1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 58 #include <asm/uaccess.h> 59 #include <asm/mmu_context.h> 60 #include <asm/tlb.h> 61 #include "internal.h" 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 unsigned int core_pipe_limit; 66 int suid_dumpable = 0; 67 68 /* The maximal length of core_pattern is also specified in sysctl.c */ 69 70 static LIST_HEAD(formats); 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 int __register_binfmt(struct linux_binfmt * fmt, int insert) 74 { 75 if (!fmt) 76 return -EINVAL; 77 write_lock(&binfmt_lock); 78 insert ? list_add(&fmt->lh, &formats) : 79 list_add_tail(&fmt->lh, &formats); 80 write_unlock(&binfmt_lock); 81 return 0; 82 } 83 84 EXPORT_SYMBOL(__register_binfmt); 85 86 void unregister_binfmt(struct linux_binfmt * fmt) 87 { 88 write_lock(&binfmt_lock); 89 list_del(&fmt->lh); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(unregister_binfmt); 94 95 static inline void put_binfmt(struct linux_binfmt * fmt) 96 { 97 module_put(fmt->module); 98 } 99 100 /* 101 * Note that a shared library must be both readable and executable due to 102 * security reasons. 103 * 104 * Also note that we take the address to load from from the file itself. 105 */ 106 SYSCALL_DEFINE1(uselib, const char __user *, library) 107 { 108 struct file *file; 109 char *tmp = getname(library); 110 int error = PTR_ERR(tmp); 111 112 if (IS_ERR(tmp)) 113 goto out; 114 115 file = do_filp_open(AT_FDCWD, tmp, 116 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 117 MAY_READ | MAY_EXEC | MAY_OPEN); 118 putname(tmp); 119 error = PTR_ERR(file); 120 if (IS_ERR(file)) 121 goto out; 122 123 error = -EINVAL; 124 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 125 goto exit; 126 127 error = -EACCES; 128 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 129 goto exit; 130 131 fsnotify_open(file); 132 133 error = -ENOEXEC; 134 if(file->f_op) { 135 struct linux_binfmt * fmt; 136 137 read_lock(&binfmt_lock); 138 list_for_each_entry(fmt, &formats, lh) { 139 if (!fmt->load_shlib) 140 continue; 141 if (!try_module_get(fmt->module)) 142 continue; 143 read_unlock(&binfmt_lock); 144 error = fmt->load_shlib(file); 145 read_lock(&binfmt_lock); 146 put_binfmt(fmt); 147 if (error != -ENOEXEC) 148 break; 149 } 150 read_unlock(&binfmt_lock); 151 } 152 exit: 153 fput(file); 154 out: 155 return error; 156 } 157 158 #ifdef CONFIG_MMU 159 160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 161 int write) 162 { 163 struct page *page; 164 int ret; 165 166 #ifdef CONFIG_STACK_GROWSUP 167 if (write) { 168 ret = expand_stack_downwards(bprm->vma, pos); 169 if (ret < 0) 170 return NULL; 171 } 172 #endif 173 ret = get_user_pages(current, bprm->mm, pos, 174 1, write, 1, &page, NULL); 175 if (ret <= 0) 176 return NULL; 177 178 if (write) { 179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 180 struct rlimit *rlim; 181 182 /* 183 * We've historically supported up to 32 pages (ARG_MAX) 184 * of argument strings even with small stacks 185 */ 186 if (size <= ARG_MAX) 187 return page; 188 189 /* 190 * Limit to 1/4-th the stack size for the argv+env strings. 191 * This ensures that: 192 * - the remaining binfmt code will not run out of stack space, 193 * - the program will have a reasonable amount of stack left 194 * to work from. 195 */ 196 rlim = current->signal->rlim; 197 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 198 put_page(page); 199 return NULL; 200 } 201 } 202 203 return page; 204 } 205 206 static void put_arg_page(struct page *page) 207 { 208 put_page(page); 209 } 210 211 static void free_arg_page(struct linux_binprm *bprm, int i) 212 { 213 } 214 215 static void free_arg_pages(struct linux_binprm *bprm) 216 { 217 } 218 219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 220 struct page *page) 221 { 222 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 223 } 224 225 static int __bprm_mm_init(struct linux_binprm *bprm) 226 { 227 int err; 228 struct vm_area_struct *vma = NULL; 229 struct mm_struct *mm = bprm->mm; 230 231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 232 if (!vma) 233 return -ENOMEM; 234 235 down_write(&mm->mmap_sem); 236 vma->vm_mm = mm; 237 238 /* 239 * Place the stack at the largest stack address the architecture 240 * supports. Later, we'll move this to an appropriate place. We don't 241 * use STACK_TOP because that can depend on attributes which aren't 242 * configured yet. 243 */ 244 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 245 vma->vm_end = STACK_TOP_MAX; 246 vma->vm_start = vma->vm_end - PAGE_SIZE; 247 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 249 INIT_LIST_HEAD(&vma->anon_vma_chain); 250 err = insert_vm_struct(mm, vma); 251 if (err) 252 goto err; 253 254 mm->stack_vm = mm->total_vm = 1; 255 up_write(&mm->mmap_sem); 256 bprm->p = vma->vm_end - sizeof(void *); 257 return 0; 258 err: 259 up_write(&mm->mmap_sem); 260 bprm->vma = NULL; 261 kmem_cache_free(vm_area_cachep, vma); 262 return err; 263 } 264 265 static bool valid_arg_len(struct linux_binprm *bprm, long len) 266 { 267 return len <= MAX_ARG_STRLEN; 268 } 269 270 #else 271 272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 273 int write) 274 { 275 struct page *page; 276 277 page = bprm->page[pos / PAGE_SIZE]; 278 if (!page && write) { 279 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 280 if (!page) 281 return NULL; 282 bprm->page[pos / PAGE_SIZE] = page; 283 } 284 285 return page; 286 } 287 288 static void put_arg_page(struct page *page) 289 { 290 } 291 292 static void free_arg_page(struct linux_binprm *bprm, int i) 293 { 294 if (bprm->page[i]) { 295 __free_page(bprm->page[i]); 296 bprm->page[i] = NULL; 297 } 298 } 299 300 static void free_arg_pages(struct linux_binprm *bprm) 301 { 302 int i; 303 304 for (i = 0; i < MAX_ARG_PAGES; i++) 305 free_arg_page(bprm, i); 306 } 307 308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 309 struct page *page) 310 { 311 } 312 313 static int __bprm_mm_init(struct linux_binprm *bprm) 314 { 315 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 316 return 0; 317 } 318 319 static bool valid_arg_len(struct linux_binprm *bprm, long len) 320 { 321 return len <= bprm->p; 322 } 323 324 #endif /* CONFIG_MMU */ 325 326 /* 327 * Create a new mm_struct and populate it with a temporary stack 328 * vm_area_struct. We don't have enough context at this point to set the stack 329 * flags, permissions, and offset, so we use temporary values. We'll update 330 * them later in setup_arg_pages(). 