xref: /openbmc/linux/fs/exec.c (revision dba8b46992c55946d3b092934f581a343403118f)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 struct core_name {
70 	char *corename;
71 	int used, size;
72 };
73 static atomic_t call_count = ATOMIC_INIT(1);
74 
75 /* The maximal length of core_pattern is also specified in sysctl.c */
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	if (!fmt)
83 		return -EINVAL;
84 	write_lock(&binfmt_lock);
85 	insert ? list_add(&fmt->lh, &formats) :
86 		 list_add_tail(&fmt->lh, &formats);
87 	write_unlock(&binfmt_lock);
88 	return 0;
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 /*
108  * Note that a shared library must be both readable and executable due to
109  * security reasons.
110  *
111  * Also note that we take the address to load from from the file itself.
112  */
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
114 {
115 	struct file *file;
116 	char *tmp = getname(library);
117 	int error = PTR_ERR(tmp);
118 	static const struct open_flags uselib_flags = {
119 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121 		.intent = LOOKUP_OPEN
122 	};
123 
124 	if (IS_ERR(tmp))
125 		goto out;
126 
127 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
128 	putname(tmp);
129 	error = PTR_ERR(file);
130 	if (IS_ERR(file))
131 		goto out;
132 
133 	error = -EINVAL;
134 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
135 		goto exit;
136 
137 	error = -EACCES;
138 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
139 		goto exit;
140 
141 	fsnotify_open(file);
142 
143 	error = -ENOEXEC;
144 	if(file->f_op) {
145 		struct linux_binfmt * fmt;
146 
147 		read_lock(&binfmt_lock);
148 		list_for_each_entry(fmt, &formats, lh) {
149 			if (!fmt->load_shlib)
150 				continue;
151 			if (!try_module_get(fmt->module))
152 				continue;
153 			read_unlock(&binfmt_lock);
154 			error = fmt->load_shlib(file);
155 			read_lock(&binfmt_lock);
156 			put_binfmt(fmt);
157 			if (error != -ENOEXEC)
158 				break;
159 		}
160 		read_unlock(&binfmt_lock);
161 	}
162 exit:
163 	fput(file);
164 out:
165   	return error;
166 }
167 
168 #ifdef CONFIG_MMU
169 /*
170  * The nascent bprm->mm is not visible until exec_mmap() but it can
171  * use a lot of memory, account these pages in current->mm temporary
172  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173  * change the counter back via acct_arg_size(0).
174  */
175 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
176 {
177 	struct mm_struct *mm = current->mm;
178 	long diff = (long)(pages - bprm->vma_pages);
179 
180 	if (!mm || !diff)
181 		return;
182 
183 	bprm->vma_pages = pages;
184 	add_mm_counter(mm, MM_ANONPAGES, diff);
185 }
186 
187 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
188 		int write)
189 {
190 	struct page *page;
191 	int ret;
192 
193 #ifdef CONFIG_STACK_GROWSUP
194 	if (write) {
195 		ret = expand_downwards(bprm->vma, pos);
196 		if (ret < 0)
197 			return NULL;
198 	}
199 #endif
200 	ret = get_user_pages(current, bprm->mm, pos,
201 			1, write, 1, &page, NULL);
202 	if (ret <= 0)
203 		return NULL;
204 
205 	if (write) {
206 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
207 		struct rlimit *rlim;
208 
209 		acct_arg_size(bprm, size / PAGE_SIZE);
210 
211 		/*
212 		 * We've historically supported up to 32 pages (ARG_MAX)
213 		 * of argument strings even with small stacks
214 		 */
215 		if (size <= ARG_MAX)
216 			return page;
217 
218 		/*
219 		 * Limit to 1/4-th the stack size for the argv+env strings.
220 		 * This ensures that:
221 		 *  - the remaining binfmt code will not run out of stack space,
222 		 *  - the program will have a reasonable amount of stack left
223 		 *    to work from.
224 		 */
225 		rlim = current->signal->rlim;
226 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
227 			put_page(page);
228 			return NULL;
229 		}
230 	}
231 
232 	return page;
233 }
234 
235 static void put_arg_page(struct page *page)
236 {
237 	put_page(page);
238 }
239 
240 static void free_arg_page(struct linux_binprm *bprm, int i)
241 {
242 }
243 
244 static void free_arg_pages(struct linux_binprm *bprm)
245 {
246 }
247 
248 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
249 		struct page *page)
250 {
251 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
252 }
253 
254 static int __bprm_mm_init(struct linux_binprm *bprm)
255 {
256 	int err;
257 	struct vm_area_struct *vma = NULL;
258 	struct mm_struct *mm = bprm->mm;
259 
260 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
261 	if (!vma)
262 		return -ENOMEM;
263 
264 	down_write(&mm->mmap_sem);
265 	vma->vm_mm = mm;
266 
267 	/*
268 	 * Place the stack at the largest stack address the architecture
269 	 * supports. Later, we'll move this to an appropriate place. We don't
270 	 * use STACK_TOP because that can depend on attributes which aren't
271 	 * configured yet.
272 	 */
273 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
274 	vma->vm_end = STACK_TOP_MAX;
275 	vma->vm_start = vma->vm_end - PAGE_SIZE;
276 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
277 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
278 	INIT_LIST_HEAD(&vma->anon_vma_chain);
279 
280 	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
281 	if (err)
282 		goto err;
283 
284 	err = insert_vm_struct(mm, vma);
285 	if (err)
286 		goto err;
287 
288 	mm->stack_vm = mm->total_vm = 1;
289 	up_write(&mm->mmap_sem);
290 	bprm->p = vma->vm_end - sizeof(void *);
291 	return 0;
292 err:
293 	up_write(&mm->mmap_sem);
294 	bprm->vma = NULL;
295 	kmem_cache_free(vm_area_cachep, vma);
296 	return err;
297 }
298 
299 static bool valid_arg_len(struct linux_binprm *bprm, long len)
300 {
301 	return len <= MAX_ARG_STRLEN;
302 }
303 
304 #else
305 
306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
307 {
308 }
309 
310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
311 		int write)
312 {
313 	struct page *page;
314 
315 	page = bprm->page[pos / PAGE_SIZE];
316 	if (!page && write) {
317 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
318 		if (!page)
319 			return NULL;
320 		bprm->page[pos / PAGE_SIZE] = page;
321 	}
322 
323 	return page;
324 }
325 
326 static void put_arg_page(struct page *page)
327 {
328 }
329 
330 static void free_arg_page(struct linux_binprm *bprm, int i)
331 {
332 	if (bprm->page[i]) {
333 		__free_page(bprm->page[i]);
334 		bprm->page[i] = NULL;
335 	}
336 }
337 
338 static void free_arg_pages(struct linux_binprm *bprm)
339 {
340 	int i;
341 
342 	for (i = 0; i < MAX_ARG_PAGES; i++)
343 		free_arg_page(bprm, i);
344 }
345 
346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
347 		struct page *page)
348 {
349 }
350 
351 static int __bprm_mm_init(struct linux_binprm *bprm)
352 {
353 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
354 	return 0;
355 }
356 
357 static bool valid_arg_len(struct linux_binprm *bprm, long len)
358 {
359 	return len <= bprm->p;
360 }
361 
362 #endif /* CONFIG_MMU */
363 
364 /*
365  * Create a new mm_struct and populate it with a temporary stack
366  * vm_area_struct.  We don't have enough context at this point to set the stack
367  * flags, permissions, and offset, so we use temporary values.  We'll update
368  * them later in setup_arg_pages().
369  */
370 int bprm_mm_init(struct linux_binprm *bprm)
371 {
372 	int err;
373 	struct mm_struct *mm = NULL;
374 
375 	bprm->mm = mm = mm_alloc();
376 	err = -ENOMEM;
377 	if (!mm)
378 		goto err;
379 
380 	err = init_new_context(current, mm);
381 	if (err)
382 		goto err;
383 
384 	err = __bprm_mm_init(bprm);
385 	if (err)
386 		goto err;
387 
388 	return 0;
389 
390 err:
391 	if (mm) {
392 		bprm->mm = NULL;
393 		mmdrop(mm);
394 	}
395 
396 	return err;
397 }
398 
399 struct user_arg_ptr {
400 #ifdef CONFIG_COMPAT
401 	bool is_compat;
402 #endif
403 	union {
404 		const char __user *const __user *native;
405 #ifdef CONFIG_COMPAT
406 		compat_uptr_t __user *compat;
407 #endif
408 	} ptr;
409 };
410 
411 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
412 {
413 	const char __user *native;
414 
415 #ifdef CONFIG_COMPAT
416 	if (unlikely(argv.is_compat)) {
417 		compat_uptr_t compat;
418 
419 		if (get_user(compat, argv.ptr.compat + nr))
420 			return ERR_PTR(-EFAULT);
421 
422 		return compat_ptr(compat);
423 	}
424 #endif
425 
426 	if (get_user(native, argv.ptr.native + nr))
427 		return ERR_PTR(-EFAULT);
428 
429 	return native;
430 }
431 
432 /*
433  * count() counts the number of strings in array ARGV.
