1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/coredump.h> 37 #include <linux/sched/signal.h> 38 #include <linux/sched/numa_balancing.h> 39 #include <linux/sched/task.h> 40 #include <linux/pagemap.h> 41 #include <linux/perf_event.h> 42 #include <linux/highmem.h> 43 #include <linux/spinlock.h> 44 #include <linux/key.h> 45 #include <linux/personality.h> 46 #include <linux/binfmts.h> 47 #include <linux/utsname.h> 48 #include <linux/pid_namespace.h> 49 #include <linux/module.h> 50 #include <linux/namei.h> 51 #include <linux/mount.h> 52 #include <linux/security.h> 53 #include <linux/syscalls.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/audit.h> 57 #include <linux/tracehook.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/pipe_fs_i.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 int suid_dumpable = 0; 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 void __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 BUG_ON(!fmt); 83 if (WARN_ON(!fmt->load_binary)) 84 return; 85 write_lock(&binfmt_lock); 86 insert ? list_add(&fmt->lh, &formats) : 87 list_add_tail(&fmt->lh, &formats); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 bool path_noexec(const struct path *path) 108 { 109 return (path->mnt->mnt_flags & MNT_NOEXEC) || 110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 111 } 112 113 #ifdef CONFIG_USELIB 114 /* 115 * Note that a shared library must be both readable and executable due to 116 * security reasons. 117 * 118 * Also note that we take the address to load from from the file itself. 119 */ 120 SYSCALL_DEFINE1(uselib, const char __user *, library) 121 { 122 struct linux_binfmt *fmt; 123 struct file *file; 124 struct filename *tmp = getname(library); 125 int error = PTR_ERR(tmp); 126 static const struct open_flags uselib_flags = { 127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 128 .acc_mode = MAY_READ | MAY_EXEC, 129 .intent = LOOKUP_OPEN, 130 .lookup_flags = LOOKUP_FOLLOW, 131 }; 132 133 if (IS_ERR(tmp)) 134 goto out; 135 136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 137 putname(tmp); 138 error = PTR_ERR(file); 139 if (IS_ERR(file)) 140 goto out; 141 142 error = -EINVAL; 143 if (!S_ISREG(file_inode(file)->i_mode)) 144 goto exit; 145 146 error = -EACCES; 147 if (path_noexec(&file->f_path)) 148 goto exit; 149 150 fsnotify_open(file); 151 152 error = -ENOEXEC; 153 154 read_lock(&binfmt_lock); 155 list_for_each_entry(fmt, &formats, lh) { 156 if (!fmt->load_shlib) 157 continue; 158 if (!try_module_get(fmt->module)) 159 continue; 160 read_unlock(&binfmt_lock); 161 error = fmt->load_shlib(file); 162 read_lock(&binfmt_lock); 163 put_binfmt(fmt); 164 if (error != -ENOEXEC) 165 break; 166 } 167 read_unlock(&binfmt_lock); 168 exit: 169 fput(file); 170 out: 171 return error; 172 } 173 #endif /* #ifdef CONFIG_USELIB */ 174 175 #ifdef CONFIG_MMU 176 /* 177 * The nascent bprm->mm is not visible until exec_mmap() but it can 178 * use a lot of memory, account these pages in current->mm temporary 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 180 * change the counter back via acct_arg_size(0). 181 */ 182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 183 { 184 struct mm_struct *mm = current->mm; 185 long diff = (long)(pages - bprm->vma_pages); 186 187 if (!mm || !diff) 188 return; 189 190 bprm->vma_pages = pages; 191 add_mm_counter(mm, MM_ANONPAGES, diff); 192 } 193 194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 195 int write) 196 { 197 struct page *page; 198 int ret; 199 unsigned int gup_flags = FOLL_FORCE; 200 201 #ifdef CONFIG_STACK_GROWSUP 202 if (write) { 203 ret = expand_downwards(bprm->vma, pos); 204 if (ret < 0) 205 return NULL; 206 } 207 #endif 208 209 if (write) 210 gup_flags |= FOLL_WRITE; 211 212 /* 213 * We are doing an exec(). 