331 */ 332 int bprm_mm_init(struct linux_binprm *bprm) 333 { 334 int err; 335 struct mm_struct *mm = NULL; 336 337 bprm->mm = mm = mm_alloc(); 338 err = -ENOMEM; 339 if (!mm) 340 goto err; 341 342 err = init_new_context(current, mm); 343 if (err) 344 goto err; 345 346 err = __bprm_mm_init(bprm); 347 if (err) 348 goto err; 349 350 return 0; 351 352 err: 353 if (mm) { 354 bprm->mm = NULL; 355 mmdrop(mm); 356 } 357 358 return err; 359 } 360 361 /* 362 * count() counts the number of strings in array ARGV. 363 */ 364 static int count(const char __user * const __user * argv, int max) 365 { 366 int i = 0; 367 368 if (argv != NULL) { 369 for (;;) { 370 const char __user * p; 371 372 if (get_user(p, argv)) 373 return -EFAULT; 374 if (!p) 375 break; 376 argv++; 377 if (i++ >= max) 378 return -E2BIG; 379 380 if (fatal_signal_pending(current)) 381 return -ERESTARTNOHAND; 382 cond_resched(); 383 } 384 } 385 return i; 386 } 387 388 /* 389 * 'copy_strings()' copies argument/environment strings from the old 390 * processes's memory to the new process's stack. The call to get_user_pages() 391 * ensures the destination page is created and not swapped out. 392 */ 393 static int copy_strings(int argc, const char __user *const __user *argv, 394 struct linux_binprm *bprm) 395 { 396 struct page *kmapped_page = NULL; 397 char *kaddr = NULL; 398 unsigned long kpos = 0; 399 int ret; 400 401 while (argc-- > 0) { 402 const char __user *str; 403 int len; 404 unsigned long pos; 405 406 if (get_user(str, argv+argc) || 407 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 408 ret = -EFAULT; 409 goto out; 410 } 411 412 if (!valid_arg_len(bprm, len)) { 413 ret = -E2BIG; 414 goto out; 415 } 416 417 /* We're going to work our way backwords. */ 418 pos = bprm->p; 419 str += len; 420 bprm->p -= len; 421 422 while (len > 0) { 423 int offset, bytes_to_copy; 424 425 if (fatal_signal_pending(current)) { 426 ret = -ERESTARTNOHAND; 427 goto out; 428 } 429 cond_resched(); 430 431 offset = pos % PAGE_SIZE; 432 if (offset == 0) 433 offset = PAGE_SIZE; 434 435 bytes_to_copy = offset; 436 if (bytes_to_copy > len) 437 bytes_to_copy = len; 438 439 offset -= bytes_to_copy; 440 pos -= bytes_to_copy; 441 str -= bytes_to_copy; 442 len -= bytes_to_copy; 443 444 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 445 struct page *page; 446 447 page = get_arg_page(bprm, pos, 1); 448 if (!page) { 449 ret = -E2BIG; 450 goto out; 451 } 452 453 if (kmapped_page) { 454 flush_kernel_dcache_page(kmapped_page); 455 kunmap(kmapped_page); 456 put_arg_page(kmapped_page); 457 } 458 kmapped_page = page; 459 kaddr = kmap(kmapped_page); 460 kpos = pos & PAGE_MASK; 461 flush_arg_page(bprm, kpos, kmapped_page); 462 } 463 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 464 ret = -EFAULT; 465 goto out; 466 } 467 } 468 } 469 ret = 0; 470 out: 471 if (kmapped_page) { 472 flush_kernel_dcache_page(kmapped_page); 473 kunmap(kmapped_page); 474 put_arg_page(kmapped_page); 475 } 476 return ret; 477 } 478 479 /* 480 * Like copy_strings, but get argv and its values from kernel memory. 481 */ 482 int copy_strings_kernel(int argc, const char *const *argv, 483 struct linux_binprm *bprm) 484 { 485 int r; 486 mm_segment_t oldfs = get_fs(); 487 set_fs(KERNEL_DS); 488 r = copy_strings(argc, (const char __user *const __user *)argv, bprm); 489 set_fs(oldfs); 490 return r; 491 } 492 EXPORT_SYMBOL(copy_strings_kernel); 493 494 #ifdef CONFIG_MMU 495 496 /* 497 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 498 * the binfmt code determines where the new stack should reside, we shift it to 499 * its final location. The process proceeds as follows: 500 * 501 * 1) Use shift to calculate the new vma endpoints. 502 * 2) Extend vma to cover both the old and new ranges. This ensures the 503 * arguments passed to subsequent functions are consistent. 504 * 3) Move vma's page tables to the new range. 505 * 4) Free up any cleared pgd range. 506 * 5) Shrink the vma to cover only the new range. 507 */ 508 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 509 { 510 struct mm_struct *mm = vma->vm_mm; 511 unsigned long old_start = vma->vm_start; 512 unsigned long old_end = vma->vm_end; 513 unsigned long length = old_end - old_start; 514 unsigned long new_start = old_start - shift; 515 unsigned long new_end = old_end - shift; 516 struct mmu_gather *tlb; 517 518 BUG_ON(new_start > new_end); 519 520 /* 521 * ensure there are no vmas between where we want to go 522 * and where we are 523 */ 524 if (vma != find_vma(mm, new_start)) 525 return -EFAULT; 526 527 /* 528 * cover the whole range: [new_start, old_end) 529 */ 530 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 531 return -ENOMEM; 532 533 /* 534 * move the page tables downwards, on failure we rely on 535 * process cleanup to remove whatever mess we made. 536 */ 537 if (length != move_page_tables(vma, old_start, 538 vma, new_start, length)) 539 return -ENOMEM; 540 541 lru_add_drain(); 542 tlb = tlb_gather_mmu(mm, 0); 543 if (new_end > old_start) { 544 /* 545 * when the old and new regions overlap clear from new_end. 546 */ 547 free_pgd_range(tlb, new_end, old_end, new_end, 548 vma->vm_next ? vma->vm_next->vm_start : 0); 549 } else { 550 /* 551 * otherwise, clean from old_start; this is done to not touch 552 * the address space in [new_end, old_start) some architectures 553 * have constraints on va-space that make this illegal (IA64) - 554 * for the others its just a little faster. 555 */ 556 free_pgd_range(tlb, old_start, old_end, new_end, 557 vma->vm_next ? vma->vm_next->vm_start : 0); 558 } 559 tlb_finish_mmu(tlb, new_end, old_end); 560 561 /* 562 * Shrink the vma to just the new range. Always succeeds. 563 */ 564 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 565 566 return 0; 567 } 568 569 /* 570 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 571 * the stack is optionally relocated, and some extra space is added. 