434  */
435 static int count(struct user_arg_ptr argv, int max)
436 {
437 	int i = 0;
438 
439 	if (argv.ptr.native != NULL) {
440 		for (;;) {
441 			const char __user *p = get_user_arg_ptr(argv, i);
442 
443 			if (!p)
444 				break;
445 
446 			if (IS_ERR(p))
447 				return -EFAULT;
448 
449 			if (i++ >= max)
450 				return -E2BIG;
451 
452 			if (fatal_signal_pending(current))
453 				return -ERESTARTNOHAND;
454 			cond_resched();
455 		}
456 	}
457 	return i;
458 }
459 
460 /*
461  * 'copy_strings()' copies argument/environment strings from the old
462  * processes's memory to the new process's stack.  The call to get_user_pages()
463  * ensures the destination page is created and not swapped out.
464  */
465 static int copy_strings(int argc, struct user_arg_ptr argv,
466 			struct linux_binprm *bprm)
467 {
468 	struct page *kmapped_page = NULL;
469 	char *kaddr = NULL;
470 	unsigned long kpos = 0;
471 	int ret;
472 
473 	while (argc-- > 0) {
474 		const char __user *str;
475 		int len;
476 		unsigned long pos;
477 
478 		ret = -EFAULT;
479 		str = get_user_arg_ptr(argv, argc);
480 		if (IS_ERR(str))
481 			goto out;
482 
483 		len = strnlen_user(str, MAX_ARG_STRLEN);
484 		if (!len)
485 			goto out;
486 
487 		ret = -E2BIG;
488 		if (!valid_arg_len(bprm, len))
489 			goto out;
490 
491 		/* We're going to work our way backwords. */
492 		pos = bprm->p;
493 		str += len;
494 		bprm->p -= len;
495 
496 		while (len > 0) {
497 			int offset, bytes_to_copy;
498 
499 			if (fatal_signal_pending(current)) {
500 				ret = -ERESTARTNOHAND;
501 				goto out;
502 			}
503 			cond_resched();
504 
505 			offset = pos % PAGE_SIZE;
506 			if (offset == 0)
507 				offset = PAGE_SIZE;
508 
509 			bytes_to_copy = offset;
510 			if (bytes_to_copy > len)
511 				bytes_to_copy = len;
512 
513 			offset -= bytes_to_copy;
514 			pos -= bytes_to_copy;
515 			str -= bytes_to_copy;
516 			len -= bytes_to_copy;
517 
518 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519 				struct page *page;
520 
521 				page = get_arg_page(bprm, pos, 1);
522 				if (!page) {
523 					ret = -E2BIG;
524 					goto out;
525 				}
526 
527 				if (kmapped_page) {
528 					flush_kernel_dcache_page(kmapped_page);
529 					kunmap(kmapped_page);
530 					put_arg_page(kmapped_page);
531 				}
532 				kmapped_page = page;
533 				kaddr = kmap(kmapped_page);
534 				kpos = pos & PAGE_MASK;
535 				flush_arg_page(bprm, kpos, kmapped_page);
536 			}
537 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538 				ret = -EFAULT;
539 				goto out;
540 			}
541 		}
542 	}
543 	ret = 0;
544 out:
545 	if (kmapped_page) {
546 		flush_kernel_dcache_page(kmapped_page);
547 		kunmap(kmapped_page);
548 		put_arg_page(kmapped_page);
549 	}
550 	return ret;
551 }
552 
553 /*
554  * Like copy_strings, but get argv and its values from kernel memory.
555  */
556 int copy_strings_kernel(int argc, const char *const *__argv,
557 			struct linux_binprm *bprm)
558 {
559 	int r;
560 	mm_segment_t oldfs = get_fs();
561 	struct user_arg_ptr argv = {
562 		.ptr.native = (const char __user *const  __user *)__argv,
563 	};
564 
565 	set_fs(KERNEL_DS);
566 	r = copy_strings(argc, argv, bprm);
567 	set_fs(oldfs);
568 
569 	return r;
570 }
571 EXPORT_SYMBOL(copy_strings_kernel);
572 
573 #ifdef CONFIG_MMU
574 
575 /*
576  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
577  * the binfmt code determines where the new stack should reside, we shift it to
578  * its final location.  The process proceeds as follows:
579  *
580  * 1) Use shift to calculate the new vma endpoints.
581  * 2) Extend vma to cover both the old and new ranges.  This ensures the
582  *    arguments passed to subsequent functions are consistent.
583  * 3) Move vma's page tables to the new range.
584  * 4) Free up any cleared pgd range.
585  * 5) Shrink the vma to cover only the new range.
586  */
587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588 {
589 	struct mm_struct *mm = vma->vm_mm;
590 	unsigned long old_start = vma->vm_start;
591 	unsigned long old_end = vma->vm_end;
592 	unsigned long length = old_end - old_start;
593 	unsigned long new_start = old_start - shift;
594 	unsigned long new_end = old_end - shift;
595 	struct mmu_gather tlb;
596 
597 	BUG_ON(new_start > new_end);
598 
599 	/*
600 	 * ensure there are no vmas between where we want to go
601 	 * and where we are
602 	 */
603 	if (vma != find_vma(mm, new_start))
604 		return -EFAULT;
605 
606 	/*
607 	 * cover the whole range: [new_start, old_end)
608 	 */
609 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610 		return -ENOMEM;
611 
612 	/*
613 	 * move the page tables downwards, on failure we rely on
614 	 * process cleanup to remove whatever mess we made.
615 	 */
616 	if (length != move_page_tables(vma, old_start,
617 				       vma, new_start, length))
618 		return -ENOMEM;
619 
620 	lru_add_drain();
621 	tlb_gather_mmu(&tlb, mm, 0);
622 	if (new_end > old_start) {
623 		/*
624 		 * when the old and new regions overlap clear from new_end.
625 		 */
626 		free_pgd_range(&tlb, new_end, old_end, new_end,
627 			vma->vm_next ? vma->vm_next->vm_start : 0);
628 	} else {
629 		/*
630 		 * otherwise, clean from old_start; this is done to not touch
631 		 * the address space in [new_end, old_start) some architectures
632 		 * have constraints on va-space that make this illegal (IA64) -
633 		 * for the others its just a little faster.
634 		 */
635 		free_pgd_range(&tlb, old_start, old_end, new_end,
636 			vma->vm_next ? vma->vm_next->vm_start : 0);
637 	}
638 	tlb_finish_mmu(&tlb, new_end, old_end);
639 
640 	/*
641 	 * Shrink the vma to just the new range.  Always succeeds.
642 	 */
643 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644 
645 	return 0;
646 }
647 
648 /*
649  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650  * the stack is optionally relocated, and some extra space is added.
651  */
652 int setup_arg_pages(struct linux_binprm *bprm,
653 		    unsigned long stack_top,
654 		    int executable_stack)
655 {
656 	unsigned long ret;
657 	unsigned long stack_shift;
658 	struct mm_struct *mm = current->mm;
659 	struct vm_area_struct *vma = bprm->vma;
660 	struct vm_area_struct *prev = NULL;
661 	unsigned long vm_flags;
662 	unsigned long stack_base;
663 	unsigned long stack_size;
664 	unsigned long stack_expand;
665 	unsigned long rlim_stack;
666 
667 #ifdef CONFIG_STACK_GROWSUP
668 	/* Limit stack size to 1GB */
669 	stack_base = rlimit_max(RLIMIT_STACK);
670 	if (stack_base > (1 << 30))
671 		stack_base = 1 << 30;
672 
673 	/* Make sure we didn't let the argument array grow too large. */
674 	if (vma->vm_end - vma->vm_start > stack_base)
675 		return -ENOMEM;
676 
677 	stack_base = PAGE_ALIGN(stack_top - stack_base);
678 
679 	stack_shift = vma->vm_start - stack_base;
680 	mm->arg_start = bprm->p - stack_shift;
681 	bprm->p = vma->vm_end - stack_shift;
682 #else
683 	stack_top = arch_align_stack(stack_top);
684 	stack_top = PAGE_ALIGN(stack_top);
685 
686 	if (unlikely(stack_top < mmap_min_addr) ||
687 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
688 		return -ENOMEM;
689 
690 	stack_shift = vma->vm_end - stack_top;
691 
692 	bprm->p -= stack_shift;
693 	mm->arg_start = bprm->p;
694 #endif
695 
696 	if (bprm->loader)
697 		bprm->loader -= stack_shift;
698 	bprm->exec -= stack_shift;
699 
700 	down_write(&mm->mmap_sem);
701 	vm_flags = VM_STACK_FLAGS;
702 
703 	/*
704 	 * Adjust stack execute permissions; explicitly enable for
705 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
706 	 * (arch default) otherwise.
