1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/coredump.h> 37 #include <linux/sched/signal.h> 38 #include <linux/sched/numa_balancing.h> 39 #include <linux/sched/task.h> 40 #include <linux/pagemap.h> 41 #include <linux/perf_event.h> 42 #include <linux/highmem.h> 43 #include <linux/spinlock.h> 44 #include <linux/key.h> 45 #include <linux/personality.h> 46 #include <linux/binfmts.h> 47 #include <linux/utsname.h> 48 #include <linux/pid_namespace.h> 49 #include <linux/module.h> 50 #include <linux/namei.h> 51 #include <linux/mount.h> 52 #include <linux/security.h> 53 #include <linux/syscalls.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/audit.h> 57 #include <linux/tracehook.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/pipe_fs_i.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 int suid_dumpable = 0; 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 void __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 BUG_ON(!fmt); 83 if (WARN_ON(!fmt->load_binary)) 84 return; 85 write_lock(&binfmt_lock); 86 insert ? list_add(&fmt->lh, &formats) : 87 list_add_tail(&fmt->lh, &formats); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 bool path_noexec(const struct path *path) 108 { 109 return (path->mnt->mnt_flags & MNT_NOEXEC) || 110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 111 } 112 113 #ifdef CONFIG_USELIB 114 /* 115 * Note that a shared library must be both readable and executable due to 116 * security reasons. 117 * 118 * Also note that we take the address to load from from the file itself. 119 */ 120 SYSCALL_DEFINE1(uselib, const char __user *, library) 121 { 122 struct linux_binfmt *fmt; 123 struct file *file; 124 struct filename *tmp = getname(library); 125 int error = PTR_ERR(tmp); 126 static const struct open_flags uselib_flags = { 127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 128 .acc_mode = MAY_READ | MAY_EXEC, 129 .intent = LOOKUP_OPEN, 130 .lookup_flags = LOOKUP_FOLLOW, 131 }; 132 133 if (IS_ERR(tmp)) 134 goto out; 135 136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 137 putname(tmp); 138 error = PTR_ERR(file); 139 if (IS_ERR(file)) 140 goto out; 141 142 error = -EINVAL; 143 if (!S_ISREG(file_inode(file)->i_mode)) 144 goto exit; 145 146 error = -EACCES; 147 if (path_noexec(&file->f_path)) 148 goto exit; 149 150 fsnotify_open(file); 151 152 error = -ENOEXEC; 153 154 read_lock(&binfmt_lock); 155 list_for_each_entry(fmt, &formats, lh) { 156 if (!fmt->load_shlib) 157 continue; 158 if (!try_module_get(fmt->module)) 159 continue; 160 read_unlock(&binfmt_lock); 161 error = fmt->load_shlib(file); 162 read_lock(&binfmt_lock); 163 put_binfmt(fmt); 164 if (error != -ENOEXEC) 165 break; 166 } 167 read_unlock(&binfmt_lock); 168 exit: 169 fput(file); 170 out: 171 return error; 172 } 173 #endif /* #ifdef CONFIG_USELIB */ 174 175 #ifdef CONFIG_MMU 176 /* 177 * The nascent bprm->mm is not visible until exec_mmap() but it can 178 * use a lot of memory, account these pages in current->mm temporary 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 180 * change the counter back via acct_arg_size(0). 181 */ 182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 183 { 184 struct mm_struct *mm = current->mm; 185 long diff = (long)(pages - bprm->vma_pages); 186 187 if (!mm || !diff) 188 return; 189 190 bprm->vma_pages = pages; 191 add_mm_counter(mm, MM_ANONPAGES, diff); 192 } 193 194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 195 int write) 196 { 197 struct page *page; 198 int ret; 199 unsigned int gup_flags = FOLL_FORCE; 200 201 #ifdef CONFIG_STACK_GROWSUP 202 if (write) { 203 ret = expand_downwards(bprm->vma, pos); 204 if (ret < 0) 205 return NULL; 206 } 207 #endif 208 209 if (write) 210 gup_flags |= FOLL_WRITE; 211 212 /* 213 * We are doing an exec(). 'current' is the process 214 * doing the exec and bprm->mm is the new process's mm. 215 */ 216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 217 &page, NULL, NULL); 218 if (ret <= 0) 219 return NULL; 220 221 if (write) { 222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 223 unsigned long ptr_size, limit; 224 225 /* 226 * Since the stack will hold pointers to the strings, we 227 * must account for them as well. 228 * 229 * The size calculation is the entire vma while each arg page is 230 * built, so each time we get here it's calculating how far it 231 * is currently (rather than each call being just the newly 232 * added size from the arg page). As a result, we need to 233 * always add the entire size of the pointers, so that on the 234 * last call to get_arg_page() we'll actually have the entire 235 * correct size. 236 */ 237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 238 if (ptr_size > ULONG_MAX - size) 239 goto fail; 240 size += ptr_size; 241 242 acct_arg_size(bprm, size / PAGE_SIZE); 243 244 /* 245 * We've historically supported up to 32 pages (ARG_MAX) 246 * of argument strings even with small stacks 247 */ 248 if (size <= ARG_MAX) 249 return page; 250 251 /* 252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 253 * (whichever is smaller) for the argv+env strings. 254 * This ensures that: 255 * - the remaining binfmt code will not run out of stack space, 256 * - the program will have a reasonable amount of stack left 257 * to work from. 258 */ 259 limit = _STK_LIM / 4 * 3; 260 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 261 if (size > limit) 262 goto fail; 263 } 264 265 return page; 266 267 fail: 268 put_page(page); 269 return NULL; 270 } 271 272 static void put_arg_page(struct page *page) 273 { 274 put_page(page); 275 } 276 277 static void free_arg_pages(struct linux_binprm *bprm) 278 { 279 } 280 281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 282 struct page *page) 283 { 284 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 285 } 286 287 static int __bprm_mm_init(struct linux_binprm *bprm) 288 { 289 int err; 290 struct vm_area_struct *vma = NULL; 291 struct mm_struct *mm = bprm->mm; 292 293 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 294 if (!vma) 295 return -ENOMEM; 296 297 if (down_write_killable(&mm->mmap_sem)) { 298 err = -EINTR; 299 goto err_free; 300 } 301 vma->vm_mm = mm; 302 303 /* 304 * Place the stack at the largest stack address the architecture 305 * supports. Later, we'll move this to an appropriate place. We don't 306 * use STACK_TOP because that can depend on attributes which aren't 307 * configured yet. 308 */ 309 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 310 