xref: /openbmc/linux/fs/exec.c (revision d5532ee7)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 unsigned int core_pipe_limit;
66 int suid_dumpable = 0;
67 
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	insert ? list_add(&fmt->lh, &formats) :
79 		 list_add_tail(&fmt->lh, &formats);
80 	write_unlock(&binfmt_lock);
81 	return 0;
82 }
83 
84 EXPORT_SYMBOL(__register_binfmt);
85 
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 	write_lock(&binfmt_lock);
89 	list_del(&fmt->lh);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(unregister_binfmt);
94 
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 	module_put(fmt->module);
98 }
99 
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108 	struct file *file;
109 	char *tmp = getname(library);
110 	int error = PTR_ERR(tmp);
111 
112 	if (IS_ERR(tmp))
113 		goto out;
114 
115 	file = do_filp_open(AT_FDCWD, tmp,
116 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117 				MAY_READ | MAY_EXEC | MAY_OPEN);
118 	putname(tmp);
119 	error = PTR_ERR(file);
120 	if (IS_ERR(file))
121 		goto out;
122 
123 	error = -EINVAL;
124 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125 		goto exit;
126 
127 	error = -EACCES;
128 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129 		goto exit;
130 
131 	fsnotify_open(file);
132 
133 	error = -ENOEXEC;
134 	if(file->f_op) {
135 		struct linux_binfmt * fmt;
136 
137 		read_lock(&binfmt_lock);
138 		list_for_each_entry(fmt, &formats, lh) {
139 			if (!fmt->load_shlib)
140 				continue;
141 			if (!try_module_get(fmt->module))
142 				continue;
143 			read_unlock(&binfmt_lock);
144 			error = fmt->load_shlib(file);
145 			read_lock(&binfmt_lock);
146 			put_binfmt(fmt);
147 			if (error != -ENOEXEC)
148 				break;
149 		}
150 		read_unlock(&binfmt_lock);
151 	}
152 exit:
153 	fput(file);
154 out:
155   	return error;
156 }
157 
158 #ifdef CONFIG_MMU
159 
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 		int write)
162 {
163 	struct page *page;
164 	int ret;
165 
166 #ifdef CONFIG_STACK_GROWSUP
167 	if (write) {
168 		ret = expand_stack_downwards(bprm->vma, pos);
169 		if (ret < 0)
170 			return NULL;
171 	}
172 #endif
173 	ret = get_user_pages(current, bprm->mm, pos,
174 			1, write, 1, &page, NULL);
175 	if (ret <= 0)
176 		return NULL;
177 
178 	if (write) {
179 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 		struct rlimit *rlim;
181 
182 		/*
183 		 * We've historically supported up to 32 pages (ARG_MAX)
184 		 * of argument strings even with small stacks
185 		 */
186 		if (size <= ARG_MAX)
187 			return page;
188 
189 		/*
190 		 * Limit to 1/4-th the stack size for the argv+env strings.
191 		 * This ensures that:
192 		 *  - the remaining binfmt code will not run out of stack space,
193 		 *  - the program will have a reasonable amount of stack left
194 		 *    to work from.
195 		 */
196 		rlim = current->signal->rlim;
197 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
198 			put_page(page);
199 			return NULL;
200 		}
201 	}
202 
203 	return page;
204 }
205 
206 static void put_arg_page(struct page *page)
207 {
208 	put_page(page);
209 }
210 
211 static void free_arg_page(struct linux_binprm *bprm, int i)
212 {
213 }
214 
215 static void free_arg_pages(struct linux_binprm *bprm)
216 {
217 }
218 
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 		struct page *page)
221 {
222 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223 }
224 
225 static int __bprm_mm_init(struct linux_binprm *bprm)
226 {
227 	int err;
228 	struct vm_area_struct *vma = NULL;
229 	struct mm_struct *mm = bprm->mm;
230 
231 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 	if (!vma)
233 		return -ENOMEM;
234 
235 	down_write(&mm->mmap_sem);
236 	vma->vm_mm = mm;
237 
238 	/*
239 	 * Place the stack at the largest stack address the architecture
240 	 * supports. Later, we'll move this to an appropriate place. We don't
241 	 * use STACK_TOP because that can depend on attributes which aren't
242 	 * configured yet.
243 	 */
244 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
245 	vma->vm_end = STACK_TOP_MAX;
246 	vma->vm_start = vma->vm_end - PAGE_SIZE;
247 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
248 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 	INIT_LIST_HEAD(&vma->anon_vma_chain);
250 	err = insert_vm_struct(mm, vma);
251 	if (err)
252 		goto err;
253 
254 	mm->stack_vm = mm->total_vm = 1;
255 	up_write(&mm->mmap_sem);
256 	bprm->p = vma->vm_end - sizeof(void *);
257 	return 0;
258 err:
259 	up_write(&mm->mmap_sem);
260 	bprm->vma = NULL;
261 	kmem_cache_free(vm_area_cachep, vma);
262 	return err;
263 }
264 
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 {
267 	return len <= MAX_ARG_STRLEN;
268 }
269 
270 #else
271 
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 		int write)
274 {
275 	struct page *page;
276 
277 	page = bprm->page[pos / PAGE_SIZE];
278 	if (!page && write) {
279 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 		if (!page)
281 			return NULL;
282 		bprm->page[pos / PAGE_SIZE] = page;
283 	}
284 
285 	return page;
286 }
287 
288 static void put_arg_page(struct page *page)
289 {
290 }
291 
292 static void free_arg_page(struct linux_binprm *bprm, int i)
293 {
294 	if (bprm->page[i]) {
295 		__free_page(bprm->page[i]);
296 		bprm->page[i] = NULL;
297 	}
298 }
299 
300 static void free_arg_pages(struct linux_binprm *bprm)
301 {
302 	int i;
303 
304 	for (i = 0; i < MAX_ARG_PAGES; i++)
305 		free_arg_page(bprm, i);
306 }
307 
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 		struct page *page)
310 {
311 }
312 
313 static int __bprm_mm_init(struct linux_binprm *bprm)
314 {
315 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 	return 0;
317 }
318 
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321 	return len <= bprm->p;
322 }
323 
324 #endif /* CONFIG_MMU */
325 
326 /*
327  * Create a new mm_struct and populate it with a temporary stack
328  * vm_area_struct.  We don't have enough context at this point to set the stack
329  * flags, permissions, and offset, so we use temporary values.  We'll update
330  * them later in setup_arg_pages().
331  */
332 int bprm_mm_init(struct linux_binprm *bprm)
333 {
334 	int err;
335 	struct mm_struct *mm = NULL;
336 
337 	bprm->mm = mm = mm_alloc();
338 	err = -ENOMEM;
339 	if (!mm)
340 		goto err;
341 
342 	err = init_new_context(current, mm);
343 	if (err)
344 		goto err;
345 
346 	err = __bprm_mm_init(bprm);
347 	if (err)
348 		goto err;
349 
350 	return 0;
351 
352 err:
353 	if (mm) {
354 		bprm->mm = NULL;
355 		mmdrop(mm);
356 	}
357 
358 	return err;
359 }
360 
361 /*
362  * count() counts the number of strings in array ARGV.
363  */
364 static int count(const char __user * const __user * argv, int max)
365 {
366 	int i = 0;
367 
368 	if (argv != NULL) {
369 		for (;;) {
370 			const char __user * p;
371 
372 			if (get_user(p, argv))
373 				return -EFAULT;
374 			if (!p)
375 				break;
376 			argv++;
377 			if (i++ >= max)
378 				return -E2BIG;
379 
380 			if (fatal_signal_pending(current))
381 				return -ERESTARTNOHAND;
382 			cond_resched();
383 		}
384 	}
385 	return i;
386 }
387 
388 /*
389  * 'copy_strings()' copies argument/environment strings from the old
390  * processes's memory to the new process's stack.  The call to get_user_pages()
391  * ensures the destination page is created and not swapped out.
