 struct sighand_struct *oldsighand = tsk->sighand; 871 spinlock_t *lock = &oldsighand->siglock; 872 873 if (thread_group_empty(tsk)) 874 goto no_thread_group; 875 876 /* 877 * Kill all other threads in the thread group. 878 */ 879 spin_lock_irq(lock); 880 if (signal_group_exit(sig)) { 881 /* 882 * Another group action in progress, just 883 * return so that the signal is processed. 884 */ 885 spin_unlock_irq(lock); 886 return -EAGAIN; 887 } 888 889 sig->group_exit_task = tsk; 890 sig->notify_count = zap_other_threads(tsk); 891 if (!thread_group_leader(tsk)) 892 sig->notify_count--; 893 894 while (sig->notify_count) { 895 __set_current_state(TASK_UNINTERRUPTIBLE); 896 spin_unlock_irq(lock); 897 schedule(); 898 spin_lock_irq(lock); 899 } 900 spin_unlock_irq(lock); 901 902 /* 903 * At this point all other threads have exited, all we have to 904 * do is to wait for the thread group leader to become inactive, 905 * and to assume its PID: 906 */ 907 if (!thread_group_leader(tsk)) { 908 struct task_struct *leader = tsk->group_leader; 909 910 sig->notify_count = -1; /* for exit_notify() */ 911 for (;;) { 912 write_lock_irq(&tasklist_lock); 913 if (likely(leader->exit_state)) 914 break; 915 __set_current_state(TASK_UNINTERRUPTIBLE); 916 write_unlock_irq(&tasklist_lock); 917 schedule(); 918 } 919 920 /* 921 * The only record we have of the real-time age of a 922 * process, regardless of execs it's done, is start_time. 923 * All the past CPU time is accumulated in signal_struct 924 * from sister threads now dead. But in this non-leader 925 * exec, nothing survives from the original leader thread, 926 * whose birth marks the true age of this process now. 927 * When we take on its identity by switching to its PID, we 928 * also take its birthdate (always earlier than our own). 929 */ 930 tsk->start_time = leader->start_time; 931 932 BUG_ON(!same_thread_group(leader, tsk)); 933 BUG_ON(has_group_leader_pid(tsk)); 934 /* 935 * An exec() starts a new thread group with the 936 * TGID of the previous thread group. Rehash the 937 * two threads with a switched PID, and release 938 * the former thread group leader: 939 */ 940 941 /* Become a process group leader with the old leader's pid. 942 * The old leader becomes a thread of the this thread group. 943 * Note: The old leader also uses this pid until release_task 944 * is called. Odd but simple and correct. 945 */ 946 detach_pid(tsk, PIDTYPE_PID); 947 tsk->pid = leader->pid; 948 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 949 transfer_pid(leader, tsk, PIDTYPE_PGID); 950 transfer_pid(leader, tsk, PIDTYPE_SID); 951 952 list_replace_rcu(&leader->tasks, &tsk->tasks); 953 list_replace_init(&leader->sibling, &tsk->sibling); 954 955 tsk->group_leader = tsk; 956 leader->group_leader = tsk; 957 958 tsk->exit_signal = SIGCHLD; 959 leader->exit_signal = -1; 960 961 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 962 leader->exit_state = EXIT_DEAD; 963 964 /* 965 * We are going to release_task()->ptrace_unlink() silently, 966 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 967 * the tracer wont't block again waiting for this thread. 968 */ 969 if (unlikely(leader->ptrace)) 970 __wake_up_parent(leader, leader->parent); 971 write_unlock_irq(&tasklist_lock); 972 973 release_task(leader); 974 } 975 976 sig->group_exit_task = NULL; 977 sig->notify_count = 0; 978 979 no_thread_group: 980 if (current->mm) 981 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 982 983 exit_itimers(sig); 984 flush_itimer_signals(); 985 986 if (atomic_read(&oldsighand->count) != 1) { 987 struct sighand_struct *newsighand; 988 /* 989 * This ->sighand is shared with the CLONE_SIGHAND 990 * but not CLONE_THREAD task, switch to the new one. 991 */ 992 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 993 if (!newsighand) 994 return -ENOMEM; 995 996 atomic_set(&newsighand->count, 1); 997 memcpy(newsighand->action, oldsighand->action, 998 sizeof(newsighand->action)); 999 1000 write_lock_irq(&tasklist_lock); 1001 spin_lock(&oldsighand->siglock); 1002 rcu_assign_pointer(tsk->sighand, newsighand); 1003 spin_unlock(&oldsighand->siglock); 1004 write_unlock_irq(&tasklist_lock); 1005 1006 __cleanup_sighand(oldsighand); 1007 } 1008 1009 BUG_ON(!thread_group_leader(tsk)); 1010 return 0; 1011 } 1012 1013 /* 1014 * These functions flushes out all traces of the currently running executable 1015 * so that a new one can be started 1016 */ 1017 static void flush_old_files(struct files_struct * files) 1018 { 1019 long j = -1; 1020 struct fdtable *fdt; 1021 1022 spin_lock(&files->file_lock); 1023 for (;;) { 1024 unsigned long set, i; 1025 1026 j++; 1027 i = j * __NFDBITS; 1028 fdt = files_fdtable(files); 1029 if (i >= fdt->max_fds) 