xref: /openbmc/linux/fs/exec.c (revision d670b479)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include <asm/exec.h>
63 
64 #include <trace/events/task.h>
65 #include "internal.h"
66 
67 #include <trace/events/sched.h>
68 
69 int core_uses_pid;
70 char core_pattern[CORENAME_MAX_SIZE] = "core";
71 unsigned int core_pipe_limit;
72 int suid_dumpable = 0;
73 
74 struct core_name {
75 	char *corename;
76 	int used, size;
77 };
78 static atomic_t call_count = ATOMIC_INIT(1);
79 
80 /* The maximal length of core_pattern is also specified in sysctl.c */
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	BUG_ON(!fmt);
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 /*
111  * Note that a shared library must be both readable and executable due to
112  * security reasons.
113  *
114  * Also note that we take the address to load from from the file itself.
115  */
116 SYSCALL_DEFINE1(uselib, const char __user *, library)
117 {
118 	struct file *file;
119 	char *tmp = getname(library);
120 	int error = PTR_ERR(tmp);
121 	static const struct open_flags uselib_flags = {
122 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124 		.intent = LOOKUP_OPEN
125 	};
126 
127 	if (IS_ERR(tmp))
128 		goto out;
129 
130 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
131 	putname(tmp);
132 	error = PTR_ERR(file);
133 	if (IS_ERR(file))
134 		goto out;
135 
136 	error = -EINVAL;
137 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
138 		goto exit;
139 
140 	error = -EACCES;
141 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
142 		goto exit;
143 
144 	fsnotify_open(file);
145 
146 	error = -ENOEXEC;
147 	if(file->f_op) {
148 		struct linux_binfmt * fmt;
149 
150 		read_lock(&binfmt_lock);
151 		list_for_each_entry(fmt, &formats, lh) {
152 			if (!fmt->load_shlib)
153 				continue;
154 			if (!try_module_get(fmt->module))
155 				continue;
156 			read_unlock(&binfmt_lock);
157 			error = fmt->load_shlib(file);
158 			read_lock(&binfmt_lock);
159 			put_binfmt(fmt);
160 			if (error != -ENOEXEC)
161 				break;
162 		}
163 		read_unlock(&binfmt_lock);
164 	}
165 exit:
166 	fput(file);
167 out:
168   	return error;
169 }
170 
171 #ifdef CONFIG_MMU
172 /*
173  * The nascent bprm->mm is not visible until exec_mmap() but it can
174  * use a lot of memory, account these pages in current->mm temporary
175  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
176  * change the counter back via acct_arg_size(0).
177  */
178 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
179 {
180 	struct mm_struct *mm = current->mm;
181 	long diff = (long)(pages - bprm->vma_pages);
182 
183 	if (!mm || !diff)
184 		return;
185 
186 	bprm->vma_pages = pages;
187 	add_mm_counter(mm, MM_ANONPAGES, diff);
188 }
189 
190 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
191 		int write)
192 {
193 	struct page *page;
194 	int ret;
195 
196 #ifdef CONFIG_STACK_GROWSUP
197 	if (write) {
198 		ret = expand_downwards(bprm->vma, pos);
199 		if (ret < 0)
200 			return NULL;
201 	}
202 #endif
203 	ret = get_user_pages(current, bprm->mm, pos,
204 			1, write, 1, &page, NULL);
205 	if (ret <= 0)
206 		return NULL;
207 
208 	if (write) {
209 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
210 		struct rlimit *rlim;
211 
212 		acct_arg_size(bprm, size / PAGE_SIZE);
213 
214 		/*
215 		 * We've historically supported up to 32 pages (ARG_MAX)
216 		 * of argument strings even with small stacks
217 		 */
218 		if (size <= ARG_MAX)
219 			return page;
220 
221 		/*
222 		 * Limit to 1/4-th the stack size for the argv+env strings.
223 		 * This ensures that:
224 		 *  - the remaining binfmt code will not run out of stack space,
225 		 *  - the program will have a reasonable amount of stack left
226 		 *    to work from.
227 		 */
228 		rlim = current->signal->rlim;
229 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
230 			put_page(page);
231 			return NULL;
232 		}
233 	}
234 
235 	return page;
236 }
237 
238 static void put_arg_page(struct page *page)
239 {
240 	put_page(page);
241 }
242 
243 static void free_arg_page(struct linux_binprm *bprm, int i)
244 {
245 }
246 
247 static void free_arg_pages(struct linux_binprm *bprm)
248 {
249 }
250 
251 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
252 		struct page *page)
253 {
254 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
255 }
256 
257 static int __bprm_mm_init(struct linux_binprm *bprm)
258 {
259 	int err;
260 	struct vm_area_struct *vma = NULL;
261 	struct mm_struct *mm = bprm->mm;
262 
263 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
264 	if (!vma)
265 		return -ENOMEM;
266 
267 	down_write(&mm->mmap_sem);
268 	vma->vm_mm = mm;
269 
270 	/*
271 	 * Place the stack at the largest stack address the architecture
272 	 * supports. Later, we'll move this to an appropriate place. We don't
273 	 * use STACK_TOP because that can depend on attributes which aren't
274 	 * configured yet.
275 	 */
276 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
277 	vma->vm_end = STACK_TOP_MAX;
278 	vma->vm_start = vma->vm_end - PAGE_SIZE;
279 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
280 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
281 	INIT_LIST_HEAD(&vma->anon_vma_chain);
282 
283 	err = insert_vm_struct(mm, vma);
284 	if (err)
285 		goto err;
286 
287 	mm->stack_vm = mm->total_vm = 1;
288 	up_write(&mm->mmap_sem);
289 	bprm->p = vma->vm_end - sizeof(void *);
290 	return 0;
291 err:
292 	up_write(&mm->mmap_sem);
293 	bprm->vma = NULL;
294 	kmem_cache_free(vm_area_cachep, vma);
295 	return err;
296 }
297 
298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
299 {
300 	return len <= MAX_ARG_STRLEN;
301 }
302 
303 #else
304 
305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306 {
307 }
308 
309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 		int write)
311 {
312 	struct page *page;
313 
314 	page = bprm->page[pos / PAGE_SIZE];
315 	if (!page && write) {
316 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317 		if (!page)
318 			return NULL;
319 		bprm->page[pos / PAGE_SIZE] = page;
320 	}
321 
322 	return page;
323 }
324 
325 static void put_arg_page(struct page *page)
326 {
327 }
328 
329 static void free_arg_page(struct linux_binprm *bprm, int i)
330 {
331 	if (bprm->page[i]) {
332 		__free_page(bprm->page[i]);
333 		bprm->page[i] = NULL;
334 	}
335 }
336 
337 static void free_arg_pages(struct linux_binprm *bprm)
338 {
339 	int i;
340 
341 	for (i = 0; i < MAX_ARG_PAGES; i++)
342 		free_arg_page(bprm, i);
343 }
344 
345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346 		struct page *page)
347 {
348 }
349 
350 static int __bprm_mm_init(struct linux_binprm *bprm)
351 {
352 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353 	return 0;
354 }
355 
356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
357 {
358 	return len <= bprm->p;
359 }
360 
361 #endif /* CONFIG_MMU */
362 
363 /*
364  * Create a new mm_struct and populate it with a temporary stack
365  * vm_area_struct.  We don't have enough context at this point to set the stack
366  * flags, permissions, and offset, so we use temporary values.  We'll update
367  * them later in setup_arg_pages().
368  */
369 int bprm_mm_init(struct linux_binprm *bprm)
370 {
371 	int err;
372 	struct mm_struct *mm = NULL;
373 
374 	bprm->mm = mm = mm_alloc();
375 	err = -ENOMEM;
376 	if (!mm)
377 		goto err;
378 
379 	err = init_new_context(current, mm);
380 	if (err)
381 		goto err;
382 
383 	err = __bprm_mm_init(bprm);
384 	if (err)
385 		goto err;
386 
387 	return 0;
388 
389 err:
390 	if (mm) {
391 		bprm->mm = NULL;
392 		mmdrop(mm);
393 	}
394 
395 	return err;
396 }
397 
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 	bool is_compat;
401 #endif
402 	union {
403 		const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 		compat_uptr_t __user *compat;
406 #endif
407 	} ptr;
408 };
409 
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 	const char __user *native;
413 
414 #ifdef CONFIG_COMPAT
415 	if (unlikely(argv.is_compat)) {
416 		compat_uptr_t compat;
417 
418 		if (get_user(compat, argv.ptr.compat + nr))
419 			return ERR_PTR(-EFAULT);
420 
421 		return compat_ptr(compat);
422 	}
423 #endif
424 
425 	if (get_user(native, argv.ptr.native + nr))
426 		return ERR_PTR(-EFAULT);
427 
428 	return native;
429 }
430 
431 /*
432  * count() counts the number of strings in array ARGV.