392  */
393 static int copy_strings(int argc, const char __user *const __user *argv,
394 			struct linux_binprm *bprm)
395 {
396 	struct page *kmapped_page = NULL;
397 	char *kaddr = NULL;
398 	unsigned long kpos = 0;
399 	int ret;
400 
401 	while (argc-- > 0) {
402 		const char __user *str;
403 		int len;
404 		unsigned long pos;
405 
406 		if (get_user(str, argv+argc) ||
407 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
408 			ret = -EFAULT;
409 			goto out;
410 		}
411 
412 		if (!valid_arg_len(bprm, len)) {
413 			ret = -E2BIG;
414 			goto out;
415 		}
416 
417 		/* We're going to work our way backwords. */
418 		pos = bprm->p;
419 		str += len;
420 		bprm->p -= len;
421 
422 		while (len > 0) {
423 			int offset, bytes_to_copy;
424 
425 			if (fatal_signal_pending(current)) {
426 				ret = -ERESTARTNOHAND;
427 				goto out;
428 			}
429 			cond_resched();
430 
431 			offset = pos % PAGE_SIZE;
432 			if (offset == 0)
433 				offset = PAGE_SIZE;
434 
435 			bytes_to_copy = offset;
436 			if (bytes_to_copy > len)
437 				bytes_to_copy = len;
438 
439 			offset -= bytes_to_copy;
440 			pos -= bytes_to_copy;
441 			str -= bytes_to_copy;
442 			len -= bytes_to_copy;
443 
444 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
445 				struct page *page;
446 
447 				page = get_arg_page(bprm, pos, 1);
448 				if (!page) {
449 					ret = -E2BIG;
450 					goto out;
451 				}
452 
453 				if (kmapped_page) {
454 					flush_kernel_dcache_page(kmapped_page);
455 					kunmap(kmapped_page);
456 					put_arg_page(kmapped_page);
457 				}
458 				kmapped_page = page;
459 				kaddr = kmap(kmapped_page);
460 				kpos = pos & PAGE_MASK;
461 				flush_arg_page(bprm, kpos, kmapped_page);
462 			}
463 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
464 				ret = -EFAULT;
465 				goto out;
466 			}
467 		}
468 	}
469 	ret = 0;
470 out:
471 	if (kmapped_page) {
472 		flush_kernel_dcache_page(kmapped_page);
473 		kunmap(kmapped_page);
474 		put_arg_page(kmapped_page);
475 	}
476 	return ret;
477 }
478 
479 /*
480  * Like copy_strings, but get argv and its values from kernel memory.
481  */
482 int copy_strings_kernel(int argc, const char *const *argv,
483 			struct linux_binprm *bprm)
484 {
485 	int r;
486 	mm_segment_t oldfs = get_fs();
487 	set_fs(KERNEL_DS);
488 	r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
489 	set_fs(oldfs);
490 	return r;
491 }
492 EXPORT_SYMBOL(copy_strings_kernel);
493 
494 #ifdef CONFIG_MMU
495 
496 /*
497  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
498  * the binfmt code determines where the new stack should reside, we shift it to
499  * its final location.  The process proceeds as follows:
500  *
501  * 1) Use shift to calculate the new vma endpoints.
502  * 2) Extend vma to cover both the old and new ranges.  This ensures the
503  *    arguments passed to subsequent functions are consistent.
504  * 3) Move vma's page tables to the new range.
505  * 4) Free up any cleared pgd range.
506  * 5) Shrink the vma to cover only the new range.
507  */
508 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
509 {
510 	struct mm_struct *mm = vma->vm_mm;
511 	unsigned long old_start = vma->vm_start;
512 	unsigned long old_end = vma->vm_end;
513 	unsigned long length = old_end - old_start;
514 	unsigned long new_start = old_start - shift;
515 	unsigned long new_end = old_end - shift;
516 	struct mmu_gather *tlb;
517 
518 	BUG_ON(new_start > new_end);
519 
520 	/*
521 	 * ensure there are no vmas between where we want to go
522 	 * and where we are
523 	 */
524 	if (vma != find_vma(mm, new_start))
525 		return -EFAULT;
526 
527 	/*
528 	 * cover the whole range: [new_start, old_end)
529 	 */
530 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
531 		return -ENOMEM;
532 
533 	/*
534 	 * move the page tables downwards, on failure we rely on
535 	 * process cleanup to remove whatever mess we made.
536 	 */
537 	if (length != move_page_tables(vma, old_start,
538 				       vma, new_start, length))
539 		return -ENOMEM;
540 
541 	lru_add_drain();
542 	tlb = tlb_gather_mmu(mm, 0);
543 	if (new_end > old_start) {
544 		/*
545 		 * when the old and new regions overlap clear from new_end.
546 		 */
547 		free_pgd_range(tlb, new_end, old_end, new_end,
548 			vma->vm_next ? vma->vm_next->vm_start : 0);
549 	} else {
550 		/*
551 		 * otherwise, clean from old_start; this is done to not touch
552 		 * the address space in [new_end, old_start) some architectures
553 		 * have constraints on va-space that make this illegal (IA64) -
554 		 * for the others its just a little faster.
555 		 */
556 		free_pgd_range(tlb, old_start, old_end, new_end,
557 			vma->vm_next ? vma->vm_next->vm_start : 0);
558 	}
559 	tlb_finish_mmu(tlb, new_end, old_end);
560 
561 	/*
562 	 * Shrink the vma to just the new range.  Always succeeds.
563 	 */
564 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
565 
566 	return 0;
567 }
568 
569 /*
570  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
571  * the stack is optionally relocated, and some extra space is added.
572  */
573 int setup_arg_pages(struct linux_binprm *bprm,
574 		    unsigned long stack_top,
575 		    int executable_stack)
576 {
577 	unsigned long ret;
578 	unsigned long stack_shift;
579 	struct mm_struct *mm = current->mm;
580 	struct vm_area_struct *vma = bprm->vma;
581 	struct vm_area_struct *prev = NULL;
582 	unsigned long vm_flags;
583 	unsigned long stack_base;
584 	unsigned long stack_size;
585 	unsigned long stack_expand;
586 	unsigned long rlim_stack;
587 
588 #ifdef CONFIG_STACK_GROWSUP
589 	/* Limit stack size to 1GB */
590 	stack_base = rlimit_max(RLIMIT_STACK);
591 	if (stack_base > (1 << 30))
592 		stack_base = 1 << 30;
593 
594 	/* Make sure we didn't let the argument array grow too large. */
595 	if (vma->vm_end - vma->vm_start > stack_base)
596 		return -ENOMEM;
597 
598 	stack_base = PAGE_ALIGN(stack_top - stack_base);
599 
600 	stack_shift = vma->vm_start - stack_base;
601 	mm->arg_start = bprm->p - stack_shift;
602 	bprm->p = vma->vm_end - stack_shift;
603 #else
604 	stack_top = arch_align_stack(stack_top);
605 	stack_top = PAGE_ALIGN(stack_top);
606 
607 	if (unlikely(stack_top < mmap_min_addr) ||
608 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
609 		return -ENOMEM;
610 
611 	stack_shift = vma->vm_end - stack_top;
612 
613 	bprm->p -= stack_shift;
614 	mm->arg_start = bprm->p;
615 #endif
616 
617 	if (bprm->loader)
618 		bprm->loader -= stack_shift;
619 	bprm->exec -= stack_shift;
620 
621 	down_write(&mm->mmap_sem);
622 	vm_flags = VM_STACK_FLAGS;
623 
624 	/*
625 	 * Adjust stack execute permissions; explicitly enable for
626 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
627 	 * (arch default) otherwise.