vma->vm_end = STACK_TOP_MAX; 311 vma->vm_start = vma->vm_end - PAGE_SIZE; 312 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 313 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 314 INIT_LIST_HEAD(&vma->anon_vma_chain); 315 316 err = insert_vm_struct(mm, vma); 317 if (err) 318 goto err; 319 320 mm->stack_vm = mm->total_vm = 1; 321 arch_bprm_mm_init(mm, vma); 322 up_write(&mm->mmap_sem); 323 bprm->p = vma->vm_end - sizeof(void *); 324 return 0; 325 err: 326 up_write(&mm->mmap_sem); 327 err_free: 328 bprm->vma = NULL; 329 kmem_cache_free(vm_area_cachep, vma); 330 return err; 331 } 332 333 static bool valid_arg_len(struct linux_binprm *bprm, long len) 334 { 335 return len <= MAX_ARG_STRLEN; 336 } 337 338 #else 339 340 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 341 { 342 } 343 344 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 345 int write) 346 { 347 struct page *page; 348 349 page = bprm->page[pos / PAGE_SIZE]; 350 if (!page && write) { 351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 352 if (!page) 353 return NULL; 354 bprm->page[pos / PAGE_SIZE] = page; 355 } 356 357 return page; 358 } 359 360 static void put_arg_page(struct page *page) 361 { 362 } 363 364 static void free_arg_page(struct linux_binprm *bprm, int i) 365 { 366 if (bprm->page[i]) { 367 __free_page(bprm->page[i]); 368 bprm->page[i] = NULL; 369 } 370 } 371 372 static void free_arg_pages(struct linux_binprm *bprm) 373 { 374 int i; 375 376 for (i = 0; i < MAX_ARG_PAGES; i++) 377 free_arg_page(bprm, i); 378 } 379 380 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 381 struct page *page) 382 { 383 } 384 385 static int __bprm_mm_init(struct linux_binprm *bprm) 386 { 387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 388 return 0; 389 } 390 391 static bool valid_arg_len(struct linux_binprm *bprm, long len) 392 { 393 return len <= bprm->p; 394 } 395 396 #endif /* CONFIG_MMU */ 397 398 /* 399 * Create a new mm_struct and populate it with a temporary stack 400 * vm_area_struct. We don't have enough context at this point to set the stack 401 * flags, permissions, and offset, so we use temporary values. We'll update 402 * them later in setup_arg_pages(). 403 */ 404 static int bprm_mm_init(struct linux_binprm *bprm) 405 { 406 int err; 407 struct mm_struct *mm = NULL; 408 409 bprm->mm = mm = mm_alloc(); 410 err = -ENOMEM; 411 if (!mm) 412 goto err; 413 414 /* Save current stack limit for all calculations made during exec. */ 415 task_lock(current->group_leader); 416 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 417 task_unlock(current->group_leader); 418 419 err = __bprm_mm_init(bprm); 420 if (err) 421 goto err; 422 423 return 0; 424 425 err: 426 if (mm) { 427 bprm->mm = NULL; 428 mmdrop(mm); 429 } 430 431 return err; 432 } 433 434 struct user_arg_ptr { 435 #ifdef CONFIG_COMPAT 436 bool is_compat; 437 #endif 438 union { 439 const char __user *const __user *native; 440 #ifdef CONFIG_COMPAT 441 const compat_uptr_t __user *compat; 442 #endif 443 } ptr; 444 }; 445 446 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 447 { 448 const char __user *native; 449 450 #ifdef CONFIG_COMPAT 451 if (unlikely(argv.is_compat)) { 452 compat_uptr_t compat; 453 454 if (get_user(compat, argv.ptr.compat + nr)) 455 return ERR_PTR(-EFAULT); 456 457 return compat_ptr(compat); 458 } 459 #endif 460 461 if (get_user(native, argv.ptr.native + nr)) 462 return ERR_PTR(-EFAULT); 463 464 return native; 465 } 466 467 /* 468 * count() counts the number of strings in array ARGV. 469 */ 470 static int count(struct user_arg_ptr argv, int max) 471 { 472 int i = 0; 473 474 if (argv.ptr.native != NULL) { 475 for (;;) { 476 const char __user *p = get_user_arg_ptr(argv, i); 477 478 if (!p) 479 break; 480 481 if (IS_ERR(p)) 482 return -EFAULT; 483 484 if (i >= max) 485 return -E2BIG; 486 ++i; 487 488 if (fatal_signal_pending(current)) 489 return -ERESTARTNOHAND; 490 cond_resched(); 491 } 492 } 493 return i; 494 } 495 496 /* 497 * 'copy_strings()' copies argument/environment strings from the old 498 * processes's memory to the new process's stack. The call to get_user_pages() 499 * ensures the destination page is created and not swapped out. 500 */ 501 static int copy_strings(int argc, struct user_arg_ptr argv, 502 struct linux_binprm *bprm) 503 { 504 struct page *kmapped_page = NULL; 505 char *kaddr = NULL; 506 unsigned long kpos = 0; 507 int ret; 508 509 while (argc-- > 0) { 510 const char __user *str; 511 int len; 512 unsigned long pos; 513 514 ret = -EFAULT; 515 str = get_user_arg_ptr(argv, argc); 516 if (IS_ERR(str)) 517 goto out; 518 519 len = strnlen_user(str, MAX_ARG_STRLEN); 520 if (!len) 521 goto out; 522 523 ret = -E2BIG; 524 if (!valid_arg_len(bprm, len)) 525 goto out; 526 527 /* We're going to work our way backwords. */ 528 pos = bprm->p; 529 str += len; 530 bprm->p -= len; 531 532 while (len > 0) { 533 int offset, bytes_to_copy; 534 535 if (fatal_signal_pending(current)) { 536 ret = -ERESTARTNOHAND; 537 goto out; 538 } 539 cond_resched(); 540 541 offset = pos % PAGE_SIZE; 542 if (offset == 0) 543 offset = PAGE_SIZE; 544 545 bytes_to_copy = offset; 546 if (bytes_to_copy > len) 547 bytes_to_copy = len; 548 549 offset -= bytes_to_copy; 550 pos -= bytes_to_copy; 551 str -= bytes_to_copy; 552 len -= bytes_to_copy; 553 554 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 555 struct page *page; 556 557 page = get_arg_page(bprm, pos, 1); 558 if (!page) { 559 ret = -E2BIG; 560 goto out; 561 } 562 563 if (kmapped_page) { 564 flush_kernel_dcache_page(kmapped_page); 565 kunmap(kmapped_page); 566 put_arg_page(kmapped_page); 567 } 568 kmapped_page = page; 569 kaddr = kmap(kmapped_page); 570 kpos = pos & PAGE_MASK; 571 flush_arg_page(bprm, kpos, kmapped_page); 572 } 573 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 574 ret = -EFAULT; 575 goto out; 576 } 577 } 578 } 579 ret = 0; 580 out: 581 if (kmapped_page) { 582 flush_kernel_dcache_page(kmapped_page); 583 kunmap(kmapped_page); 584 put_arg_page(kmapped_page); 585 } 586 return ret; 587 } 588 589 /* 590 * Like copy_strings, but get argv and its values from kernel memory. 591 */ 592 int copy_strings_kernel(int argc, const char *const *__argv, 593 struct linux_binprm *bprm) 594 { 595 int r; 596 mm_segment_t oldfs = get_fs(); 597 struct user_arg_ptr argv = { 598 .ptr.native = (const char __user *const __user *)__argv, 599 }; 600 601 set_fs(KERNEL_DS); 602 r = copy_strings(argc, argv, bprm); 603 set_fs(oldfs); 604 605 return r; 606 } 607 EXPORT_SYMBOL(copy_strings_kernel); 608 609 #ifdef CONFIG_MMU 610 611 /* 612 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 613 * the binfmt code determines where the new stack should reside, we shift it to 614 * its final location. The process proceeds as follows: 615 * 616 * 1) Use shift to calculate the new vma endpoints. 