572 */ 573 int setup_arg_pages(struct linux_binprm *bprm, 574 unsigned long stack_top, 575 int executable_stack) 576 { 577 unsigned long ret; 578 unsigned long stack_shift; 579 struct mm_struct *mm = current->mm; 580 struct vm_area_struct *vma = bprm->vma; 581 struct vm_area_struct *prev = NULL; 582 unsigned long vm_flags; 583 unsigned long stack_base; 584 unsigned long stack_size; 585 unsigned long stack_expand; 586 unsigned long rlim_stack; 587 588 #ifdef CONFIG_STACK_GROWSUP 589 /* Limit stack size to 1GB */ 590 stack_base = rlimit_max(RLIMIT_STACK); 591 if (stack_base > (1 << 30)) 592 stack_base = 1 << 30; 593 594 /* Make sure we didn't let the argument array grow too large. */ 595 if (vma->vm_end - vma->vm_start > stack_base) 596 return -ENOMEM; 597 598 stack_base = PAGE_ALIGN(stack_top - stack_base); 599 600 stack_shift = vma->vm_start - stack_base; 601 mm->arg_start = bprm->p - stack_shift; 602 bprm->p = vma->vm_end - stack_shift; 603 #else 604 stack_top = arch_align_stack(stack_top); 605 stack_top = PAGE_ALIGN(stack_top); 606 607 if (unlikely(stack_top < mmap_min_addr) || 608 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 609 return -ENOMEM; 610 611 stack_shift = vma->vm_end - stack_top; 612 613 bprm->p -= stack_shift; 614 mm->arg_start = bprm->p; 615 #endif 616 617 if (bprm->loader) 618 bprm->loader -= stack_shift; 619 bprm->exec -= stack_shift; 620 621 down_write(&mm->mmap_sem); 622 vm_flags = VM_STACK_FLAGS; 623 624 /* 625 * Adjust stack execute permissions; explicitly enable for 626 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 627 * (arch default) otherwise. 628 */ 629 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 630 vm_flags |= VM_EXEC; 631 else if (executable_stack == EXSTACK_DISABLE_X) 632 vm_flags &= ~VM_EXEC; 633 vm_flags |= mm->def_flags; 634 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 635 636 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 637 vm_flags); 638 if (ret) 639 goto out_unlock; 640 BUG_ON(prev != vma); 641 642 /* Move stack pages down in memory. */ 643 if (stack_shift) { 644 ret = shift_arg_pages(vma, stack_shift); 645 if (ret) 646 goto out_unlock; 647 } 648 649 /* mprotect_fixup is overkill to remove the temporary stack flags */ 650 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 651 652 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 653 stack_size = vma->vm_end - vma->vm_start; 654 /* 655 * Align this down to a page boundary as expand_stack 656 * will align it up. 657 */ 658 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 659 #ifdef CONFIG_STACK_GROWSUP 660 if (stack_size + stack_expand > rlim_stack) 661 stack_base = vma->vm_start + rlim_stack; 662 else 663 stack_base = vma->vm_end + stack_expand; 664 #else 665 if (stack_size + stack_expand > rlim_stack) 666 stack_base = vma->vm_end - rlim_stack; 667 else 668 stack_base = vma->vm_start - stack_expand; 669 #endif 670 current->mm->start_stack = bprm->p; 671 ret = expand_stack(vma, stack_base); 672 if (ret) 673 ret = -EFAULT; 674 675 out_unlock: 676 up_write(&mm->mmap_sem); 677 return ret; 678 } 679 EXPORT_SYMBOL(setup_arg_pages); 680 681 #endif /* CONFIG_MMU */ 682 683 struct file *open_exec(const char *name) 684 { 685 struct file *file; 686 int err; 687 688 file = do_filp_open(AT_FDCWD, name, 689 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 690 MAY_EXEC | MAY_OPEN); 691 if (IS_ERR(file)) 692 goto out; 693 694 err = -EACCES; 695 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 696 goto exit; 697 698 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 699 goto exit; 700 701 fsnotify_open(file); 702 703 err = deny_write_access(file); 704 if (err) 705 goto exit; 706 707 out: 708 return file; 709 710 exit: 711 fput(file); 712 return ERR_PTR(err); 713 } 714 EXPORT_SYMBOL(open_exec); 715 716 int kernel_read(struct file *file, loff_t offset, 717 char *addr, unsigned long count) 718 { 719 mm_segment_t old_fs; 720 loff_t pos = offset; 721 int result; 722 723 old_fs = get_fs(); 724 set_fs(get_ds()); 725 /* The cast to a user pointer is valid due to the set_fs() */ 726 result = vfs_read(file, (void __user *)addr, count, &pos); 727 set_fs(old_fs); 728 return result; 729 } 730 731 EXPORT_SYMBOL(kernel_read); 732 733 static int exec_mmap(struct mm_struct *mm) 734 { 735 struct task_struct *tsk; 736 struct mm_struct * old_mm, *active_mm; 737 738 /* Notify parent that we're no longer interested in the old VM */ 739 tsk = current; 740 old_mm = current->mm; 741 sync_mm_rss(tsk, old_mm); 742 mm_release(tsk, old_mm); 743 744 if (old_mm) { 745 /* 746 * Make sure that if there is a core dump in progress 747 * for the old mm, we get out and die instead of going 748 * through with the exec. We must hold mmap_sem around 749 * checking core_state and changing tsk->mm. 750 */ 751 down_read(&old_mm->mmap_sem); 752 if (unlikely(old_mm->core_state)) { 753 up_read(&old_mm->mmap_sem); 754 return -EINTR; 755 } 756 } 757 task_lock(tsk); 758 active_mm = tsk->active_mm; 759 tsk->mm = mm; 760 tsk->active_mm = mm; 761 activate_mm(active_mm, mm); 762 task_unlock(tsk); 763 arch_pick_mmap_layout(mm); 764 if (old_mm) { 765 up_read(&old_mm->mmap_sem); 766 BUG_ON(active_mm != old_mm); 767 mm_update_next_owner(old_mm); 768 mmput(old_mm); 769 return 0; 770 } 771 mmdrop(active_mm); 772 return 0; 773 } 774 775 /* 776 * This function makes sure the current process has its own signal table, 777 * so that flush_signal_handlers can later reset the handlers without 778 * disturbing other processes. (Other processes might share the signal 779 * table via the CLONE_SIGHAND option to clone().) 780 */ 781 static int de_thread(struct task_struct *tsk) 782 { 783 struct signal_struct *sig = tsk->signal; 784 struct sighand_struct *oldsighand = tsk->sighand; 785 spinlock_t *lock = &oldsighand->siglock; 786 787 if (thread_group_empty(tsk)) 788 goto no_thread_group; 789 790 /* 791 * Kill all other threads in the thread group. 792 */ 793 spin_lock_irq(lock); 794 if (signal_group_exit(sig)) { 795 /* 796 * Another group action in progress, just 797 * return so that the signal is processed. 798 */ 799 spin_unlock_irq(lock); 800 return -EAGAIN; 801 } 802 803 sig->group_exit_task = tsk; 804 sig->notify_count = zap_other_threads(tsk); 805 if (!thread_group_leader(tsk)) 806 sig->notify_count--; 807 808 while (sig->notify_count) { 809 __set_current_state(TASK_UNINTERRUPTIBLE); 810 spin_unlock_irq(lock); 811 schedule(); 812 spin_lock_irq(lock); 813 } 814 spin_unlock_irq(lock); 815 816 /* 817 * At this point all other threads have exited, all we have to 818 * do is to wait for the thread group leader to become inactive, 819 * and to assume its PID: 820 */ 821 if (!thread_group_leader(tsk)) { 822 struct task_struct *leader = tsk->group_leader; 823 824 sig->notify_count = -1; /* for exit_notify() */ 825 for (;;) { 826 write_lock_irq(&tasklist_lock); 827 if (likely(leader->exit_state)) 828 break; 829 __set_current_state(TASK_UNINTERRUPTIBLE); 830 write_unlock_irq(&tasklist_lock); 831 schedule(); 832 } 833 834 /* 835 * The only record we have of the real-time age of a 836 * process, regardless of execs it's done, is start_time. 837 * All the past CPU time is accumulated in signal_struct 838 * from sister threads now dead. But in this non-leader 839 * exec, nothing survives from the original leader thread, 840 * whose birth marks the true age of this process now. 841 * When we take on its identity by switching to its PID, we 842 * also take its birthdate (always earlier than our own). 