433  */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436 	int i = 0;
437 
438 	if (argv.ptr.native != NULL) {
439 		for (;;) {
440 			const char __user *p = get_user_arg_ptr(argv, i);
441 
442 			if (!p)
443 				break;
444 
445 			if (IS_ERR(p))
446 				return -EFAULT;
447 
448 			if (i++ >= max)
449 				return -E2BIG;
450 
451 			if (fatal_signal_pending(current))
452 				return -ERESTARTNOHAND;
453 			cond_resched();
454 		}
455 	}
456 	return i;
457 }
458 
459 /*
460  * 'copy_strings()' copies argument/environment strings from the old
461  * processes's memory to the new process's stack.  The call to get_user_pages()
462  * ensures the destination page is created and not swapped out.
463  */
464 static int copy_strings(int argc, struct user_arg_ptr argv,
465 			struct linux_binprm *bprm)
466 {
467 	struct page *kmapped_page = NULL;
468 	char *kaddr = NULL;
469 	unsigned long kpos = 0;
470 	int ret;
471 
472 	while (argc-- > 0) {
473 		const char __user *str;
474 		int len;
475 		unsigned long pos;
476 
477 		ret = -EFAULT;
478 		str = get_user_arg_ptr(argv, argc);
479 		if (IS_ERR(str))
480 			goto out;
481 
482 		len = strnlen_user(str, MAX_ARG_STRLEN);
483 		if (!len)
484 			goto out;
485 
486 		ret = -E2BIG;
487 		if (!valid_arg_len(bprm, len))
488 			goto out;
489 
490 		/* We're going to work our way backwords. */
491 		pos = bprm->p;
492 		str += len;
493 		bprm->p -= len;
494 
495 		while (len > 0) {
496 			int offset, bytes_to_copy;
497 
498 			if (fatal_signal_pending(current)) {
499 				ret = -ERESTARTNOHAND;
500 				goto out;
501 			}
502 			cond_resched();
503 
504 			offset = pos % PAGE_SIZE;
505 			if (offset == 0)
506 				offset = PAGE_SIZE;
507 
508 			bytes_to_copy = offset;
509 			if (bytes_to_copy > len)
510 				bytes_to_copy = len;
511 
512 			offset -= bytes_to_copy;
513 			pos -= bytes_to_copy;
514 			str -= bytes_to_copy;
515 			len -= bytes_to_copy;
516 
517 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
518 				struct page *page;
519 
520 				page = get_arg_page(bprm, pos, 1);
521 				if (!page) {
522 					ret = -E2BIG;
523 					goto out;
524 				}
525 
526 				if (kmapped_page) {
527 					flush_kernel_dcache_page(kmapped_page);
528 					kunmap(kmapped_page);
529 					put_arg_page(kmapped_page);
530 				}
531 				kmapped_page = page;
532 				kaddr = kmap(kmapped_page);
533 				kpos = pos & PAGE_MASK;
534 				flush_arg_page(bprm, kpos, kmapped_page);
535 			}
536 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
537 				ret = -EFAULT;
538 				goto out;
539 			}
540 		}
541 	}
542 	ret = 0;
543 out:
544 	if (kmapped_page) {
545 		flush_kernel_dcache_page(kmapped_page);
546 		kunmap(kmapped_page);
547 		put_arg_page(kmapped_page);
548 	}
549 	return ret;
550 }
551 
552 /*
553  * Like copy_strings, but get argv and its values from kernel memory.
554  */
555 int copy_strings_kernel(int argc, const char *const *__argv,
556 			struct linux_binprm *bprm)
557 {
558 	int r;
559 	mm_segment_t oldfs = get_fs();
560 	struct user_arg_ptr argv = {
561 		.ptr.native = (const char __user *const  __user *)__argv,
562 	};
563 
564 	set_fs(KERNEL_DS);
565 	r = copy_strings(argc, argv, bprm);
566 	set_fs(oldfs);
567 
568 	return r;
569 }
570 EXPORT_SYMBOL(copy_strings_kernel);
571 
572 #ifdef CONFIG_MMU
573 
574 /*
575  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
576  * the binfmt code determines where the new stack should reside, we shift it to
577  * its final location.  The process proceeds as follows:
578  *
579  * 1) Use shift to calculate the new vma endpoints.
580  * 2) Extend vma to cover both the old and new ranges.  This ensures the
581  *    arguments passed to subsequent functions are consistent.
582  * 3) Move vma's page tables to the new range.
583  * 4) Free up any cleared pgd range.
584  * 5) Shrink the vma to cover only the new range.
585  */
586 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
587 {
588 	struct mm_struct *mm = vma->vm_mm;
589 	unsigned long old_start = vma->vm_start;
590 	unsigned long old_end = vma->vm_end;
591 	unsigned long length = old_end - old_start;
592 	unsigned long new_start = old_start - shift;
593 	unsigned long new_end = old_end - shift;
594 	struct mmu_gather tlb;
595 
596 	BUG_ON(new_start > new_end);
597 
598 	/*
599 	 * ensure there are no vmas between where we want to go
600 	 * and where we are
601 	 */
602 	if (vma != find_vma(mm, new_start))
603 		return -EFAULT;
604 
605 	/*
606 	 * cover the whole range: [new_start, old_end)
607 	 */
608 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
609 		return -ENOMEM;
610 
611 	/*
612 	 * move the page tables downwards, on failure we rely on
613 	 * process cleanup to remove whatever mess we made.
614 	 */
615 	if (length != move_page_tables(vma, old_start,
616 				       vma, new_start, length))
617 		return -ENOMEM;
618 
619 	lru_add_drain();
620 	tlb_gather_mmu(&tlb, mm, 0);
621 	if (new_end > old_start) {
622 		/*
623 		 * when the old and new regions overlap clear from new_end.
624 		 */
625 		free_pgd_range(&tlb, new_end, old_end, new_end,
626 			vma->vm_next ? vma->vm_next->vm_start : 0);
627 	} else {
628 		/*
629 		 * otherwise, clean from old_start; this is done to not touch
630 		 * the address space in [new_end, old_start) some architectures
631 		 * have constraints on va-space that make this illegal (IA64) -
632 		 * for the others its just a little faster.
633 		 */
634 		free_pgd_range(&tlb, old_start, old_end, new_end,
635 			vma->vm_next ? vma->vm_next->vm_start : 0);
636 	}
637 	tlb_finish_mmu(&tlb, new_end, old_end);
638 
639 	/*
640 	 * Shrink the vma to just the new range.  Always succeeds.
641 	 */
642 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
643 
644 	return 0;
645 }
646 
647 /*
648  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
649  * the stack is optionally relocated, and some extra space is added.
650  */
651 int setup_arg_pages(struct linux_binprm *bprm,
652 		    unsigned long stack_top,
653 		    int executable_stack)
654 {
655 	unsigned long ret;
656 	unsigned long stack_shift;
657 	struct mm_struct *mm = current->mm;
658 	struct vm_area_struct *vma = bprm->vma;
659 	struct vm_area_struct *prev = NULL;
660 	unsigned long vm_flags;
661 	unsigned long stack_base;
662 	unsigned long stack_size;
663 	unsigned long stack_expand;
664 	unsigned long rlim_stack;
665 
666 #ifdef CONFIG_STACK_GROWSUP
667 	/* Limit stack size to 1GB */
668 	stack_base = rlimit_max(RLIMIT_STACK);
669 	if (stack_base > (1 << 30))
670 		stack_base = 1 << 30;
671 
672 	/* Make sure we didn't let the argument array grow too large. */
673 	if (vma->vm_end - vma->vm_start > stack_base)
674 		return -ENOMEM;
675 
676 	stack_base = PAGE_ALIGN(stack_top - stack_base);
677 
678 	stack_shift = vma->vm_start - stack_base;
679 	mm->arg_start = bprm->p - stack_shift;
680 	bprm->p = vma->vm_end - stack_shift;
681 #else
682 	stack_top = arch_align_stack(stack_top);
683 	stack_top = PAGE_ALIGN(stack_top);
684 
685 	if (unlikely(stack_top < mmap_min_addr) ||
686 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
687 		return -ENOMEM;
688 
689 	stack_shift = vma->vm_end - stack_top;
690 
691 	bprm->p -= stack_shift;
692 	mm->arg_start = bprm->p;
693 #endif
694 
695 	if (bprm->loader)
696 		bprm->loader -= stack_shift;
697 	bprm->exec -= stack_shift;
698 
699 	down_write(&mm->mmap_sem);
700 	vm_flags = VM_STACK_FLAGS;
701 
702 	/*
703 	 * Adjust stack execute permissions; explicitly enable for
704 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
705 	 * (arch default) otherwise.