617 * 2) Extend vma to cover both the old and new ranges. This ensures the 618 * arguments passed to subsequent functions are consistent. 619 * 3) Move vma's page tables to the new range. 620 * 4) Free up any cleared pgd range. 621 * 5) Shrink the vma to cover only the new range. 622 */ 623 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 624 { 625 struct mm_struct *mm = vma->vm_mm; 626 unsigned long old_start = vma->vm_start; 627 unsigned long old_end = vma->vm_end; 628 unsigned long length = old_end - old_start; 629 unsigned long new_start = old_start - shift; 630 unsigned long new_end = old_end - shift; 631 struct mmu_gather tlb; 632 633 BUG_ON(new_start > new_end); 634 635 /* 636 * ensure there are no vmas between where we want to go 637 * and where we are 638 */ 639 if (vma != find_vma(mm, new_start)) 640 return -EFAULT; 641 642 /* 643 * cover the whole range: [new_start, old_end) 644 */ 645 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 646 return -ENOMEM; 647 648 /* 649 * move the page tables downwards, on failure we rely on 650 * process cleanup to remove whatever mess we made. 651 */ 652 if (length != move_page_tables(vma, old_start, 653 vma, new_start, length, false)) 654 return -ENOMEM; 655 656 lru_add_drain(); 657 tlb_gather_mmu(&tlb, mm, old_start, old_end); 658 if (new_end > old_start) { 659 /* 660 * when the old and new regions overlap clear from new_end. 661 */ 662 free_pgd_range(&tlb, new_end, old_end, new_end, 663 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 664 } else { 665 /* 666 * otherwise, clean from old_start; this is done to not touch 667 * the address space in [new_end, old_start) some architectures 668 * have constraints on va-space that make this illegal (IA64) - 669 * for the others its just a little faster. 670 */ 671 free_pgd_range(&tlb, old_start, old_end, new_end, 672 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 673 } 674 tlb_finish_mmu(&tlb, old_start, old_end); 675 676 /* 677 * Shrink the vma to just the new range. Always succeeds. 678 */ 679 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 680 681 return 0; 682 } 683 684 /* 685 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 686 * the stack is optionally relocated, and some extra space is added. 687 */ 688 int setup_arg_pages(struct linux_binprm *bprm, 689 unsigned long stack_top, 690 int executable_stack) 691 { 692 unsigned long ret; 693 unsigned long stack_shift; 694 struct mm_struct *mm = current->mm; 695 struct vm_area_struct *vma = bprm->vma; 696 struct vm_area_struct *prev = NULL; 697 unsigned long vm_flags; 698 unsigned long stack_base; 699 unsigned long stack_size; 700 unsigned long stack_expand; 701 unsigned long rlim_stack; 702 703 #ifdef CONFIG_STACK_GROWSUP 704 /* Limit stack size */ 705 stack_base = bprm->rlim_stack.rlim_max; 706 if (stack_base > STACK_SIZE_MAX) 707 stack_base = STACK_SIZE_MAX; 708 709 /* Add space for stack randomization. */ 710 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 711 712 /* Make sure we didn't let the argument array grow too large. */ 713 if (vma->vm_end - vma->vm_start > stack_base) 714 return -ENOMEM; 715 716 stack_base = PAGE_ALIGN(stack_top - stack_base); 717 718 stack_shift = vma->vm_start - stack_base; 719 mm->arg_start = bprm->p - stack_shift; 720 bprm->p = vma->vm_end - stack_shift; 721 #else 722 stack_top = arch_align_stack(stack_top); 723 stack_top = PAGE_ALIGN(stack_top); 724 725 if (unlikely(stack_top < mmap_min_addr) || 726 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 727 return -ENOMEM; 728 729 stack_shift = vma->vm_end - stack_top; 730 731 bprm->p -= stack_shift; 732 mm->arg_start = bprm->p; 733 #endif 734 735 if (bprm->loader) 736 bprm->loader -= stack_shift; 737 bprm->exec -= stack_shift; 738 739 if (down_write_killable(&mm->mmap_sem)) 740 return -EINTR; 741 742 vm_flags = VM_STACK_FLAGS; 743 744 /* 745 * Adjust stack execute permissions; explicitly enable for 746 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 747 * (arch default) otherwise. 748 */ 749 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 750 vm_flags |= VM_EXEC; 751 else if (executable_stack == EXSTACK_DISABLE_X) 752 vm_flags &= ~VM_EXEC; 753 vm_flags |= mm->def_flags; 754 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 755 756 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 757 vm_flags); 758 if (ret) 759 goto out_unlock; 760 BUG_ON(prev != vma); 761 762 /* Move stack pages down in memory. */ 763 if (stack_shift) { 764 ret = shift_arg_pages(vma, stack_shift); 765 if (ret) 766 goto out_unlock; 767 } 768 769 /* mprotect_fixup is overkill to remove the temporary stack flags */ 770 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 771 772 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 773 stack_size = vma->vm_end - vma->vm_start; 774 /* 775 * Align this down to a page boundary as expand_stack 776 * will align it up. 777 */ 778 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 779 #ifdef CONFIG_STACK_GROWSUP 780 if (stack_size + stack_expand > rlim_stack) 781 stack_base = vma->vm_start + rlim_stack; 782 else 783 stack_base = vma->vm_end + stack_expand; 784 #else 785 if (stack_size + stack_expand > rlim_stack) 786 stack_base = vma->vm_end - rlim_stack; 787 else 788 stack_base = vma->vm_start - stack_expand; 789 #endif 790 current->mm->start_stack = bprm->p; 791 ret = expand_stack(vma, stack_base); 792 if (ret) 793 ret = -EFAULT; 794 795 out_unlock: 796 up_write(&mm->mmap_sem); 797 return ret; 798 } 799 EXPORT_SYMBOL(setup_arg_pages); 800 801 #else 802 803 /* 804 * Transfer the program arguments and environment from the holding pages 805 * onto the stack. The provided stack pointer is adjusted accordingly. 