1030 break; 1031 set = fdt->close_on_exec->fds_bits[j]; 1032 if (!set) 1033 continue; 1034 fdt->close_on_exec->fds_bits[j] = 0; 1035 spin_unlock(&files->file_lock); 1036 for ( ; set ; i++,set >>= 1) { 1037 if (set & 1) { 1038 sys_close(i); 1039 } 1040 } 1041 spin_lock(&files->file_lock); 1042 1043 } 1044 spin_unlock(&files->file_lock); 1045 } 1046 1047 char *get_task_comm(char *buf, struct task_struct *tsk) 1048 { 1049 /* buf must be at least sizeof(tsk->comm) in size */ 1050 task_lock(tsk); 1051 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1052 task_unlock(tsk); 1053 return buf; 1054 } 1055 EXPORT_SYMBOL_GPL(get_task_comm); 1056 1057 void set_task_comm(struct task_struct *tsk, char *buf) 1058 { 1059 task_lock(tsk); 1060 1061 /* 1062 * Threads may access current->comm without holding 1063 * the task lock, so write the string carefully. 1064 * Readers without a lock may see incomplete new 1065 * names but are safe from non-terminating string reads. 1066 */ 1067 memset(tsk->comm, 0, TASK_COMM_LEN); 1068 wmb(); 1069 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1070 task_unlock(tsk); 1071 perf_event_comm(tsk); 1072 } 1073 1074 int flush_old_exec(struct linux_binprm * bprm) 1075 { 1076 int retval; 1077 1078 /* 1079 * Make sure we have a private signal table and that 1080 * we are unassociated from the previous thread group. 1081 */ 1082 retval = de_thread(current); 1083 if (retval) 1084 goto out; 1085 1086 set_mm_exe_file(bprm->mm, bprm->file); 1087 1088 /* 1089 * Release all of the old mmap stuff 1090 */ 1091 acct_arg_size(bprm, 0); 1092 retval = exec_mmap(bprm->mm); 1093 if (retval) 1094 goto out; 1095 1096 bprm->mm = NULL; /* We're using it now */ 1097 1098 set_fs(USER_DS); 1099 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD); 1100 flush_thread(); 1101 current->personality &= ~bprm->per_clear; 1102 1103 return 0; 1104 1105 out: 1106 return retval; 1107 } 1108 EXPORT_SYMBOL(flush_old_exec); 1109 1110 void would_dump(struct linux_binprm *bprm, struct file *file) 1111 { 1112 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0) 1113 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1114 } 1115 EXPORT_SYMBOL(would_dump); 1116 1117 void setup_new_exec(struct linux_binprm * bprm) 1118 { 1119 int i, ch; 1120 const char *name; 1121 char tcomm[sizeof(current->comm)]; 1122 1123 arch_pick_mmap_layout(current->mm); 1124 1125 /* This is the point of no return */ 1126 current->sas_ss_sp = current->sas_ss_size = 0; 1127 1128 if (current_euid() == current_uid() && current_egid() == current_gid()) 1129 set_dumpable(current->mm, 1); 1130 else 1131 set_dumpable(current->mm, suid_dumpable); 1132 1133 name = bprm->filename; 1134 1135 /* Copies the binary name from after last slash */ 1136 for (i=0; (ch = *(name++)) != '\0';) { 1137 if (ch == '/') 1138 i = 0; /* overwrite what we wrote */ 1139 else 1140 if (i < (sizeof(tcomm) - 1)) 1141 tcomm[i++] = ch; 1142 } 1143 tcomm[i] = '\0'; 1144 set_task_comm(current, tcomm); 1145 1146 /* Set the new mm task size. We have to do that late because it may 1147 * depend on TIF_32BIT which is only updated in flush_thread() on 1148 * some architectures like powerpc 1149 */ 1150 current->mm->task_size = TASK_SIZE; 1151 1152 /* install the new credentials */ 1153 if (bprm->cred->uid != current_euid() || 1154 bprm->cred->gid != current_egid()) { 1155 current->pdeath_signal = 0; 1156 } else { 1157 would_dump(bprm, bprm->file); 1158 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1159 set_dumpable(current->mm, suid_dumpable); 1160 } 1161 1162 /* 1163 * Flush performance counters when crossing a 1164 * security domain: 1165 */ 1166 if (!get_dumpable(current->mm)) 1167 perf_event_exit_task(current); 1168 1169 /* An exec changes our domain. We are no longer part of the thread 1170 group */ 1171 1172 current->self_exec_id++; 1173 1174 flush_signal_handlers(current, 0); 1175 flush_old_files(current->files); 1176 } 1177 EXPORT_SYMBOL(setup_new_exec); 1178 1179 /* 1180 * Prepare credentials and lock ->cred_guard_mutex. 1181 * install_exec_creds() commits the new creds and drops the lock. 1182 * Or, if exec fails before, free_bprm() should release ->cred and 1183 * and unlock. 1184 */ 1185 int prepare_bprm_creds(struct linux_binprm *bprm) 1186 { 1187 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1188 return -ERESTARTNOINTR; 1189 1190 bprm->cred = prepare_exec_creds(); 1191 if (likely(bprm->cred)) 1192 return 0; 1193 1194 mutex_unlock(¤t->signal->cred_guard_mutex); 1195 return -ENOMEM; 1196 } 1197 1198 void free_bprm(struct linux_binprm *bprm) 1199 { 1200 free_arg_pages(bprm); 1201 if (bprm->cred) { 1202 mutex_unlock(¤t->signal->cred_guard_mutex); 1203 abort_creds(bprm->cred); 1204 } 1205 kfree(bprm); 1206 } 1207 1208 /* 1209 * install the new credentials for this executable 1210 */ 1211 void install_exec_creds(struct linux_binprm *bprm) 1212 { 1213 security_bprm_committing_creds(bprm); 1214 1215 commit_creds(bprm->cred); 1216 bprm->cred = NULL; 1217 /* 1218 * cred_guard_mutex must be held at least to this point to prevent 1219 * ptrace_attach() from altering our determination of the task's 1220 * credentials; any time after this it may be unlocked. 