707 	 */
708 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
709 		vm_flags |= VM_EXEC;
710 	else if (executable_stack == EXSTACK_DISABLE_X)
711 		vm_flags &= ~VM_EXEC;
712 	vm_flags |= mm->def_flags;
713 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
714 
715 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
716 			vm_flags);
717 	if (ret)
718 		goto out_unlock;
719 	BUG_ON(prev != vma);
720 
721 	/* Move stack pages down in memory. */
722 	if (stack_shift) {
723 		ret = shift_arg_pages(vma, stack_shift);
724 		if (ret)
725 			goto out_unlock;
726 	}
727 
728 	/* mprotect_fixup is overkill to remove the temporary stack flags */
729 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
730 
731 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
732 	stack_size = vma->vm_end - vma->vm_start;
733 	/*
734 	 * Align this down to a page boundary as expand_stack
735 	 * will align it up.
736 	 */
737 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
738 #ifdef CONFIG_STACK_GROWSUP
739 	if (stack_size + stack_expand > rlim_stack)
740 		stack_base = vma->vm_start + rlim_stack;
741 	else
742 		stack_base = vma->vm_end + stack_expand;
743 #else
744 	if (stack_size + stack_expand > rlim_stack)
745 		stack_base = vma->vm_end - rlim_stack;
746 	else
747 		stack_base = vma->vm_start - stack_expand;
748 #endif
749 	current->mm->start_stack = bprm->p;
750 	ret = expand_stack(vma, stack_base);
751 	if (ret)
752 		ret = -EFAULT;
753 
754 out_unlock:
755 	up_write(&mm->mmap_sem);
756 	return ret;
757 }
758 EXPORT_SYMBOL(setup_arg_pages);
759 
760 #endif /* CONFIG_MMU */
761 
762 struct file *open_exec(const char *name)
763 {
764 	struct file *file;
765 	int err;
766 	static const struct open_flags open_exec_flags = {
767 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
768 		.acc_mode = MAY_EXEC | MAY_OPEN,
769 		.intent = LOOKUP_OPEN
770 	};
771 
772 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
773 	if (IS_ERR(file))
774 		goto out;
775 
776 	err = -EACCES;
777 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
778 		goto exit;
779 
780 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
781 		goto exit;
782 
783 	fsnotify_open(file);
784 
785 	err = deny_write_access(file);
786 	if (err)
787 		goto exit;
788 
789 out:
790 	return file;
791 
792 exit:
793 	fput(file);
794 	return ERR_PTR(err);
795 }
796 EXPORT_SYMBOL(open_exec);
797 
798 int kernel_read(struct file *file, loff_t offset,
799 		char *addr, unsigned long count)
800 {
801 	mm_segment_t old_fs;
802 	loff_t pos = offset;
803 	int result;
804 
805 	old_fs = get_fs();
806 	set_fs(get_ds());
807 	/* The cast to a user pointer is valid due to the set_fs() */
808 	result = vfs_read(file, (void __user *)addr, count, &pos);
809 	set_fs(old_fs);
810 	return result;
811 }
812 
813 EXPORT_SYMBOL(kernel_read);
814 
815 static int exec_mmap(struct mm_struct *mm)
816 {
817 	struct task_struct *tsk;
818 	struct mm_struct * old_mm, *active_mm;
819 
820 	/* Notify parent that we're no longer interested in the old VM */
821 	tsk = current;
822 	old_mm = current->mm;
823 	sync_mm_rss(tsk, old_mm);
824 	mm_release(tsk, old_mm);
825 
826 	if (old_mm) {
827 		/*
828 		 * Make sure that if there is a core dump in progress
829 		 * for the old mm, we get out and die instead of going
830 		 * through with the exec.  We must hold mmap_sem around
831 		 * checking core_state and changing tsk->mm.
832 		 */
833 		down_read(&old_mm->mmap_sem);
834 		if (unlikely(old_mm->core_state)) {
835 			up_read(&old_mm->mmap_sem);
836 			return -EINTR;
837 		}
838 	}
839 	task_lock(tsk);
840 	active_mm = tsk->active_mm;
841 	tsk->mm = mm;
842 	tsk->active_mm = mm;
843 	activate_mm(active_mm, mm);
844 	if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
845 		atomic_dec(&old_mm->oom_disable_count);
846 		atomic_inc(&tsk->mm->oom_disable_count);
847 	}
848 	task_unlock(tsk);
849 	arch_pick_mmap_layout(mm);
850 	if (old_mm) {
851 		up_read(&old_mm->mmap_sem);
852 		BUG_ON(active_mm != old_mm);
853 		mm_update_next_owner(old_mm);
854 		mmput(old_mm);
855 		return 0;
856 	}
857 	mmdrop(active_mm);
858 	return 0;
859 }
860 
861 /*
862  * This function makes sure the current process has its own signal table,
863  * so that flush_signal_handlers can later reset the handlers without
864  * disturbing other processes.  (Other processes might share the signal
865  * table via the CLONE_SIGHAND option to clone().)
866  */
867 static int de_thread(struct task_struct *tsk)
868 {
869 	struct signal_struct *sig = tsk->signal;
870 	struct sighand_struct *oldsighand = tsk->sighand;
871 	spinlock_t *lock = &oldsighand->siglock;
872 
873 	if (thread_group_empty(tsk))
874 		goto no_thread_group;
875 
876 	/*
877 	 * Kill all other threads in the thread group.
878 	 */
879 	spin_lock_irq(lock);
880 	if (signal_group_exit(sig)) {
881 		/*
882 		 * Another group action in progress, just
883 		 * return so that the signal is processed.
884 		 */
885 		spin_unlock_irq(lock);
886 		return -EAGAIN;
887 	}
888 
889 	sig->group_exit_task = tsk;
890 	sig->notify_count = zap_other_threads(tsk);
891 	if (!thread_group_leader(tsk))
892 		sig->notify_count--;
893 
894 	while (sig->notify_count) {
895 		__set_current_state(TASK_UNINTERRUPTIBLE);
896 		spin_unlock_irq(lock);
897 		schedule();
898 		spin_lock_irq(lock);
899 	}
900 	spin_unlock_irq(lock);
901 
902 	/*
903 	 * At this point all other threads have exited, all we have to
904 	 * do is to wait for the thread group leader to become inactive,
905 	 * and to assume its PID:
906 	 */
907 	if (!thread_group_leader(tsk)) {
908 		struct task_struct *leader = tsk->group_leader;
909 
910 		sig->notify_count = -1;	/* for exit_notify() */
911 		for (;;) {
912 			write_lock_irq(&tasklist_lock);
913 			if (likely(leader->exit_state))
914 				break;
915 			__set_current_state(TASK_UNINTERRUPTIBLE);
916 			write_unlock_irq(&tasklist_lock);
917 			schedule();
918 		}
919 
920 		/*
921 		 * The only record we have of the real-time age of a
922 		 * process, regardless of execs it's done, is start_time.
923 		 * All the past CPU time is accumulated in signal_struct
924 		 * from sister threads now dead.  But in this non-leader
925 		 * exec, nothing survives from the original leader thread,
926 		 * whose birth marks the true age of this process now.
927 		 * When we take on its identity by switching to its PID, we
928 		 * also take its birthdate (always earlier than our own).
929 		 */
930 		tsk->start_time = leader->start_time;
931 
932 		BUG_ON(!same_thread_group(leader, tsk));
933 		BUG_ON(has_group_leader_pid(tsk));
934 		/*
935 		 * An exec() starts a new thread group with the
936 		 * TGID of the previous thread group. Rehash the
937 		 * two threads with a switched PID, and release
938 		 * the former thread group leader:
939 		 */
940 
941 		/* Become a process group leader with the old leader's pid.
942 		 * The old leader becomes a thread of the this thread group.
943 		 * Note: The old leader also uses this pid until release_task
944 		 *       is called.  Odd but simple and correct.