'current' is the process 214 * doing the exec and bprm->mm is the new process's mm. 215 */ 216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 217 &page, NULL, NULL); 218 if (ret <= 0) 219 return NULL; 220 221 if (write) 222 acct_arg_size(bprm, vma_pages(bprm->vma)); 223 224 return page; 225 } 226 227 static void put_arg_page(struct page *page) 228 { 229 put_page(page); 230 } 231 232 static void free_arg_pages(struct linux_binprm *bprm) 233 { 234 } 235 236 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 237 struct page *page) 238 { 239 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 240 } 241 242 static int __bprm_mm_init(struct linux_binprm *bprm) 243 { 244 int err; 245 struct vm_area_struct *vma = NULL; 246 struct mm_struct *mm = bprm->mm; 247 248 bprm->vma = vma = vm_area_alloc(mm); 249 if (!vma) 250 return -ENOMEM; 251 vma_set_anonymous(vma); 252 253 if (down_write_killable(&mm->mmap_sem)) { 254 err = -EINTR; 255 goto err_free; 256 } 257 258 /* 259 * Place the stack at the largest stack address the architecture 260 * supports. Later, we'll move this to an appropriate place. We don't 261 * use STACK_TOP because that can depend on attributes which aren't 262 * configured yet. 263 */ 264 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 265 vma->vm_end = STACK_TOP_MAX; 266 vma->vm_start = vma->vm_end - PAGE_SIZE; 267 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 268 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 269 270 err = insert_vm_struct(mm, vma); 271 if (err) 272 goto err; 273 274 mm->stack_vm = mm->total_vm = 1; 275 arch_bprm_mm_init(mm, vma); 276 up_write(&mm->mmap_sem); 277 bprm->p = vma->vm_end - sizeof(void *); 278 return 0; 279 err: 280 up_write(&mm->mmap_sem); 281 err_free: 282 bprm->vma = NULL; 283 vm_area_free(vma); 284 return err; 285 } 286 287 static bool valid_arg_len(struct linux_binprm *bprm, long len) 288 { 289 return len <= MAX_ARG_STRLEN; 290 } 291 292 #else 293 294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 295 { 296 } 297 298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 299 int write) 300 { 301 struct page *page; 302 303 page = bprm->page[pos / PAGE_SIZE]; 304 if (!page && write) { 305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 306 if (!page) 307 return NULL; 308 bprm->page[pos / PAGE_SIZE] = page; 309 } 310 311 return page; 312 } 313 314 static void put_arg_page(struct page *page) 315 { 316 } 317 318 static void free_arg_page(struct linux_binprm *bprm, int i) 319 { 320 if (bprm->page[i]) { 321 __free_page(bprm->page[i]); 322 bprm->page[i] = NULL; 323 } 324 } 325 326 static void free_arg_pages(struct linux_binprm *bprm) 327 { 328 int i; 329 330 for (i = 0; i < MAX_ARG_PAGES; i++) 331 free_arg_page(bprm, i); 332 } 333 334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 335 struct page *page) 336 { 337 } 338 339 static int __bprm_mm_init(struct linux_binprm *bprm) 340 { 341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 342 return 0; 343 } 344 345 static bool valid_arg_len(struct linux_binprm *bprm, long len) 346 { 347 return len <= bprm->p; 348 } 349 350 #endif /* CONFIG_MMU */ 351 352 /* 353 * Create a new mm_struct and populate it with a temporary stack 354 * vm_area_struct. We don't have enough context at this point to set the stack 355 * flags, permissions, and offset, so we use temporary values. We'll update 356 * them later in setup_arg_pages(). 357 */ 358 static int bprm_mm_init(struct linux_binprm *bprm) 359 { 360 int err; 361 struct mm_struct *mm = NULL; 362 363 bprm->mm = mm = mm_alloc(); 364 err = -ENOMEM; 365 if (!mm) 366 goto err; 367 368 /* Save current stack limit for all calculations made during exec. */ 369 task_lock(current->group_leader); 370 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 371 task_unlock(current->group_leader); 372 373 err = __bprm_mm_init(bprm); 374 if (err) 375 goto err; 376 377 return 0; 378 379 err: 380 if (mm) { 381 bprm->mm = NULL; 382 mmdrop(mm); 383 } 384 385 return err; 386 } 387 388 struct user_arg_ptr { 389 #ifdef CONFIG_COMPAT 390 bool is_compat; 391 #endif 392 union { 393 const char __user *const __user *native; 394 #ifdef CONFIG_COMPAT 395 const compat_uptr_t __user *compat; 396 #endif 397 } ptr; 398 }; 399 400 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 401 { 402 const char __user *native; 403 404 #ifdef CONFIG_COMPAT 405 if (unlikely(argv.is_compat)) { 406 compat_uptr_t compat; 407 408 if (get_user(compat, argv.ptr.compat + nr)) 409 return ERR_PTR(-EFAULT); 410 411 return compat_ptr(compat); 412 } 413 #endif 414 415 if (get_user(native, argv.ptr.native + nr)) 