1221 */ 1222 security_bprm_committed_creds(bprm); 1223 mutex_unlock(¤t->signal->cred_guard_mutex); 1224 } 1225 EXPORT_SYMBOL(install_exec_creds); 1226 1227 /* 1228 * determine how safe it is to execute the proposed program 1229 * - the caller must hold ->cred_guard_mutex to protect against 1230 * PTRACE_ATTACH 1231 */ 1232 int check_unsafe_exec(struct linux_binprm *bprm) 1233 { 1234 struct task_struct *p = current, *t; 1235 unsigned n_fs; 1236 int res = 0; 1237 1238 if (p->ptrace) { 1239 if (p->ptrace & PT_PTRACE_CAP) 1240 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1241 else 1242 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1243 } 1244 1245 n_fs = 1; 1246 spin_lock(&p->fs->lock); 1247 rcu_read_lock(); 1248 for (t = next_thread(p); t != p; t = next_thread(t)) { 1249 if (t->fs == p->fs) 1250 n_fs++; 1251 } 1252 rcu_read_unlock(); 1253 1254 if (p->fs->users > n_fs) { 1255 bprm->unsafe |= LSM_UNSAFE_SHARE; 1256 } else { 1257 res = -EAGAIN; 1258 if (!p->fs->in_exec) { 1259 p->fs->in_exec = 1; 1260 res = 1; 1261 } 1262 } 1263 spin_unlock(&p->fs->lock); 1264 1265 return res; 1266 } 1267 1268 /* 1269 * Fill the binprm structure from the inode. 1270 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1271 * 1272 * This may be called multiple times for binary chains (scripts for example). 1273 */ 1274 int prepare_binprm(struct linux_binprm *bprm) 1275 { 1276 umode_t mode; 1277 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1278 int retval; 1279 1280 mode = inode->i_mode; 1281 if (bprm->file->f_op == NULL) 1282 return -EACCES; 1283 1284 /* clear any previous set[ug]id data from a previous binary */ 1285 bprm->cred->euid = current_euid(); 1286 bprm->cred->egid = current_egid(); 1287 1288 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1289 /* Set-uid? */ 1290 if (mode & S_ISUID) { 1291 bprm->per_clear |= PER_CLEAR_ON_SETID; 1292 bprm->cred->euid = inode->i_uid; 1293 } 1294 1295 /* Set-gid? */ 1296 /* 1297 * If setgid is set but no group execute bit then this 1298 * is a candidate for mandatory locking, not a setgid 1299 * executable. 1300 */ 1301 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1302 bprm->per_clear |= PER_CLEAR_ON_SETID; 1303 bprm->cred->egid = inode->i_gid; 1304 } 1305 } 1306 1307 /* fill in binprm security blob */ 1308 retval = security_bprm_set_creds(bprm); 1309 if (retval) 1310 return retval; 1311 bprm->cred_prepared = 1; 1312 1313 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1314 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1315 } 1316 1317 EXPORT_SYMBOL(prepare_binprm); 1318 1319 /* 1320 * Arguments are '\0' separated strings found at the location bprm->p 1321 * points to; chop off the first by relocating brpm->p to right after 1322 * the first '\0' encountered. 1323 */ 1324 int remove_arg_zero(struct linux_binprm *bprm) 1325 { 1326 int ret = 0; 1327 unsigned long offset; 1328 char *kaddr; 1329 struct page *page; 1330 1331 if (!bprm->argc) 1332 return 0; 1333 1334 do { 1335 offset = bprm->p & ~PAGE_MASK; 1336 page = get_arg_page(bprm, bprm->p, 0); 1337 if (!page) { 1338 ret = -EFAULT; 1339 goto out; 1340 } 1341 kaddr = kmap_atomic(page, KM_USER0); 1342 1343 for (; offset < PAGE_SIZE && kaddr[offset]; 1344 offset++, bprm->p++) 1345 ; 1346 1347 kunmap_atomic(kaddr, KM_USER0); 1348 put_arg_page(page); 1349 1350 if (offset == PAGE_SIZE) 1351 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1352 } while (offset == PAGE_SIZE); 1353 1354 bprm->p++; 1355 bprm->argc--; 1356 ret = 0; 1357 1358 out: 1359 return ret; 1360 } 1361 EXPORT_SYMBOL(remove_arg_zero); 1362 1363 /* 1364 * cycle the list of binary formats handler, until one recognizes the image 1365 */ 1366 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1367 { 1368 unsigned int depth = bprm->recursion_depth; 1369 int try,retval; 1370 struct linux_binfmt *fmt; 1371 pid_t old_pid; 1372 1373 retval = security_bprm_check(bprm); 1374 if (retval) 1375 return retval; 1376 1377 retval = audit_bprm(bprm); 1378 if (retval) 1379 return retval; 1380 1381 /* Need to fetch pid before load_binary changes it */ 1382 rcu_read_lock(); 1383 old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1384 rcu_read_unlock(); 1385 1386 retval = -ENOENT; 1387 for (try=0; try<2; try++) { 1388 read_lock(&binfmt_lock); 1389 list_for_each_entry(fmt, &formats, lh) { 1390 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1391 if (!fn) 1392 continue; 1393 if (!try_module_get(fmt->module)) 1394 continue; 1395 read_unlock(&binfmt_lock); 1396 retval = fn(bprm, regs); 1397 /* 1398 * Restore the depth counter to its starting value 1399 * in this call, so we don't have to rely on every 1400 * load_binary function to restore it on return. 