945 		 */
946 		detach_pid(tsk, PIDTYPE_PID);
947 		tsk->pid = leader->pid;
948 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
949 		transfer_pid(leader, tsk, PIDTYPE_PGID);
950 		transfer_pid(leader, tsk, PIDTYPE_SID);
951 
952 		list_replace_rcu(&leader->tasks, &tsk->tasks);
953 		list_replace_init(&leader->sibling, &tsk->sibling);
954 
955 		tsk->group_leader = tsk;
956 		leader->group_leader = tsk;
957 
958 		tsk->exit_signal = SIGCHLD;
959 		leader->exit_signal = -1;
960 
961 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
962 		leader->exit_state = EXIT_DEAD;
963 
964 		/*
965 		 * We are going to release_task()->ptrace_unlink() silently,
966 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
967 		 * the tracer wont't block again waiting for this thread.
968 		 */
969 		if (unlikely(leader->ptrace))
970 			__wake_up_parent(leader, leader->parent);
971 		write_unlock_irq(&tasklist_lock);
972 
973 		release_task(leader);
974 	}
975 
976 	sig->group_exit_task = NULL;
977 	sig->notify_count = 0;
978 
979 no_thread_group:
980 	if (current->mm)
981 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
982 
983 	exit_itimers(sig);
984 	flush_itimer_signals();
985 
986 	if (atomic_read(&oldsighand->count) != 1) {
987 		struct sighand_struct *newsighand;
988 		/*
989 		 * This ->sighand is shared with the CLONE_SIGHAND
990 		 * but not CLONE_THREAD task, switch to the new one.
991 		 */
992 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
993 		if (!newsighand)
994 			return -ENOMEM;
995 
996 		atomic_set(&newsighand->count, 1);
997 		memcpy(newsighand->action, oldsighand->action,
998 		       sizeof(newsighand->action));
999 
1000 		write_lock_irq(&tasklist_lock);
1001 		spin_lock(&oldsighand->siglock);
1002 		rcu_assign_pointer(tsk->sighand, newsighand);
1003 		spin_unlock(&oldsighand->siglock);
1004 		write_unlock_irq(&tasklist_lock);
1005 
1006 		__cleanup_sighand(oldsighand);
1007 	}
1008 
1009 	BUG_ON(!thread_group_leader(tsk));
1010 	return 0;
1011 }
1012 
1013 /*
1014  * These functions flushes out all traces of the currently running executable
1015  * so that a new one can be started
1016  */
1017 static void flush_old_files(struct files_struct * files)
1018 {
1019 	long j = -1;
1020 	struct fdtable *fdt;
1021 
1022 	spin_lock(&files->file_lock);
1023 	for (;;) {
1024 		unsigned long set, i;
1025 
1026 		j++;
1027 		i = j * __NFDBITS;
1028 		fdt = files_fdtable(files);
1029 		if (i >= fdt->max_fds)
1030 			break;
1031 		set = fdt->close_on_exec->fds_bits[j];
1032 		if (!set)
1033 			continue;
1034 		fdt->close_on_exec->fds_bits[j] = 0;
1035 		spin_unlock(&files->file_lock);
1036 		for ( ; set ; i++,set >>= 1) {
1037 			if (set & 1) {
1038 				sys_close(i);
1039 			}
1040 		}
1041 		spin_lock(&files->file_lock);
1042 
1043 	}
1044 	spin_unlock(&files->file_lock);
1045 }
1046 
1047 char *get_task_comm(char *buf, struct task_struct *tsk)
1048 {
1049 	/* buf must be at least sizeof(tsk->comm) in size */
1050 	task_lock(tsk);
1051 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1052 	task_unlock(tsk);
1053 	return buf;
1054 }
1055 EXPORT_SYMBOL_GPL(get_task_comm);
1056 
1057 void set_task_comm(struct task_struct *tsk, char *buf)
1058 {
1059 	task_lock(tsk);
1060 
1061 	/*
1062 	 * Threads may access current->comm without holding
1063 	 * the task lock, so write the string carefully.
1064 	 * Readers without a lock may see incomplete new
1065 	 * names but are safe from non-terminating string reads.
1066 	 */
1067 	memset(tsk->comm, 0, TASK_COMM_LEN);
1068 	wmb();
1069 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1070 	task_unlock(tsk);
1071 	perf_event_comm(tsk);
1072 }
1073 
1074 int flush_old_exec(struct linux_binprm * bprm)
1075 {
1076 	int retval;
1077 
1078 	/*
1079 	 * Make sure we have a private signal table and that
1080 	 * we are unassociated from the previous thread group.
1081 	 */
1082 	retval = de_thread(current);
1083 	if (retval)
1084 		goto out;
1085 
1086 	set_mm_exe_file(bprm->mm, bprm->file);
1087 
1088 	/*
1089 	 * Release all of the old mmap stuff
1090 	 */
1091 	acct_arg_size(bprm, 0);
1092 	retval = exec_mmap(bprm->mm);
1093 	if (retval)
1094 		goto out;
1095 
1096 	bprm->mm = NULL;		/* We're using it now */
1097 
1098 	set_fs(USER_DS);
1099 	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1100 	flush_thread();
1101 	current->personality &= ~bprm->per_clear;
1102 
1103 	return 0;
1104 
1105 out:
1106 	return retval;
1107 }
1108 EXPORT_SYMBOL(flush_old_exec);
1109 
1110 void would_dump(struct linux_binprm *bprm, struct file *file)
1111 {
1112 	if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1113 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1114 }
1115 EXPORT_SYMBOL(would_dump);
1116 
1117 void setup_new_exec(struct linux_binprm * bprm)
1118 {
1119 	int i, ch;
1120 	const char *name;
1121 	char tcomm[sizeof(current->comm)];
1122 
1123 	arch_pick_mmap_layout(current->mm);
1124 
1125 	/* This is the point of no return */
1126 	current->sas_ss_sp = current->sas_ss_size = 0;
1127 
1128 	if (current_euid() == current_uid() && current_egid() == current_gid())
1129 		set_dumpable(current->mm, 1);
1130 	else
1131 		set_dumpable(current->mm, suid_dumpable);
1132 
1133 	name = bprm->filename;
1134 
1135 	/* Copies the binary name from after last slash */
1136 	for (i=0; (ch = *(name++)) != '\0';) {
1137 		if (ch == '/')
1138 			i = 0; /* overwrite what we wrote */
1139 		else
1140 			if (i < (sizeof(tcomm) - 1))
1141 				tcomm[i++] = ch;
1142 	}
1143 	tcomm[i] = '\0';
1144 	set_task_comm(current, tcomm);
1145 
1146 	/* Set the new mm task size. We have to do that late because it may
1147 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1148 	 * some architectures like powerpc
1149 	 */
1150 	current->mm->task_size = TASK_SIZE;
1151 
1152 	/* install the new credentials */
1153 	if (bprm->cred->uid != current_euid() ||
1154 	    bprm->cred->gid != current_egid()) {
1155 		current->pdeath_signal = 0;
1156 	} else {
1157 		would_dump(bprm, bprm->file);
1158 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1159 			set_dumpable(current->mm, suid_dumpable);
1160 	}
1161 
1162 	/*
1163 	 * Flush performance counters when crossing a
1164 	 * security domain:
1165 	 */
1166 	if (!get_dumpable(current->mm))
1167 		perf_event_exit_task(current);
1168 
1169 	/* An exec changes our domain. We are no longer part of the thread
1170 	   group */
1171 
1172 	current->self_exec_id++;
1173 
1174 	flush_signal_handlers(current, 0);
1175 	flush_old_files(current->files);
1176 }
1177 EXPORT_SYMBOL(setup_new_exec);
1178 
1179 /*
1180  * Prepare credentials and lock ->cred_guard_mutex.
1181  * install_exec_creds() commits the new creds and drops the lock.
1182  * Or, if exec fails before, free_bprm() should release ->cred and
1183  * and unlock.
1184  */
1185 int prepare_bprm_creds(struct linux_binprm *bprm)
1186 {
1187 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1188 		return -ERESTARTNOINTR;
1189 
1190 	bprm->cred = prepare_exec_creds();
1191 	if (likely(bprm->cred))
1192 		return 0;
1193 
1194 	mutex_unlock(&current->signal->cred_guard_mutex);
1195 	return -ENOMEM;
1196 }
1197 
1198 void free_bprm(struct linux_binprm *bprm)
1199 {
1200 	free_arg_pages(bprm);
1201 	if (bprm->cred) {
1202 		mutex_unlock(&current->signal->cred_guard_mutex);
1203 		abort_creds(bprm->cred);
1204 	}
1205 	kfree(bprm);
1206 }
1207 
1208 /*
1209  * install the new credentials for this executable
1210  */
1211 void install_exec_creds(struct linux_binprm *bprm)
1212 {
1213 	security_bprm_committing_creds(bprm);
1214 
1215 	commit_creds(bprm->cred);
1216 	bprm->cred = NULL;
1217 	/*
1218 	 * cred_guard_mutex must be held at least to this point to prevent
1219 	 * ptrace_attach() from altering our determination of the task's
1220 	 * credentials; any time after this it may be unlocked.