706 	 */
707 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
708 		vm_flags |= VM_EXEC;
709 	else if (executable_stack == EXSTACK_DISABLE_X)
710 		vm_flags &= ~VM_EXEC;
711 	vm_flags |= mm->def_flags;
712 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
713 
714 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
715 			vm_flags);
716 	if (ret)
717 		goto out_unlock;
718 	BUG_ON(prev != vma);
719 
720 	/* Move stack pages down in memory. */
721 	if (stack_shift) {
722 		ret = shift_arg_pages(vma, stack_shift);
723 		if (ret)
724 			goto out_unlock;
725 	}
726 
727 	/* mprotect_fixup is overkill to remove the temporary stack flags */
728 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
729 
730 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
731 	stack_size = vma->vm_end - vma->vm_start;
732 	/*
733 	 * Align this down to a page boundary as expand_stack
734 	 * will align it up.
735 	 */
736 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
737 #ifdef CONFIG_STACK_GROWSUP
738 	if (stack_size + stack_expand > rlim_stack)
739 		stack_base = vma->vm_start + rlim_stack;
740 	else
741 		stack_base = vma->vm_end + stack_expand;
742 #else
743 	if (stack_size + stack_expand > rlim_stack)
744 		stack_base = vma->vm_end - rlim_stack;
745 	else
746 		stack_base = vma->vm_start - stack_expand;
747 #endif
748 	current->mm->start_stack = bprm->p;
749 	ret = expand_stack(vma, stack_base);
750 	if (ret)
751 		ret = -EFAULT;
752 
753 out_unlock:
754 	up_write(&mm->mmap_sem);
755 	return ret;
756 }
757 EXPORT_SYMBOL(setup_arg_pages);
758 
759 #endif /* CONFIG_MMU */
760 
761 struct file *open_exec(const char *name)
762 {
763 	struct file *file;
764 	int err;
765 	static const struct open_flags open_exec_flags = {
766 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
767 		.acc_mode = MAY_EXEC | MAY_OPEN,
768 		.intent = LOOKUP_OPEN
769 	};
770 
771 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
772 	if (IS_ERR(file))
773 		goto out;
774 
775 	err = -EACCES;
776 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
777 		goto exit;
778 
779 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
780 		goto exit;
781 
782 	fsnotify_open(file);
783 
784 	err = deny_write_access(file);
785 	if (err)
786 		goto exit;
787 
788 out:
789 	return file;
790 
791 exit:
792 	fput(file);
793 	return ERR_PTR(err);
794 }
795 EXPORT_SYMBOL(open_exec);
796 
797 int kernel_read(struct file *file, loff_t offset,
798 		char *addr, unsigned long count)
799 {
800 	mm_segment_t old_fs;
801 	loff_t pos = offset;
802 	int result;
803 
804 	old_fs = get_fs();
805 	set_fs(get_ds());
806 	/* The cast to a user pointer is valid due to the set_fs() */
807 	result = vfs_read(file, (void __user *)addr, count, &pos);
808 	set_fs(old_fs);
809 	return result;
810 }
811 
812 EXPORT_SYMBOL(kernel_read);
813 
814 static int exec_mmap(struct mm_struct *mm)
815 {
816 	struct task_struct *tsk;
817 	struct mm_struct * old_mm, *active_mm;
818 
819 	/* Notify parent that we're no longer interested in the old VM */
820 	tsk = current;
821 	old_mm = current->mm;
822 	sync_mm_rss(old_mm);
823 	mm_release(tsk, old_mm);
824 
825 	if (old_mm) {
826 		/*
827 		 * Make sure that if there is a core dump in progress
828 		 * for the old mm, we get out and die instead of going
829 		 * through with the exec.  We must hold mmap_sem around
830 		 * checking core_state and changing tsk->mm.
831 		 */
832 		down_read(&old_mm->mmap_sem);
833 		if (unlikely(old_mm->core_state)) {
834 			up_read(&old_mm->mmap_sem);
835 			return -EINTR;
836 		}
837 	}
838 	task_lock(tsk);
839 	active_mm = tsk->active_mm;
840 	tsk->mm = mm;
841 	tsk->active_mm = mm;
842 	activate_mm(active_mm, mm);
843 	task_unlock(tsk);
844 	arch_pick_mmap_layout(mm);
845 	if (old_mm) {
846 		up_read(&old_mm->mmap_sem);
847 		BUG_ON(active_mm != old_mm);
848 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
849 		mm_update_next_owner(old_mm);
850 		mmput(old_mm);
851 		return 0;
852 	}
853 	mmdrop(active_mm);
854 	return 0;
855 }
856 
857 /*
858  * This function makes sure the current process has its own signal table,
859  * so that flush_signal_handlers can later reset the handlers without
860  * disturbing other processes.  (Other processes might share the signal
861  * table via the CLONE_SIGHAND option to clone().)
862  */
863 static int de_thread(struct task_struct *tsk)
864 {
865 	struct signal_struct *sig = tsk->signal;
866 	struct sighand_struct *oldsighand = tsk->sighand;
867 	spinlock_t *lock = &oldsighand->siglock;
868 
869 	if (thread_group_empty(tsk))
870 		goto no_thread_group;
871 
872 	/*
873 	 * Kill all other threads in the thread group.
874 	 */
875 	spin_lock_irq(lock);
876 	if (signal_group_exit(sig)) {
877 		/*
878 		 * Another group action in progress, just
879 		 * return so that the signal is processed.
880 		 */
881 		spin_unlock_irq(lock);
882 		return -EAGAIN;
883 	}
884 
885 	sig->group_exit_task = tsk;
886 	sig->notify_count = zap_other_threads(tsk);
887 	if (!thread_group_leader(tsk))
888 		sig->notify_count--;
889 
890 	while (sig->notify_count) {
891 		__set_current_state(TASK_UNINTERRUPTIBLE);
892 		spin_unlock_irq(lock);
893 		schedule();
894 		spin_lock_irq(lock);
895 	}
896 	spin_unlock_irq(lock);
897 
898 	/*
899 	 * At this point all other threads have exited, all we have to
900 	 * do is to wait for the thread group leader to become inactive,
901 	 * and to assume its PID:
902 	 */
903 	if (!thread_group_leader(tsk)) {
904 		struct task_struct *leader = tsk->group_leader;
905 
906 		sig->notify_count = -1;	/* for exit_notify() */
907 		for (;;) {
908 			write_lock_irq(&tasklist_lock);
909 			if (likely(leader->exit_state))
910 				break;
911 			__set_current_state(TASK_UNINTERRUPTIBLE);
912 			write_unlock_irq(&tasklist_lock);
913 			schedule();
914 		}
915 
916 		/*
917 		 * The only record we have of the real-time age of a
918 		 * process, regardless of execs it's done, is start_time.
919 		 * All the past CPU time is accumulated in signal_struct
920 		 * from sister threads now dead.  But in this non-leader
921 		 * exec, nothing survives from the original leader thread,
922 		 * whose birth marks the true age of this process now.
923 		 * When we take on its identity by switching to its PID, we
924 		 * also take its birthdate (always earlier than our own).
925 		 */
926 		tsk->start_time = leader->start_time;
927 
928 		BUG_ON(!same_thread_group(leader, tsk));
929 		BUG_ON(has_group_leader_pid(tsk));
930 		/*
931 		 * An exec() starts a new thread group with the
932 		 * TGID of the previous thread group. Rehash the
933 		 * two threads with a switched PID, and release
934 		 * the former thread group leader:
935 		 */
936 
937 		/* Become a process group leader with the old leader's pid.
938 		 * The old leader becomes a thread of the this thread group.
939 		 * Note: The old leader also uses this pid until release_task
940 		 *       is called.  Odd but simple and correct.
941 		 */
942 		detach_pid(tsk, PIDTYPE_PID);
943 		tsk->pid = leader->pid;
944 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
945 		transfer_pid(leader, tsk, PIDTYPE_PGID);
946 		transfer_pid(leader, tsk, PIDTYPE_SID);
947 
948 		list_replace_rcu(&leader->tasks, &tsk->tasks);
949 		list_replace_init(&leader->sibling, &tsk->sibling);
950 
951 		tsk->group_leader = tsk;
952 		leader->group_leader = tsk;
953 
954 		tsk->exit_signal = SIGCHLD;
955 		leader->exit_signal = -1;
956 
957 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
958 		leader->exit_state = EXIT_DEAD;
959 
960 		/*
961 		 * We are going to release_task()->ptrace_unlink() silently,
962 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
963 		 * the tracer wont't block again waiting for this thread.