416 return ERR_PTR(-EFAULT); 417 418 return native; 419 } 420 421 /* 422 * count() counts the number of strings in array ARGV. 423 */ 424 static int count(struct user_arg_ptr argv, int max) 425 { 426 int i = 0; 427 428 if (argv.ptr.native != NULL) { 429 for (;;) { 430 const char __user *p = get_user_arg_ptr(argv, i); 431 432 if (!p) 433 break; 434 435 if (IS_ERR(p)) 436 return -EFAULT; 437 438 if (i >= max) 439 return -E2BIG; 440 ++i; 441 442 if (fatal_signal_pending(current)) 443 return -ERESTARTNOHAND; 444 cond_resched(); 445 } 446 } 447 return i; 448 } 449 450 static int prepare_arg_pages(struct linux_binprm *bprm, 451 struct user_arg_ptr argv, struct user_arg_ptr envp) 452 { 453 unsigned long limit, ptr_size; 454 455 bprm->argc = count(argv, MAX_ARG_STRINGS); 456 if (bprm->argc < 0) 457 return bprm->argc; 458 459 bprm->envc = count(envp, MAX_ARG_STRINGS); 460 if (bprm->envc < 0) 461 return bprm->envc; 462 463 /* 464 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 465 * (whichever is smaller) for the argv+env strings. 466 * This ensures that: 467 * - the remaining binfmt code will not run out of stack space, 468 * - the program will have a reasonable amount of stack left 469 * to work from. 470 */ 471 limit = _STK_LIM / 4 * 3; 472 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 473 /* 474 * We've historically supported up to 32 pages (ARG_MAX) 475 * of argument strings even with small stacks 476 */ 477 limit = max_t(unsigned long, limit, ARG_MAX); 478 /* 479 * We must account for the size of all the argv and envp pointers to 480 * the argv and envp strings, since they will also take up space in 481 * the stack. They aren't stored until much later when we can't 482 * signal to the parent that the child has run out of stack space. 483 * Instead, calculate it here so it's possible to fail gracefully. 484 */ 485 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 486 if (limit <= ptr_size) 487 return -E2BIG; 488 limit -= ptr_size; 489 490 bprm->argmin = bprm->p - limit; 491 return 0; 492 } 493 494 /* 495 * 'copy_strings()' copies argument/environment strings from the old 496 * processes's memory to the new process's stack. The call to get_user_pages() 497 * ensures the destination page is created and not swapped out. 498 */ 499 static int copy_strings(int argc, struct user_arg_ptr argv, 500 struct linux_binprm *bprm) 501 { 502 struct page *kmapped_page = NULL; 503 char *kaddr = NULL; 504 unsigned long kpos = 0; 505 int ret; 506 507 while (argc-- > 0) { 508 const char __user *str; 509 int len; 510 unsigned long pos; 511 512 ret = -EFAULT; 513 str = get_user_arg_ptr(argv, argc); 514 if (IS_ERR(str)) 515 goto out; 516 517 len = strnlen_user(str, MAX_ARG_STRLEN); 518 if (!len) 519 goto out; 520 521 ret = -E2BIG; 522 if (!valid_arg_len(bprm, len)) 523 goto out; 524 525 /* We're going to work our way backwords. */ 526 pos = bprm->p; 527 str += len; 528 bprm->p -= len; 529 #ifdef CONFIG_MMU 530 if (bprm->p < bprm->argmin) 531 goto out; 532 #endif 533 534 while (len > 0) { 535 int offset, bytes_to_copy; 536 537 if (fatal_signal_pending(current)) { 538 ret = -ERESTARTNOHAND; 539 goto out; 540 } 541 cond_resched(); 542 543 offset = pos % PAGE_SIZE; 544 if (offset == 0) 545 offset = PAGE_SIZE; 546 547 bytes_to_copy = offset; 548 if (bytes_to_copy > len) 549 bytes_to_copy = len; 550 551 offset -= bytes_to_copy; 552 pos -= bytes_to_copy; 553 str -= bytes_to_copy; 554 len -= bytes_to_copy; 555 556 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 557 struct page *page; 558 559 page = get_arg_page(bprm, pos, 1); 560 if (!page) { 561 ret = -E2BIG; 562 goto out; 563 } 564 565 if (kmapped_page) { 566 flush_kernel_dcache_page(kmapped_page); 567 kunmap(kmapped_page); 568 put_arg_page(kmapped_page); 569 } 570 kmapped_page = page; 571 kaddr = kmap(kmapped_page); 572 kpos = pos & PAGE_MASK; 573 flush_arg_page(bprm, kpos, kmapped_page); 574 } 575 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 576 ret = -EFAULT; 577 goto out; 578 } 579 } 580 } 581 ret = 0; 582 out: 583 if (kmapped_page) { 584 flush_kernel_dcache_page(kmapped_page); 585 kunmap(kmapped_page); 586 put_arg_page(kmapped_page); 587 } 588 return ret; 589 } 590 591 /* 592 * Like copy_strings, but get argv and its values from kernel memory. 