1221 	 */
1222 	security_bprm_committed_creds(bprm);
1223 	mutex_unlock(&current->signal->cred_guard_mutex);
1224 }
1225 EXPORT_SYMBOL(install_exec_creds);
1226 
1227 /*
1228  * determine how safe it is to execute the proposed program
1229  * - the caller must hold ->cred_guard_mutex to protect against
1230  *   PTRACE_ATTACH
1231  */
1232 int check_unsafe_exec(struct linux_binprm *bprm)
1233 {
1234 	struct task_struct *p = current, *t;
1235 	unsigned n_fs;
1236 	int res = 0;
1237 
1238 	if (p->ptrace) {
1239 		if (p->ptrace & PT_PTRACE_CAP)
1240 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1241 		else
1242 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1243 	}
1244 
1245 	n_fs = 1;
1246 	spin_lock(&p->fs->lock);
1247 	rcu_read_lock();
1248 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1249 		if (t->fs == p->fs)
1250 			n_fs++;
1251 	}
1252 	rcu_read_unlock();
1253 
1254 	if (p->fs->users > n_fs) {
1255 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1256 	} else {
1257 		res = -EAGAIN;
1258 		if (!p->fs->in_exec) {
1259 			p->fs->in_exec = 1;
1260 			res = 1;
1261 		}
1262 	}
1263 	spin_unlock(&p->fs->lock);
1264 
1265 	return res;
1266 }
1267 
1268 /*
1269  * Fill the binprm structure from the inode.
1270  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1271  *
1272  * This may be called multiple times for binary chains (scripts for example).
1273  */
1274 int prepare_binprm(struct linux_binprm *bprm)
1275 {
1276 	umode_t mode;
1277 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1278 	int retval;
1279 
1280 	mode = inode->i_mode;
1281 	if (bprm->file->f_op == NULL)
1282 		return -EACCES;
1283 
1284 	/* clear any previous set[ug]id data from a previous binary */
1285 	bprm->cred->euid = current_euid();
1286 	bprm->cred->egid = current_egid();
1287 
1288 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1289 		/* Set-uid? */
1290 		if (mode & S_ISUID) {
1291 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1292 			bprm->cred->euid = inode->i_uid;
1293 		}
1294 
1295 		/* Set-gid? */
1296 		/*
1297 		 * If setgid is set but no group execute bit then this
1298 		 * is a candidate for mandatory locking, not a setgid
1299 		 * executable.
1300 		 */
1301 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1302 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1303 			bprm->cred->egid = inode->i_gid;
1304 		}
1305 	}
1306 
1307 	/* fill in binprm security blob */
1308 	retval = security_bprm_set_creds(bprm);
1309 	if (retval)
1310 		return retval;
1311 	bprm->cred_prepared = 1;
1312 
1313 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1314 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1315 }
1316 
1317 EXPORT_SYMBOL(prepare_binprm);
1318 
1319 /*
1320  * Arguments are '\0' separated strings found at the location bprm->p
1321  * points to; chop off the first by relocating brpm->p to right after
1322  * the first '\0' encountered.
1323  */
1324 int remove_arg_zero(struct linux_binprm *bprm)
1325 {
1326 	int ret = 0;
1327 	unsigned long offset;
1328 	char *kaddr;
1329 	struct page *page;
1330 
1331 	if (!bprm->argc)
1332 		return 0;
1333 
1334 	do {
1335 		offset = bprm->p & ~PAGE_MASK;
1336 		page = get_arg_page(bprm, bprm->p, 0);
1337 		if (!page) {
1338 			ret = -EFAULT;
1339 			goto out;
1340 		}
1341 		kaddr = kmap_atomic(page, KM_USER0);
1342 
1343 		for (; offset < PAGE_SIZE && kaddr[offset];
1344 				offset++, bprm->p++)
1345 			;
1346 
1347 		kunmap_atomic(kaddr, KM_USER0);
1348 		put_arg_page(page);
1349 
1350 		if (offset == PAGE_SIZE)
1351 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1352 	} while (offset == PAGE_SIZE);
1353 
1354 	bprm->p++;
1355 	bprm->argc--;
1356 	ret = 0;
1357 
1358 out:
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL(remove_arg_zero);
1362 
1363 /*
1364  * cycle the list of binary formats handler, until one recognizes the image
1365  */
1366 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1367 {
1368 	unsigned int depth = bprm->recursion_depth;
1369 	int try,retval;
1370 	struct linux_binfmt *fmt;
1371 	pid_t old_pid;
1372 
1373 	retval = security_bprm_check(bprm);
1374 	if (retval)
1375 		return retval;
1376 
1377 	retval = audit_bprm(bprm);
1378 	if (retval)
1379 		return retval;
1380 
1381 	/* Need to fetch pid before load_binary changes it */
1382 	rcu_read_lock();
1383 	old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1384 	rcu_read_unlock();
1385 
1386 	retval = -ENOENT;
1387 	for (try=0; try<2; try++) {
1388 		read_lock(&binfmt_lock);
1389 		list_for_each_entry(fmt, &formats, lh) {
1390 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1391 			if (!fn)
1392 				continue;
1393 			if (!try_module_get(fmt->module))
1394 				continue;
1395 			read_unlock(&binfmt_lock);
1396 			retval = fn(bprm, regs);
1397 			/*
1398 			 * Restore the depth counter to its starting value
1399 			 * in this call, so we don't have to rely on every
1400 			 * load_binary function to restore it on return.
1401 			 */
1402 			bprm->recursion_depth = depth;
1403 			if (retval >= 0) {
1404 				if (depth == 0)
1405 					ptrace_event(PTRACE_EVENT_EXEC,
1406 							old_pid);
1407 				put_binfmt(fmt);
1408 				allow_write_access(bprm->file);
1409 				if (bprm->file)
1410 					fput(bprm->file);
1411 				bprm->file = NULL;
1412 				current->did_exec = 1;
1413 				proc_exec_connector(current);
1414 				return retval;
1415 			}
1416 			read_lock(&binfmt_lock);
1417 			put_binfmt(fmt);
1418 			if (retval != -ENOEXEC || bprm->mm == NULL)
1419 				break;
1420 			if (!bprm->file) {
1421 				read_unlock(&binfmt_lock);
1422 				return retval;
1423 			}
1424 		}
1425 		read_unlock(&binfmt_lock);
1426 #ifdef CONFIG_MODULES
1427 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1428 			break;
1429 		} else {
1430 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1431 			if (printable(bprm->buf[0]) &&
1432 			    printable(bprm->buf[1]) &&
1433 			    printable(bprm->buf[2]) &&
1434 			    printable(bprm->buf[3]))
1435 				break; /* -ENOEXEC */
1436 			if (try)
1437 				break; /* -ENOEXEC */
1438 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1439 		}
1440 #else
1441 		break;
1442 #endif
1443 	}
1444 	return retval;
1445 }
1446 
1447 EXPORT_SYMBOL(search_binary_handler);
1448 
1449 /*
1450  * sys_execve() executes a new program.