843 */ 844 tsk->start_time = leader->start_time; 845 846 BUG_ON(!same_thread_group(leader, tsk)); 847 BUG_ON(has_group_leader_pid(tsk)); 848 /* 849 * An exec() starts a new thread group with the 850 * TGID of the previous thread group. Rehash the 851 * two threads with a switched PID, and release 852 * the former thread group leader: 853 */ 854 855 /* Become a process group leader with the old leader's pid. 856 * The old leader becomes a thread of the this thread group. 857 * Note: The old leader also uses this pid until release_task 858 * is called. Odd but simple and correct. 859 */ 860 detach_pid(tsk, PIDTYPE_PID); 861 tsk->pid = leader->pid; 862 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 863 transfer_pid(leader, tsk, PIDTYPE_PGID); 864 transfer_pid(leader, tsk, PIDTYPE_SID); 865 866 list_replace_rcu(&leader->tasks, &tsk->tasks); 867 list_replace_init(&leader->sibling, &tsk->sibling); 868 869 tsk->group_leader = tsk; 870 leader->group_leader = tsk; 871 872 tsk->exit_signal = SIGCHLD; 873 874 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 875 leader->exit_state = EXIT_DEAD; 876 write_unlock_irq(&tasklist_lock); 877 878 release_task(leader); 879 } 880 881 sig->group_exit_task = NULL; 882 sig->notify_count = 0; 883 884 no_thread_group: 885 if (current->mm) 886 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 887 888 exit_itimers(sig); 889 flush_itimer_signals(); 890 891 if (atomic_read(&oldsighand->count) != 1) { 892 struct sighand_struct *newsighand; 893 /* 894 * This ->sighand is shared with the CLONE_SIGHAND 895 * but not CLONE_THREAD task, switch to the new one. 896 */ 897 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 898 if (!newsighand) 899 return -ENOMEM; 900 901 atomic_set(&newsighand->count, 1); 902 memcpy(newsighand->action, oldsighand->action, 903 sizeof(newsighand->action)); 904 905 write_lock_irq(&tasklist_lock); 906 spin_lock(&oldsighand->siglock); 907 rcu_assign_pointer(tsk->sighand, newsighand); 908 spin_unlock(&oldsighand->siglock); 909 write_unlock_irq(&tasklist_lock); 910 911 __cleanup_sighand(oldsighand); 912 } 913 914 BUG_ON(!thread_group_leader(tsk)); 915 return 0; 916 } 917 918 /* 919 * These functions flushes out all traces of the currently running executable 920 * so that a new one can be started 921 */ 922 static void flush_old_files(struct files_struct * files) 923 { 924 long j = -1; 925 struct fdtable *fdt; 926 927 spin_lock(&files->file_lock); 928 for (;;) { 929 unsigned long set, i; 930 931 j++; 932 i = j * __NFDBITS; 933 fdt = files_fdtable(files); 934 if (i >= fdt->max_fds) 935 break; 936 set = fdt->close_on_exec->fds_bits[j]; 937 if (!set) 938 continue; 939 fdt->close_on_exec->fds_bits[j] = 0; 940 spin_unlock(&files->file_lock); 941 for ( ; set ; i++,set >>= 1) { 942 if (set & 1) { 943 sys_close(i); 944 } 945 } 946 spin_lock(&files->file_lock); 947 948 } 949 spin_unlock(&files->file_lock); 950 } 951 952 char *get_task_comm(char *buf, struct task_struct *tsk) 953 { 954 /* buf must be at least sizeof(tsk->comm) in size */ 955 task_lock(tsk); 956 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 957 task_unlock(tsk); 958 return buf; 959 } 960 961 void set_task_comm(struct task_struct *tsk, char *buf) 962 { 963 task_lock(tsk); 964 965 /* 966 * Threads may access current->comm without holding 967 * the task lock, so write the string carefully. 968 * Readers without a lock may see incomplete new 969 * names but are safe from non-terminating string reads. 970 */ 971 memset(tsk->comm, 0, TASK_COMM_LEN); 972 wmb(); 973 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 974 task_unlock(tsk); 975 perf_event_comm(tsk); 976 } 977 978 int flush_old_exec(struct linux_binprm * bprm) 979 { 980 int retval; 981 982 /* 983 * Make sure we have a private signal table and that 984 * we are unassociated from the previous thread group. 985 */ 986 retval = de_thread(current); 987 if (retval) 988 goto out; 989 990 set_mm_exe_file(bprm->mm, bprm->file); 991 992 /* 993 * Release all of the old mmap stuff 994 */ 995 retval = exec_mmap(bprm->mm); 996 if (retval) 997 goto out; 998 999 bprm->mm = NULL; /* We're using it now */ 1000 1001 current->flags &= ~PF_RANDOMIZE; 1002 flush_thread(); 1003 current->personality &= ~bprm->per_clear; 1004 1005 return 0; 1006 1007 out: 1008 return retval; 1009 } 1010 EXPORT_SYMBOL(flush_old_exec); 1011 1012 void setup_new_exec(struct linux_binprm * bprm) 1013 { 1014 int i, ch; 1015 const char *name; 1016 char tcomm[sizeof(current->comm)]; 1017 1018 arch_pick_mmap_layout(current->mm); 1019 1020 /* This is the point of no return */ 1021 current->sas_ss_sp = current->sas_ss_size = 0; 1022 1023 if (current_euid() == current_uid() && current_egid() == current_gid()) 1024 set_dumpable(current->mm, 1); 1025 else 1026 set_dumpable(current->mm, suid_dumpable); 1027 1028 name = bprm->filename; 1029 1030 /* Copies the binary name from after last slash */ 1031 for (i=0; (ch = *(name++)) != '\0';) { 1032 if (ch == '/') 1033 i = 0; /* overwrite what we wrote */ 1034 else 1035 if (i < (sizeof(tcomm) - 1)) 1036 tcomm[i++] = ch; 1037 } 1038 tcomm[i] = '\0'; 1039 set_task_comm(current, tcomm); 1040 1041 /* Set the new mm task size. We have to do that late because it may 1042 * depend on TIF_32BIT which is only updated in flush_thread() on 1043 * some architectures like powerpc 1044 */ 1045 current->mm->task_size = TASK_SIZE; 1046 1047 /* install the new credentials */ 1048 if (bprm->cred->uid != current_euid() || 1049 bprm->cred->gid != current_egid()) { 1050 current->pdeath_signal = 0; 1051 } else if (file_permission(bprm->file, MAY_READ) || 1052 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 1053 set_dumpable(current->mm, suid_dumpable); 1054 } 1055 1056 /* 1057 * Flush performance counters when crossing a 1058 * security domain: 1059 */ 1060 if (!get_dumpable(current->mm)) 1061 perf_event_exit_task(current); 1062 1063 /* An exec changes our domain. We are no longer part of the thread 1064 group */ 1065 1066 current->self_exec_id++; 1067 1068 flush_signal_handlers(current, 0); 1069 flush_old_files(current->files); 1070 } 1071 EXPORT_SYMBOL(setup_new_exec); 1072 1073 /* 1074 * Prepare credentials and lock ->cred_guard_mutex. 