593 */ 594 int copy_strings_kernel(int argc, const char *const *__argv, 595 struct linux_binprm *bprm) 596 { 597 int r; 598 mm_segment_t oldfs = get_fs(); 599 struct user_arg_ptr argv = { 600 .ptr.native = (const char __user *const __user *)__argv, 601 }; 602 603 set_fs(KERNEL_DS); 604 r = copy_strings(argc, argv, bprm); 605 set_fs(oldfs); 606 607 return r; 608 } 609 EXPORT_SYMBOL(copy_strings_kernel); 610 611 #ifdef CONFIG_MMU 612 613 /* 614 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 615 * the binfmt code determines where the new stack should reside, we shift it to 616 * its final location. The process proceeds as follows: 617 * 618 * 1) Use shift to calculate the new vma endpoints. 619 * 2) Extend vma to cover both the old and new ranges. This ensures the 620 * arguments passed to subsequent functions are consistent. 621 * 3) Move vma's page tables to the new range. 622 * 4) Free up any cleared pgd range. 623 * 5) Shrink the vma to cover only the new range. 624 */ 625 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 626 { 627 struct mm_struct *mm = vma->vm_mm; 628 unsigned long old_start = vma->vm_start; 629 unsigned long old_end = vma->vm_end; 630 unsigned long length = old_end - old_start; 631 unsigned long new_start = old_start - shift; 632 unsigned long new_end = old_end - shift; 633 struct mmu_gather tlb; 634 635 BUG_ON(new_start > new_end); 636 637 /* 638 * ensure there are no vmas between where we want to go 639 * and where we are 640 */ 641 if (vma != find_vma(mm, new_start)) 642 return -EFAULT; 643 644 /* 645 * cover the whole range: [new_start, old_end) 646 */ 647 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 648 return -ENOMEM; 649 650 /* 651 * move the page tables downwards, on failure we rely on 652 * process cleanup to remove whatever mess we made. 653 */ 654 if (length != move_page_tables(vma, old_start, 655 vma, new_start, length, false)) 656 return -ENOMEM; 657 658 lru_add_drain(); 659 tlb_gather_mmu(&tlb, mm, old_start, old_end); 660 if (new_end > old_start) { 661 /* 662 * when the old and new regions overlap clear from new_end. 663 */ 664 free_pgd_range(&tlb, new_end, old_end, new_end, 665 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 666 } else { 667 /* 668 * otherwise, clean from old_start; this is done to not touch 669 * the address space in [new_end, old_start) some architectures 670 * have constraints on va-space that make this illegal (IA64) - 671 * for the others its just a little faster. 672 */ 673 free_pgd_range(&tlb, old_start, old_end, new_end, 674 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 675 } 676 tlb_finish_mmu(&tlb, old_start, old_end); 677 678 /* 679 * Shrink the vma to just the new range. Always succeeds. 680 */ 681 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 682 683 return 0; 684 } 685 686 /* 687 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 688 * the stack is optionally relocated, and some extra space is added. 689 */ 690 int setup_arg_pages(struct linux_binprm *bprm, 691 unsigned long stack_top, 692 int executable_stack) 693 { 694 unsigned long ret; 695 unsigned long stack_shift; 696 struct mm_struct *mm = current->mm; 697 struct vm_area_struct *vma = bprm->vma; 698 struct vm_area_struct *prev = NULL; 699 unsigned long vm_flags; 700 unsigned long stack_base; 701 unsigned long stack_size; 702 unsigned long stack_expand; 703 unsigned long rlim_stack; 704 705 #ifdef CONFIG_STACK_GROWSUP 706 /* Limit stack size */ 707 stack_base = bprm->rlim_stack.rlim_max; 708 if (stack_base > STACK_SIZE_MAX) 709 stack_base = STACK_SIZE_MAX; 710 711 /* Add space for stack randomization. */ 712 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 713 714 /* Make sure we didn't let the argument array grow too large. */ 715 if (vma->vm_end - vma->vm_start > stack_base) 716 return -ENOMEM; 717 718 stack_base = PAGE_ALIGN(stack_top - stack_base); 719 720 stack_shift = vma->vm_start - stack_base; 721 mm->arg_start = bprm->p - stack_shift; 722 bprm->p = vma->vm_end - stack_shift; 723 #else 724 stack_top = arch_align_stack(stack_top); 725 stack_top = PAGE_ALIGN(stack_top); 726 727 if (unlikely(stack_top < mmap_min_addr) || 728 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 729 return -ENOMEM; 730 731 stack_shift = vma->vm_end - stack_top; 732 733 bprm->p -= stack_shift; 734 mm->arg_start = bprm->p; 735 #endif 736 737 if (bprm->loader) 738 bprm->loader -= stack_shift; 739 bprm->exec -= stack_shift; 740 741 if (down_write_killable(&mm->mmap_sem)) 742 return -EINTR; 743 744 vm_flags = VM_STACK_FLAGS; 745 746 /* 747 * Adjust stack execute permissions; explicitly enable for 748 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 749 * (arch default) otherwise. 