964 		 */
965 		if (unlikely(leader->ptrace))
966 			__wake_up_parent(leader, leader->parent);
967 		write_unlock_irq(&tasklist_lock);
968 
969 		release_task(leader);
970 	}
971 
972 	sig->group_exit_task = NULL;
973 	sig->notify_count = 0;
974 
975 no_thread_group:
976 	/* we have changed execution domain */
977 	tsk->exit_signal = SIGCHLD;
978 
979 	exit_itimers(sig);
980 	flush_itimer_signals();
981 
982 	if (atomic_read(&oldsighand->count) != 1) {
983 		struct sighand_struct *newsighand;
984 		/*
985 		 * This ->sighand is shared with the CLONE_SIGHAND
986 		 * but not CLONE_THREAD task, switch to the new one.
987 		 */
988 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
989 		if (!newsighand)
990 			return -ENOMEM;
991 
992 		atomic_set(&newsighand->count, 1);
993 		memcpy(newsighand->action, oldsighand->action,
994 		       sizeof(newsighand->action));
995 
996 		write_lock_irq(&tasklist_lock);
997 		spin_lock(&oldsighand->siglock);
998 		rcu_assign_pointer(tsk->sighand, newsighand);
999 		spin_unlock(&oldsighand->siglock);
1000 		write_unlock_irq(&tasklist_lock);
1001 
1002 		__cleanup_sighand(oldsighand);
1003 	}
1004 
1005 	BUG_ON(!thread_group_leader(tsk));
1006 	return 0;
1007 }
1008 
1009 /*
1010  * These functions flushes out all traces of the currently running executable
1011  * so that a new one can be started
1012  */
1013 static void flush_old_files(struct files_struct * files)
1014 {
1015 	long j = -1;
1016 	struct fdtable *fdt;
1017 
1018 	spin_lock(&files->file_lock);
1019 	for (;;) {
1020 		unsigned long set, i;
1021 
1022 		j++;
1023 		i = j * __NFDBITS;
1024 		fdt = files_fdtable(files);
1025 		if (i >= fdt->max_fds)
1026 			break;
1027 		set = fdt->close_on_exec[j];
1028 		if (!set)
1029 			continue;
1030 		fdt->close_on_exec[j] = 0;
1031 		spin_unlock(&files->file_lock);
1032 		for ( ; set ; i++,set >>= 1) {
1033 			if (set & 1) {
1034 				sys_close(i);
1035 			}
1036 		}
1037 		spin_lock(&files->file_lock);
1038 
1039 	}
1040 	spin_unlock(&files->file_lock);
1041 }
1042 
1043 char *get_task_comm(char *buf, struct task_struct *tsk)
1044 {
1045 	/* buf must be at least sizeof(tsk->comm) in size */
1046 	task_lock(tsk);
1047 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1048 	task_unlock(tsk);
1049 	return buf;
1050 }
1051 EXPORT_SYMBOL_GPL(get_task_comm);
1052 
1053 void set_task_comm(struct task_struct *tsk, char *buf)
1054 {
1055 	task_lock(tsk);
1056 
1057 	trace_task_rename(tsk, buf);
1058 
1059 	/*
1060 	 * Threads may access current->comm without holding
1061 	 * the task lock, so write the string carefully.
1062 	 * Readers without a lock may see incomplete new
1063 	 * names but are safe from non-terminating string reads.
1064 	 */
1065 	memset(tsk->comm, 0, TASK_COMM_LEN);
1066 	wmb();
1067 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1068 	task_unlock(tsk);
1069 	perf_event_comm(tsk);
1070 }
1071 
1072 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1073 {
1074 	int i, ch;
1075 
1076 	/* Copies the binary name from after last slash */
1077 	for (i = 0; (ch = *(fn++)) != '\0';) {
1078 		if (ch == '/')
1079 			i = 0; /* overwrite what we wrote */
1080 		else
1081 			if (i < len - 1)
1082 				tcomm[i++] = ch;
1083 	}
1084 	tcomm[i] = '\0';
1085 }
1086 
1087 int flush_old_exec(struct linux_binprm * bprm)
1088 {
1089 	int retval;
1090 
1091 	/*
1092 	 * Make sure we have a private signal table and that
1093 	 * we are unassociated from the previous thread group.
1094 	 */
1095 	retval = de_thread(current);
1096 	if (retval)
1097 		goto out;
1098 
1099 	set_mm_exe_file(bprm->mm, bprm->file);
1100 
1101 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1102 	/*
1103 	 * Release all of the old mmap stuff
1104 	 */
1105 	acct_arg_size(bprm, 0);
1106 	retval = exec_mmap(bprm->mm);
1107 	if (retval)
1108 		goto out;
1109 
1110 	bprm->mm = NULL;		/* We're using it now */
1111 
1112 	set_fs(USER_DS);
1113 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1114 	flush_thread();
1115 	current->personality &= ~bprm->per_clear;
1116 
1117 	return 0;
1118 
1119 out:
1120 	return retval;
1121 }
1122 EXPORT_SYMBOL(flush_old_exec);
1123 
1124 void would_dump(struct linux_binprm *bprm, struct file *file)
1125 {
1126 	if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1127 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1128 }
1129 EXPORT_SYMBOL(would_dump);
1130 
1131 void setup_new_exec(struct linux_binprm * bprm)
1132 {
1133 	arch_pick_mmap_layout(current->mm);
1134 
1135 	/* This is the point of no return */
1136 	current->sas_ss_sp = current->sas_ss_size = 0;
1137 
1138 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1139 		set_dumpable(current->mm, 1);
1140 	else
1141 		set_dumpable(current->mm, suid_dumpable);
1142 
1143 	set_task_comm(current, bprm->tcomm);
1144 
1145 	/* Set the new mm task size. We have to do that late because it may
1146 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1147 	 * some architectures like powerpc
1148 	 */
1149 	current->mm->task_size = TASK_SIZE;
1150 
1151 	/* install the new credentials */
1152 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1153 	    !gid_eq(bprm->cred->gid, current_egid())) {
1154 		current->pdeath_signal = 0;
1155 	} else {
1156 		would_dump(bprm, bprm->file);
1157 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1158 			set_dumpable(current->mm, suid_dumpable);
1159 	}
1160 
1161 	/*
1162 	 * Flush performance counters when crossing a
1163 	 * security domain:
1164 	 */
1165 	if (!get_dumpable(current->mm))
1166 		perf_event_exit_task(current);
1167 
1168 	/* An exec changes our domain. We are no longer part of the thread
1169 	   group */
1170 
1171 	current->self_exec_id++;
1172 
1173 	flush_signal_handlers(current, 0);
1174 	flush_old_files(current->files);
1175 }
1176 EXPORT_SYMBOL(setup_new_exec);
1177 
1178 /*
1179  * Prepare credentials and lock ->cred_guard_mutex.
1180  * install_exec_creds() commits the new creds and drops the lock.
1181  * Or, if exec fails before, free_bprm() should release ->cred and
1182  * and unlock.
1183  */
1184 int prepare_bprm_creds(struct linux_binprm *bprm)
1185 {
1186 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1187 		return -ERESTARTNOINTR;
1188 
1189 	bprm->cred = prepare_exec_creds();
1190 	if (likely(bprm->cred))
1191 		return 0;
1192 
1193 	mutex_unlock(&current->signal->cred_guard_mutex);
1194 	return -ENOMEM;
1195 }
1196 
1197 void free_bprm(struct linux_binprm *bprm)
1198 {
1199 	free_arg_pages(bprm);
1200 	if (bprm->cred) {
1201 		mutex_unlock(&current->signal->cred_guard_mutex);
1202 		abort_creds(bprm->cred);
1203 	}
1204 	kfree(bprm);
1205 }
1206 
1207 /*
1208  * install the new credentials for this executable
1209  */
1210 void install_exec_creds(struct linux_binprm *bprm)
1211 {
1212 	security_bprm_committing_creds(bprm);
1213 
1214 	commit_creds(bprm->cred);
1215 	bprm->cred = NULL;
1216 	/*
1217 	 * cred_guard_mutex must be held at least to this point to prevent
1218 	 * ptrace_attach() from altering our determination of the task's
1219 	 * credentials; any time after this it may be unlocked.