1075 * install_exec_creds() commits the new creds and drops the lock. 1076 * Or, if exec fails before, free_bprm() should release ->cred and 1077 * and unlock. 1078 */ 1079 int prepare_bprm_creds(struct linux_binprm *bprm) 1080 { 1081 if (mutex_lock_interruptible(¤t->cred_guard_mutex)) 1082 return -ERESTARTNOINTR; 1083 1084 bprm->cred = prepare_exec_creds(); 1085 if (likely(bprm->cred)) 1086 return 0; 1087 1088 mutex_unlock(¤t->cred_guard_mutex); 1089 return -ENOMEM; 1090 } 1091 1092 void free_bprm(struct linux_binprm *bprm) 1093 { 1094 free_arg_pages(bprm); 1095 if (bprm->cred) { 1096 mutex_unlock(¤t->cred_guard_mutex); 1097 abort_creds(bprm->cred); 1098 } 1099 kfree(bprm); 1100 } 1101 1102 /* 1103 * install the new credentials for this executable 1104 */ 1105 void install_exec_creds(struct linux_binprm *bprm) 1106 { 1107 security_bprm_committing_creds(bprm); 1108 1109 commit_creds(bprm->cred); 1110 bprm->cred = NULL; 1111 /* 1112 * cred_guard_mutex must be held at least to this point to prevent 1113 * ptrace_attach() from altering our determination of the task's 1114 * credentials; any time after this it may be unlocked. 1115 */ 1116 security_bprm_committed_creds(bprm); 1117 mutex_unlock(¤t->cred_guard_mutex); 1118 } 1119 EXPORT_SYMBOL(install_exec_creds); 1120 1121 /* 1122 * determine how safe it is to execute the proposed program 1123 * - the caller must hold current->cred_guard_mutex to protect against 1124 * PTRACE_ATTACH 1125 */ 1126 int check_unsafe_exec(struct linux_binprm *bprm) 1127 { 1128 struct task_struct *p = current, *t; 1129 unsigned n_fs; 1130 int res = 0; 1131 1132 bprm->unsafe = tracehook_unsafe_exec(p); 1133 1134 n_fs = 1; 1135 spin_lock(&p->fs->lock); 1136 rcu_read_lock(); 1137 for (t = next_thread(p); t != p; t = next_thread(t)) { 1138 if (t->fs == p->fs) 1139 n_fs++; 1140 } 1141 rcu_read_unlock(); 1142 1143 if (p->fs->users > n_fs) { 1144 bprm->unsafe |= LSM_UNSAFE_SHARE; 1145 } else { 1146 res = -EAGAIN; 1147 if (!p->fs->in_exec) { 1148 p->fs->in_exec = 1; 1149 res = 1; 1150 } 1151 } 1152 spin_unlock(&p->fs->lock); 1153 1154 return res; 1155 } 1156 1157 /* 1158 * Fill the binprm structure from the inode. 1159 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1160 * 1161 * This may be called multiple times for binary chains (scripts for example). 1162 */ 1163 int prepare_binprm(struct linux_binprm *bprm) 1164 { 1165 umode_t mode; 1166 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1167 int retval; 1168 1169 mode = inode->i_mode; 1170 if (bprm->file->f_op == NULL) 1171 return -EACCES; 1172 1173 /* clear any previous set[ug]id data from a previous binary */ 1174 bprm->cred->euid = current_euid(); 1175 bprm->cred->egid = current_egid(); 1176 1177 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1178 /* Set-uid? */ 1179 if (mode & S_ISUID) { 1180 bprm->per_clear |= PER_CLEAR_ON_SETID; 1181 bprm->cred->euid = inode->i_uid; 1182 } 1183 1184 /* Set-gid? */ 1185 /* 1186 * If setgid is set but no group execute bit then this 1187 * is a candidate for mandatory locking, not a setgid 1188 * executable. 1189 */ 1190 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1191 bprm->per_clear |= PER_CLEAR_ON_SETID; 1192 bprm->cred->egid = inode->i_gid; 1193 } 1194 } 1195 1196 /* fill in binprm security blob */ 1197 retval = security_bprm_set_creds(bprm); 1198 if (retval) 1199 return retval; 1200 bprm->cred_prepared = 1; 1201 1202 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1203 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1204 } 1205 1206 EXPORT_SYMBOL(prepare_binprm); 1207 1208 /* 1209 * Arguments are '\0' separated strings found at the location bprm->p 1210 * points to; chop off the first by relocating brpm->p to right after 1211 * the first '\0' encountered. 1212 */ 1213 int remove_arg_zero(struct linux_binprm *bprm) 1214 { 1215 int ret = 0; 1216 unsigned long offset; 1217 char *kaddr; 1218 struct page *page; 1219 1220 if (!bprm->argc) 1221 return 0; 1222 1223 do { 1224 offset = bprm->p & ~PAGE_MASK; 1225 page = get_arg_page(bprm, bprm->p, 0); 1226 if (!page) { 1227 ret = -EFAULT; 1228 goto out; 1229 } 1230 kaddr = kmap_atomic(page, KM_USER0); 1231 1232 for (; offset < PAGE_SIZE && kaddr[offset]; 1233 offset++, bprm->p++) 1234 ; 1235 1236 kunmap_atomic(kaddr, KM_USER0); 1237 put_arg_page(page); 1238 1239 if (offset == PAGE_SIZE) 1240 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1241 } while (offset == PAGE_SIZE); 1242 1243 bprm->p++; 1244 bprm->argc--; 1245 ret = 0; 1246 1247 out: 1248 return ret; 1249 } 1250 EXPORT_SYMBOL(remove_arg_zero); 1251 1252 /* 1253 * cycle the list of binary formats handler, until one recognizes the image 1254 */ 1255 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1256 { 1257 unsigned int depth = bprm->recursion_depth; 1258 int try,retval; 1259 struct linux_binfmt *fmt; 1260 1261 retval = security_bprm_check(bprm); 1262 if (retval) 1263 return retval; 1264 1265 /* kernel module loader fixup */ 1266 /* so we don't try to load run modprobe in kernel space. */ 1267 set_fs(USER_DS); 1268 1269 retval = audit_bprm(bprm); 1270 if (retval) 1271 return retval; 1272 1273 retval = -ENOENT; 1274 for (try=0; try<2; try++) { 1275 read_lock(&binfmt_lock); 1276 list_for_each_entry(fmt, &formats, lh) { 1277 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1278 if (!fn) 1279 continue; 1280 if (!try_module_get(fmt->module)) 1281 continue; 1282 read_unlock(&binfmt_lock); 1283 retval = fn(bprm, regs); 1284 /* 1285 * Restore the depth counter to its starting value 1286 * in this call, so we don't have to rely on every 1287 * load_binary function to restore it on return. 1288 */ 1289 bprm->recursion_depth = depth; 1290 if (retval >= 0) { 1291 if (depth == 0) 1292 tracehook_report_exec(fmt, bprm, regs); 1293 put_binfmt(fmt); 1294 allow_write_access(bprm->file); 1295 if (bprm->file) 1296 fput(bprm->file); 1297 bprm->file = NULL; 1298 current->did_exec = 1; 1299 proc_exec_connector(current); 1300 return retval; 1301 } 1302 read_lock(&binfmt_lock); 1303 put_binfmt(fmt); 1304 if (retval != -ENOEXEC || bprm->mm == NULL) 1305 break; 1306 if (!bprm->file) { 1307 read_unlock(&binfmt_lock); 1308 return retval; 1309 } 1310 } 1311 read_unlock(&binfmt_lock); 1312 if (retval != -ENOEXEC || bprm->mm == NULL) { 1313 break; 1314 #ifdef CONFIG_MODULES 1315 } else { 1316 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1317 if (printable(bprm->buf[0]) && 1318 printable(bprm->buf[1]) && 1319 printable(bprm->buf[2]) && 1320 printable(bprm->buf[3])) 1321 break; /* -ENOEXEC */ 1322 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1323 #endif 1324 } 1325 } 1326 return retval; 1327 } 1328 1329 EXPORT_SYMBOL(search_binary_handler); 1330 1331 /* 1332 * sys_execve() executes a new program. 