1401 */ 1402 bprm->recursion_depth = depth; 1403 if (retval >= 0) { 1404 if (depth == 0) 1405 ptrace_event(PTRACE_EVENT_EXEC, 1406 old_pid); 1407 put_binfmt(fmt); 1408 allow_write_access(bprm->file); 1409 if (bprm->file) 1410 fput(bprm->file); 1411 bprm->file = NULL; 1412 current->did_exec = 1; 1413 proc_exec_connector(current); 1414 return retval; 1415 } 1416 read_lock(&binfmt_lock); 1417 put_binfmt(fmt); 1418 if (retval != -ENOEXEC || bprm->mm == NULL) 1419 break; 1420 if (!bprm->file) { 1421 read_unlock(&binfmt_lock); 1422 return retval; 1423 } 1424 } 1425 read_unlock(&binfmt_lock); 1426 #ifdef CONFIG_MODULES 1427 if (retval != -ENOEXEC || bprm->mm == NULL) { 1428 break; 1429 } else { 1430 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1431 if (printable(bprm->buf[0]) && 1432 printable(bprm->buf[1]) && 1433 printable(bprm->buf[2]) && 1434 printable(bprm->buf[3])) 1435 break; /* -ENOEXEC */ 1436 if (try) 1437 break; /* -ENOEXEC */ 1438 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1439 } 1440 #else 1441 break; 1442 #endif 1443 } 1444 return retval; 1445 } 1446 1447 EXPORT_SYMBOL(search_binary_handler); 1448 1449 /* 1450 * sys_execve() executes a new program. 1451 */ 1452 static int do_execve_common(const char *filename, 1453 struct user_arg_ptr argv, 1454 struct user_arg_ptr envp, 1455 struct pt_regs *regs) 1456 { 1457 struct linux_binprm *bprm; 1458 struct file *file; 1459 struct files_struct *displaced; 1460 bool clear_in_exec; 1461 int retval; 1462 1463 retval = unshare_files(&displaced); 1464 if (retval) 1465 goto out_ret; 1466 1467 retval = -ENOMEM; 1468 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1469 if (!bprm) 1470 goto out_files; 1471 1472 retval = prepare_bprm_creds(bprm); 1473 if (retval) 1474 goto out_free; 1475 1476 retval = check_unsafe_exec(bprm); 1477 if (retval < 0) 1478 goto out_free; 1479 clear_in_exec = retval; 1480 current->in_execve = 1; 1481 1482 file = open_exec(filename); 1483 retval = PTR_ERR(file); 1484 if (IS_ERR(file)) 1485 goto out_unmark; 1486 1487 sched_exec(); 1488 1489 bprm->file = file; 1490 bprm->filename = filename; 1491 bprm->interp = filename; 1492 1493 retval = bprm_mm_init(bprm); 1494 if (retval) 1495 goto out_file; 1496 1497 bprm->argc = count(argv, MAX_ARG_STRINGS); 1498 if ((retval = bprm->argc) < 0) 1499 goto out; 1500 1501 bprm->envc = count(envp, MAX_ARG_STRINGS); 1502 if ((retval = bprm->envc) < 0) 1503 goto out; 1504 1505 retval = prepare_binprm(bprm); 1506 if (retval < 0) 1507 goto out; 1508 1509 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1510 if (retval < 0) 1511 goto out; 1512 1513 bprm->exec = bprm->p; 1514 retval = copy_strings(bprm->envc, envp, bprm); 1515 if (retval < 0) 1516 goto out; 1517 1518 retval = copy_strings(bprm->argc, argv, bprm); 1519 if (retval < 0) 1520 goto out; 1521 1522 retval = search_binary_handler(bprm,regs); 1523 if (retval < 0) 1524 goto out; 1525 1526 /* execve succeeded */ 1527 current->fs->in_exec = 0; 1528 current->in_execve = 0; 1529 acct_update_integrals(current); 1530 free_bprm(bprm); 1531 if (displaced) 1532 put_files_struct(displaced); 1533 return retval; 1534 1535 out: 1536 if (bprm->mm) { 1537 acct_arg_size(bprm, 0); 1538 mmput(bprm->mm); 1539 } 1540 1541 out_file: 1542 if (bprm->file) { 1543 allow_write_access(bprm->file); 1544 fput(bprm->file); 1545 } 1546 1547 out_unmark: 1548 if (clear_in_exec) 1549 current->fs->in_exec = 0; 1550 current->in_execve = 0; 1551 1552 out_free: 1553 free_bprm(bprm); 1554 1555 out_files: 1556 if (displaced) 1557 reset_files_struct(displaced); 1558 out_ret: 1559 return retval; 1560 } 1561 1562 int do_execve(const char *filename, 1563 const char __user *const __user *__argv, 1564 const char __user *const __user *__envp, 1565 struct pt_regs *regs) 1566 { 1567 struct user_arg_ptr argv = { .ptr.native = __argv }; 1568 struct user_arg_ptr envp = { .ptr.native = __envp }; 1569 return do_execve_common(filename, argv, envp, regs); 1570 } 1571 1572 #ifdef CONFIG_COMPAT 1573 int compat_do_execve(char *filename, 1574 compat_uptr_t __user *__argv, 1575 compat_uptr_t __user *__envp, 1576 struct pt_regs *regs) 1577 { 1578 struct user_arg_ptr argv = { 1579 .is_compat = true, 1580 .ptr.compat = __argv, 1581 }; 1582 struct user_arg_ptr