806 */ 807 int transfer_args_to_stack(struct linux_binprm *bprm, 808 unsigned long *sp_location) 809 { 810 unsigned long index, stop, sp; 811 int ret = 0; 812 813 stop = bprm->p >> PAGE_SHIFT; 814 sp = *sp_location; 815 816 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 817 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 818 char *src = kmap(bprm->page[index]) + offset; 819 sp -= PAGE_SIZE - offset; 820 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 821 ret = -EFAULT; 822 kunmap(bprm->page[index]); 823 if (ret) 824 goto out; 825 } 826 827 *sp_location = sp; 828 829 out: 830 return ret; 831 } 832 EXPORT_SYMBOL(transfer_args_to_stack); 833 834 #endif /* CONFIG_MMU */ 835 836 static struct file *do_open_execat(int fd, struct filename *name, int flags) 837 { 838 struct file *file; 839 int err; 840 struct open_flags open_exec_flags = { 841 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 842 .acc_mode = MAY_EXEC, 843 .intent = LOOKUP_OPEN, 844 .lookup_flags = LOOKUP_FOLLOW, 845 }; 846 847 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 848 return ERR_PTR(-EINVAL); 849 if (flags & AT_SYMLINK_NOFOLLOW) 850 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 851 if (flags & AT_EMPTY_PATH) 852 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 853 854 file = do_filp_open(fd, name, &open_exec_flags); 855 if (IS_ERR(file)) 856 goto out; 857 858 err = -EACCES; 859 if (!S_ISREG(file_inode(file)->i_mode)) 860 goto exit; 861 862 if (path_noexec(&file->f_path)) 863 goto exit; 864 865 err = deny_write_access(file); 866 if (err) 867 goto exit; 868 869 if (name->name[0] != '\0') 870 fsnotify_open(file); 871 872 out: 873 return file; 874 875 exit: 876 fput(file); 877 return ERR_PTR(err); 878 } 879 880 struct file *open_exec(const char *name) 881 { 882 struct filename *filename = getname_kernel(name); 883 struct file *f = ERR_CAST(filename); 884 885 if (!IS_ERR(filename)) { 886 f = do_open_execat(AT_FDCWD, filename, 0); 887 putname(filename); 888 } 889 return f; 890 } 891 EXPORT_SYMBOL(open_exec); 892 893 int kernel_read_file(struct file *file, void **buf, loff_t *size, 894 loff_t max_size, enum kernel_read_file_id id) 895 { 896 loff_t i_size, pos; 897 ssize_t bytes = 0; 898 int ret; 899 900 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 901 return -EINVAL; 902 903 ret = deny_write_access(file); 904 if (ret) 905 return ret; 906 907 ret = security_kernel_read_file(file, id); 908 if (ret) 909 goto out; 910 911 i_size = i_size_read(file_inode(file)); 912 if (max_size > 0 && i_size > max_size) { 913 ret = -EFBIG; 914 goto out; 915 } 916 if (i_size <= 0) { 917 ret = -EINVAL; 918 goto out; 919 } 920 921 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 922 *buf = vmalloc(i_size); 923 if (!*buf) { 924 ret = -ENOMEM; 925 goto out; 926 } 927 928 pos = 0; 929 while (pos < i_size) { 930 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 931 if (bytes < 0) { 932 ret = bytes; 933 goto out; 934 } 935 936 if (bytes == 0) 937 break; 938 } 939 940 if (pos != i_size) { 941 ret = -EIO; 942 goto out_free; 943 } 944 945 ret = security_kernel_post_read_file(file, *buf, i_size, id); 946 if (!ret) 947 *size = pos; 948 949 out_free: 950 if (ret < 0) { 951 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 952 vfree(*buf); 953 *buf = NULL; 954 } 955 } 956 957 out: 958 allow_write_access(file); 959 return ret; 960 } 961 EXPORT_SYMBOL_GPL(kernel_read_file); 962 963 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 964 loff_t max_size, enum kernel_read_file_id id) 965 { 966 struct file *file; 967 int ret; 968 969 if (!path || !*path) 970 return -EINVAL; 971 972 file = filp_open(path, O_RDONLY, 0); 973 if (IS_ERR(file)) 974 return PTR_ERR(file); 975 976 ret = kernel_read_file(file, buf, size, max_size, id); 977 fput(file); 978 return ret; 979 } 980 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 981 982 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 983 enum kernel_read_file_id id) 984 { 985 struct fd f = fdget(fd); 986 int ret = -EBADF; 987 988 if (!f.file) 989 goto out; 990 991 ret = kernel_read_file(f.file, buf, size, max_size, id); 992 out: 993 fdput(f); 994 return ret; 995 } 996 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 997 998 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 999 { 1000 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1001 if (res > 0) 1002 flush_icache_range(addr, addr + len); 1003 return res; 1004 } 1005 EXPORT_SYMBOL(read_code); 1006 1007 static int exec_mmap(struct mm_struct *mm) 1008 { 1009 struct task_struct *tsk; 1010 struct mm_struct *old_mm, *active_mm; 1011 1012 /* Notify parent that we're no longer interested in the old VM */ 1013 tsk = current; 1014 old_mm = current->mm; 1015 mm_release(tsk, old_mm); 1016 1017 if (old_mm) { 1018 sync_mm_rss(old_mm); 1019 /* 1020 * Make sure that if there is a core dump in progress 1021 * for the old mm, we get out and die instead of going 1022 * through with the exec. We must hold mmap_sem around 1023 * checking core_state and changing tsk->mm. 1024 */ 1025 down_read(&old_mm->mmap_sem); 1026 if (unlikely(old_mm->core_state)) { 1027 up_read(&old_mm->mmap_sem); 1028 return -EINTR; 1029 } 1030 } 1031 task_lock(tsk); 1032 active_mm = tsk->active_mm; 1033 tsk->mm = mm; 1034 tsk->active_mm = mm; 1035 activate_mm(active_mm, mm); 1036 tsk->mm->vmacache_seqnum = 0; 1037 vmacache_flush(tsk); 1038 task_unlock(tsk); 1039 if (old_mm) { 1040 up_read(&old_mm->mmap_sem); 1041 BUG_ON(active_mm != old_mm); 1042 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1043 mm_update_next_owner(old_mm); 1044 mmput(old_mm); 1045 return 0; 1046 } 1047 mmdrop(active_mm); 1048 return 0; 1049 } 1050 1051 /* 1052 * This function makes sure the current process has its own signal table, 1053 * so that flush_signal_handlers can later reset the handlers without 1054 * disturbing other processes. (Other processes might share the signal 1055 * table via the CLONE_SIGHAND option to clone().) 1056 */ 1057 static int de_thread(struct task_struct *tsk) 1058 { 1059 struct signal_struct *sig = tsk->signal; 1060 struct sighand_struct *oldsighand = tsk->sighand; 1061 spinlock_t *lock = &oldsighand->siglock; 1062 1063 if (thread_group_empty(tsk)) 1064 goto no_thread_group; 1065 1066 /* 1067 * Kill all other threads in the thread group. 1068 */ 1069 spin_lock_irq(lock); 1070 if (signal_group_exit(sig)) { 1071 /* 1072 * Another group action in progress, just 1073 * return so that the signal is processed. 