628 	 */
629 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
630 		vm_flags |= VM_EXEC;
631 	else if (executable_stack == EXSTACK_DISABLE_X)
632 		vm_flags &= ~VM_EXEC;
633 	vm_flags |= mm->def_flags;
634 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
635 
636 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
637 			vm_flags);
638 	if (ret)
639 		goto out_unlock;
640 	BUG_ON(prev != vma);
641 
642 	/* Move stack pages down in memory. */
643 	if (stack_shift) {
644 		ret = shift_arg_pages(vma, stack_shift);
645 		if (ret)
646 			goto out_unlock;
647 	}
648 
649 	/* mprotect_fixup is overkill to remove the temporary stack flags */
650 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
651 
652 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
653 	stack_size = vma->vm_end - vma->vm_start;
654 	/*
655 	 * Align this down to a page boundary as expand_stack
656 	 * will align it up.
657 	 */
658 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
659 #ifdef CONFIG_STACK_GROWSUP
660 	if (stack_size + stack_expand > rlim_stack)
661 		stack_base = vma->vm_start + rlim_stack;
662 	else
663 		stack_base = vma->vm_end + stack_expand;
664 #else
665 	if (stack_size + stack_expand > rlim_stack)
666 		stack_base = vma->vm_end - rlim_stack;
667 	else
668 		stack_base = vma->vm_start - stack_expand;
669 #endif
670 	current->mm->start_stack = bprm->p;
671 	ret = expand_stack(vma, stack_base);
672 	if (ret)
673 		ret = -EFAULT;
674 
675 out_unlock:
676 	up_write(&mm->mmap_sem);
677 	return ret;
678 }
679 EXPORT_SYMBOL(setup_arg_pages);
680 
681 #endif /* CONFIG_MMU */
682 
683 struct file *open_exec(const char *name)
684 {
685 	struct file *file;
686 	int err;
687 
688 	file = do_filp_open(AT_FDCWD, name,
689 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
690 				MAY_EXEC | MAY_OPEN);
691 	if (IS_ERR(file))
692 		goto out;
693 
694 	err = -EACCES;
695 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
696 		goto exit;
697 
698 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
699 		goto exit;
700 
701 	fsnotify_open(file);
702 
703 	err = deny_write_access(file);
704 	if (err)
705 		goto exit;
706 
707 out:
708 	return file;
709 
710 exit:
711 	fput(file);
712 	return ERR_PTR(err);
713 }
714 EXPORT_SYMBOL(open_exec);
715 
716 int kernel_read(struct file *file, loff_t offset,
717 		char *addr, unsigned long count)
718 {
719 	mm_segment_t old_fs;
720 	loff_t pos = offset;
721 	int result;
722 
723 	old_fs = get_fs();
724 	set_fs(get_ds());
725 	/* The cast to a user pointer is valid due to the set_fs() */
726 	result = vfs_read(file, (void __user *)addr, count, &pos);
727 	set_fs(old_fs);
728 	return result;
729 }
730 
731 EXPORT_SYMBOL(kernel_read);
732 
733 static int exec_mmap(struct mm_struct *mm)
734 {
735 	struct task_struct *tsk;
736 	struct mm_struct * old_mm, *active_mm;
737 
738 	/* Notify parent that we're no longer interested in the old VM */
739 	tsk = current;
740 	old_mm = current->mm;
741 	sync_mm_rss(tsk, old_mm);
742 	mm_release(tsk, old_mm);
743 
744 	if (old_mm) {
745 		/*
746 		 * Make sure that if there is a core dump in progress
747 		 * for the old mm, we get out and die instead of going
748 		 * through with the exec.  We must hold mmap_sem around
749 		 * checking core_state and changing tsk->mm.
750 		 */
751 		down_read(&old_mm->mmap_sem);
752 		if (unlikely(old_mm->core_state)) {
753 			up_read(&old_mm->mmap_sem);
754 			return -EINTR;
755 		}
756 	}
757 	task_lock(tsk);
758 	active_mm = tsk->active_mm;
759 	tsk->mm = mm;
760 	tsk->active_mm = mm;
761 	activate_mm(active_mm, mm);
762 	task_unlock(tsk);
763 	arch_pick_mmap_layout(mm);
764 	if (old_mm) {
765 		up_read(&old_mm->mmap_sem);
766 		BUG_ON(active_mm != old_mm);
767 		mm_update_next_owner(old_mm);
768 		mmput(old_mm);
769 		return 0;
770 	}
771 	mmdrop(active_mm);
772 	return 0;
773 }
774 
775 /*
776  * This function makes sure the current process has its own signal table,
777  * so that flush_signal_handlers can later reset the handlers without
778  * disturbing other processes.  (Other processes might share the signal
779  * table via the CLONE_SIGHAND option to clone().)
780  */
781 static int de_thread(struct task_struct *tsk)
782 {
783 	struct signal_struct *sig = tsk->signal;
784 	struct sighand_struct *oldsighand = tsk->sighand;
785 	spinlock_t *lock = &oldsighand->siglock;
786 
787 	if (thread_group_empty(tsk))
788 		goto no_thread_group;
789 
790 	/*
791 	 * Kill all other threads in the thread group.
792 	 */
793 	spin_lock_irq(lock);
794 	if (signal_group_exit(sig)) {
795 		/*
796 		 * Another group action in progress, just
797 		 * return so that the signal is processed.
798 		 */
799 		spin_unlock_irq(lock);
800 		return -EAGAIN;
801 	}
802 
803 	sig->group_exit_task = tsk;
804 	sig->notify_count = zap_other_threads(tsk);
805 	if (!thread_group_leader(tsk))
806 		sig->notify_count--;
807 
808 	while (sig->notify_count) {
809 		__set_current_state(TASK_UNINTERRUPTIBLE);
810 		spin_unlock_irq(lock);
811 		schedule();
812 		spin_lock_irq(lock);
813 	}
814 	spin_unlock_irq(lock);
815 
816 	/*
817 	 * At this point all other threads have exited, all we have to
818 	 * do is to wait for the thread group leader to become inactive,
819 	 * and to assume its PID:
820 	 */
821 	if (!thread_group_leader(tsk)) {
822 		struct task_struct *leader = tsk->group_leader;
823 
824 		sig->notify_count = -1;	/* for exit_notify() */
825 		for (;;) {
826 			write_lock_irq(&tasklist_lock);
827 			if (likely(leader->exit_state))
828 				break;
829 			__set_current_state(TASK_UNINTERRUPTIBLE);
830 			write_unlock_irq(&tasklist_lock);
831 			schedule();
832 		}
833 
834 		/*
835 		 * The only record we have of the real-time age of a
836 		 * process, regardless of execs it's done, is start_time.
837 		 * All the past CPU time is accumulated in signal_struct
838 		 * from sister threads now dead.  But in this non-leader
839 		 * exec, nothing survives from the original leader thread,
840 		 * whose birth marks the true age of this process now.
841 		 * When we take on its identity by switching to its PID, we
842 		 * also take its birthdate (always earlier than our own).
843 		 */
844 		tsk->start_time = leader->start_time;
845 
846 		BUG_ON(!same_thread_group(leader, tsk));
847 		BUG_ON(has_group_leader_pid(tsk));
848 		/*
849 		 * An exec() starts a new thread group with the
850 		 * TGID of the previous thread group. Rehash the
851 		 * two threads with a switched PID, and release
852 		 * the former thread group leader:
853 		 */
854 
855 		/* Become a process group leader with the old leader's pid.
856 		 * The old leader becomes a thread of the this thread group.
857 		 * Note: The old leader also uses this pid until release_task
858 		 *       is called.  Odd but simple and correct.