envp = { 1583 .is_compat = true, 1584 .ptr.compat = __envp, 1585 }; 1586 return do_execve_common(filename, argv, envp, regs); 1587 } 1588 #endif 1589 1590 void set_binfmt(struct linux_binfmt *new) 1591 { 1592 struct mm_struct *mm = current->mm; 1593 1594 if (mm->binfmt) 1595 module_put(mm->binfmt->module); 1596 1597 mm->binfmt = new; 1598 if (new) 1599 __module_get(new->module); 1600 } 1601 1602 EXPORT_SYMBOL(set_binfmt); 1603 1604 static int expand_corename(struct core_name *cn) 1605 { 1606 char *old_corename = cn->corename; 1607 1608 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); 1609 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); 1610 1611 if (!cn->corename) { 1612 kfree(old_corename); 1613 return -ENOMEM; 1614 } 1615 1616 return 0; 1617 } 1618 1619 static int cn_printf(struct core_name *cn, const char *fmt, ...) 1620 { 1621 char *cur; 1622 int need; 1623 int ret; 1624 va_list arg; 1625 1626 va_start(arg, fmt); 1627 need = vsnprintf(NULL, 0, fmt, arg); 1628 va_end(arg); 1629 1630 if (likely(need < cn->size - cn->used - 1)) 1631 goto out_printf; 1632 1633 ret = expand_corename(cn); 1634 if (ret) 1635 goto expand_fail; 1636 1637 out_printf: 1638 cur = cn->corename + cn->used; 1639 va_start(arg, fmt); 1640 vsnprintf(cur, need + 1, fmt, arg); 1641 va_end(arg); 1642 cn->used += need; 1643 return 0; 1644 1645 expand_fail: 1646 return ret; 1647 } 1648 1649 static void cn_escape(char *str) 1650 { 1651 for (; *str; str++) 1652 if (*str == '/') 1653 *str = '!'; 1654 } 1655 1656 static int cn_print_exe_file(struct core_name *cn) 1657 { 1658 struct file *exe_file; 1659 char *pathbuf, *path; 1660 int ret; 1661 1662 exe_file = get_mm_exe_file(current->mm); 1663 if (!exe_file) { 1664 char *commstart = cn->corename + cn->used; 1665 ret = cn_printf(cn, "%s (path unknown)", current->comm); 1666 cn_escape(commstart); 1667 return ret; 1668 } 1669 1670 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY); 1671 if (!pathbuf) { 1672 ret = -ENOMEM; 1673 goto put_exe_file; 1674 } 1675 1676 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX); 1677 if (IS_ERR(path)) { 1678 ret = PTR_ERR(path); 1679 goto free_buf; 1680 } 1681 1682 cn_escape(path); 1683 1684 ret = cn_printf(cn, "%s", path); 1685 1686 free_buf: 1687 kfree(pathbuf); 1688 put_exe_file: 1689 fput(exe_file); 1690 return ret; 1691 } 1692 1693 /* format_corename will inspect the pattern parameter, and output a 1694 * name into corename, which must have space for at least 1695 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1696 */ 1697 static int format_corename(struct core_name *cn, long signr) 1698 { 1699 const struct cred *cred = current_cred(); 1700 const char *pat_ptr = core_pattern; 1701 int ispipe = (*pat_ptr == '|'); 1702 int pid_in_pattern = 0; 1703 int err = 0; 1704 1705 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); 1706 cn->corename = kmalloc(cn->size, GFP_KERNEL); 1707 cn->used = 0; 1708 1709 if (!cn->corename) 1710 return -ENOMEM; 1711 1712 /* Repeat as long as we have more pattern to process and more output 1713 space */ 1714 while (*pat_ptr) { 1715 if (*pat_ptr != '%') { 1716 if (*pat_ptr == 0) 1717 goto out; 1718 err = cn_printf(cn, "%c", *pat_ptr++); 1719 } else { 1720 switch (*++pat_ptr) { 1721 /* single % at the end, drop that */ 1722 case 0: 1723 goto out; 1724 /* Double percent, output one percent */ 1725 case '%': 1726 err = cn_printf(cn, "%c", '%'); 1727 break; 1728 /* pid */ 1729 case 'p': 1730 pid_in_pattern = 1; 1731 err = cn_printf(cn, "%d", 1732 task_tgid_vnr(current)); 1733 break; 1734 /* uid */ 1735 case 'u': 1736 err = cn_printf(cn, "%d", cred->uid); 1737 break; 1738 /* gid */ 1739 case 'g': 1740 err = cn_printf(cn, "%d", cred->gid); 1741 break; 1742 /* signal that caused the coredump */ 1743 case 's': 1744 err = cn_printf(cn, "%ld", signr); 1745 break; 1746 /* UNIX time of coredump */ 1747 case 't': { 1748 struct timeval tv; 1749 do_gettimeofday(&tv); 1750 err = cn_printf(cn, "%lu", tv.tv_sec); 1751 break; 1752 } 1753 /* hostname */ 1754 case 'h': { 1755 char *namestart = cn->corename + cn->used; 1756 down_read(&uts_sem); 1757 err = cn_printf(cn, "%s", 1758 utsname()->nodename); 1759 up_read(&uts_sem); 1760 cn_escape(namestart); 1761 break; 1762 } 1763 /* executable */ 1764 case 'e': { 1765 char *commstart = cn->corename + cn->used; 1766 err = cn_printf(cn, "%s", current->comm); 1767 cn_escape(commstart); 1768 break; 1769 } 1770 case 'E': 1771 err = cn_print_exe_file(cn); 1772 break; 1773 /* core limit size */ 1774 case 'c': 1775 err = cn_printf(cn, "%lu", 1776 rlimit(RLIMIT_CORE)); 1777 break; 1778 default: 1779 break; 1780 } 1781 ++pat_ptr; 1782 } 1783 1784 if (err) 1785 return err; 1786 } 1787 1788 /* Backward compatibility with core_uses_pid: 1789 * 1790 * If core_pattern does not include a %p (as is the default) 1791 * and core_uses_pid is set, then .