1074 */ 1075 spin_unlock_irq(lock); 1076 return -EAGAIN; 1077 } 1078 1079 sig->group_exit_task = tsk; 1080 sig->notify_count = zap_other_threads(tsk); 1081 if (!thread_group_leader(tsk)) 1082 sig->notify_count--; 1083 1084 while (sig->notify_count) { 1085 __set_current_state(TASK_KILLABLE); 1086 spin_unlock_irq(lock); 1087 schedule(); 1088 if (unlikely(__fatal_signal_pending(tsk))) 1089 goto killed; 1090 spin_lock_irq(lock); 1091 } 1092 spin_unlock_irq(lock); 1093 1094 /* 1095 * At this point all other threads have exited, all we have to 1096 * do is to wait for the thread group leader to become inactive, 1097 * and to assume its PID: 1098 */ 1099 if (!thread_group_leader(tsk)) { 1100 struct task_struct *leader = tsk->group_leader; 1101 1102 for (;;) { 1103 cgroup_threadgroup_change_begin(tsk); 1104 write_lock_irq(&tasklist_lock); 1105 /* 1106 * Do this under tasklist_lock to ensure that 1107 * exit_notify() can't miss ->group_exit_task 1108 */ 1109 sig->notify_count = -1; 1110 if (likely(leader->exit_state)) 1111 break; 1112 __set_current_state(TASK_KILLABLE); 1113 write_unlock_irq(&tasklist_lock); 1114 cgroup_threadgroup_change_end(tsk); 1115 schedule(); 1116 if (unlikely(__fatal_signal_pending(tsk))) 1117 goto killed; 1118 } 1119 1120 /* 1121 * The only record we have of the real-time age of a 1122 * process, regardless of execs it's done, is start_time. 1123 * All the past CPU time is accumulated in signal_struct 1124 * from sister threads now dead. But in this non-leader 1125 * exec, nothing survives from the original leader thread, 1126 * whose birth marks the true age of this process now. 1127 * When we take on its identity by switching to its PID, we 1128 * also take its birthdate (always earlier than our own). 1129 */ 1130 tsk->start_time = leader->start_time; 1131 tsk->real_start_time = leader->real_start_time; 1132 1133 BUG_ON(!same_thread_group(leader, tsk)); 1134 BUG_ON(has_group_leader_pid(tsk)); 1135 /* 1136 * An exec() starts a new thread group with the 1137 * TGID of the previous thread group. Rehash the 1138 * two threads with a switched PID, and release 1139 * the former thread group leader: 1140 */ 1141 1142 /* Become a process group leader with the old leader's pid. 1143 * The old leader becomes a thread of the this thread group. 1144 * Note: The old leader also uses this pid until release_task 1145 * is called. Odd but simple and correct. 1146 */ 1147 tsk->pid = leader->pid; 1148 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1149 transfer_pid(leader, tsk, PIDTYPE_PGID); 1150 transfer_pid(leader, tsk, PIDTYPE_SID); 1151 1152 list_replace_rcu(&leader->tasks, &tsk->tasks); 1153 list_replace_init(&leader->sibling, &tsk->sibling); 1154 1155 tsk->group_leader = tsk; 1156 leader->group_leader = tsk; 1157 1158 tsk->exit_signal = SIGCHLD; 1159 leader->exit_signal = -1; 1160 1161 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1162 leader->exit_state = EXIT_DEAD; 1163 1164 /* 1165 * We are going to release_task()->ptrace_unlink() silently, 1166 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1167 * the tracer wont't block again waiting for this thread. 1168 */ 1169 if (unlikely(leader->ptrace)) 1170 __wake_up_parent(leader, leader->parent); 1171 write_unlock_irq(&tasklist_lock); 1172 cgroup_threadgroup_change_end(tsk); 1173 1174 release_task(leader); 1175 } 1176 1177 sig->group_exit_task = NULL; 1178 sig->notify_count = 0; 1179 1180 no_thread_group: 1181 /* we have changed execution domain */ 1182 tsk->exit_signal = SIGCHLD; 1183 1184 #ifdef CONFIG_POSIX_TIMERS 1185 exit_itimers(sig); 1186 flush_itimer_signals(); 1187 #endif 1188 1189 if (atomic_read(&oldsighand->count) != 1) { 1190 struct sighand_struct *newsighand; 1191 /* 1192 * This ->sighand is shared with the CLONE_SIGHAND 1193 * but not CLONE_THREAD task, switch to the new one. 1194 */ 1195 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1196 if (!newsighand) 1197 return -ENOMEM; 1198 1199 atomic_set(&newsighand->count, 1); 1200 memcpy(newsighand->action, oldsighand->action, 1201 sizeof(newsighand->action)); 1202 1203 write_lock_irq(&tasklist_lock); 1204 spin_lock(&oldsighand->siglock); 1205 rcu_assign_pointer(tsk->sighand, newsighand); 1206 spin_unlock(&oldsighand->siglock); 1207 write_unlock_irq(&tasklist_lock); 1208 1209 __cleanup_sighand(oldsighand); 1210 } 1211 1212 BUG_ON(!thread_group_leader(tsk)); 1213 return 0; 1214 1215 killed: 1216 /* protects against exit_notify() and __exit_signal() */ 1217 read_lock(&tasklist_lock); 1218 sig->group_exit_task = NULL; 1219 sig->notify_count = 0; 1220 read_unlock(&tasklist_lock); 1221 return -EAGAIN; 1222 } 1223 1224 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1225 { 1226 task_lock(tsk); 1227 strncpy(buf, tsk->comm, buf_size); 1228 task_unlock(tsk); 1229 return buf; 1230 } 1231 EXPORT_SYMBOL_GPL(__get_task_comm); 1232 1233 /* 1234 * These functions flushes out all traces of the currently running executable 1235 * so that a new one can be started 1236 */ 1237 1238 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1239 { 1240 task_lock(tsk); 1241 trace_task_rename(tsk, buf); 1242 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1243 task_unlock(tsk); 1244 perf_event_comm(tsk, exec); 1245 } 1246 1247 /* 1248 * Calling this is the point of no return. None of the failures will be 1249 * seen by userspace since either the process is already taking a fatal 1250 * signal (via de_thread() or coredump), or will have SEGV raised 1251 * (after exec_mmap()) by search_binary_handlers (see below). 1252 */ 1253 int flush_old_exec(struct linux_binprm * bprm) 1254 { 1255 int retval; 1256 1257 /* 1258 * Make sure we have a private signal table and that 1259 * we are unassociated from the previous thread group. 1260 */ 1261 retval = de_thread(current); 1262 if (retval) 1263 goto out; 1264 1265 /* 1266 * Must be called _before_ exec_mmap() as bprm->mm is 1267 * not visibile until then. This also enables the update 1268 * to be lockless. 1269 */ 1270 set_mm_exe_file(bprm->mm, bprm->file); 1271 1272 /* 1273 * Release all of the old mmap stuff 1274 */ 1275 acct_arg_size(bprm, 0); 1276 retval = exec_mmap(bprm->mm); 1277 if (retval) 1278 goto out; 1279 1280 /* 1281 * After clearing bprm->mm (to mark that current is using the 1282 * prepared mm now), we have nothing left of the original 1283 * process. If anything from here on returns an error, the check 1284 * in search_binary_handler() will SEGV current. 1285 */ 1286 bprm->mm = NULL; 1287 1288 set_fs(USER_DS); 1289 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1290 PF_NOFREEZE | PF_NO_SETAFFINITY); 1291 flush_thread(); 1292 current->personality &= ~bprm->per_clear; 1293 1294 /* 1295 * We have to apply CLOEXEC before we change whether the process is 1296 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1297 * trying to access the should-be-closed file descriptors of a process 1298 * undergoing exec(2). 