859 		 */
860 		detach_pid(tsk, PIDTYPE_PID);
861 		tsk->pid = leader->pid;
862 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
863 		transfer_pid(leader, tsk, PIDTYPE_PGID);
864 		transfer_pid(leader, tsk, PIDTYPE_SID);
865 
866 		list_replace_rcu(&leader->tasks, &tsk->tasks);
867 		list_replace_init(&leader->sibling, &tsk->sibling);
868 
869 		tsk->group_leader = tsk;
870 		leader->group_leader = tsk;
871 
872 		tsk->exit_signal = SIGCHLD;
873 
874 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
875 		leader->exit_state = EXIT_DEAD;
876 		write_unlock_irq(&tasklist_lock);
877 
878 		release_task(leader);
879 	}
880 
881 	sig->group_exit_task = NULL;
882 	sig->notify_count = 0;
883 
884 no_thread_group:
885 	if (current->mm)
886 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
887 
888 	exit_itimers(sig);
889 	flush_itimer_signals();
890 
891 	if (atomic_read(&oldsighand->count) != 1) {
892 		struct sighand_struct *newsighand;
893 		/*
894 		 * This ->sighand is shared with the CLONE_SIGHAND
895 		 * but not CLONE_THREAD task, switch to the new one.
896 		 */
897 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
898 		if (!newsighand)
899 			return -ENOMEM;
900 
901 		atomic_set(&newsighand->count, 1);
902 		memcpy(newsighand->action, oldsighand->action,
903 		       sizeof(newsighand->action));
904 
905 		write_lock_irq(&tasklist_lock);
906 		spin_lock(&oldsighand->siglock);
907 		rcu_assign_pointer(tsk->sighand, newsighand);
908 		spin_unlock(&oldsighand->siglock);
909 		write_unlock_irq(&tasklist_lock);
910 
911 		__cleanup_sighand(oldsighand);
912 	}
913 
914 	BUG_ON(!thread_group_leader(tsk));
915 	return 0;
916 }
917 
918 /*
919  * These functions flushes out all traces of the currently running executable
920  * so that a new one can be started
921  */
922 static void flush_old_files(struct files_struct * files)
923 {
924 	long j = -1;
925 	struct fdtable *fdt;
926 
927 	spin_lock(&files->file_lock);
928 	for (;;) {
929 		unsigned long set, i;
930 
931 		j++;
932 		i = j * __NFDBITS;
933 		fdt = files_fdtable(files);
934 		if (i >= fdt->max_fds)
935 			break;
936 		set = fdt->close_on_exec->fds_bits[j];
937 		if (!set)
938 			continue;
939 		fdt->close_on_exec->fds_bits[j] = 0;
940 		spin_unlock(&files->file_lock);
941 		for ( ; set ; i++,set >>= 1) {
942 			if (set & 1) {
943 				sys_close(i);
944 			}
945 		}
946 		spin_lock(&files->file_lock);
947 
948 	}
949 	spin_unlock(&files->file_lock);
950 }
951 
952 char *get_task_comm(char *buf, struct task_struct *tsk)
953 {
954 	/* buf must be at least sizeof(tsk->comm) in size */
955 	task_lock(tsk);
956 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
957 	task_unlock(tsk);
958 	return buf;
959 }
960 
961 void set_task_comm(struct task_struct *tsk, char *buf)
962 {
963 	task_lock(tsk);
964 
965 	/*
966 	 * Threads may access current->comm without holding
967 	 * the task lock, so write the string carefully.
968 	 * Readers without a lock may see incomplete new
969 	 * names but are safe from non-terminating string reads.
970 	 */
971 	memset(tsk->comm, 0, TASK_COMM_LEN);
972 	wmb();
973 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
974 	task_unlock(tsk);
975 	perf_event_comm(tsk);
976 }
977 
978 int flush_old_exec(struct linux_binprm * bprm)
979 {
980 	int retval;
981 
982 	/*
983 	 * Make sure we have a private signal table and that
984 	 * we are unassociated from the previous thread group.
985 	 */
986 	retval = de_thread(current);
987 	if (retval)
988 		goto out;
989 
990 	set_mm_exe_file(bprm->mm, bprm->file);
991 
992 	/*
993 	 * Release all of the old mmap stuff
994 	 */
995 	retval = exec_mmap(bprm->mm);
996 	if (retval)
997 		goto out;
998 
999 	bprm->mm = NULL;		/* We're using it now */
1000 
1001 	current->flags &= ~PF_RANDOMIZE;
1002 	flush_thread();
1003 	current->personality &= ~bprm->per_clear;
1004 
1005 	return 0;
1006 
1007 out:
1008 	return retval;
1009 }
1010 EXPORT_SYMBOL(flush_old_exec);
1011 
1012 void setup_new_exec(struct linux_binprm * bprm)
1013 {
1014 	int i, ch;
1015 	const char *name;
1016 	char tcomm[sizeof(current->comm)];
1017 
1018 	arch_pick_mmap_layout(current->mm);
1019 
1020 	/* This is the point of no return */
1021 	current->sas_ss_sp = current->sas_ss_size = 0;
1022 
1023 	if (current_euid() == current_uid() && current_egid() == current_gid())
1024 		set_dumpable(current->mm, 1);
1025 	else
1026 		set_dumpable(current->mm, suid_dumpable);
1027 
1028 	name = bprm->filename;
1029 
1030 	/* Copies the binary name from after last slash */
1031 	for (i=0; (ch = *(name++)) != '\0';) {
1032 		if (ch == '/')
1033 			i = 0; /* overwrite what we wrote */
1034 		else
1035 			if (i < (sizeof(tcomm) - 1))
1036 				tcomm[i++] = ch;
1037 	}
1038 	tcomm[i] = '\0';
1039 	set_task_comm(current, tcomm);
1040 
1041 	/* Set the new mm task size. We have to do that late because it may
1042 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1043 	 * some architectures like powerpc
1044 	 */
1045 	current->mm->task_size = TASK_SIZE;
1046 
1047 	/* install the new credentials */
1048 	if (bprm->cred->uid != current_euid() ||
1049 	    bprm->cred->gid != current_egid()) {
1050 		current->pdeath_signal = 0;
1051 	} else if (file_permission(bprm->file, MAY_READ) ||
1052 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1053 		set_dumpable(current->mm, suid_dumpable);
1054 	}
1055 
1056 	/*
1057 	 * Flush performance counters when crossing a
1058 	 * security domain:
1059 	 */
1060 	if (!get_dumpable(current->mm))
1061 		perf_event_exit_task(current);
1062 
1063 	/* An exec changes our domain. We are no longer part of the thread
1064 	   group */
1065 
1066 	current->self_exec_id++;
1067 
1068 	flush_signal_handlers(current, 0);
1069 	flush_old_files(current->files);
1070 }
1071 EXPORT_SYMBOL(setup_new_exec);
1072 
1073 /*
1074  * Prepare credentials and lock ->cred_guard_mutex.
1075  * install_exec_creds() commits the new creds and drops the lock.
1076  * Or, if exec fails before, free_bprm() should release ->cred and
1077  * and unlock.
1078  */
1079 int prepare_bprm_creds(struct linux_binprm *bprm)
1080 {
1081 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1082 		return -ERESTARTNOINTR;
1083 
1084 	bprm->cred = prepare_exec_creds();
1085 	if (likely(bprm->cred))
1086 		return 0;
1087 
1088 	mutex_unlock(&current->cred_guard_mutex);
1089 	return -ENOMEM;
1090 }
1091 
1092 void free_bprm(struct linux_binprm *bprm)
1093 {
1094 	free_arg_pages(bprm);
1095 	if (bprm->cred) {
1096 		mutex_unlock(&current->cred_guard_mutex);
1097 		abort_creds(bprm->cred);
1098 	}
1099 	kfree(bprm);
1100 }
1101 
1102 /*
1103  * install the new credentials for this executable
1104  */
1105 void install_exec_creds(struct linux_binprm *bprm)
1106 {
1107 	security_bprm_committing_creds(bprm);
1108 
1109 	commit_creds(bprm->cred);
1110 	bprm->cred = NULL;
1111 	/*
1112 	 * cred_guard_mutex must be held at least to this point to prevent
1113 	 * ptrace_attach() from altering our determination of the task's
1114 	 * credentials; any time after this it may be unlocked.