1333 */ 1334 int do_execve(const char * filename, 1335 const char __user *const __user *argv, 1336 const char __user *const __user *envp, 1337 struct pt_regs * regs) 1338 { 1339 struct linux_binprm *bprm; 1340 struct file *file; 1341 struct files_struct *displaced; 1342 bool clear_in_exec; 1343 int retval; 1344 1345 retval = unshare_files(&displaced); 1346 if (retval) 1347 goto out_ret; 1348 1349 retval = -ENOMEM; 1350 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1351 if (!bprm) 1352 goto out_files; 1353 1354 retval = prepare_bprm_creds(bprm); 1355 if (retval) 1356 goto out_free; 1357 1358 retval = check_unsafe_exec(bprm); 1359 if (retval < 0) 1360 goto out_free; 1361 clear_in_exec = retval; 1362 current->in_execve = 1; 1363 1364 file = open_exec(filename); 1365 retval = PTR_ERR(file); 1366 if (IS_ERR(file)) 1367 goto out_unmark; 1368 1369 sched_exec(); 1370 1371 bprm->file = file; 1372 bprm->filename = filename; 1373 bprm->interp = filename; 1374 1375 retval = bprm_mm_init(bprm); 1376 if (retval) 1377 goto out_file; 1378 1379 bprm->argc = count(argv, MAX_ARG_STRINGS); 1380 if ((retval = bprm->argc) < 0) 1381 goto out; 1382 1383 bprm->envc = count(envp, MAX_ARG_STRINGS); 1384 if ((retval = bprm->envc) < 0) 1385 goto out; 1386 1387 retval = prepare_binprm(bprm); 1388 if (retval < 0) 1389 goto out; 1390 1391 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1392 if (retval < 0) 1393 goto out; 1394 1395 bprm->exec = bprm->p; 1396 retval = copy_strings(bprm->envc, envp, bprm); 1397 if (retval < 0) 1398 goto out; 1399 1400 retval = copy_strings(bprm->argc, argv, bprm); 1401 if (retval < 0) 1402 goto out; 1403 1404 current->flags &= ~PF_KTHREAD; 1405 retval = search_binary_handler(bprm,regs); 1406 if (retval < 0) 1407 goto out; 1408 1409 /* execve succeeded */ 1410 current->fs->in_exec = 0; 1411 current->in_execve = 0; 1412 acct_update_integrals(current); 1413 free_bprm(bprm); 1414 if (displaced) 1415 put_files_struct(displaced); 1416 return retval; 1417 1418 out: 1419 if (bprm->mm) 1420 mmput (bprm->mm); 1421 1422 out_file: 1423 if (bprm->file) { 1424 allow_write_access(bprm->file); 1425 fput(bprm->file); 1426 } 1427 1428 out_unmark: 1429 if (clear_in_exec) 1430 current->fs->in_exec = 0; 1431 current->in_execve = 0; 1432 1433 out_free: 1434 free_bprm(bprm); 1435 1436 out_files: 1437 if (displaced) 1438 reset_files_struct(displaced); 1439 out_ret: 1440 return retval; 1441 } 1442 1443 void set_binfmt(struct linux_binfmt *new) 1444 { 1445 struct mm_struct *mm = current->mm; 1446 1447 if (mm->binfmt) 1448 module_put(mm->binfmt->module); 1449 1450 mm->binfmt = new; 1451 if (new) 1452 __module_get(new->module); 1453 } 1454 1455 EXPORT_SYMBOL(set_binfmt); 1456 1457 /* format_corename will inspect the pattern parameter, and output a 1458 * name into corename, which must have space for at least 1459 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1460 */ 1461 static int format_corename(char *corename, long signr) 1462 { 1463 const struct cred *cred = current_cred(); 1464 const char *pat_ptr = core_pattern; 1465 int ispipe = (*pat_ptr == '|'); 1466 char *out_ptr = corename; 1467 char *const out_end = corename + CORENAME_MAX_SIZE; 1468 int rc; 1469 int pid_in_pattern = 0; 1470 1471 /* Repeat as long as we have more pattern to process and more output 1472 space */ 1473 while (*pat_ptr) { 1474 if (*pat_ptr != '%') { 1475 if (out_ptr == out_end) 1476 goto out; 1477 *out_ptr++ = *pat_ptr++; 1478 } else { 1479 switch (*++pat_ptr) { 1480 case 0: 1481 goto out; 1482 /* Double percent, output one percent */ 1483 case '%': 1484 if (out_ptr == out_end) 1485 goto out; 1486 *out_ptr++ = '%'; 1487 break; 1488 /* pid */ 1489 case 'p': 1490 pid_in_pattern = 1; 1491 rc = snprintf(out_ptr, out_end - out_ptr, 1492 "%d", task_tgid_vnr(current)); 1493 if (rc > out_end - out_ptr) 1494 goto out; 1495 out_ptr += rc; 1496 break; 1497 /* uid */ 1498 case 'u': 1499 rc = snprintf(out_ptr, out_end - out_ptr, 1500 "%d", cred->uid); 1501 if (rc > out_end - out_ptr) 1502 goto out; 1503 out_ptr += rc; 1504 break; 1505 /* gid */ 1506 case 'g': 1507 rc = snprintf(out_ptr, out_end - out_ptr, 1508 "%d", cred->gid); 1509 if (rc > out_end - out_ptr) 1510 goto out; 1511 out_ptr += rc; 1512 break; 1513 /* signal that caused the coredump */ 1514 case 's': 1515 rc = snprintf(out_ptr, out_end - out_ptr, 1516 "%ld", signr); 1517 if (rc > out_end - out_ptr) 1518 goto out; 1519 out_ptr += rc; 1520 break; 1521 /* UNIX time of coredump */ 1522 case 't': { 1523 struct timeval tv; 1524 do_gettimeofday(&tv); 1525 rc = snprintf(out_ptr, out_end - out_ptr, 1526 "%lu", tv.tv_sec); 1527 if (rc > out_end - out_ptr) 1528 goto out; 1529 out_ptr += rc; 1530 break; 1531 } 1532 /* hostname */ 1533 case 'h': 1534 down_read(&uts_sem); 1535 rc = snprintf(out_ptr, out_end - out_ptr, 1536 "%s", utsname()->nodename); 1537 up_read(&uts_sem); 1538 if (rc > out_end - out_ptr) 1539 goto out; 1540 out_ptr += rc; 1541 break; 1542 /* executable */ 1543 case 'e': 1544 rc = snprintf(out_ptr, out_end - out_ptr, 1545 "%s", current->comm); 1546 if (rc > out_end - out_ptr) 1547 goto out; 1548 out_ptr += rc; 1549 break; 1550 /* core limit size */ 1551 case 'c': 1552 rc = snprintf(out_ptr, out_end - out_ptr, 1553 "%lu", rlimit(RLIMIT_CORE)); 1554 if (rc > out_end - out_ptr) 1555 goto out; 1556 out_ptr += rc; 1557 break; 1558 default: 1559 break; 1560 } 1561 ++pat_ptr; 1562 } 1563 } 1564 /* Backward compatibility with core_uses_pid: 1565 * 1566 * If core_pattern does not include a %p (as is the default) 1567 * and core_uses_pid is set, then .%pid will be appended to 1568 * the filename. Do not do this for piped commands. */ 1569 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1570 rc = snprintf(out_ptr, out_end - out_ptr, 1571 ".