1451  */
1452 static int do_execve_common(const char *filename,
1453 				struct user_arg_ptr argv,
1454 				struct user_arg_ptr envp,
1455 				struct pt_regs *regs)
1456 {
1457 	struct linux_binprm *bprm;
1458 	struct file *file;
1459 	struct files_struct *displaced;
1460 	bool clear_in_exec;
1461 	int retval;
1462 
1463 	retval = unshare_files(&displaced);
1464 	if (retval)
1465 		goto out_ret;
1466 
1467 	retval = -ENOMEM;
1468 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1469 	if (!bprm)
1470 		goto out_files;
1471 
1472 	retval = prepare_bprm_creds(bprm);
1473 	if (retval)
1474 		goto out_free;
1475 
1476 	retval = check_unsafe_exec(bprm);
1477 	if (retval < 0)
1478 		goto out_free;
1479 	clear_in_exec = retval;
1480 	current->in_execve = 1;
1481 
1482 	file = open_exec(filename);
1483 	retval = PTR_ERR(file);
1484 	if (IS_ERR(file))
1485 		goto out_unmark;
1486 
1487 	sched_exec();
1488 
1489 	bprm->file = file;
1490 	bprm->filename = filename;
1491 	bprm->interp = filename;
1492 
1493 	retval = bprm_mm_init(bprm);
1494 	if (retval)
1495 		goto out_file;
1496 
1497 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1498 	if ((retval = bprm->argc) < 0)
1499 		goto out;
1500 
1501 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1502 	if ((retval = bprm->envc) < 0)
1503 		goto out;
1504 
1505 	retval = prepare_binprm(bprm);
1506 	if (retval < 0)
1507 		goto out;
1508 
1509 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1510 	if (retval < 0)
1511 		goto out;
1512 
1513 	bprm->exec = bprm->p;
1514 	retval = copy_strings(bprm->envc, envp, bprm);
1515 	if (retval < 0)
1516 		goto out;
1517 
1518 	retval = copy_strings(bprm->argc, argv, bprm);
1519 	if (retval < 0)
1520 		goto out;
1521 
1522 	retval = search_binary_handler(bprm,regs);
1523 	if (retval < 0)
1524 		goto out;
1525 
1526 	/* execve succeeded */
1527 	current->fs->in_exec = 0;
1528 	current->in_execve = 0;
1529 	acct_update_integrals(current);
1530 	free_bprm(bprm);
1531 	if (displaced)
1532 		put_files_struct(displaced);
1533 	return retval;
1534 
1535 out:
1536 	if (bprm->mm) {
1537 		acct_arg_size(bprm, 0);
1538 		mmput(bprm->mm);
1539 	}
1540 
1541 out_file:
1542 	if (bprm->file) {
1543 		allow_write_access(bprm->file);
1544 		fput(bprm->file);
1545 	}
1546 
1547 out_unmark:
1548 	if (clear_in_exec)
1549 		current->fs->in_exec = 0;
1550 	current->in_execve = 0;
1551 
1552 out_free:
1553 	free_bprm(bprm);
1554 
1555 out_files:
1556 	if (displaced)
1557 		reset_files_struct(displaced);
1558 out_ret:
1559 	return retval;
1560 }
1561 
1562 int do_execve(const char *filename,
1563 	const char __user *const __user *__argv,
1564 	const char __user *const __user *__envp,
1565 	struct pt_regs *regs)
1566 {
1567 	struct user_arg_ptr argv = { .ptr.native = __argv };
1568 	struct user_arg_ptr envp = { .ptr.native = __envp };
1569 	return do_execve_common(filename, argv, envp, regs);
1570 }
1571 
1572 #ifdef CONFIG_COMPAT
1573 int compat_do_execve(char *filename,
1574 	compat_uptr_t __user *__argv,
1575 	compat_uptr_t __user *__envp,
1576 	struct pt_regs *regs)
1577 {
1578 	struct user_arg_ptr argv = {
1579 		.is_compat = true,
1580 		.ptr.compat = __argv,
1581 	};
1582 	struct user_arg_ptr envp = {
1583 		.is_compat = true,
1584 		.ptr.compat = __envp,
1585 	};
1586 	return do_execve_common(filename, argv, envp, regs);
1587 }
1588 #endif
1589 
1590 void set_binfmt(struct linux_binfmt *new)
1591 {
1592 	struct mm_struct *mm = current->mm;
1593 
1594 	if (mm->binfmt)
1595 		module_put(mm->binfmt->module);
1596 
1597 	mm->binfmt = new;
1598 	if (new)
1599 		__module_get(new->module);
1600 }
1601 
1602 EXPORT_SYMBOL(set_binfmt);
1603 
1604 static int expand_corename(struct core_name *cn)
1605 {
1606 	char *old_corename = cn->corename;
1607 
1608 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1609 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1610 
1611 	if (!cn->corename) {
1612 		kfree(old_corename);
1613 		return -ENOMEM;
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1620 {
1621 	char *cur;
1622 	int need;
1623 	int ret;
1624 	va_list arg;
1625 
1626 	va_start(arg, fmt);
1627 	need = vsnprintf(NULL, 0, fmt, arg);
1628 	va_end(arg);
1629 
1630 	if (likely(need < cn->size - cn->used - 1))
1631 		goto out_printf;
1632 
1633 	ret = expand_corename(cn);
1634 	if (ret)
1635 		goto expand_fail;
1636 
1637 out_printf:
1638 	cur = cn->corename + cn->used;
1639 	va_start(arg, fmt);
1640 	vsnprintf(cur, need + 1, fmt, arg);
1641 	va_end(arg);
1642 	cn->used += need;
1643 	return 0;
1644 
1645 expand_fail:
1646 	return ret;
1647 }
1648 
1649 static void cn_escape(char *str)
1650 {
1651 	for (; *str; str++)
1652 		if (*str == '/')
1653 			*str = '!';
1654 }
1655 
1656 static int cn_print_exe_file(struct core_name *cn)
1657 {
1658 	struct file *exe_file;
1659 	char *pathbuf, *path;
1660 	int ret;
1661 
1662 	exe_file = get_mm_exe_file(current->mm);
1663 	if (!exe_file) {
1664 		char *commstart = cn->corename + cn->used;
1665 		ret = cn_printf(cn, "%s (path unknown)", current->comm);
1666 		cn_escape(commstart);
1667 		return ret;
1668 	}
1669 
1670 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1671 	if (!pathbuf) {
1672 		ret = -ENOMEM;
1673 		goto put_exe_file;
1674 	}
1675 
1676 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1677 	if (IS_ERR(path)) {
1678 		ret = PTR_ERR(path);
1679 		goto free_buf;
1680 	}
1681 
1682 	cn_escape(path);
1683 
1684 	ret = cn_printf(cn, "%s", path);
1685 
1686 free_buf:
1687 	kfree(pathbuf);
1688 put_exe_file:
1689 	fput(exe_file);
1690 	return ret;
1691 }
1692 
1693 /* format_corename will inspect the pattern parameter, and output a
1694  * name into corename, which must have space for at least
1695  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1696  */
1697 static int format_corename(struct core_name *cn, long signr)
1698 {
1699 	const struct cred *cred = current_cred();
1700 	const char *pat_ptr = core_pattern;
1701 	int ispipe = (*pat_ptr == '|');
1702 	int pid_in_pattern = 0;
1703 	int err = 0;
1704 
1705 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1706 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1707 	cn->used = 0;
1708 
1709 	if (!cn->corename)
1710 		return -ENOMEM;
1711 
1712 	/* Repeat as long as we have more pattern to process and more output
1713 	   space */
1714 	while (*pat_ptr) {
1715 		if (*pat_ptr != '%') {
1716 			if (*pat_ptr == 0)
1717 				goto out;
1718 			err = cn_printf(cn, "%c", *pat_ptr++);
1719 		} else {
1720 			switch (*++pat_ptr) {
1721 			/* single % at the end, drop that */
1722 			case 0:
1723 				goto out;
1724 			/* Double percent, output one percent */
1725 			case '%':
1726 				err = cn_printf(cn, "%c", '%');
1727 				break;
1728 			/* pid */
1729 			case 'p':
1730 				pid_in_pattern = 1;
1731 				err = cn_printf(cn, "%d",
1732 					      task_tgid_vnr(current));
1733 				break;
1734 			/* uid */
1735 			case 'u':
1736 				err = cn_printf(cn, "%d", cred->uid);
1737 				break;
1738 			/* gid */
1739 			case 'g':
1740 				err = cn_printf(cn, "%d", cred->gid);
1741 				break;
1742 			/* signal that caused the coredump */
1743 			case 's':
1744 				err = cn_printf(cn, "%ld", signr);
1745 				break;
1746 			/* UNIX time of coredump */
1747 			case 't': {
1748 				struct timeval tv;
1749 				do_gettimeofday(&tv);
1750 				err = cn_printf(cn, "%lu", tv.tv_sec);
1751 				break;
1752 			}
1753 			/* hostname */
1754 			case 'h': {
1755 				char *namestart = cn->corename + cn->used;
1756 				down_read(&uts_sem);
1757 				err = cn_printf(cn, "%s",
1758 					      utsname()->nodename);
1759 				up_read(&uts_sem);
1760 				cn_escape(namestart);
1761 				break;
1762 			}
1763 			/* executable */
1764 			case 'e': {
1765 				char *commstart = cn->corename + cn->used;
1766 				err = cn_printf(cn, "%s", current->comm);