1115 	 */
1116 	security_bprm_committed_creds(bprm);
1117 	mutex_unlock(&current->cred_guard_mutex);
1118 }
1119 EXPORT_SYMBOL(install_exec_creds);
1120 
1121 /*
1122  * determine how safe it is to execute the proposed program
1123  * - the caller must hold current->cred_guard_mutex to protect against
1124  *   PTRACE_ATTACH
1125  */
1126 int check_unsafe_exec(struct linux_binprm *bprm)
1127 {
1128 	struct task_struct *p = current, *t;
1129 	unsigned n_fs;
1130 	int res = 0;
1131 
1132 	bprm->unsafe = tracehook_unsafe_exec(p);
1133 
1134 	n_fs = 1;
1135 	spin_lock(&p->fs->lock);
1136 	rcu_read_lock();
1137 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1138 		if (t->fs == p->fs)
1139 			n_fs++;
1140 	}
1141 	rcu_read_unlock();
1142 
1143 	if (p->fs->users > n_fs) {
1144 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1145 	} else {
1146 		res = -EAGAIN;
1147 		if (!p->fs->in_exec) {
1148 			p->fs->in_exec = 1;
1149 			res = 1;
1150 		}
1151 	}
1152 	spin_unlock(&p->fs->lock);
1153 
1154 	return res;
1155 }
1156 
1157 /*
1158  * Fill the binprm structure from the inode.
1159  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1160  *
1161  * This may be called multiple times for binary chains (scripts for example).
1162  */
1163 int prepare_binprm(struct linux_binprm *bprm)
1164 {
1165 	umode_t mode;
1166 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1167 	int retval;
1168 
1169 	mode = inode->i_mode;
1170 	if (bprm->file->f_op == NULL)
1171 		return -EACCES;
1172 
1173 	/* clear any previous set[ug]id data from a previous binary */
1174 	bprm->cred->euid = current_euid();
1175 	bprm->cred->egid = current_egid();
1176 
1177 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1178 		/* Set-uid? */
1179 		if (mode & S_ISUID) {
1180 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1181 			bprm->cred->euid = inode->i_uid;
1182 		}
1183 
1184 		/* Set-gid? */
1185 		/*
1186 		 * If setgid is set but no group execute bit then this
1187 		 * is a candidate for mandatory locking, not a setgid
1188 		 * executable.
1189 		 */
1190 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1191 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1192 			bprm->cred->egid = inode->i_gid;
1193 		}
1194 	}
1195 
1196 	/* fill in binprm security blob */
1197 	retval = security_bprm_set_creds(bprm);
1198 	if (retval)
1199 		return retval;
1200 	bprm->cred_prepared = 1;
1201 
1202 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1203 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1204 }
1205 
1206 EXPORT_SYMBOL(prepare_binprm);
1207 
1208 /*
1209  * Arguments are '\0' separated strings found at the location bprm->p
1210  * points to; chop off the first by relocating brpm->p to right after
1211  * the first '\0' encountered.
1212  */
1213 int remove_arg_zero(struct linux_binprm *bprm)
1214 {
1215 	int ret = 0;
1216 	unsigned long offset;
1217 	char *kaddr;
1218 	struct page *page;
1219 
1220 	if (!bprm->argc)
1221 		return 0;
1222 
1223 	do {
1224 		offset = bprm->p & ~PAGE_MASK;
1225 		page = get_arg_page(bprm, bprm->p, 0);
1226 		if (!page) {
1227 			ret = -EFAULT;
1228 			goto out;
1229 		}
1230 		kaddr = kmap_atomic(page, KM_USER0);
1231 
1232 		for (; offset < PAGE_SIZE && kaddr[offset];
1233 				offset++, bprm->p++)
1234 			;
1235 
1236 		kunmap_atomic(kaddr, KM_USER0);
1237 		put_arg_page(page);
1238 
1239 		if (offset == PAGE_SIZE)
1240 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1241 	} while (offset == PAGE_SIZE);
1242 
1243 	bprm->p++;
1244 	bprm->argc--;
1245 	ret = 0;
1246 
1247 out:
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL(remove_arg_zero);
1251 
1252 /*
1253  * cycle the list of binary formats handler, until one recognizes the image
1254  */
1255 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1256 {
1257 	unsigned int depth = bprm->recursion_depth;
1258 	int try,retval;
1259 	struct linux_binfmt *fmt;
1260 
1261 	retval = security_bprm_check(bprm);
1262 	if (retval)
1263 		return retval;
1264 
1265 	/* kernel module loader fixup */
1266 	/* so we don't try to load run modprobe in kernel space. */
1267 	set_fs(USER_DS);
1268 
1269 	retval = audit_bprm(bprm);
1270 	if (retval)
1271 		return retval;
1272 
1273 	retval = -ENOENT;
1274 	for (try=0; try<2; try++) {
1275 		read_lock(&binfmt_lock);
1276 		list_for_each_entry(fmt, &formats, lh) {
1277 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1278 			if (!fn)
1279 				continue;
1280 			if (!try_module_get(fmt->module))
1281 				continue;
1282 			read_unlock(&binfmt_lock);
1283 			retval = fn(bprm, regs);
1284 			/*
1285 			 * Restore the depth counter to its starting value
1286 			 * in this call, so we don't have to rely on every
1287 			 * load_binary function to restore it on return.
1288 			 */
1289 			bprm->recursion_depth = depth;
1290 			if (retval >= 0) {
1291 				if (depth == 0)
1292 					tracehook_report_exec(fmt, bprm, regs);
1293 				put_binfmt(fmt);
1294 				allow_write_access(bprm->file);
1295 				if (bprm->file)
1296 					fput(bprm->file);
1297 				bprm->file = NULL;
1298 				current->did_exec = 1;
1299 				proc_exec_connector(current);
1300 				return retval;
1301 			}
1302 			read_lock(&binfmt_lock);
1303 			put_binfmt(fmt);
1304 			if (retval != -ENOEXEC || bprm->mm == NULL)
1305 				break;
1306 			if (!bprm->file) {
1307 				read_unlock(&binfmt_lock);
1308 				return retval;
1309 			}
1310 		}
1311 		read_unlock(&binfmt_lock);
1312 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1313 			break;
1314 #ifdef CONFIG_MODULES
1315 		} else {
1316 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1317 			if (printable(bprm->buf[0]) &&
1318 			    printable(bprm->buf[1]) &&
1319 			    printable(bprm->buf[2]) &&
1320 			    printable(bprm->buf[3]))
1321 				break; /* -ENOEXEC */
1322 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1323 #endif
1324 		}
1325 	}
1326 	return retval;
1327 }
1328 
1329 EXPORT_SYMBOL(search_binary_handler);
1330 
1331 /*
1332  * sys_execve() executes a new program.