%pid will be appended to 1792 * the filename. Do not do this for piped commands. */ 1793 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1794 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 1795 if (err) 1796 return err; 1797 } 1798 out: 1799 return ispipe; 1800 } 1801 1802 static int zap_process(struct task_struct *start, int exit_code) 1803 { 1804 struct task_struct *t; 1805 int nr = 0; 1806 1807 start->signal->flags = SIGNAL_GROUP_EXIT; 1808 start->signal->group_exit_code = exit_code; 1809 start->signal->group_stop_count = 0; 1810 1811 t = start; 1812 do { 1813 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1814 if (t != current && t->mm) { 1815 sigaddset(&t->pending.signal, SIGKILL); 1816 signal_wake_up(t, 1); 1817 nr++; 1818 } 1819 } while_each_thread(start, t); 1820 1821 return nr; 1822 } 1823 1824 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1825 struct core_state *core_state, int exit_code) 1826 { 1827 struct task_struct *g, *p; 1828 unsigned long flags; 1829 int nr = -EAGAIN; 1830 1831 spin_lock_irq(&tsk->sighand->siglock); 1832 if (!signal_group_exit(tsk->signal)) { 1833 mm->core_state = core_state; 1834 nr = zap_process(tsk, exit_code); 1835 } 1836 spin_unlock_irq(&tsk->sighand->siglock); 1837 if (unlikely(nr < 0)) 1838 return nr; 1839 1840 if (atomic_read(&mm->mm_users) == nr + 1) 1841 goto done; 1842 /* 1843 * We should find and kill all tasks which use this mm, and we should 1844 * count them correctly into ->nr_threads. We don't take tasklist 1845 * lock, but this is safe wrt: 1846 * 1847 * fork: 1848 * None of sub-threads can fork after zap_process(leader). All 1849 * processes which were created before this point should be 1850 * visible to zap_threads() because copy_process() adds the new 1851 * process to the tail of init_task.tasks list, and lock/unlock 1852 * of ->siglock provides a memory barrier. 1853 * 1854 * do_exit: 1855 * The caller holds mm->mmap_sem. This means that the task which 1856 * uses this mm can't pass exit_mm(), so it can't exit or clear 1857 * its ->mm. 1858 * 1859 * de_thread: 1860 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1861 * we must see either old or new leader, this does not matter. 1862 * However, it can change p->sighand, so lock_task_sighand(p) 1863 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1864 * it can't fail. 1865 * 1866 * Note also that "g" can be the old leader with ->mm == NULL 1867 * and already unhashed and thus removed from ->thread_group. 1868 * This is OK, __unhash_process()->list_del_rcu() does not 1869 * clear the ->next pointer, we will find the new leader via 1870 * next_thread(). 1871 */ 1872 rcu_read_lock(); 1873 for_each_process(g) { 1874 if (g == tsk->group_leader) 1875 continue; 1876 if (g->flags & PF_KTHREAD) 1877 continue; 1878 p = g; 1879 do { 1880 if (p->mm) { 1881 if (unlikely(p->mm == mm)) { 1882 lock_task_sighand(p, &flags); 1883 nr += zap_process(p, exit_code); 1884 unlock_task_sighand(p, &flags); 1885 } 1886 break; 1887 } 1888 } while_each_thread(g, p); 1889 } 1890 rcu_read_unlock(); 1891 done: 1892 atomic_set(&core_state->nr_threads, nr); 1893 return nr; 1894 } 1895 1896 static int coredump_wait(int exit_code, struct core_state *core_state) 1897 { 1898 struct task_struct *tsk = current; 1899 struct mm_struct *mm = tsk->mm; 1900 struct completion *vfork_done; 1901 int core_waiters = -EBUSY; 1902 1903 init_completion(&core_state->startup); 1904 core_state->dumper.task = tsk; 1905 core_state->dumper.next = NULL; 1906 1907 down_write(&mm->mmap_sem); 1908 if (!mm->core_state) 1909 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1910 up_write(&mm->mmap_sem); 1911 1912 if (unlikely(core_waiters < 0)) 1913 goto fail; 1914 1915 /* 1916 * Make sure nobody is waiting for us to release the VM, 1917 * otherwise we can deadlock when we wait on each other 1918 */ 1919 vfork_done = tsk->vfork_done; 1920 if (vfork_done) { 1921 tsk->vfork_done = NULL; 1922 complete(vfork_done); 1923 } 1924 1925 if (core_waiters) 1926 wait_for_completion(&core_state->startup); 1927 fail: 1928 return core_waiters; 1929 } 1930 1931 static void coredump_finish(struct mm_struct *mm) 1932 { 1933 struct core_thread *curr, *next; 1934 struct task_struct *task; 1935 1936 next = mm->core_state->dumper.next; 1937 while ((curr = next) != NULL) { 1938 next = curr->next; 1939 task = curr->task; 1940 /* 1941 * see exit_mm(), curr->task must not see 1942 * ->task == NULL before we read ->next. 1943 */ 1944 smp_mb(); 1945 curr->task = NULL; 1946 wake_up_process(task); 1947 } 1948 1949 mm->core_state = NULL; 