1299 */ 1300 do_close_on_exec(current->files); 1301 return 0; 1302 1303 out: 1304 return retval; 1305 } 1306 EXPORT_SYMBOL(flush_old_exec); 1307 1308 void would_dump(struct linux_binprm *bprm, struct file *file) 1309 { 1310 struct inode *inode = file_inode(file); 1311 if (inode_permission(inode, MAY_READ) < 0) { 1312 struct user_namespace *old, *user_ns; 1313 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1314 1315 /* Ensure mm->user_ns contains the executable */ 1316 user_ns = old = bprm->mm->user_ns; 1317 while ((user_ns != &init_user_ns) && 1318 !privileged_wrt_inode_uidgid(user_ns, inode)) 1319 user_ns = user_ns->parent; 1320 1321 if (old != user_ns) { 1322 bprm->mm->user_ns = get_user_ns(user_ns); 1323 put_user_ns(old); 1324 } 1325 } 1326 } 1327 EXPORT_SYMBOL(would_dump); 1328 1329 void setup_new_exec(struct linux_binprm * bprm) 1330 { 1331 /* 1332 * Once here, prepare_binrpm() will not be called any more, so 1333 * the final state of setuid/setgid/fscaps can be merged into the 1334 * secureexec flag. 1335 */ 1336 bprm->secureexec |= bprm->cap_elevated; 1337 1338 if (bprm->secureexec) { 1339 /* Make sure parent cannot signal privileged process. */ 1340 current->pdeath_signal = 0; 1341 1342 /* 1343 * For secureexec, reset the stack limit to sane default to 1344 * avoid bad behavior from the prior rlimits. This has to 1345 * happen before arch_pick_mmap_layout(), which examines 1346 * RLIMIT_STACK, but after the point of no return to avoid 1347 * needing to clean up the change on failure. 1348 */ 1349 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1350 bprm->rlim_stack.rlim_cur = _STK_LIM; 1351 } 1352 1353 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack); 1354 1355 current->sas_ss_sp = current->sas_ss_size = 0; 1356 1357 /* 1358 * Figure out dumpability. Note that this checking only of current 1359 * is wrong, but userspace depends on it. This should be testing 1360 * bprm->secureexec instead. 1361 */ 1362 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1363 !(uid_eq(current_euid(), current_uid()) && 1364 gid_eq(current_egid(), current_gid()))) 1365 set_dumpable(current->mm, suid_dumpable); 1366 else 1367 set_dumpable(current->mm, SUID_DUMP_USER); 1368 1369 arch_setup_new_exec(); 1370 perf_event_exec(); 1371 __set_task_comm(current, kbasename(bprm->filename), true); 1372 1373 /* Set the new mm task size. We have to do that late because it may 1374 * depend on TIF_32BIT which is only updated in flush_thread() on 1375 * some architectures like powerpc 1376 */ 1377 current->mm->task_size = TASK_SIZE; 1378 1379 /* An exec changes our domain. We are no longer part of the thread 1380 group */ 1381 current->self_exec_id++; 1382 flush_signal_handlers(current, 0); 1383 } 1384 EXPORT_SYMBOL(setup_new_exec); 1385 1386 /* Runs immediately before start_thread() takes over. */ 1387 void finalize_exec(struct linux_binprm *bprm) 1388 { 1389 /* Store any stack rlimit changes before starting thread. */ 1390 task_lock(current->group_leader); 1391 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1392 task_unlock(current->group_leader); 1393 } 1394 EXPORT_SYMBOL(finalize_exec); 1395 1396 /* 1397 * Prepare credentials and lock ->cred_guard_mutex. 1398 * install_exec_creds() commits the new creds and drops the lock. 1399 * Or, if exec fails before, free_bprm() should release ->cred and 1400 * and unlock. 1401 */ 1402 int prepare_bprm_creds(struct linux_binprm *bprm) 1403 { 1404 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1405 return -ERESTARTNOINTR; 1406 1407 bprm->cred = prepare_exec_creds(); 1408 if (likely(bprm->cred)) 1409 return 0; 1410 1411 mutex_unlock(¤t->signal->cred_guard_mutex); 1412 return -ENOMEM; 1413 } 1414 1415 static void free_bprm(struct linux_binprm *bprm) 1416 { 1417 free_arg_pages(bprm); 1418 if (bprm->cred) { 1419 mutex_unlock(¤t->signal->cred_guard_mutex); 1420 abort_creds(bprm->cred); 1421 } 1422 if (bprm->file) { 1423 allow_write_access(bprm->file); 1424 fput(bprm->file); 1425 } 1426 /* If a binfmt changed the interp, free it. */ 1427 if (bprm->interp != bprm->filename) 1428 kfree(bprm->interp); 1429 kfree(bprm); 1430 } 1431 1432 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1433 { 1434 /* If a binfmt changed the interp, free it first. */ 1435 if (bprm->interp != bprm->filename) 1436 kfree(bprm->interp); 1437 bprm->interp = kstrdup(interp, GFP_KERNEL); 1438 if (!bprm->interp) 1439 return -ENOMEM; 1440 return 0; 1441 } 1442 EXPORT_SYMBOL(bprm_change_interp); 1443 1444 /* 1445 * install the new credentials for this executable 1446 */ 1447 void install_exec_creds(struct linux_binprm *bprm) 1448 { 1449 security_bprm_committing_creds(bprm); 1450 1451 commit_creds(bprm->cred); 1452 bprm->cred = NULL; 1453 1454 /* 1455 * Disable monitoring for regular users 1456 * when executing setuid binaries. Must 1457 * wait until new credentials are committed 1458 * by commit_creds() above 1459 */ 1460 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1461 perf_event_exit_task(current); 1462 /* 1463 * cred_guard_mutex must be held at least to this point to prevent 1464 * ptrace_attach() from altering our determination of the task's 1465 * credentials; any time after this it may be unlocked. 1466 */ 1467 security_bprm_committed_creds(bprm); 1468 mutex_unlock(¤t->signal->cred_guard_mutex); 1469 } 1470 EXPORT_SYMBOL(install_exec_creds); 1471 1472 /* 1473 * determine how safe it is to execute the proposed program 1474 * - the caller must hold ->cred_guard_mutex to protect against 1475 * PTRACE_ATTACH or seccomp thread-sync 1476 */ 1477 static void check_unsafe_exec(struct linux_binprm *bprm) 1478 { 1479 struct task_struct *p = current, *t; 1480 unsigned n_fs; 1481 1482 if (p->ptrace) 1483 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1484 1485 /* 1486 * This isn't strictly necessary, but it makes it harder for LSMs to 1487 * mess up. 1488 */ 1489 if (task_no_new_privs(current)) 1490 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1491 1492 t = p; 1493 n_fs = 1; 1494 spin_lock(&p->fs->lock); 1495 rcu_read_lock(); 1496 while_each_thread(p, t) { 1497 if (t->fs == p->fs) 1498 n_fs++; 1499 } 1500 rcu_read_unlock(); 1501 1502 if (p->fs->users > n_fs) 1503 bprm->unsafe |= LSM_UNSAFE_SHARE; 1504 else 1505 p->fs->in_exec = 1; 1506 spin_unlock(&p->fs->lock); 1507 } 1508 1509 static void bprm_fill_uid(struct linux_binprm *bprm) 1510 { 1511 struct inode *inode; 1512 unsigned int mode; 1513 kuid_t uid; 1514 kgid_t gid; 1515 1516 /* 1517 * Since this can be called multiple times (via prepare_binprm), 1518 * we must clear any previous work done when setting set[ug]id 1519 * bits from any earlier bprm->file uses (for example when run 1520 * first for a setuid script then again for its interpreter). 