1220 	 */
1221 	security_bprm_committed_creds(bprm);
1222 	mutex_unlock(&current->signal->cred_guard_mutex);
1223 }
1224 EXPORT_SYMBOL(install_exec_creds);
1225 
1226 /*
1227  * determine how safe it is to execute the proposed program
1228  * - the caller must hold ->cred_guard_mutex to protect against
1229  *   PTRACE_ATTACH
1230  */
1231 static int check_unsafe_exec(struct linux_binprm *bprm)
1232 {
1233 	struct task_struct *p = current, *t;
1234 	unsigned n_fs;
1235 	int res = 0;
1236 
1237 	if (p->ptrace) {
1238 		if (p->ptrace & PT_PTRACE_CAP)
1239 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1240 		else
1241 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1242 	}
1243 
1244 	/*
1245 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1246 	 * mess up.
1247 	 */
1248 	if (current->no_new_privs)
1249 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1250 
1251 	n_fs = 1;
1252 	spin_lock(&p->fs->lock);
1253 	rcu_read_lock();
1254 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1255 		if (t->fs == p->fs)
1256 			n_fs++;
1257 	}
1258 	rcu_read_unlock();
1259 
1260 	if (p->fs->users > n_fs) {
1261 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1262 	} else {
1263 		res = -EAGAIN;
1264 		if (!p->fs->in_exec) {
1265 			p->fs->in_exec = 1;
1266 			res = 1;
1267 		}
1268 	}
1269 	spin_unlock(&p->fs->lock);
1270 
1271 	return res;
1272 }
1273 
1274 /*
1275  * Fill the binprm structure from the inode.
1276  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1277  *
1278  * This may be called multiple times for binary chains (scripts for example).
1279  */
1280 int prepare_binprm(struct linux_binprm *bprm)
1281 {
1282 	umode_t mode;
1283 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1284 	int retval;
1285 
1286 	mode = inode->i_mode;
1287 	if (bprm->file->f_op == NULL)
1288 		return -EACCES;
1289 
1290 	/* clear any previous set[ug]id data from a previous binary */
1291 	bprm->cred->euid = current_euid();
1292 	bprm->cred->egid = current_egid();
1293 
1294 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1295 	    !current->no_new_privs) {
1296 		/* Set-uid? */
1297 		if (mode & S_ISUID) {
1298 			if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1299 				return -EPERM;
1300 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1301 			bprm->cred->euid = inode->i_uid;
1302 
1303 		}
1304 
1305 		/* Set-gid? */
1306 		/*
1307 		 * If setgid is set but no group execute bit then this
1308 		 * is a candidate for mandatory locking, not a setgid
1309 		 * executable.
1310 		 */
1311 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1312 			if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1313 				return -EPERM;
1314 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1315 			bprm->cred->egid = inode->i_gid;
1316 		}
1317 	}
1318 
1319 	/* fill in binprm security blob */
1320 	retval = security_bprm_set_creds(bprm);
1321 	if (retval)
1322 		return retval;
1323 	bprm->cred_prepared = 1;
1324 
1325 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1326 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1327 }
1328 
1329 EXPORT_SYMBOL(prepare_binprm);
1330 
1331 /*
1332  * Arguments are '\0' separated strings found at the location bprm->p
1333  * points to; chop off the first by relocating brpm->p to right after
1334  * the first '\0' encountered.
1335  */
1336 int remove_arg_zero(struct linux_binprm *bprm)
1337 {
1338 	int ret = 0;
1339 	unsigned long offset;
1340 	char *kaddr;
1341 	struct page *page;
1342 
1343 	if (!bprm->argc)
1344 		return 0;
1345 
1346 	do {
1347 		offset = bprm->p & ~PAGE_MASK;
1348 		page = get_arg_page(bprm, bprm->p, 0);
1349 		if (!page) {
1350 			ret = -EFAULT;
1351 			goto out;
1352 		}
1353 		kaddr = kmap_atomic(page);
1354 
1355 		for (; offset < PAGE_SIZE && kaddr[offset];
1356 				offset++, bprm->p++)
1357 			;
1358 
1359 		kunmap_atomic(kaddr);
1360 		put_arg_page(page);
1361 
1362 		if (offset == PAGE_SIZE)
1363 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1364 	} while (offset == PAGE_SIZE);
1365 
1366 	bprm->p++;
1367 	bprm->argc--;
1368 	ret = 0;
1369 
1370 out:
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL(remove_arg_zero);
1374 
1375 /*
1376  * cycle the list of binary formats handler, until one recognizes the image
1377  */
1378 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1379 {
1380 	unsigned int depth = bprm->recursion_depth;
1381 	int try,retval;
1382 	struct linux_binfmt *fmt;
1383 	pid_t old_pid, old_vpid;
1384 
1385 	retval = security_bprm_check(bprm);
1386 	if (retval)
1387 		return retval;
1388 
1389 	retval = audit_bprm(bprm);
1390 	if (retval)
1391 		return retval;
1392 
1393 	/* Need to fetch pid before load_binary changes it */
1394 	old_pid = current->pid;
1395 	rcu_read_lock();
1396 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1397 	rcu_read_unlock();
1398 
1399 	retval = -ENOENT;
1400 	for (try=0; try<2; try++) {
1401 		read_lock(&binfmt_lock);
1402 		list_for_each_entry(fmt, &formats, lh) {
1403 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1404 			if (!fn)
1405 				continue;
1406 			if (!try_module_get(fmt->module))
1407 				continue;
1408 			read_unlock(&binfmt_lock);
1409 			retval = fn(bprm, regs);
1410 			/*
1411 			 * Restore the depth counter to its starting value
1412 			 * in this call, so we don't have to rely on every
1413 			 * load_binary function to restore it on return.
1414 			 */
1415 			bprm->recursion_depth = depth;
1416 			if (retval >= 0) {
1417 				if (depth == 0) {
1418 					trace_sched_process_exec(current, old_pid, bprm);
1419 					ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1420 				}
1421 				put_binfmt(fmt);
1422 				allow_write_access(bprm->file);
1423 				if (bprm->file)
1424 					fput(bprm->file);
1425 				bprm->file = NULL;
1426 				current->did_exec = 1;
1427 				proc_exec_connector(current);
1428 				return retval;
1429 			}
1430 			read_lock(&binfmt_lock);
1431 			put_binfmt(fmt);
1432 			if (retval != -ENOEXEC || bprm->mm == NULL)
1433 				break;
1434 			if (!bprm->file) {
1435 				read_unlock(&binfmt_lock);
1436 				return retval;
1437 			}
1438 		}
1439 		read_unlock(&binfmt_lock);
1440 #ifdef CONFIG_MODULES
1441 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1442 			break;
1443 		} else {
1444 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1445 			if (printable(bprm->buf[0]) &&
1446 			    printable(bprm->buf[1]) &&
1447 			    printable(bprm->buf[2]) &&
1448 			    printable(bprm->buf[3]))
1449 				break; /* -ENOEXEC */
1450 			if (try)
1451 				break; /* -ENOEXEC */
1452 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1453 		}
1454 #else
1455 		break;
1456 #endif
1457 	}
1458 	return retval;
1459 }
1460 
1461 EXPORT_SYMBOL(search_binary_handler);
1462 
1463 /*
1464  * sys_execve() executes a new program.
1465  */
1466 static int do_execve_common(const char *filename,
1467 				struct user_arg_ptr argv,
1468 				struct user_arg_ptr envp,
1469 				struct pt_regs *regs)
1470 {
1471 	struct linux_binprm *bprm;
1472 	struct file *file;
1473 	struct files_struct *displaced;
1474 	bool clear_in_exec;
1475 	int retval;
1476 	const struct cred *cred = current_cred();
1477 
1478 	/*
1479 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1480 	 * set*uid() to execve() because too many poorly written programs
1481 	 * don't check setuid() return code.  Here we additionally recheck
1482 	 * whether NPROC limit is still exceeded.