1767 				cn_escape(commstart);
1768 				break;
1769 			}
1770 			case 'E':
1771 				err = cn_print_exe_file(cn);
1772 				break;
1773 			/* core limit size */
1774 			case 'c':
1775 				err = cn_printf(cn, "%lu",
1776 					      rlimit(RLIMIT_CORE));
1777 				break;
1778 			default:
1779 				break;
1780 			}
1781 			++pat_ptr;
1782 		}
1783 
1784 		if (err)
1785 			return err;
1786 	}
1787 
1788 	/* Backward compatibility with core_uses_pid:
1789 	 *
1790 	 * If core_pattern does not include a %p (as is the default)
1791 	 * and core_uses_pid is set, then .%pid will be appended to
1792 	 * the filename. Do not do this for piped commands. */
1793 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1794 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1795 		if (err)
1796 			return err;
1797 	}
1798 out:
1799 	return ispipe;
1800 }
1801 
1802 static int zap_process(struct task_struct *start, int exit_code)
1803 {
1804 	struct task_struct *t;
1805 	int nr = 0;
1806 
1807 	start->signal->flags = SIGNAL_GROUP_EXIT;
1808 	start->signal->group_exit_code = exit_code;
1809 	start->signal->group_stop_count = 0;
1810 
1811 	t = start;
1812 	do {
1813 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1814 		if (t != current && t->mm) {
1815 			sigaddset(&t->pending.signal, SIGKILL);
1816 			signal_wake_up(t, 1);
1817 			nr++;
1818 		}
1819 	} while_each_thread(start, t);
1820 
1821 	return nr;
1822 }
1823 
1824 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1825 				struct core_state *core_state, int exit_code)
1826 {
1827 	struct task_struct *g, *p;
1828 	unsigned long flags;
1829 	int nr = -EAGAIN;
1830 
1831 	spin_lock_irq(&tsk->sighand->siglock);
1832 	if (!signal_group_exit(tsk->signal)) {
1833 		mm->core_state = core_state;
1834 		nr = zap_process(tsk, exit_code);
1835 	}
1836 	spin_unlock_irq(&tsk->sighand->siglock);
1837 	if (unlikely(nr < 0))
1838 		return nr;
1839 
1840 	if (atomic_read(&mm->mm_users) == nr + 1)
1841 		goto done;
1842 	/*
1843 	 * We should find and kill all tasks which use this mm, and we should
1844 	 * count them correctly into ->nr_threads. We don't take tasklist
1845 	 * lock, but this is safe wrt:
1846 	 *
1847 	 * fork:
1848 	 *	None of sub-threads can fork after zap_process(leader). All
1849 	 *	processes which were created before this point should be
1850 	 *	visible to zap_threads() because copy_process() adds the new
1851 	 *	process to the tail of init_task.tasks list, and lock/unlock
1852 	 *	of ->siglock provides a memory barrier.
1853 	 *
1854 	 * do_exit:
1855 	 *	The caller holds mm->mmap_sem. This means that the task which
1856 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1857 	 *	its ->mm.
1858 	 *
1859 	 * de_thread:
1860 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1861 	 *	we must see either old or new leader, this does not matter.
1862 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1863 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1864 	 *	it can't fail.
1865 	 *
1866 	 *	Note also that "g" can be the old leader with ->mm == NULL
1867 	 *	and already unhashed and thus removed from ->thread_group.
1868 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1869 	 *	clear the ->next pointer, we will find the new leader via
1870 	 *	next_thread().
1871 	 */
1872 	rcu_read_lock();
1873 	for_each_process(g) {
1874 		if (g == tsk->group_leader)
1875 			continue;
1876 		if (g->flags & PF_KTHREAD)
1877 			continue;
1878 		p = g;
1879 		do {
1880 			if (p->mm) {
1881 				if (unlikely(p->mm == mm)) {
1882 					lock_task_sighand(p, &flags);
1883 					nr += zap_process(p, exit_code);
1884 					unlock_task_sighand(p, &flags);
1885 				}
1886 				break;
1887 			}
1888 		} while_each_thread(g, p);
1889 	}
1890 	rcu_read_unlock();
1891 done:
1892 	atomic_set(&core_state->nr_threads, nr);
1893 	return nr;
1894 }
1895 
1896 static int coredump_wait(int exit_code, struct core_state *core_state)
1897 {
1898 	struct task_struct *tsk = current;
1899 	struct mm_struct *mm = tsk->mm;
1900 	struct completion *vfork_done;
1901 	int core_waiters = -EBUSY;
1902 
1903 	init_completion(&core_state->startup);
1904 	core_state->dumper.task = tsk;
1905 	core_state->dumper.next = NULL;
1906 
1907 	down_write(&mm->mmap_sem);
1908 	if (!mm->core_state)
1909 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1910 	up_write(&mm->mmap_sem);
1911 
1912 	if (unlikely(core_waiters < 0))
1913 		goto fail;
1914 
1915 	/*
1916 	 * Make sure nobody is waiting for us to release the VM,
1917 	 * otherwise we can deadlock when we wait on each other
1918 	 */
1919 	vfork_done = tsk->vfork_done;
1920 	if (vfork_done) {
1921 		tsk->vfork_done = NULL;
1922 		complete(vfork_done);
1923 	}
1924 
1925 	if (core_waiters)
1926 		wait_for_completion(&core_state->startup);
1927 fail:
1928 	return core_waiters;
1929 }
1930 
1931 static void coredump_finish(struct mm_struct *mm)
1932 {
1933 	struct core_thread *curr, *next;
1934 	struct task_struct *task;
1935 
1936 	next = mm->core_state->dumper.next;
1937 	while ((curr = next) != NULL) {
1938 		next = curr->next;
1939 		task = curr->task;
1940 		/*
1941 		 * see exit_mm(), curr->task must not see
1942 		 * ->task == NULL before we read ->next.
1943 		 */
1944 		smp_mb();
1945 		curr->task = NULL;
1946 		wake_up_process(task);
1947 	}
1948 
1949 	mm->core_state = NULL;
1950 }
1951 
1952 /*
1953  * set_dumpable converts traditional three-value dumpable to two flags and
1954  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1955  * these bits are not changed atomically.  So get_dumpable can observe the
1956  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1957  * return either old dumpable or new one by paying attention to the order of
1958  * modifying the bits.
1959  *
1960  * dumpable |   mm->flags (binary)
1961  * old  new | initial interim  final
1962  * ---------+-----------------------
1963  *  0    1  |   00      01      01
1964  *  0    2  |   00      10(*)   11
1965  *  1    0  |   01      00      00
1966  *  1    2  |   01      11      11
1967  *  2    0  |   11      10(*)   00
1968  *  2    1  |   11      11      01
1969  *
1970  * (*) get_dumpable regards interim value of 10 as 11.
1971  */
1972 void set_dumpable(struct mm_struct *mm, int value)
1973 {
1974 	switch (value) {
1975 	case 0:
1976 		clear_bit(MMF_DUMPABLE, &mm->flags);
1977 		smp_wmb();
1978 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1979 		break;
1980 	case 1:
1981 		set_bit(MMF_DUMPABLE, &mm->flags);
1982 		smp_wmb();
1983 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1984 		break;
1985 	case 2:
1986 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1987 		smp_wmb();
1988 		set_bit(MMF_DUMPABLE, &mm->flags);
1989 		break;
1990 	}
1991 }
1992 
1993 static int __get_dumpable(unsigned long mm_flags)
1994 {
1995 	int ret;
1996 
1997 	ret = mm_flags & MMF_DUMPABLE_MASK;
1998 	return (ret >= 2) ? 2 : ret;
1999 }
2000 
2001 int get_dumpable(struct mm_struct *mm)
2002 {
2003 	return __get_dumpable(mm->flags);
2004 }
2005 
2006 static void wait_for_dump_helpers(struct file *file)
2007 {
2008 	struct pipe_inode_info *pipe;
2009 
2010 	pipe = file->f_path.dentry->d_inode->i_pipe;
2011 
2012 	pipe_lock(pipe);
2013 	pipe->readers++;
2014 	pipe->writers--;
2015 
2016 	while ((pipe->readers > 1) && (!signal_pending(current))) {
2017 		wake_up_interruptible_sync(&pipe->wait);
2018 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2019 		pipe_wait(pipe);
2020 	}
2021 
2022 	pipe->readers--;
2023 	pipe->writers++;
2024 	pipe_unlock(pipe);
2025 
2026 }
2027 
2028 
2029 /*
2030  * umh_pipe_setup
2031  * helper function to customize the process used
2032  * to collect the core in userspace.  Specifically
2033  * it sets up a pipe and installs it as fd 0 (stdin)
2034  * for the process.  Returns 0 on success, or
2035  * PTR_ERR on failure.