1333  */
1334 int do_execve(const char * filename,
1335 	const char __user *const __user *argv,
1336 	const char __user *const __user *envp,
1337 	struct pt_regs * regs)
1338 {
1339 	struct linux_binprm *bprm;
1340 	struct file *file;
1341 	struct files_struct *displaced;
1342 	bool clear_in_exec;
1343 	int retval;
1344 
1345 	retval = unshare_files(&displaced);
1346 	if (retval)
1347 		goto out_ret;
1348 
1349 	retval = -ENOMEM;
1350 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1351 	if (!bprm)
1352 		goto out_files;
1353 
1354 	retval = prepare_bprm_creds(bprm);
1355 	if (retval)
1356 		goto out_free;
1357 
1358 	retval = check_unsafe_exec(bprm);
1359 	if (retval < 0)
1360 		goto out_free;
1361 	clear_in_exec = retval;
1362 	current->in_execve = 1;
1363 
1364 	file = open_exec(filename);
1365 	retval = PTR_ERR(file);
1366 	if (IS_ERR(file))
1367 		goto out_unmark;
1368 
1369 	sched_exec();
1370 
1371 	bprm->file = file;
1372 	bprm->filename = filename;
1373 	bprm->interp = filename;
1374 
1375 	retval = bprm_mm_init(bprm);
1376 	if (retval)
1377 		goto out_file;
1378 
1379 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1380 	if ((retval = bprm->argc) < 0)
1381 		goto out;
1382 
1383 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1384 	if ((retval = bprm->envc) < 0)
1385 		goto out;
1386 
1387 	retval = prepare_binprm(bprm);
1388 	if (retval < 0)
1389 		goto out;
1390 
1391 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1392 	if (retval < 0)
1393 		goto out;
1394 
1395 	bprm->exec = bprm->p;
1396 	retval = copy_strings(bprm->envc, envp, bprm);
1397 	if (retval < 0)
1398 		goto out;
1399 
1400 	retval = copy_strings(bprm->argc, argv, bprm);
1401 	if (retval < 0)
1402 		goto out;
1403 
1404 	current->flags &= ~PF_KTHREAD;
1405 	retval = search_binary_handler(bprm,regs);
1406 	if (retval < 0)
1407 		goto out;
1408 
1409 	/* execve succeeded */
1410 	current->fs->in_exec = 0;
1411 	current->in_execve = 0;
1412 	acct_update_integrals(current);
1413 	free_bprm(bprm);
1414 	if (displaced)
1415 		put_files_struct(displaced);
1416 	return retval;
1417 
1418 out:
1419 	if (bprm->mm)
1420 		mmput (bprm->mm);
1421 
1422 out_file:
1423 	if (bprm->file) {
1424 		allow_write_access(bprm->file);
1425 		fput(bprm->file);
1426 	}
1427 
1428 out_unmark:
1429 	if (clear_in_exec)
1430 		current->fs->in_exec = 0;
1431 	current->in_execve = 0;
1432 
1433 out_free:
1434 	free_bprm(bprm);
1435 
1436 out_files:
1437 	if (displaced)
1438 		reset_files_struct(displaced);
1439 out_ret:
1440 	return retval;
1441 }
1442 
1443 void set_binfmt(struct linux_binfmt *new)
1444 {
1445 	struct mm_struct *mm = current->mm;
1446 
1447 	if (mm->binfmt)
1448 		module_put(mm->binfmt->module);
1449 
1450 	mm->binfmt = new;
1451 	if (new)
1452 		__module_get(new->module);
1453 }
1454 
1455 EXPORT_SYMBOL(set_binfmt);
1456 
1457 /* format_corename will inspect the pattern parameter, and output a
1458  * name into corename, which must have space for at least
1459  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1460  */
1461 static int format_corename(char *corename, long signr)
1462 {
1463 	const struct cred *cred = current_cred();
1464 	const char *pat_ptr = core_pattern;
1465 	int ispipe = (*pat_ptr == '|');
1466 	char *out_ptr = corename;
1467 	char *const out_end = corename + CORENAME_MAX_SIZE;
1468 	int rc;
1469 	int pid_in_pattern = 0;
1470 
1471 	/* Repeat as long as we have more pattern to process and more output
1472 	   space */
1473 	while (*pat_ptr) {
1474 		if (*pat_ptr != '%') {
1475 			if (out_ptr == out_end)
1476 				goto out;
1477 			*out_ptr++ = *pat_ptr++;
1478 		} else {
1479 			switch (*++pat_ptr) {
1480 			case 0:
1481 				goto out;
1482 			/* Double percent, output one percent */
1483 			case '%':
1484 				if (out_ptr == out_end)
1485 					goto out;
1486 				*out_ptr++ = '%';
1487 				break;
1488 			/* pid */
1489 			case 'p':
1490 				pid_in_pattern = 1;
1491 				rc = snprintf(out_ptr, out_end - out_ptr,
1492 					      "%d", task_tgid_vnr(current));
1493 				if (rc > out_end - out_ptr)
1494 					goto out;
1495 				out_ptr += rc;
1496 				break;
1497 			/* uid */
1498 			case 'u':
1499 				rc = snprintf(out_ptr, out_end - out_ptr,
1500 					      "%d", cred->uid);
1501 				if (rc > out_end - out_ptr)
1502 					goto out;
1503 				out_ptr += rc;
1504 				break;
1505 			/* gid */
1506 			case 'g':
1507 				rc = snprintf(out_ptr, out_end - out_ptr,
1508 					      "%d", cred->gid);
1509 				if (rc > out_end - out_ptr)
1510 					goto out;
1511 				out_ptr += rc;
1512 				break;
1513 			/* signal that caused the coredump */
1514 			case 's':
1515 				rc = snprintf(out_ptr, out_end - out_ptr,
1516 					      "%ld", signr);
1517 				if (rc > out_end - out_ptr)
1518 					goto out;
1519 				out_ptr += rc;
1520 				break;
1521 			/* UNIX time of coredump */
1522 			case 't': {
1523 				struct timeval tv;
1524 				do_gettimeofday(&tv);
1525 				rc = snprintf(out_ptr, out_end - out_ptr,
1526 					      "%lu", tv.tv_sec);
1527 				if (rc > out_end - out_ptr)
1528 					goto out;
1529 				out_ptr += rc;
1530 				break;
1531 			}
1532 			/* hostname */
1533 			case 'h':
1534 				down_read(&uts_sem);
1535 				rc = snprintf(out_ptr, out_end - out_ptr,
1536 					      "%s", utsname()->nodename);
1537 				up_read(&uts_sem);
1538 				if (rc > out_end - out_ptr)
1539 					goto out;
1540 				out_ptr += rc;
1541 				break;
1542 			/* executable */
1543 			case 'e':
1544 				rc = snprintf(out_ptr, out_end - out_ptr,
1545 					      "%s", current->comm);
1546 				if (rc > out_end - out_ptr)
1547 					goto out;
1548 				out_ptr += rc;
1549 				break;
1550 			/* core limit size */
1551 			case 'c':
1552 				rc = snprintf(out_ptr, out_end - out_ptr,
1553 					      "%lu", rlimit(RLIMIT_CORE));
1554 				if (rc > out_end - out_ptr)
1555 					goto out;
1556 				out_ptr += rc;
1557 				break;
1558 			default:
1559 				break;
1560 			}
1561 			++pat_ptr;
1562 		}
1563 	}
1564 	/* Backward compatibility with core_uses_pid:
1565 	 *
1566 	 * If core_pattern does not include a %p (as is the default)
1567 	 * and core_uses_pid is set, then .%pid will be appended to
1568 	 * the filename. Do not do this for piped commands. */
1569 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1570 		rc = snprintf(out_ptr, out_end - out_ptr,
1571 			      ".%d", task_tgid_vnr(current));
1572 		if (rc > out_end - out_ptr)
1573 			goto out;
1574 		out_ptr += rc;
1575 	}
1576 out:
1577 	*out_ptr = 0;
1578 	return ispipe;
1579 }
1580 
1581 static int zap_process(struct task_struct *start, int exit_code)
1582 {
1583 	struct task_struct *t;
1584 	int nr = 0;
1585 
1586 	start->signal->flags = SIGNAL_GROUP_EXIT;
1587 	start->signal->group_exit_code = exit_code;
1588 	start->signal->group_stop_count = 0;
1589 
1590 	t = start;
1591 	do {
1592 		if (t != current && t->mm) {
1593 			sigaddset(&t->pending.signal, SIGKILL);
1594 			signal_wake_up(t, 1);
1595 			nr++;
1596 		}
1597 	} while_each_thread(start, t);
1598 
1599 	return nr;
1600 }
1601 
1602 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1603 				struct core_state *core_state, int exit_code)
1604 {
1605 	struct task_struct *g, *p;
1606 	unsigned long flags;
1607 	int nr = -EAGAIN;
1608 
1609 	spin_lock_irq(&tsk->sighand->siglock);
1610 	if (!signal_group_exit(tsk->signal)) {
1611 		mm->core_state = core_state;
1612 		nr = zap_process(tsk, exit_code);
1613 	}
1614 	spin_unlock_irq(&tsk->sighand->siglock);
1615 	if (unlikely(nr < 0))
1616 		return nr;
1617 
1618 	if (atomic_read(&mm->mm_users) == nr + 1)
1619 		goto done;
1620 	/*
1621 	 * We should find and kill all tasks which use this mm, and we should
1622 	 * count them correctly into ->nr_threads. We don't take tasklist
1623 	 * lock, but this is safe wrt:
1624 	 *
1625 	 * fork:
1626 	 *	None of sub-threads can fork after zap_process(leader). All
1627 	 *	processes which were created before this point should be
1628 	 *	visible to zap_threads() because copy_process() adds the new
1629 	 *	process to the tail of init_task.tasks list, and lock/unlock
1630 	 *	of ->siglock provides a memory barrier.