1483 	 */
1484 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1485 	    atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1486 		retval = -EAGAIN;
1487 		goto out_ret;
1488 	}
1489 
1490 	/* We're below the limit (still or again), so we don't want to make
1491 	 * further execve() calls fail. */
1492 	current->flags &= ~PF_NPROC_EXCEEDED;
1493 
1494 	retval = unshare_files(&displaced);
1495 	if (retval)
1496 		goto out_ret;
1497 
1498 	retval = -ENOMEM;
1499 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1500 	if (!bprm)
1501 		goto out_files;
1502 
1503 	retval = prepare_bprm_creds(bprm);
1504 	if (retval)
1505 		goto out_free;
1506 
1507 	retval = check_unsafe_exec(bprm);
1508 	if (retval < 0)
1509 		goto out_free;
1510 	clear_in_exec = retval;
1511 	current->in_execve = 1;
1512 
1513 	file = open_exec(filename);
1514 	retval = PTR_ERR(file);
1515 	if (IS_ERR(file))
1516 		goto out_unmark;
1517 
1518 	sched_exec();
1519 
1520 	bprm->file = file;
1521 	bprm->filename = filename;
1522 	bprm->interp = filename;
1523 
1524 	retval = bprm_mm_init(bprm);
1525 	if (retval)
1526 		goto out_file;
1527 
1528 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1529 	if ((retval = bprm->argc) < 0)
1530 		goto out;
1531 
1532 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1533 	if ((retval = bprm->envc) < 0)
1534 		goto out;
1535 
1536 	retval = prepare_binprm(bprm);
1537 	if (retval < 0)
1538 		goto out;
1539 
1540 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1541 	if (retval < 0)
1542 		goto out;
1543 
1544 	bprm->exec = bprm->p;
1545 	retval = copy_strings(bprm->envc, envp, bprm);
1546 	if (retval < 0)
1547 		goto out;
1548 
1549 	retval = copy_strings(bprm->argc, argv, bprm);
1550 	if (retval < 0)
1551 		goto out;
1552 
1553 	retval = search_binary_handler(bprm,regs);
1554 	if (retval < 0)
1555 		goto out;
1556 
1557 	/* execve succeeded */
1558 	current->fs->in_exec = 0;
1559 	current->in_execve = 0;
1560 	acct_update_integrals(current);
1561 	free_bprm(bprm);
1562 	if (displaced)
1563 		put_files_struct(displaced);
1564 	return retval;
1565 
1566 out:
1567 	if (bprm->mm) {
1568 		acct_arg_size(bprm, 0);
1569 		mmput(bprm->mm);
1570 	}
1571 
1572 out_file:
1573 	if (bprm->file) {
1574 		allow_write_access(bprm->file);
1575 		fput(bprm->file);
1576 	}
1577 
1578 out_unmark:
1579 	if (clear_in_exec)
1580 		current->fs->in_exec = 0;
1581 	current->in_execve = 0;
1582 
1583 out_free:
1584 	free_bprm(bprm);
1585 
1586 out_files:
1587 	if (displaced)
1588 		reset_files_struct(displaced);
1589 out_ret:
1590 	return retval;
1591 }
1592 
1593 int do_execve(const char *filename,
1594 	const char __user *const __user *__argv,
1595 	const char __user *const __user *__envp,
1596 	struct pt_regs *regs)
1597 {
1598 	struct user_arg_ptr argv = { .ptr.native = __argv };
1599 	struct user_arg_ptr envp = { .ptr.native = __envp };
1600 	return do_execve_common(filename, argv, envp, regs);
1601 }
1602 
1603 #ifdef CONFIG_COMPAT
1604 int compat_do_execve(char *filename,
1605 	compat_uptr_t __user *__argv,
1606 	compat_uptr_t __user *__envp,
1607 	struct pt_regs *regs)
1608 {
1609 	struct user_arg_ptr argv = {
1610 		.is_compat = true,
1611 		.ptr.compat = __argv,
1612 	};
1613 	struct user_arg_ptr envp = {
1614 		.is_compat = true,
1615 		.ptr.compat = __envp,
1616 	};
1617 	return do_execve_common(filename, argv, envp, regs);
1618 }
1619 #endif
1620 
1621 void set_binfmt(struct linux_binfmt *new)
1622 {
1623 	struct mm_struct *mm = current->mm;
1624 
1625 	if (mm->binfmt)
1626 		module_put(mm->binfmt->module);
1627 
1628 	mm->binfmt = new;
1629 	if (new)
1630 		__module_get(new->module);
1631 }
1632 
1633 EXPORT_SYMBOL(set_binfmt);
1634 
1635 static int expand_corename(struct core_name *cn)
1636 {
1637 	char *old_corename = cn->corename;
1638 
1639 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1640 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1641 
1642 	if (!cn->corename) {
1643 		kfree(old_corename);
1644 		return -ENOMEM;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1651 {
1652 	char *cur;
1653 	int need;
1654 	int ret;
1655 	va_list arg;
1656 
1657 	va_start(arg, fmt);
1658 	need = vsnprintf(NULL, 0, fmt, arg);
1659 	va_end(arg);
1660 
1661 	if (likely(need < cn->size - cn->used - 1))
1662 		goto out_printf;
1663 
1664 	ret = expand_corename(cn);
1665 	if (ret)
1666 		goto expand_fail;
1667 
1668 out_printf:
1669 	cur = cn->corename + cn->used;
1670 	va_start(arg, fmt);
1671 	vsnprintf(cur, need + 1, fmt, arg);
1672 	va_end(arg);
1673 	cn->used += need;
1674 	return 0;
1675 
1676 expand_fail:
1677 	return ret;
1678 }
1679 
1680 static void cn_escape(char *str)
1681 {
1682 	for (; *str; str++)
1683 		if (*str == '/')
1684 			*str = '!';
1685 }
1686 
1687 static int cn_print_exe_file(struct core_name *cn)
1688 {
1689 	struct file *exe_file;
1690 	char *pathbuf, *path;
1691 	int ret;
1692 
1693 	exe_file = get_mm_exe_file(current->mm);
1694 	if (!exe_file) {
1695 		char *commstart = cn->corename + cn->used;
1696 		ret = cn_printf(cn, "%s (path unknown)", current->comm);
1697 		cn_escape(commstart);
1698 		return ret;
1699 	}
1700 
1701 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1702 	if (!pathbuf) {
1703 		ret = -ENOMEM;
1704 		goto put_exe_file;
1705 	}
1706 
1707 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1708 	if (IS_ERR(path)) {
1709 		ret = PTR_ERR(path);
1710 		goto free_buf;
1711 	}
1712 
1713 	cn_escape(path);
1714 
1715 	ret = cn_printf(cn, "%s", path);
1716 
1717 free_buf:
1718 	kfree(pathbuf);
1719 put_exe_file:
1720 	fput(exe_file);
1721 	return ret;
1722 }
1723 
1724 /* format_corename will inspect the pattern parameter, and output a
1725  * name into corename, which must have space for at least
1726  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1727  */
1728 static int format_corename(struct core_name *cn, long signr)
1729 {
1730 	const struct cred *cred = current_cred();
1731 	const char *pat_ptr = core_pattern;
1732 	int ispipe = (*pat_ptr == '|');
1733 	int pid_in_pattern = 0;
1734 	int err = 0;
1735 
1736 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1737 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1738 	cn->used = 0;
1739 
1740 	if (!cn->corename)
1741 		return -ENOMEM;
1742 
1743 	/* Repeat as long as we have more pattern to process and more output
1744 	   space */
1745 	while (*pat_ptr) {
1746 		if (*pat_ptr != '%') {
1747 			if (*pat_ptr == 0)
1748 				goto out;
1749 			err = cn_printf(cn, "%c", *pat_ptr++);
1750 		} else {
1751 			switch (*++pat_ptr) {
1752 			/* single % at the end, drop that */
1753 			case 0:
1754 				goto out;
1755 			/* Double percent, output one percent */
1756 			case '%':
1757 				err = cn_printf(cn, "%c", '%');
1758 				break;
1759 			/* pid */
1760 			case 'p':
1761 				pid_in_pattern = 1;
1762 				err = cn_printf(cn, "%d",
1763 					      task_tgid_vnr(current));
1764 				break;
1765 			/* uid */
1766 			case 'u':
1767 				err = cn_printf(cn, "%d", cred->uid);
1768 				break;
1769 			/* gid */
1770 			case 'g':
1771 				err = cn_printf(cn, "%d", cred->gid);
1772 				break;
1773 			/* signal that caused the coredump */
1774 			case 's':
1775 				err = cn_printf(cn, "%ld", signr);
1776 				break;
1777 			/* UNIX time of coredump */
1778 			case 't': {
1779 				struct timeval tv;
1780 				do_gettimeofday(&tv);
1781 				err = cn_printf(cn, "%lu", tv.tv_sec);
1782 				break;
1783 			}
1784 			/* hostname */
1785 			case 'h': {
1786 				char *namestart = cn->corename + cn->used;
1787 				down_read(&uts_sem);
1788 				err = cn_printf(cn, "%s",
1789 					      utsname()->nodename);
1790 				up_read(&uts_sem);
1791 				cn_escape(namestart);
1792 				break;
1793 			}
1794 			/* executable */
1795 			case 'e': {
1796 				char *commstart = cn->corename + cn->used;
1797 				err = cn_printf(cn, "%s", current->comm);