1521 */ 1522 bprm->cred->euid = current_euid(); 1523 bprm->cred->egid = current_egid(); 1524 1525 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1526 return; 1527 1528 if (task_no_new_privs(current)) 1529 return; 1530 1531 inode = bprm->file->f_path.dentry->d_inode; 1532 mode = READ_ONCE(inode->i_mode); 1533 if (!(mode & (S_ISUID|S_ISGID))) 1534 return; 1535 1536 /* Be careful if suid/sgid is set */ 1537 inode_lock(inode); 1538 1539 /* reload atomically mode/uid/gid now that lock held */ 1540 mode = inode->i_mode; 1541 uid = inode->i_uid; 1542 gid = inode->i_gid; 1543 inode_unlock(inode); 1544 1545 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1546 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1547 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1548 return; 1549 1550 if (mode & S_ISUID) { 1551 bprm->per_clear |= PER_CLEAR_ON_SETID; 1552 bprm->cred->euid = uid; 1553 } 1554 1555 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1556 bprm->per_clear |= PER_CLEAR_ON_SETID; 1557 bprm->cred->egid = gid; 1558 } 1559 } 1560 1561 /* 1562 * Fill the binprm structure from the inode. 1563 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1564 * 1565 * This may be called multiple times for binary chains (scripts for example). 1566 */ 1567 int prepare_binprm(struct linux_binprm *bprm) 1568 { 1569 int retval; 1570 loff_t pos = 0; 1571 1572 bprm_fill_uid(bprm); 1573 1574 /* fill in binprm security blob */ 1575 retval = security_bprm_set_creds(bprm); 1576 if (retval) 1577 return retval; 1578 bprm->called_set_creds = 1; 1579 1580 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1581 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1582 } 1583 1584 EXPORT_SYMBOL(prepare_binprm); 1585 1586 /* 1587 * Arguments are '\0' separated strings found at the location bprm->p 1588 * points to; chop off the first by relocating brpm->p to right after 1589 * the first '\0' encountered. 1590 */ 1591 int remove_arg_zero(struct linux_binprm *bprm) 1592 { 1593 int ret = 0; 1594 unsigned long offset; 1595 char *kaddr; 1596 struct page *page; 1597 1598 if (!bprm->argc) 1599 return 0; 1600 1601 do { 1602 offset = bprm->p & ~PAGE_MASK; 1603 page = get_arg_page(bprm, bprm->p, 0); 1604 if (!page) { 1605 ret = -EFAULT; 1606 goto out; 1607 } 1608 kaddr = kmap_atomic(page); 1609 1610 for (; offset < PAGE_SIZE && kaddr[offset]; 1611 offset++, bprm->p++) 1612 ; 1613 1614 kunmap_atomic(kaddr); 1615 put_arg_page(page); 1616 } while (offset == PAGE_SIZE); 1617 1618 bprm->p++; 1619 bprm->argc--; 1620 ret = 0; 1621 1622 out: 1623 return ret; 1624 } 1625 EXPORT_SYMBOL(remove_arg_zero); 1626 1627 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1628 /* 1629 * cycle the list of binary formats handler, until one recognizes the image 1630 */ 1631 int search_binary_handler(struct linux_binprm *bprm) 1632 { 1633 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1634 struct linux_binfmt *fmt; 1635 int retval; 1636 1637 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1638 if (bprm->recursion_depth > 5) 1639 return -ELOOP; 1640 1641 retval = security_bprm_check(bprm); 1642 if (retval) 1643 return retval; 1644 1645 retval = -ENOENT; 1646 retry: 1647 read_lock(&binfmt_lock); 1648 list_for_each_entry(fmt, &formats, lh) { 1649 if (!try_module_get(fmt->module)) 1650 continue; 1651 read_unlock(&binfmt_lock); 1652 bprm->recursion_depth++; 1653 retval = fmt->load_binary(bprm); 1654 read_lock(&binfmt_lock); 1655 put_binfmt(fmt); 1656 bprm->recursion_depth--; 1657 if (retval < 0 && !bprm->mm) { 1658 /* we got to flush_old_exec() and failed after it */ 1659 read_unlock(&binfmt_lock); 1660 force_sigsegv(SIGSEGV, current); 1661 return retval; 1662 } 1663 if (retval != -ENOEXEC || !bprm->file) { 1664 read_unlock(&binfmt_lock); 1665 return retval; 1666 } 1667 } 1668 read_unlock(&binfmt_lock); 1669 1670 if (need_retry) { 1671 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1672 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1673 return retval; 1674 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1675 return retval; 1676 need_retry = false; 1677 goto retry; 1678 } 1679 1680 return retval; 1681 } 1682 EXPORT_SYMBOL(search_binary_handler); 1683 1684 static int exec_binprm(struct linux_binprm *bprm) 1685 { 1686 pid_t old_pid, old_vpid; 1687 int ret; 1688 1689 /* Need to fetch pid before load_binary changes it */ 1690 old_pid = current->pid; 1691 rcu_read_lock(); 1692 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1693 rcu_read_unlock(); 1694 1695 ret = search_binary_handler(bprm); 1696 if (ret >= 0) { 1697 audit_bprm(bprm); 1698 trace_sched_process_exec(current, old_pid, bprm); 1699 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1700 proc_exec_connector(current); 1701 } 1702 1703 return ret; 1704 } 1705 1706 /* 1707 * sys_execve() executes a new program. 1708 */ 1709 static int __do_execve_file(int fd, struct filename *filename, 1710 struct user_arg_ptr argv, 1711 struct user_arg_ptr envp, 1712 int flags, struct file *file) 1713 { 1714 char *pathbuf = NULL; 1715 struct linux_binprm *bprm; 1716 struct files_struct *displaced; 1717 int retval; 1718 1719 if (IS_ERR(filename)) 1720 return PTR_ERR(filename); 1721 1722 /* 1723 * We move the actual failure in case of RLIMIT_NPROC excess from 1724 * set*uid() to execve() because too many poorly written programs 1725 * don't check setuid() return code. Here we additionally recheck 1726 * whether NPROC limit is still exceeded. 1727 */ 1728 if ((current->flags & PF_NPROC_EXCEEDED) && 1729 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1730 retval = -EAGAIN; 1731 goto out_ret; 1732 } 1733 1734 /* We're below the limit (still or again), so we don't want to make 1735 * further execve() calls fail. */ 1736 current->flags &= ~PF_NPROC_EXCEEDED; 1737 1738 retval = unshare_files(&displaced); 1739 if (retval) 1740 goto out_ret; 1741 1742 retval = -ENOMEM; 1743 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1744 if (!bprm) 1745 goto out_files; 1746 1747 retval = prepare_bprm_creds(bprm); 1748 if (retval) 1749 goto out_free; 1750 1751 check_unsafe_exec(bprm); 1752 current->in_execve = 1; 1753 1754 if (!file) 1755 file = do_open_execat(fd, filename, flags); 1756 retval = PTR_ERR(file); 1757 if (IS_ERR(file)) 1758 goto out_unmark; 1759 1760 sched_exec(); 1761 1762 bprm->file = file; 1763 if (!filename) { 1764 bprm->filename = "none"; 1765 } else if (fd == AT_FDCWD || filename->name[0] == '/') { 1766 bprm->filename = filename->name; 1767 } else { 1768 if (filename->name[0] == '\0') 1769 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1770 else 1771 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1772 fd, filename->name); 1773 if (!pathbuf) { 1774 retval = -ENOMEM; 1775 goto out_unmark; 1776 } 1777 /* 1778 * Record that a name derived from an O_CLOEXEC fd will be 1779 * inaccessible after exec. Relies on having exclusive access to 1780 * current->files (due to unshare_files above). 