1631 	 *
1632 	 * do_exit:
1633 	 *	The caller holds mm->mmap_sem. This means that the task which
1634 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1635 	 *	its ->mm.
1636 	 *
1637 	 * de_thread:
1638 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1639 	 *	we must see either old or new leader, this does not matter.
1640 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1641 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1642 	 *	it can't fail.
1643 	 *
1644 	 *	Note also that "g" can be the old leader with ->mm == NULL
1645 	 *	and already unhashed and thus removed from ->thread_group.
1646 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1647 	 *	clear the ->next pointer, we will find the new leader via
1648 	 *	next_thread().
1649 	 */
1650 	rcu_read_lock();
1651 	for_each_process(g) {
1652 		if (g == tsk->group_leader)
1653 			continue;
1654 		if (g->flags & PF_KTHREAD)
1655 			continue;
1656 		p = g;
1657 		do {
1658 			if (p->mm) {
1659 				if (unlikely(p->mm == mm)) {
1660 					lock_task_sighand(p, &flags);
1661 					nr += zap_process(p, exit_code);
1662 					unlock_task_sighand(p, &flags);
1663 				}
1664 				break;
1665 			}
1666 		} while_each_thread(g, p);
1667 	}
1668 	rcu_read_unlock();
1669 done:
1670 	atomic_set(&core_state->nr_threads, nr);
1671 	return nr;
1672 }
1673 
1674 static int coredump_wait(int exit_code, struct core_state *core_state)
1675 {
1676 	struct task_struct *tsk = current;
1677 	struct mm_struct *mm = tsk->mm;
1678 	struct completion *vfork_done;
1679 	int core_waiters = -EBUSY;
1680 
1681 	init_completion(&core_state->startup);
1682 	core_state->dumper.task = tsk;
1683 	core_state->dumper.next = NULL;
1684 
1685 	down_write(&mm->mmap_sem);
1686 	if (!mm->core_state)
1687 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1688 	up_write(&mm->mmap_sem);
1689 
1690 	if (unlikely(core_waiters < 0))
1691 		goto fail;
1692 
1693 	/*
1694 	 * Make sure nobody is waiting for us to release the VM,
1695 	 * otherwise we can deadlock when we wait on each other
1696 	 */
1697 	vfork_done = tsk->vfork_done;
1698 	if (vfork_done) {
1699 		tsk->vfork_done = NULL;
1700 		complete(vfork_done);
1701 	}
1702 
1703 	if (core_waiters)
1704 		wait_for_completion(&core_state->startup);
1705 fail:
1706 	return core_waiters;
1707 }
1708 
1709 static void coredump_finish(struct mm_struct *mm)
1710 {
1711 	struct core_thread *curr, *next;
1712 	struct task_struct *task;
1713 
1714 	next = mm->core_state->dumper.next;
1715 	while ((curr = next) != NULL) {
1716 		next = curr->next;
1717 		task = curr->task;
1718 		/*
1719 		 * see exit_mm(), curr->task must not see
1720 		 * ->task == NULL before we read ->next.
1721 		 */
1722 		smp_mb();
1723 		curr->task = NULL;
1724 		wake_up_process(task);
1725 	}
1726 
1727 	mm->core_state = NULL;
1728 }
1729 
1730 /*
1731  * set_dumpable converts traditional three-value dumpable to two flags and
1732  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1733  * these bits are not changed atomically.  So get_dumpable can observe the
1734  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1735  * return either old dumpable or new one by paying attention to the order of
1736  * modifying the bits.
1737  *
1738  * dumpable |   mm->flags (binary)
1739  * old  new | initial interim  final
1740  * ---------+-----------------------
1741  *  0    1  |   00      01      01
1742  *  0    2  |   00      10(*)   11
1743  *  1    0  |   01      00      00
1744  *  1    2  |   01      11      11
1745  *  2    0  |   11      10(*)   00
1746  *  2    1  |   11      11      01
1747  *
1748  * (*) get_dumpable regards interim value of 10 as 11.
1749  */
1750 void set_dumpable(struct mm_struct *mm, int value)
1751 {
1752 	switch (value) {
1753 	case 0:
1754 		clear_bit(MMF_DUMPABLE, &mm->flags);
1755 		smp_wmb();
1756 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1757 		break;
1758 	case 1:
1759 		set_bit(MMF_DUMPABLE, &mm->flags);
1760 		smp_wmb();
1761 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1762 		break;
1763 	case 2:
1764 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1765 		smp_wmb();
1766 		set_bit(MMF_DUMPABLE, &mm->flags);
1767 		break;
1768 	}
1769 }
1770 
1771 static int __get_dumpable(unsigned long mm_flags)
1772 {
1773 	int ret;
1774 
1775 	ret = mm_flags & MMF_DUMPABLE_MASK;
1776 	return (ret >= 2) ? 2 : ret;
1777 }
1778 
1779 int get_dumpable(struct mm_struct *mm)
1780 {
1781 	return __get_dumpable(mm->flags);
1782 }
1783 
1784 static void wait_for_dump_helpers(struct file *file)
1785 {
1786 	struct pipe_inode_info *pipe;
1787 
1788 	pipe = file->f_path.dentry->d_inode->i_pipe;
1789 
1790 	pipe_lock(pipe);
1791 	pipe->readers++;
1792 	pipe->writers--;
1793 
1794 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1795 		wake_up_interruptible_sync(&pipe->wait);
1796 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1797 		pipe_wait(pipe);
1798 	}
1799 
1800 	pipe->readers--;
1801 	pipe->writers++;
1802 	pipe_unlock(pipe);
1803 
1804 }
1805 
1806 
1807 /*
1808  * uhm_pipe_setup
1809  * helper function to customize the process used
1810  * to collect the core in userspace.  Specifically
1811  * it sets up a pipe and installs it as fd 0 (stdin)
1812  * for the process.  Returns 0 on success, or
1813  * PTR_ERR on failure.