1950 } 1951 1952 /* 1953 * set_dumpable converts traditional three-value dumpable to two flags and 1954 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1955 * these bits are not changed atomically. So get_dumpable can observe the 1956 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1957 * return either old dumpable or new one by paying attention to the order of 1958 * modifying the bits. 1959 * 1960 * dumpable | mm->flags (binary) 1961 * old new | initial interim final 1962 * ---------+----------------------- 1963 * 0 1 | 00 01 01 1964 * 0 2 | 00 10(*) 11 1965 * 1 0 | 01 00 00 1966 * 1 2 | 01 11 11 1967 * 2 0 | 11 10(*) 00 1968 * 2 1 | 11 11 01 1969 * 1970 * (*) get_dumpable regards interim value of 10 as 11. 1971 */ 1972 void set_dumpable(struct mm_struct *mm, int value) 1973 { 1974 switch (value) { 1975 case 0: 1976 clear_bit(MMF_DUMPABLE, &mm->flags); 1977 smp_wmb(); 1978 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1979 break; 1980 case 1: 1981 set_bit(MMF_DUMPABLE, &mm->flags); 1982 smp_wmb(); 1983 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1984 break; 1985 case 2: 1986 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1987 smp_wmb(); 1988 set_bit(MMF_DUMPABLE, &mm->flags); 1989 break; 1990 } 1991 } 1992 1993 static int __get_dumpable(unsigned long mm_flags) 1994 { 1995 int ret; 1996 1997 ret = mm_flags & MMF_DUMPABLE_MASK; 1998 return (ret >= 2) ? 2 : ret; 1999 } 2000 2001 int get_dumpable(struct mm_struct *mm) 2002 { 2003 return __get_dumpable(mm->flags); 2004 } 2005 2006 static void wait_for_dump_helpers(struct file *file) 2007 { 2008 struct pipe_inode_info *pipe; 2009 2010 pipe = file->f_path.dentry->d_inode->i_pipe; 2011 2012 pipe_lock(pipe); 2013 pipe->readers++; 2014 pipe->writers--; 2015 2016 while ((pipe->readers > 1) && (!signal_pending(current))) { 2017 wake_up_interruptible_sync(&pipe->wait); 2018 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 2019 pipe_wait(pipe); 2020 } 2021 2022 pipe->readers--; 2023 pipe->writers++; 2024 pipe_unlock(pipe); 2025 2026 } 2027 2028 2029 /* 2030 * umh_pipe_setup 2031 * helper function to customize the process used 2032 * to collect the core in userspace. Specifically 2033 * it sets up a pipe and installs it as fd 0 (stdin) 2034 * for the process. Returns 0 on success, or 2035 * PTR_ERR on failure. 2036 * Note that it also sets the core limit to 1. This 2037 * is a special value that we use to trap recursive 2038 * core dumps 2039 */ 2040 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) 2041 { 2042 struct file *rp, *wp; 2043 struct fdtable *fdt; 2044 struct coredump_params *cp = (struct coredump_params *)info->data; 2045 struct files_struct *cf = current->files; 2046 2047 wp = create_write_pipe(0); 2048 if (IS_ERR(wp)) 2049 return PTR_ERR(wp); 2050 2051 rp = create_read_pipe(wp, 0); 2052 if (IS_ERR(rp)) { 2053 free_write_pipe(wp); 2054 return PTR_ERR(rp); 2055 } 2056 2057 cp->file = wp; 2058 2059 sys_close(0); 2060 fd_install(0, rp); 2061 spin_lock(&cf->file_lock); 2062 fdt = files_fdtable(cf); 2063 FD_SET(0, fdt->open_fds); 2064 FD_CLR(0, fdt->close_on_exec); 2065 spin_unlock(&cf->file_lock); 2066 2067 /* and disallow core files too */ 2068 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 2069 2070 return 0; 2071 } 2072 2073 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 2074 { 2075 struct core_state core_state; 2076 struct core_name cn; 2077 struct mm_struct *mm = current->mm; 2078 struct linux_binfmt * binfmt; 2079 const struct cred *old_cred; 2080 struct cred *cred; 2081 int retval = 0; 2082 int flag = 0; 2083 int ispipe; 2084 static atomic_t core_dump_count = ATOMIC_INIT(0); 2085 struct coredump_params cprm = { 2086 .signr = signr, 2087 .regs = regs, 2088 .limit = rlimit(RLIMIT_CORE), 2089 /* 2090 * We must use the same mm->flags while dumping core to avoid 2091 * inconsistency of bit flags, since this flag is not protected 2092 * by any locks. 2093 */ 2094 .mm_flags = mm->flags, 2095 }; 2096 2097 audit_core_dumps(signr); 2098 2099 binfmt = mm->binfmt; 2100 if (!binfmt || !binfmt->core_dump) 2101 goto fail; 2102 if (!__get_dumpable(cprm.mm_flags)) 2103 goto fail; 2104 2105 cred = prepare_creds(); 2106 if (!cred) 2107 goto fail; 2108 /* 2109 * We cannot trust fsuid as being the "true" uid of the 2110 * process nor do we know its entire history. We only know it 2111 * was tainted so we dump it as root in mode 2. 