1781 */ 1782 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1783 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1784 bprm->filename = pathbuf; 1785 } 1786 bprm->interp = bprm->filename; 1787 1788 retval = bprm_mm_init(bprm); 1789 if (retval) 1790 goto out_unmark; 1791 1792 bprm->argc = count(argv, MAX_ARG_STRINGS); 1793 if ((retval = bprm->argc) < 0) 1794 goto out; 1795 1796 bprm->envc = count(envp, MAX_ARG_STRINGS); 1797 if ((retval = bprm->envc) < 0) 1798 goto out; 1799 1800 retval = prepare_binprm(bprm); 1801 if (retval < 0) 1802 goto out; 1803 1804 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1805 if (retval < 0) 1806 goto out; 1807 1808 bprm->exec = bprm->p; 1809 retval = copy_strings(bprm->envc, envp, bprm); 1810 if (retval < 0) 1811 goto out; 1812 1813 retval = copy_strings(bprm->argc, argv, bprm); 1814 if (retval < 0) 1815 goto out; 1816 1817 would_dump(bprm, bprm->file); 1818 1819 retval = exec_binprm(bprm); 1820 if (retval < 0) 1821 goto out; 1822 1823 /* execve succeeded */ 1824 current->fs->in_exec = 0; 1825 current->in_execve = 0; 1826 membarrier_execve(current); 1827 acct_update_integrals(current); 1828 task_numa_free(current); 1829 free_bprm(bprm); 1830 kfree(pathbuf); 1831 if (filename) 1832 putname(filename); 1833 if (displaced) 1834 put_files_struct(displaced); 1835 return retval; 1836 1837 out: 1838 if (bprm->mm) { 1839 acct_arg_size(bprm, 0); 1840 mmput(bprm->mm); 1841 } 1842 1843 out_unmark: 1844 current->fs->in_exec = 0; 1845 current->in_execve = 0; 1846 1847 out_free: 1848 free_bprm(bprm); 1849 kfree(pathbuf); 1850 1851 out_files: 1852 if (displaced) 1853 reset_files_struct(displaced); 1854 out_ret: 1855 if (filename) 1856 putname(filename); 1857 return retval; 1858 } 1859 1860 static int do_execveat_common(int fd, struct filename *filename, 1861 struct user_arg_ptr argv, 1862 struct user_arg_ptr envp, 1863 int flags) 1864 { 1865 return __do_execve_file(fd, filename, argv, envp, flags, NULL); 1866 } 1867 1868 int do_execve_file(struct file *file, void *__argv, void *__envp) 1869 { 1870 struct user_arg_ptr argv = { .ptr.native = __argv }; 1871 struct user_arg_ptr envp = { .ptr.native = __envp }; 1872 1873 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); 1874 } 1875 1876 int do_execve(struct filename *filename, 1877 const char __user *const __user *__argv, 1878 const char __user *const __user *__envp) 1879 { 1880 struct user_arg_ptr argv = { .ptr.native = __argv }; 1881 struct user_arg_ptr envp = { .ptr.native = __envp }; 1882 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1883 } 1884 1885 int do_execveat(int fd, struct filename *filename, 1886 const char __user *const __user *__argv, 1887 const char __user *const __user *__envp, 1888 int flags) 1889 { 1890 struct user_arg_ptr argv = { .ptr.native = __argv }; 1891 struct user_arg_ptr envp = { .ptr.native = __envp }; 1892 1893 return do_execveat_common(fd, filename, argv, envp, flags); 1894 } 1895 1896 #ifdef CONFIG_COMPAT 1897 static int compat_do_execve(struct filename *filename, 1898 const compat_uptr_t __user *__argv, 1899 const compat_uptr_t __user *__envp) 1900 { 1901 struct user_arg_ptr argv = { 1902 .is_compat = true, 1903 .ptr.compat = __argv, 1904 }; 1905 struct user_arg_ptr envp = { 1906 .is_compat = true, 1907 .ptr.compat = __envp, 1908 }; 1909 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1910 } 1911 1912 static int compat_do_execveat(int fd, struct filename *filename, 1913 const compat_uptr_t __user *__argv, 1914 const compat_uptr_t __user *__envp, 1915 int flags) 1916 { 1917 struct user_arg_ptr argv = { 1918 .is_compat = true, 1919 .ptr.compat = __argv, 1920 }; 1921 struct user_arg_ptr envp = { 1922 .is_compat = true, 1923 .ptr.compat = __envp, 1924 }; 1925 return do_execveat_common(fd, filename, argv, envp, flags); 1926 } 1927 #endif 1928 1929 void set_binfmt(struct linux_binfmt *new) 1930 { 1931 struct mm_struct *mm = current->mm; 1932 1933 if (mm->binfmt) 1934 module_put(mm->binfmt->module); 1935 1936 mm->binfmt = new; 1937 if (new) 1938 __module_get(new->module); 1939 } 1940 EXPORT_SYMBOL(set_binfmt); 1941 1942 /* 1943 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1944 */ 1945 void set_dumpable(struct mm_struct *mm, int value) 1946 { 1947 unsigned long old, new; 1948 1949 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1950 return; 1951 1952 do { 1953 old = READ_ONCE(mm->flags); 1954 new = (old & ~MMF_DUMPABLE_MASK) | value; 1955 } while (cmpxchg(&mm->flags, old, new) != old); 1956 } 1957 1958 SYSCALL_DEFINE3(execve, 1959 const char __user *, filename, 1960 const char __user *const __user *, argv, 1961 const char __user *const __user *, envp) 1962 { 1963 return do_execve(getname(filename), argv, envp); 1964 } 1965 1966 SYSCALL_DEFINE5(execveat, 1967 int, fd, const char __user *, filename, 1968 const char __user *const __user *, argv, 1969 const char __user *const __user *, envp, 1970 int, flags) 1971 { 1972 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1973 1974 return do_execveat(fd, 1975 getname_flags(filename, lookup_flags, NULL), 1976 argv, envp, flags); 1977 } 1978 1979 #ifdef CONFIG_COMPAT 1980 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1981 const compat_uptr_t __user *, argv, 1982 const compat_uptr_t __user *, envp) 1983 { 1984 return compat_do_execve(getname(filename), argv, envp); 1985 } 1986 1987 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1988 const char __user *, filename, 1989 const compat_uptr_t __user *, argv, 1990 const compat_uptr_t __user *, envp, 1991 int, flags) 1992 { 1993 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1994 1995 return compat_do_execveat(fd, 1996 getname_flags(filename, lookup_flags, NULL), 1997 argv, envp, flags); 1998 } 1999 #endif 2000