%d", task_tgid_vnr(current)); 1572 if (rc > out_end - out_ptr) 1573 goto out; 1574 out_ptr += rc; 1575 } 1576 out: 1577 *out_ptr = 0; 1578 return ispipe; 1579 } 1580 1581 static int zap_process(struct task_struct *start, int exit_code) 1582 { 1583 struct task_struct *t; 1584 int nr = 0; 1585 1586 start->signal->flags = SIGNAL_GROUP_EXIT; 1587 start->signal->group_exit_code = exit_code; 1588 start->signal->group_stop_count = 0; 1589 1590 t = start; 1591 do { 1592 if (t != current && t->mm) { 1593 sigaddset(&t->pending.signal, SIGKILL); 1594 signal_wake_up(t, 1); 1595 nr++; 1596 } 1597 } while_each_thread(start, t); 1598 1599 return nr; 1600 } 1601 1602 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1603 struct core_state *core_state, int exit_code) 1604 { 1605 struct task_struct *g, *p; 1606 unsigned long flags; 1607 int nr = -EAGAIN; 1608 1609 spin_lock_irq(&tsk->sighand->siglock); 1610 if (!signal_group_exit(tsk->signal)) { 1611 mm->core_state = core_state; 1612 nr = zap_process(tsk, exit_code); 1613 } 1614 spin_unlock_irq(&tsk->sighand->siglock); 1615 if (unlikely(nr < 0)) 1616 return nr; 1617 1618 if (atomic_read(&mm->mm_users) == nr + 1) 1619 goto done; 1620 /* 1621 * We should find and kill all tasks which use this mm, and we should 1622 * count them correctly into ->nr_threads. We don't take tasklist 1623 * lock, but this is safe wrt: 1624 * 1625 * fork: 1626 * None of sub-threads can fork after zap_process(leader). All 1627 * processes which were created before this point should be 1628 * visible to zap_threads() because copy_process() adds the new 1629 * process to the tail of init_task.tasks list, and lock/unlock 1630 * of ->siglock provides a memory barrier. 1631 * 1632 * do_exit: 1633 * The caller holds mm->mmap_sem. This means that the task which 1634 * uses this mm can't pass exit_mm(), so it can't exit or clear 1635 * its ->mm. 1636 * 1637 * de_thread: 1638 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1639 * we must see either old or new leader, this does not matter. 1640 * However, it can change p->sighand, so lock_task_sighand(p) 1641 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1642 * it can't fail. 1643 * 1644 * Note also that "g" can be the old leader with ->mm == NULL 1645 * and already unhashed and thus removed from ->thread_group. 1646 * This is OK, __unhash_process()->list_del_rcu() does not 1647 * clear the ->next pointer, we will find the new leader via 1648 * next_thread(). 1649 */ 1650 rcu_read_lock(); 1651 for_each_process(g) { 1652 if (g == tsk->group_leader) 1653 continue; 1654 if (g->flags & PF_KTHREAD) 1655 continue; 1656 p = g; 1657 do { 1658 if (p->mm) { 1659 if (unlikely(p->mm == mm)) { 1660 lock_task_sighand(p, &flags); 1661 nr += zap_process(p, exit_code); 1662 unlock_task_sighand(p, &flags); 1663 } 1664 break; 1665 } 1666 } while_each_thread(g, p); 1667 } 1668 rcu_read_unlock(); 1669 done: 1670 atomic_set(&core_state->nr_threads, nr); 1671 return nr; 1672 } 1673 1674 static int coredump_wait(int exit_code, struct core_state *core_state) 1675 { 1676 struct task_struct *tsk = current; 1677 struct mm_struct *mm = tsk->mm; 1678 struct completion *vfork_done; 1679 int core_waiters = -EBUSY; 1680 1681 init_completion(&core_state->startup); 1682 core_state->dumper.task = tsk; 1683 core_state->dumper.next = NULL; 1684 1685 down_write(&mm->mmap_sem); 1686 if (!mm->core_state) 1687 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1688 up_write(&mm->mmap_sem); 1689 1690 if (unlikely(core_waiters < 0)) 1691 goto fail; 1692 1693 /* 1694 * Make sure nobody is waiting for us to release the VM, 1695 * otherwise we can deadlock when we wait on each other 1696 */ 1697 vfork_done = tsk->vfork_done; 1698 if (vfork_done) { 1699 tsk->vfork_done = NULL; 1700 complete(vfork_done); 1701 } 1702 1703 if (core_waiters) 1704 wait_for_completion(&core_state->startup); 1705 fail: 1706 return core_waiters; 1707 } 1708 1709 static void coredump_finish(struct mm_struct *mm) 1710 { 1711 struct core_thread *curr, *next; 1712 struct task_struct *task; 1713 1714 next = mm->core_state->dumper.next; 1715 while ((curr = next) != NULL) { 1716 next = curr->next; 1717 task = curr->task; 1718 /* 1719 * see exit_mm(), curr->task must not see 1720 * ->task == NULL before we read ->next. 1721 */ 1722 smp_mb(); 1723 curr->task = NULL; 1724 wake_up_process(task); 1725 } 1726 1727 mm->core_state = NULL; 1728 } 1729 1730 /* 1731 * set_dumpable converts traditional three-value dumpable to two flags and 1732 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1733 * these bits are not changed atomically. So get_dumpable can observe the 1734 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1735 * return either old dumpable or new one by paying attention to the order of 1736 * modifying the bits. 1737 * 1738 * dumpable | mm->flags (binary) 1739 * old new | initial interim final 1740 * ---------+----------------------- 1741 * 0 1 | 00 01 01 1742 * 0 2 | 00 10(*) 11 1743 * 1 0 | 01 00 00 1744 * 1 2 | 01 11 11 1745 * 2 0 | 11 10(*) 00 1746 * 2 1 | 11 11 01 1747 * 1748 * (*) get_dumpable regards interim value of 10 as 11. 1749 */ 1750 void set_dumpable(struct mm_struct *mm, int value) 1751 { 1752 switch (value) { 1753 case 0: 1754 clear_bit(MMF_DUMPABLE, &mm->flags); 1755 smp_wmb(); 1756 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1757 break; 1758 case 1: 1759 set_bit(MMF_DUMPABLE, &mm->flags); 1760 smp_wmb(); 1761 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1762 break; 1763 case 2: 1764 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1765 smp_wmb(); 1766 set_bit(MMF_DUMPABLE, &mm->flags); 1767 break; 1768 } 1769 } 1770 1771 static int __get_dumpable(unsigned long mm_flags) 1772 { 1773 int ret; 1774 1775 ret = mm_flags & MMF_DUMPABLE_MASK; 1776 return (ret >= 2) ? 2 : ret; 1777 } 1778 1779 int get_dumpable(struct mm_struct *mm) 1780 { 1781 return __get_dumpable(mm->flags); 1782 } 1783 1784 static void wait_for_dump_helpers(struct file *file) 1785 { 1786 struct pipe_inode_info *pipe; 1787 1788 pipe = file->f_path.dentry->d_inode->i_pipe; 1789 1790 pipe_lock(pipe); 1791 pipe->readers++; 1792 pipe->writers--; 1793 1794 while ((pipe->readers > 1) && (!signal_pending(current))) { 1795 wake_up_interruptible_sync(&pipe->wait); 1796 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 1797 pipe_wait(pipe); 1798 } 1799 1800 pipe->readers--; 1801 pipe->writers++; 1802 pipe_unlock(pipe); 1803 1804 } 1805 1806 1807 /* 1808 * uhm_pipe_setup 1809 * helper function to customize the process used 1810 * to collect the core in userspace. Specifically 1811 * it sets up a pipe and installs it as fd 0 (stdin) 1812 * for the process. Returns 0 on success, or 1813 * PTR_ERR on failure. 