2036  * Note that it also sets the core limit to 1.  This
2037  * is a special value that we use to trap recursive
2038  * core dumps
2039  */
2040 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2041 {
2042 	struct file *rp, *wp;
2043 	struct fdtable *fdt;
2044 	struct coredump_params *cp = (struct coredump_params *)info->data;
2045 	struct files_struct *cf = current->files;
2046 
2047 	wp = create_write_pipe(0);
2048 	if (IS_ERR(wp))
2049 		return PTR_ERR(wp);
2050 
2051 	rp = create_read_pipe(wp, 0);
2052 	if (IS_ERR(rp)) {
2053 		free_write_pipe(wp);
2054 		return PTR_ERR(rp);
2055 	}
2056 
2057 	cp->file = wp;
2058 
2059 	sys_close(0);
2060 	fd_install(0, rp);
2061 	spin_lock(&cf->file_lock);
2062 	fdt = files_fdtable(cf);
2063 	FD_SET(0, fdt->open_fds);
2064 	FD_CLR(0, fdt->close_on_exec);
2065 	spin_unlock(&cf->file_lock);
2066 
2067 	/* and disallow core files too */
2068 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2069 
2070 	return 0;
2071 }
2072 
2073 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2074 {
2075 	struct core_state core_state;
2076 	struct core_name cn;
2077 	struct mm_struct *mm = current->mm;
2078 	struct linux_binfmt * binfmt;
2079 	const struct cred *old_cred;
2080 	struct cred *cred;
2081 	int retval = 0;
2082 	int flag = 0;
2083 	int ispipe;
2084 	static atomic_t core_dump_count = ATOMIC_INIT(0);
2085 	struct coredump_params cprm = {
2086 		.signr = signr,
2087 		.regs = regs,
2088 		.limit = rlimit(RLIMIT_CORE),
2089 		/*
2090 		 * We must use the same mm->flags while dumping core to avoid
2091 		 * inconsistency of bit flags, since this flag is not protected
2092 		 * by any locks.
2093 		 */
2094 		.mm_flags = mm->flags,
2095 	};
2096 
2097 	audit_core_dumps(signr);
2098 
2099 	binfmt = mm->binfmt;
2100 	if (!binfmt || !binfmt->core_dump)
2101 		goto fail;
2102 	if (!__get_dumpable(cprm.mm_flags))
2103 		goto fail;
2104 
2105 	cred = prepare_creds();
2106 	if (!cred)
2107 		goto fail;
2108 	/*
2109 	 *	We cannot trust fsuid as being the "true" uid of the
2110 	 *	process nor do we know its entire history. We only know it
2111 	 *	was tainted so we dump it as root in mode 2.
2112 	 */
2113 	if (__get_dumpable(cprm.mm_flags) == 2) {
2114 		/* Setuid core dump mode */
2115 		flag = O_EXCL;		/* Stop rewrite attacks */
2116 		cred->fsuid = 0;	/* Dump root private */
2117 	}
2118 
2119 	retval = coredump_wait(exit_code, &core_state);
2120 	if (retval < 0)
2121 		goto fail_creds;
2122 
2123 	old_cred = override_creds(cred);
2124 
2125 	/*
2126 	 * Clear any false indication of pending signals that might
2127 	 * be seen by the filesystem code called to write the core file.
2128 	 */
2129 	clear_thread_flag(TIF_SIGPENDING);
2130 
2131 	ispipe = format_corename(&cn, signr);
2132 
2133  	if (ispipe) {
2134 		int dump_count;
2135 		char **helper_argv;
2136 
2137 		if (ispipe < 0) {
2138 			printk(KERN_WARNING "format_corename failed\n");
2139 			printk(KERN_WARNING "Aborting core\n");
2140 			goto fail_corename;
2141 		}
2142 
2143 		if (cprm.limit == 1) {
2144 			/*
2145 			 * Normally core limits are irrelevant to pipes, since
2146 			 * we're not writing to the file system, but we use
2147 			 * cprm.limit of 1 here as a speacial value. Any
2148 			 * non-1 limit gets set to RLIM_INFINITY below, but
2149 			 * a limit of 0 skips the dump.  This is a consistent
2150 			 * way to catch recursive crashes.  We can still crash
2151 			 * if the core_pattern binary sets RLIM_CORE =  !1
2152 			 * but it runs as root, and can do lots of stupid things
2153 			 * Note that we use task_tgid_vnr here to grab the pid
2154 			 * of the process group leader.  That way we get the
2155 			 * right pid if a thread in a multi-threaded
2156 			 * core_pattern process dies.
2157 			 */
2158 			printk(KERN_WARNING
2159 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2160 				task_tgid_vnr(current), current->comm);
2161 			printk(KERN_WARNING "Aborting core\n");
2162 			goto fail_unlock;
2163 		}
2164 		cprm.limit = RLIM_INFINITY;
2165 
2166 		dump_count = atomic_inc_return(&core_dump_count);
2167 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2168 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2169 			       task_tgid_vnr(current), current->comm);
2170 			printk(KERN_WARNING "Skipping core dump\n");
2171 			goto fail_dropcount;
2172 		}
2173 
2174 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2175 		if (!helper_argv) {
2176 			printk(KERN_WARNING "%s failed to allocate memory\n",
2177 			       __func__);
2178 			goto fail_dropcount;
2179 		}
2180 
2181 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2182 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2183 					NULL, &cprm);
2184 		argv_free(helper_argv);
2185 		if (retval) {
2186  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2187 			       cn.corename);
2188 			goto close_fail;
2189  		}
2190 	} else {
2191 		struct inode *inode;
2192 
2193 		if (cprm.limit < binfmt->min_coredump)
2194 			goto fail_unlock;
2195 
2196 		cprm.file = filp_open(cn.corename,
2197 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2198 				 0600);
2199 		if (IS_ERR(cprm.file))
2200 			goto fail_unlock;
2201 
2202 		inode = cprm.file->f_path.dentry->d_inode;
2203 		if (inode->i_nlink > 1)
2204 			goto close_fail;
2205 		if (d_unhashed(cprm.file->f_path.dentry))
2206 			goto close_fail;
2207 		/*
2208 		 * AK: actually i see no reason to not allow this for named
2209 		 * pipes etc, but keep the previous behaviour for now.
2210 		 */
2211 		if (!S_ISREG(inode->i_mode))
2212 			goto close_fail;
2213 		/*
2214 		 * Dont allow local users get cute and trick others to coredump
2215 		 * into their pre-created files.
2216 		 */
2217 		if (inode->i_uid != current_fsuid())
2218 			goto close_fail;
2219 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2220 			goto close_fail;
2221 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2222 			goto close_fail;
2223 	}
2224 
2225 	retval = binfmt->core_dump(&cprm);
2226 	if (retval)
2227 		current->signal->group_exit_code |= 0x80;
2228 
2229 	if (ispipe && core_pipe_limit)
2230 		wait_for_dump_helpers(cprm.file);
2231 close_fail:
2232 	if (cprm.file)
2233 		filp_close(cprm.file, NULL);
2234 fail_dropcount:
2235 	if (ispipe)
2236 		atomic_dec(&core_dump_count);
2237 fail_unlock:
2238 	kfree(cn.corename);
2239 fail_corename:
2240 	coredump_finish(mm);
2241 	revert_creds(old_cred);
2242 fail_creds:
2243 	put_cred(cred);
2244 fail:
2245 	return;
2246 }
2247 
2248 /*
2249  * Core dumping helper functions.  These are the only things you should
2250  * do on a core-file: use only these functions to write out all the
2251  * necessary info.
2252  */
2253 int dump_write(struct file *file, const void *addr, int nr)
2254 {
2255 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2256 }
2257 EXPORT_SYMBOL(dump_write);
2258 
2259 int dump_seek(struct file *file, loff_t off)
2260 {
2261 	int ret = 1;
2262 
2263 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2264 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2265 			return 0;
2266 	} else {
2267 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2268 
2269 		if (!buf)
2270 			return 0;
2271 		while (off > 0) {
2272 			unsigned long n = off;
2273 
2274 			if (n > PAGE_SIZE)
2275 				n = PAGE_SIZE;
2276 			if (!dump_write(file, buf, n)) {
2277 				ret = 0;
2278 				break;
2279 			}
2280 			off -= n;
2281 		}
2282 		free_page((unsigned long)buf);
2283 	}
2284 	return ret;
2285 }
2286 EXPORT_SYMBOL(dump_seek);
2287