2112 */ 2113 if (__get_dumpable(cprm.mm_flags) == 2) { 2114 /* Setuid core dump mode */ 2115 flag = O_EXCL; /* Stop rewrite attacks */ 2116 cred->fsuid = 0; /* Dump root private */ 2117 } 2118 2119 retval = coredump_wait(exit_code, &core_state); 2120 if (retval < 0) 2121 goto fail_creds; 2122 2123 old_cred = override_creds(cred); 2124 2125 /* 2126 * Clear any false indication of pending signals that might 2127 * be seen by the filesystem code called to write the core file. 2128 */ 2129 clear_thread_flag(TIF_SIGPENDING); 2130 2131 ispipe = format_corename(&cn, signr); 2132 2133 if (ispipe) { 2134 int dump_count; 2135 char **helper_argv; 2136 2137 if (ispipe < 0) { 2138 printk(KERN_WARNING "format_corename failed\n"); 2139 printk(KERN_WARNING "Aborting core\n"); 2140 goto fail_corename; 2141 } 2142 2143 if (cprm.limit == 1) { 2144 /* 2145 * Normally core limits are irrelevant to pipes, since 2146 * we're not writing to the file system, but we use 2147 * cprm.limit of 1 here as a speacial value. Any 2148 * non-1 limit gets set to RLIM_INFINITY below, but 2149 * a limit of 0 skips the dump. This is a consistent 2150 * way to catch recursive crashes. We can still crash 2151 * if the core_pattern binary sets RLIM_CORE = !1 2152 * but it runs as root, and can do lots of stupid things 2153 * Note that we use task_tgid_vnr here to grab the pid 2154 * of the process group leader. That way we get the 2155 * right pid if a thread in a multi-threaded 2156 * core_pattern process dies. 2157 */ 2158 printk(KERN_WARNING 2159 "Process %d(%s) has RLIMIT_CORE set to 1\n", 2160 task_tgid_vnr(current), current->comm); 2161 printk(KERN_WARNING "Aborting core\n"); 2162 goto fail_unlock; 2163 } 2164 cprm.limit = RLIM_INFINITY; 2165 2166 dump_count = atomic_inc_return(&core_dump_count); 2167 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 2168 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 2169 task_tgid_vnr(current), current->comm); 2170 printk(KERN_WARNING "Skipping core dump\n"); 2171 goto fail_dropcount; 2172 } 2173 2174 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); 2175 if (!helper_argv) { 2176 printk(KERN_WARNING "%s failed to allocate memory\n", 2177 __func__); 2178 goto fail_dropcount; 2179 } 2180 2181 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 2182 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 2183 NULL, &cprm); 2184 argv_free(helper_argv); 2185 if (retval) { 2186 printk(KERN_INFO "Core dump to %s pipe failed\n", 2187 cn.corename); 2188 goto close_fail; 2189 } 2190 } else { 2191 struct inode *inode; 2192 2193 if (cprm.limit < binfmt->min_coredump) 2194 goto fail_unlock; 2195 2196 cprm.file = filp_open(cn.corename, 2197 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 2198 0600); 2199 if (IS_ERR(cprm.file)) 2200 goto fail_unlock; 2201 2202 inode = cprm.file->f_path.dentry->d_inode; 2203 if (inode->i_nlink > 1) 2204 goto close_fail; 2205 if (d_unhashed(cprm.file->f_path.dentry)) 2206 goto close_fail; 2207 /* 2208 * AK: actually i see no reason to not allow this for named 2209 * pipes etc, but keep the previous behaviour for now. 2210 */ 2211 if (!S_ISREG(inode->i_mode)) 2212 goto close_fail; 2213 /* 2214 * Dont allow local users get cute and trick others to coredump 2215 * into their pre-created files. 2216 */ 2217 if (inode->i_uid != current_fsuid()) 2218 goto close_fail; 2219 if (!cprm.file->f_op || !cprm.file->f_op->write) 2220 goto close_fail; 2221 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 2222 goto close_fail; 2223 } 2224 2225 retval = binfmt->core_dump(&cprm); 2226 if (retval) 2227 current->signal->group_exit_code |= 0x80; 2228 2229 if (ispipe && core_pipe_limit) 2230 wait_for_dump_helpers(cprm.file); 2231 close_fail: 2232 if (cprm.file) 2233 filp_close(cprm.file, NULL); 2234 fail_dropcount: 2235 if (ispipe) 2236 atomic_dec(&core_dump_count); 2237 fail_unlock: 2238 kfree(cn.corename); 2239 fail_corename: 2240 coredump_finish(mm); 2241 revert_creds(old_cred); 2242 fail_creds: 2243 put_cred(cred); 2244 fail: 2245 return; 2246 } 2247 2248 /* 2249 * Core dumping helper functions. These are the only things you should 2250 * do on a core-file: use only these functions to write out all the 2251 * necessary info. 2252 */ 2253 int dump_write(struct file *file, const void *addr, int nr) 2254 { 2255 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; 2256 } 2257 EXPORT_SYMBOL(dump_write); 2258 2259 int dump_seek(struct file *file, loff_t off) 2260 { 2261 int ret = 1; 2262 2263 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 2264 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 2265 return 0; 2266 } else { 2267 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 2268 2269 if (!buf) 2270 return 0; 2271 while (off > 0) { 2272 unsigned long n = off; 2273 2274 if (n > PAGE_SIZE) 2275 n = PAGE_SIZE; 2276 if (!dump_write(file, buf, n)) { 2277 ret = 0; 2278 break; 2279 } 2280 off -= n; 2281 } 2282 free_page((unsigned long)buf); 2283 } 2284 return ret; 2285 } 2286 EXPORT_SYMBOL(dump_seek); 2287