1798 				cn_escape(commstart);
1799 				break;
1800 			}
1801 			case 'E':
1802 				err = cn_print_exe_file(cn);
1803 				break;
1804 			/* core limit size */
1805 			case 'c':
1806 				err = cn_printf(cn, "%lu",
1807 					      rlimit(RLIMIT_CORE));
1808 				break;
1809 			default:
1810 				break;
1811 			}
1812 			++pat_ptr;
1813 		}
1814 
1815 		if (err)
1816 			return err;
1817 	}
1818 
1819 	/* Backward compatibility with core_uses_pid:
1820 	 *
1821 	 * If core_pattern does not include a %p (as is the default)
1822 	 * and core_uses_pid is set, then .%pid will be appended to
1823 	 * the filename. Do not do this for piped commands. */
1824 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1825 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1826 		if (err)
1827 			return err;
1828 	}
1829 out:
1830 	return ispipe;
1831 }
1832 
1833 static int zap_process(struct task_struct *start, int exit_code)
1834 {
1835 	struct task_struct *t;
1836 	int nr = 0;
1837 
1838 	start->signal->flags = SIGNAL_GROUP_EXIT;
1839 	start->signal->group_exit_code = exit_code;
1840 	start->signal->group_stop_count = 0;
1841 
1842 	t = start;
1843 	do {
1844 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1845 		if (t != current && t->mm) {
1846 			sigaddset(&t->pending.signal, SIGKILL);
1847 			signal_wake_up(t, 1);
1848 			nr++;
1849 		}
1850 	} while_each_thread(start, t);
1851 
1852 	return nr;
1853 }
1854 
1855 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1856 				struct core_state *core_state, int exit_code)
1857 {
1858 	struct task_struct *g, *p;
1859 	unsigned long flags;
1860 	int nr = -EAGAIN;
1861 
1862 	spin_lock_irq(&tsk->sighand->siglock);
1863 	if (!signal_group_exit(tsk->signal)) {
1864 		mm->core_state = core_state;
1865 		nr = zap_process(tsk, exit_code);
1866 	}
1867 	spin_unlock_irq(&tsk->sighand->siglock);
1868 	if (unlikely(nr < 0))
1869 		return nr;
1870 
1871 	if (atomic_read(&mm->mm_users) == nr + 1)
1872 		goto done;
1873 	/*
1874 	 * We should find and kill all tasks which use this mm, and we should
1875 	 * count them correctly into ->nr_threads. We don't take tasklist
1876 	 * lock, but this is safe wrt:
1877 	 *
1878 	 * fork:
1879 	 *	None of sub-threads can fork after zap_process(leader). All
1880 	 *	processes which were created before this point should be
1881 	 *	visible to zap_threads() because copy_process() adds the new
1882 	 *	process to the tail of init_task.tasks list, and lock/unlock
1883 	 *	of ->siglock provides a memory barrier.
1884 	 *
1885 	 * do_exit:
1886 	 *	The caller holds mm->mmap_sem. This means that the task which
1887 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1888 	 *	its ->mm.
1889 	 *
1890 	 * de_thread:
1891 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1892 	 *	we must see either old or new leader, this does not matter.
1893 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1894 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1895 	 *	it can't fail.
1896 	 *
1897 	 *	Note also that "g" can be the old leader with ->mm == NULL
1898 	 *	and already unhashed and thus removed from ->thread_group.
1899 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1900 	 *	clear the ->next pointer, we will find the new leader via
1901 	 *	next_thread().
1902 	 */
1903 	rcu_read_lock();
1904 	for_each_process(g) {
1905 		if (g == tsk->group_leader)
1906 			continue;
1907 		if (g->flags & PF_KTHREAD)
1908 			continue;
1909 		p = g;
1910 		do {
1911 			if (p->mm) {
1912 				if (unlikely(p->mm == mm)) {
1913 					lock_task_sighand(p, &flags);
1914 					nr += zap_process(p, exit_code);
1915 					unlock_task_sighand(p, &flags);
1916 				}
1917 				break;
1918 			}
1919 		} while_each_thread(g, p);
1920 	}
1921 	rcu_read_unlock();
1922 done:
1923 	atomic_set(&core_state->nr_threads, nr);
1924 	return nr;
1925 }
1926 
1927 static int coredump_wait(int exit_code, struct core_state *core_state)
1928 {
1929 	struct task_struct *tsk = current;
1930 	struct mm_struct *mm = tsk->mm;
1931 	int core_waiters = -EBUSY;
1932 
1933 	init_completion(&core_state->startup);
1934 	core_state->dumper.task = tsk;
1935 	core_state->dumper.next = NULL;
1936 
1937 	down_write(&mm->mmap_sem);
1938 	if (!mm->core_state)
1939 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1940 	up_write(&mm->mmap_sem);
1941 
1942 	if (core_waiters > 0) {
1943 		struct core_thread *ptr;
1944 
1945 		wait_for_completion(&core_state->startup);
1946 		/*
1947 		 * Wait for all the threads to become inactive, so that
1948 		 * all the thread context (extended register state, like
1949 		 * fpu etc) gets copied to the memory.
1950 		 */
1951 		ptr = core_state->dumper.next;
1952 		while (ptr != NULL) {
1953 			wait_task_inactive(ptr->task, 0);
1954 			ptr = ptr->next;
1955 		}
1956 	}
1957 
1958 	return core_waiters;
1959 }
1960 
1961 static void coredump_finish(struct mm_struct *mm)
1962 {
1963 	struct core_thread *curr, *next;
1964 	struct task_struct *task;
1965 
1966 	next = mm->core_state->dumper.next;
1967 	while ((curr = next) != NULL) {
1968 		next = curr->next;
1969 		task = curr->task;
1970 		/*
1971 		 * see exit_mm(), curr->task must not see
1972 		 * ->task == NULL before we read ->next.
1973 		 */
1974 		smp_mb();
1975 		curr->task = NULL;
1976 		wake_up_process(task);
1977 	}
1978 
1979 	mm->core_state = NULL;
1980 }
1981 
1982 /*
1983  * set_dumpable converts traditional three-value dumpable to two flags and
1984  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1985  * these bits are not changed atomically.  So get_dumpable can observe the
1986  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1987  * return either old dumpable or new one by paying attention to the order of
1988  * modifying the bits.
1989  *
1990  * dumpable |   mm->flags (binary)
1991  * old  new | initial interim  final
1992  * ---------+-----------------------
1993  *  0    1  |   00      01      01
1994  *  0    2  |   00      10(*)   11
1995  *  1    0  |   01      00      00
1996  *  1    2  |   01      11      11
1997  *  2    0  |   11      10(*)   00
1998  *  2    1  |   11      11      01
1999  *
2000  * (*) get_dumpable regards interim value of 10 as 11.
2001  */
2002 void set_dumpable(struct mm_struct *mm, int value)
2003 {
2004 	switch (value) {
2005 	case 0:
2006 		clear_bit(MMF_DUMPABLE, &mm->flags);
2007 		smp_wmb();
2008 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2009 		break;
2010 	case 1:
2011 		set_bit(MMF_DUMPABLE, &mm->flags);
2012 		smp_wmb();
2013 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2014 		break;
2015 	case 2:
2016 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
2017 		smp_wmb();
2018 		set_bit(MMF_DUMPABLE, &mm->flags);
2019 		break;
2020 	}
2021 }
2022 
2023 static int __get_dumpable(unsigned long mm_flags)
2024 {
2025 	int ret;
2026 
2027 	ret = mm_flags & MMF_DUMPABLE_MASK;
2028 	return (ret >= 2) ? 2 : ret;
2029 }
2030 
2031 int get_dumpable(struct mm_struct *mm)
2032 {
2033 	return __get_dumpable(mm->flags);
2034 }
2035 
2036 static void wait_for_dump_helpers(struct file *file)
2037 {
2038 	struct pipe_inode_info *pipe;
2039 
2040 	pipe = file->f_path.dentry->d_inode->i_pipe;
2041 
2042 	pipe_lock(pipe);
2043 	pipe->readers++;
2044 	pipe->writers--;
2045 
2046 	while ((pipe->readers > 1) && (!signal_pending(current))) {
2047 		wake_up_interruptible_sync(&pipe->wait);
2048 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2049 		pipe_wait(pipe);
2050 	}
2051 
2052 	pipe->readers--;
2053 	pipe->writers++;
2054 	pipe_unlock(pipe);
2055 
2056 }
2057 
2058 
2059 /*
2060  * umh_pipe_setup
2061  * helper function to customize the process used
2062  * to collect the core in userspace.  Specifically
2063  * it sets up a pipe and installs it as fd 0 (stdin)
2064  * for the process.  Returns 0 on success, or
2065  * PTR_ERR on failure.