1814 * Note that it also sets the core limit to 1. This 1815 * is a special value that we use to trap recursive 1816 * core dumps 1817 */ 1818 static int umh_pipe_setup(struct subprocess_info *info) 1819 { 1820 struct file *rp, *wp; 1821 struct fdtable *fdt; 1822 struct coredump_params *cp = (struct coredump_params *)info->data; 1823 struct files_struct *cf = current->files; 1824 1825 wp = create_write_pipe(0); 1826 if (IS_ERR(wp)) 1827 return PTR_ERR(wp); 1828 1829 rp = create_read_pipe(wp, 0); 1830 if (IS_ERR(rp)) { 1831 free_write_pipe(wp); 1832 return PTR_ERR(rp); 1833 } 1834 1835 cp->file = wp; 1836 1837 sys_close(0); 1838 fd_install(0, rp); 1839 spin_lock(&cf->file_lock); 1840 fdt = files_fdtable(cf); 1841 FD_SET(0, fdt->open_fds); 1842 FD_CLR(0, fdt->close_on_exec); 1843 spin_unlock(&cf->file_lock); 1844 1845 /* and disallow core files too */ 1846 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 1847 1848 return 0; 1849 } 1850 1851 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1852 { 1853 struct core_state core_state; 1854 char corename[CORENAME_MAX_SIZE + 1]; 1855 struct mm_struct *mm = current->mm; 1856 struct linux_binfmt * binfmt; 1857 const struct cred *old_cred; 1858 struct cred *cred; 1859 int retval = 0; 1860 int flag = 0; 1861 int ispipe; 1862 static atomic_t core_dump_count = ATOMIC_INIT(0); 1863 struct coredump_params cprm = { 1864 .signr = signr, 1865 .regs = regs, 1866 .limit = rlimit(RLIMIT_CORE), 1867 /* 1868 * We must use the same mm->flags while dumping core to avoid 1869 * inconsistency of bit flags, since this flag is not protected 1870 * by any locks. 1871 */ 1872 .mm_flags = mm->flags, 1873 }; 1874 1875 audit_core_dumps(signr); 1876 1877 binfmt = mm->binfmt; 1878 if (!binfmt || !binfmt->core_dump) 1879 goto fail; 1880 if (!__get_dumpable(cprm.mm_flags)) 1881 goto fail; 1882 1883 cred = prepare_creds(); 1884 if (!cred) 1885 goto fail; 1886 /* 1887 * We cannot trust fsuid as being the "true" uid of the 1888 * process nor do we know its entire history. We only know it 1889 * was tainted so we dump it as root in mode 2. 1890 */ 1891 if (__get_dumpable(cprm.mm_flags) == 2) { 1892 /* Setuid core dump mode */ 1893 flag = O_EXCL; /* Stop rewrite attacks */ 1894 cred->fsuid = 0; /* Dump root private */ 1895 } 1896 1897 retval = coredump_wait(exit_code, &core_state); 1898 if (retval < 0) 1899 goto fail_creds; 1900 1901 old_cred = override_creds(cred); 1902 1903 /* 1904 * Clear any false indication of pending signals that might 1905 * be seen by the filesystem code called to write the core file. 1906 */ 1907 clear_thread_flag(TIF_SIGPENDING); 1908 1909 ispipe = format_corename(corename, signr); 1910 1911 if (ispipe) { 1912 int dump_count; 1913 char **helper_argv; 1914 1915 if (cprm.limit == 1) { 1916 /* 1917 * Normally core limits are irrelevant to pipes, since 1918 * we're not writing to the file system, but we use 1919 * cprm.limit of 1 here as a speacial value. Any 1920 * non-1 limit gets set to RLIM_INFINITY below, but 1921 * a limit of 0 skips the dump. This is a consistent 1922 * way to catch recursive crashes. We can still crash 1923 * if the core_pattern binary sets RLIM_CORE = !1 1924 * but it runs as root, and can do lots of stupid things 1925 * Note that we use task_tgid_vnr here to grab the pid 1926 * of the process group leader. That way we get the 1927 * right pid if a thread in a multi-threaded 1928 * core_pattern process dies. 1929 */ 1930 printk(KERN_WARNING 1931 "Process %d(%s) has RLIMIT_CORE set to 1\n", 1932 task_tgid_vnr(current), current->comm); 1933 printk(KERN_WARNING "Aborting core\n"); 1934 goto fail_unlock; 1935 } 1936 cprm.limit = RLIM_INFINITY; 1937 1938 dump_count = atomic_inc_return(&core_dump_count); 1939 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 1940 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 1941 task_tgid_vnr(current), current->comm); 1942 printk(KERN_WARNING "Skipping core dump\n"); 1943 goto fail_dropcount; 1944 } 1945 1946 helper_argv = argv_split(GFP_KERNEL, corename+1, NULL); 1947 if (!helper_argv) { 1948 printk(KERN_WARNING "%s failed to allocate memory\n", 1949 __func__); 1950 goto fail_dropcount; 1951 } 1952 1953 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 1954 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 1955 NULL, &cprm); 1956 argv_free(helper_argv); 1957 if (retval) { 1958 printk(KERN_INFO "Core dump to %s pipe failed\n", 1959 corename); 1960 goto close_fail; 1961 } 1962 } else { 1963 struct inode *inode; 1964 1965 if (cprm.limit < binfmt->min_coredump) 1966 goto fail_unlock; 1967 1968 cprm.file = filp_open(corename, 1969 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1970 0600); 1971 if (IS_ERR(cprm.file)) 1972 goto fail_unlock; 1973 1974 inode = cprm.file->f_path.dentry->d_inode; 1975 if (inode->i_nlink > 1) 1976 goto close_fail; 1977 if (d_unhashed(cprm.file->f_path.dentry)) 1978 goto close_fail; 1979 /* 1980 * AK: actually i see no reason to not allow this for named 1981 * pipes etc, but keep the previous behaviour for now. 1982 */ 1983 if (!S_ISREG(inode->i_mode)) 1984 goto close_fail; 1985 /* 1986 * Dont allow local users get cute and trick others to coredump 1987 * into their pre-created files. 1988 */ 1989 if (inode->i_uid != current_fsuid()) 1990 goto close_fail; 1991 if (!cprm.file->f_op || !cprm.file->f_op->write) 1992 goto close_fail; 1993 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 1994 goto close_fail; 1995 } 1996 1997 retval = binfmt->core_dump(&cprm); 1998 if (retval) 1999 current->signal->group_exit_code |= 0x80; 2000 2001 if (ispipe && core_pipe_limit) 2002 wait_for_dump_helpers(cprm.file); 2003 close_fail: 2004 if (cprm.file) 2005 filp_close(cprm.file, NULL); 2006 fail_dropcount: 2007 if (ispipe) 2008 atomic_dec(&core_dump_count); 2009 fail_unlock: 2010 coredump_finish(mm); 2011 revert_creds(old_cred); 2012 fail_creds: 2013 put_cred(cred); 2014 fail: 2015 return; 2016 } 2017 2018 /* 2019 * Core dumping helper functions. These are the only things you should 2020 * do on a core-file: use only these functions to write out all the 2021 * necessary info. 2022 */ 2023 int dump_write(struct file *file, const void *addr, int nr) 2024 { 2025 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; 2026 } 2027 EXPORT_SYMBOL(dump_write); 2028 2029 int dump_seek(struct file *file, loff_t off) 2030 { 2031 int ret = 1; 2032 2033 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 2034 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 2035 return 0; 2036 } else { 2037 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 2038 2039 if (!buf) 2040 return 0; 2041 while (off > 0) { 2042 unsigned long n = off; 2043 2044 if (n > PAGE_SIZE) 2045 n = PAGE_SIZE; 2046 if (!dump_write(file, buf, n)) { 2047 ret = 0; 2048 break; 2049 } 2050 off -= n; 2051 } 2052 free_page((unsigned long)buf); 2053 } 2054 return ret; 2055 } 2056 EXPORT_SYMBOL(dump_seek); 2057