1814  * Note that it also sets the core limit to 1.  This
1815  * is a special value that we use to trap recursive
1816  * core dumps
1817  */
1818 static int umh_pipe_setup(struct subprocess_info *info)
1819 {
1820 	struct file *rp, *wp;
1821 	struct fdtable *fdt;
1822 	struct coredump_params *cp = (struct coredump_params *)info->data;
1823 	struct files_struct *cf = current->files;
1824 
1825 	wp = create_write_pipe(0);
1826 	if (IS_ERR(wp))
1827 		return PTR_ERR(wp);
1828 
1829 	rp = create_read_pipe(wp, 0);
1830 	if (IS_ERR(rp)) {
1831 		free_write_pipe(wp);
1832 		return PTR_ERR(rp);
1833 	}
1834 
1835 	cp->file = wp;
1836 
1837 	sys_close(0);
1838 	fd_install(0, rp);
1839 	spin_lock(&cf->file_lock);
1840 	fdt = files_fdtable(cf);
1841 	FD_SET(0, fdt->open_fds);
1842 	FD_CLR(0, fdt->close_on_exec);
1843 	spin_unlock(&cf->file_lock);
1844 
1845 	/* and disallow core files too */
1846 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1847 
1848 	return 0;
1849 }
1850 
1851 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1852 {
1853 	struct core_state core_state;
1854 	char corename[CORENAME_MAX_SIZE + 1];
1855 	struct mm_struct *mm = current->mm;
1856 	struct linux_binfmt * binfmt;
1857 	const struct cred *old_cred;
1858 	struct cred *cred;
1859 	int retval = 0;
1860 	int flag = 0;
1861 	int ispipe;
1862 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1863 	struct coredump_params cprm = {
1864 		.signr = signr,
1865 		.regs = regs,
1866 		.limit = rlimit(RLIMIT_CORE),
1867 		/*
1868 		 * We must use the same mm->flags while dumping core to avoid
1869 		 * inconsistency of bit flags, since this flag is not protected
1870 		 * by any locks.
1871 		 */
1872 		.mm_flags = mm->flags,
1873 	};
1874 
1875 	audit_core_dumps(signr);
1876 
1877 	binfmt = mm->binfmt;
1878 	if (!binfmt || !binfmt->core_dump)
1879 		goto fail;
1880 	if (!__get_dumpable(cprm.mm_flags))
1881 		goto fail;
1882 
1883 	cred = prepare_creds();
1884 	if (!cred)
1885 		goto fail;
1886 	/*
1887 	 *	We cannot trust fsuid as being the "true" uid of the
1888 	 *	process nor do we know its entire history. We only know it
1889 	 *	was tainted so we dump it as root in mode 2.
1890 	 */
1891 	if (__get_dumpable(cprm.mm_flags) == 2) {
1892 		/* Setuid core dump mode */
1893 		flag = O_EXCL;		/* Stop rewrite attacks */
1894 		cred->fsuid = 0;	/* Dump root private */
1895 	}
1896 
1897 	retval = coredump_wait(exit_code, &core_state);
1898 	if (retval < 0)
1899 		goto fail_creds;
1900 
1901 	old_cred = override_creds(cred);
1902 
1903 	/*
1904 	 * Clear any false indication of pending signals that might
1905 	 * be seen by the filesystem code called to write the core file.
1906 	 */
1907 	clear_thread_flag(TIF_SIGPENDING);
1908 
1909 	ispipe = format_corename(corename, signr);
1910 
1911  	if (ispipe) {
1912 		int dump_count;
1913 		char **helper_argv;
1914 
1915 		if (cprm.limit == 1) {
1916 			/*
1917 			 * Normally core limits are irrelevant to pipes, since
1918 			 * we're not writing to the file system, but we use
1919 			 * cprm.limit of 1 here as a speacial value. Any
1920 			 * non-1 limit gets set to RLIM_INFINITY below, but
1921 			 * a limit of 0 skips the dump.  This is a consistent
1922 			 * way to catch recursive crashes.  We can still crash
1923 			 * if the core_pattern binary sets RLIM_CORE =  !1
1924 			 * but it runs as root, and can do lots of stupid things
1925 			 * Note that we use task_tgid_vnr here to grab the pid
1926 			 * of the process group leader.  That way we get the
1927 			 * right pid if a thread in a multi-threaded
1928 			 * core_pattern process dies.
1929 			 */
1930 			printk(KERN_WARNING
1931 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
1932 				task_tgid_vnr(current), current->comm);
1933 			printk(KERN_WARNING "Aborting core\n");
1934 			goto fail_unlock;
1935 		}
1936 		cprm.limit = RLIM_INFINITY;
1937 
1938 		dump_count = atomic_inc_return(&core_dump_count);
1939 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1940 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1941 			       task_tgid_vnr(current), current->comm);
1942 			printk(KERN_WARNING "Skipping core dump\n");
1943 			goto fail_dropcount;
1944 		}
1945 
1946 		helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1947 		if (!helper_argv) {
1948 			printk(KERN_WARNING "%s failed to allocate memory\n",
1949 			       __func__);
1950 			goto fail_dropcount;
1951 		}
1952 
1953 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1954 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1955 					NULL, &cprm);
1956 		argv_free(helper_argv);
1957 		if (retval) {
1958  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1959 			       corename);
1960 			goto close_fail;
1961  		}
1962 	} else {
1963 		struct inode *inode;
1964 
1965 		if (cprm.limit < binfmt->min_coredump)
1966 			goto fail_unlock;
1967 
1968 		cprm.file = filp_open(corename,
1969 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1970 				 0600);
1971 		if (IS_ERR(cprm.file))
1972 			goto fail_unlock;
1973 
1974 		inode = cprm.file->f_path.dentry->d_inode;
1975 		if (inode->i_nlink > 1)
1976 			goto close_fail;
1977 		if (d_unhashed(cprm.file->f_path.dentry))
1978 			goto close_fail;
1979 		/*
1980 		 * AK: actually i see no reason to not allow this for named
1981 		 * pipes etc, but keep the previous behaviour for now.
1982 		 */
1983 		if (!S_ISREG(inode->i_mode))
1984 			goto close_fail;
1985 		/*
1986 		 * Dont allow local users get cute and trick others to coredump
1987 		 * into their pre-created files.
1988 		 */
1989 		if (inode->i_uid != current_fsuid())
1990 			goto close_fail;
1991 		if (!cprm.file->f_op || !cprm.file->f_op->write)
1992 			goto close_fail;
1993 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
1994 			goto close_fail;
1995 	}
1996 
1997 	retval = binfmt->core_dump(&cprm);
1998 	if (retval)
1999 		current->signal->group_exit_code |= 0x80;
2000 
2001 	if (ispipe && core_pipe_limit)
2002 		wait_for_dump_helpers(cprm.file);
2003 close_fail:
2004 	if (cprm.file)
2005 		filp_close(cprm.file, NULL);
2006 fail_dropcount:
2007 	if (ispipe)
2008 		atomic_dec(&core_dump_count);
2009 fail_unlock:
2010 	coredump_finish(mm);
2011 	revert_creds(old_cred);
2012 fail_creds:
2013 	put_cred(cred);
2014 fail:
2015 	return;
2016 }
2017 
2018 /*
2019  * Core dumping helper functions.  These are the only things you should
2020  * do on a core-file: use only these functions to write out all the
2021  * necessary info.
2022  */
2023 int dump_write(struct file *file, const void *addr, int nr)
2024 {
2025 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2026 }
2027 EXPORT_SYMBOL(dump_write);
2028 
2029 int dump_seek(struct file *file, loff_t off)
2030 {
2031 	int ret = 1;
2032 
2033 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2034 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2035 			return 0;
2036 	} else {
2037 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2038 
2039 		if (!buf)
2040 			return 0;
2041 		while (off > 0) {
2042 			unsigned long n = off;
2043 
2044 			if (n > PAGE_SIZE)
2045 				n = PAGE_SIZE;
2046 			if (!dump_write(file, buf, n)) {
2047 				ret = 0;
2048 				break;
2049 			}
2050 			off -= n;
2051 		}
2052 		free_page((unsigned long)buf);
2053 	}
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL(dump_seek);
2057