2066  * Note that it also sets the core limit to 1.  This
2067  * is a special value that we use to trap recursive
2068  * core dumps
2069  */
2070 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2071 {
2072 	struct file *rp, *wp;
2073 	struct fdtable *fdt;
2074 	struct coredump_params *cp = (struct coredump_params *)info->data;
2075 	struct files_struct *cf = current->files;
2076 
2077 	wp = create_write_pipe(0);
2078 	if (IS_ERR(wp))
2079 		return PTR_ERR(wp);
2080 
2081 	rp = create_read_pipe(wp, 0);
2082 	if (IS_ERR(rp)) {
2083 		free_write_pipe(wp);
2084 		return PTR_ERR(rp);
2085 	}
2086 
2087 	cp->file = wp;
2088 
2089 	sys_close(0);
2090 	fd_install(0, rp);
2091 	spin_lock(&cf->file_lock);
2092 	fdt = files_fdtable(cf);
2093 	__set_open_fd(0, fdt);
2094 	__clear_close_on_exec(0, fdt);
2095 	spin_unlock(&cf->file_lock);
2096 
2097 	/* and disallow core files too */
2098 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2099 
2100 	return 0;
2101 }
2102 
2103 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2104 {
2105 	struct core_state core_state;
2106 	struct core_name cn;
2107 	struct mm_struct *mm = current->mm;
2108 	struct linux_binfmt * binfmt;
2109 	const struct cred *old_cred;
2110 	struct cred *cred;
2111 	int retval = 0;
2112 	int flag = 0;
2113 	int ispipe;
2114 	static atomic_t core_dump_count = ATOMIC_INIT(0);
2115 	struct coredump_params cprm = {
2116 		.signr = signr,
2117 		.regs = regs,
2118 		.limit = rlimit(RLIMIT_CORE),
2119 		/*
2120 		 * We must use the same mm->flags while dumping core to avoid
2121 		 * inconsistency of bit flags, since this flag is not protected
2122 		 * by any locks.
2123 		 */
2124 		.mm_flags = mm->flags,
2125 	};
2126 
2127 	audit_core_dumps(signr);
2128 
2129 	binfmt = mm->binfmt;
2130 	if (!binfmt || !binfmt->core_dump)
2131 		goto fail;
2132 	if (!__get_dumpable(cprm.mm_flags))
2133 		goto fail;
2134 
2135 	cred = prepare_creds();
2136 	if (!cred)
2137 		goto fail;
2138 	/*
2139 	 *	We cannot trust fsuid as being the "true" uid of the
2140 	 *	process nor do we know its entire history. We only know it
2141 	 *	was tainted so we dump it as root in mode 2.
2142 	 */
2143 	if (__get_dumpable(cprm.mm_flags) == 2) {
2144 		/* Setuid core dump mode */
2145 		flag = O_EXCL;		/* Stop rewrite attacks */
2146 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
2147 	}
2148 
2149 	retval = coredump_wait(exit_code, &core_state);
2150 	if (retval < 0)
2151 		goto fail_creds;
2152 
2153 	old_cred = override_creds(cred);
2154 
2155 	/*
2156 	 * Clear any false indication of pending signals that might
2157 	 * be seen by the filesystem code called to write the core file.
2158 	 */
2159 	clear_thread_flag(TIF_SIGPENDING);
2160 
2161 	ispipe = format_corename(&cn, signr);
2162 
2163  	if (ispipe) {
2164 		int dump_count;
2165 		char **helper_argv;
2166 
2167 		if (ispipe < 0) {
2168 			printk(KERN_WARNING "format_corename failed\n");
2169 			printk(KERN_WARNING "Aborting core\n");
2170 			goto fail_corename;
2171 		}
2172 
2173 		if (cprm.limit == 1) {
2174 			/*
2175 			 * Normally core limits are irrelevant to pipes, since
2176 			 * we're not writing to the file system, but we use
2177 			 * cprm.limit of 1 here as a speacial value. Any
2178 			 * non-1 limit gets set to RLIM_INFINITY below, but
2179 			 * a limit of 0 skips the dump.  This is a consistent
2180 			 * way to catch recursive crashes.  We can still crash
2181 			 * if the core_pattern binary sets RLIM_CORE =  !1
2182 			 * but it runs as root, and can do lots of stupid things
2183 			 * Note that we use task_tgid_vnr here to grab the pid
2184 			 * of the process group leader.  That way we get the
2185 			 * right pid if a thread in a multi-threaded
2186 			 * core_pattern process dies.
2187 			 */
2188 			printk(KERN_WARNING
2189 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2190 				task_tgid_vnr(current), current->comm);
2191 			printk(KERN_WARNING "Aborting core\n");
2192 			goto fail_unlock;
2193 		}
2194 		cprm.limit = RLIM_INFINITY;
2195 
2196 		dump_count = atomic_inc_return(&core_dump_count);
2197 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2198 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2199 			       task_tgid_vnr(current), current->comm);
2200 			printk(KERN_WARNING "Skipping core dump\n");
2201 			goto fail_dropcount;
2202 		}
2203 
2204 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2205 		if (!helper_argv) {
2206 			printk(KERN_WARNING "%s failed to allocate memory\n",
2207 			       __func__);
2208 			goto fail_dropcount;
2209 		}
2210 
2211 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2212 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2213 					NULL, &cprm);
2214 		argv_free(helper_argv);
2215 		if (retval) {
2216  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2217 			       cn.corename);
2218 			goto close_fail;
2219  		}
2220 	} else {
2221 		struct inode *inode;
2222 
2223 		if (cprm.limit < binfmt->min_coredump)
2224 			goto fail_unlock;
2225 
2226 		cprm.file = filp_open(cn.corename,
2227 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2228 				 0600);
2229 		if (IS_ERR(cprm.file))
2230 			goto fail_unlock;
2231 
2232 		inode = cprm.file->f_path.dentry->d_inode;
2233 		if (inode->i_nlink > 1)
2234 			goto close_fail;
2235 		if (d_unhashed(cprm.file->f_path.dentry))
2236 			goto close_fail;
2237 		/*
2238 		 * AK: actually i see no reason to not allow this for named
2239 		 * pipes etc, but keep the previous behaviour for now.
2240 		 */
2241 		if (!S_ISREG(inode->i_mode))
2242 			goto close_fail;
2243 		/*
2244 		 * Dont allow local users get cute and trick others to coredump
2245 		 * into their pre-created files.
2246 		 */
2247 		if (!uid_eq(inode->i_uid, current_fsuid()))
2248 			goto close_fail;
2249 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2250 			goto close_fail;
2251 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2252 			goto close_fail;
2253 	}
2254 
2255 	retval = binfmt->core_dump(&cprm);
2256 	if (retval)
2257 		current->signal->group_exit_code |= 0x80;
2258 
2259 	if (ispipe && core_pipe_limit)
2260 		wait_for_dump_helpers(cprm.file);
2261 close_fail:
2262 	if (cprm.file)
2263 		filp_close(cprm.file, NULL);
2264 fail_dropcount:
2265 	if (ispipe)
2266 		atomic_dec(&core_dump_count);
2267 fail_unlock:
2268 	kfree(cn.corename);
2269 fail_corename:
2270 	coredump_finish(mm);
2271 	revert_creds(old_cred);
2272 fail_creds:
2273 	put_cred(cred);
2274 fail:
2275 	return;
2276 }
2277 
2278 /*
2279  * Core dumping helper functions.  These are the only things you should
2280  * do on a core-file: use only these functions to write out all the
2281  * necessary info.
2282  */
2283 int dump_write(struct file *file, const void *addr, int nr)
2284 {
2285 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2286 }
2287 EXPORT_SYMBOL(dump_write);
2288 
2289 int dump_seek(struct file *file, loff_t off)
2290 {
2291 	int ret = 1;
2292 
2293 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2294 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2295 			return 0;
2296 	} else {
2297 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2298 
2299 		if (!buf)
2300 			return 0;
2301 		while (off > 0) {
2302 			unsigned long n = off;
2303 
2304 			if (n > PAGE_SIZE)
2305 				n = PAGE_SIZE;
2306 			if (!dump_write(file, buf, n)) {
2307 				ret = 0;
2308 				break;
2309 			}
2310 			off -= n;
2311 		}
2312 		free_page((unsigned long)buf);
2313 	}
2314 	return ret;
2315 }
2316 EXPORT_SYMBOL(dump_seek);
2317