750 */ 751 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 752 vm_flags |= VM_EXEC; 753 else if (executable_stack == EXSTACK_DISABLE_X) 754 vm_flags &= ~VM_EXEC; 755 vm_flags |= mm->def_flags; 756 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 757 758 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 759 vm_flags); 760 if (ret) 761 goto out_unlock; 762 BUG_ON(prev != vma); 763 764 /* Move stack pages down in memory. */ 765 if (stack_shift) { 766 ret = shift_arg_pages(vma, stack_shift); 767 if (ret) 768 goto out_unlock; 769 } 770 771 /* mprotect_fixup is overkill to remove the temporary stack flags */ 772 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 773 774 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 775 stack_size = vma->vm_end - vma->vm_start; 776 /* 777 * Align this down to a page boundary as expand_stack 778 * will align it up. 779 */ 780 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 781 #ifdef CONFIG_STACK_GROWSUP 782 if (stack_size + stack_expand > rlim_stack) 783 stack_base = vma->vm_start + rlim_stack; 784 else 785 stack_base = vma->vm_end + stack_expand; 786 #else 787 if (stack_size + stack_expand > rlim_stack) 788 stack_base = vma->vm_end - rlim_stack; 789 else 790 stack_base = vma->vm_start - stack_expand; 791 #endif 792 current->mm->start_stack = bprm->p; 793 ret = expand_stack(vma, stack_base); 794 if (ret) 795 ret = -EFAULT; 796 797 out_unlock: 798 up_write(&mm->mmap_sem); 799 return ret; 800 } 801 EXPORT_SYMBOL(setup_arg_pages); 802 803 #else 804 805 /* 806 * Transfer the program arguments and environment from the holding pages 807 * onto the stack. The provided stack pointer is adjusted accordingly. 808 */ 809 int transfer_args_to_stack(struct linux_binprm *bprm, 810 unsigned long *sp_location) 811 { 812 unsigned long index, stop, sp; 813 int ret = 0; 814 815 stop = bprm->p >> PAGE_SHIFT; 816 sp = *sp_location; 817 818 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 819 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 820 char *src = kmap(bprm->page[index]) + offset; 821 sp -= PAGE_SIZE - offset; 822 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 823 ret = -EFAULT; 824 kunmap(bprm->page[index]); 825 if (ret) 826 goto out; 827 } 828 829 *sp_location = sp; 830 831 out: 832 return ret; 833 } 834 EXPORT_SYMBOL(transfer_args_to_stack); 835 836 #endif /* CONFIG_MMU */ 837 838 static struct file *do_open_execat(int fd, struct filename *name, int flags) 839 { 840 struct file *file; 841 int err; 842 struct open_flags open_exec_flags = { 843 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 844 .acc_mode = MAY_EXEC, 845 .intent = LOOKUP_OPEN, 846 .lookup_flags = LOOKUP_FOLLOW, 847 }; 848 849 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 850 return ERR_PTR(-EINVAL); 851 if (flags & AT_SYMLINK_NOFOLLOW) 852 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 853 if (flags & AT_EMPTY_PATH) 854 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 855 856 file = do_filp_open(fd, name, &open_exec_flags); 857 if (IS_ERR(file)) 858 goto out; 859 860 err = -EACCES; 861 if (!S_ISREG(file_inode(file)->i_mode)) 862 goto exit; 863 864 if (path_noexec(&file->f_path)) 865 goto exit; 866 867 err = deny_write_access(file); 868 if (err) 869 goto exit; 870 871 if (name->name[0] != '\0') 872 fsnotify_open(file); 873 874 out: 875 return file; 876 877 exit: 878 fput(file); 879 return ERR_PTR(err); 880 } 881 882 struct file *open_exec(const char *name) 883 { 884 struct filename *filename = getname_kernel(name); 885 struct file *f = ERR_CAST(filename); 886 887 if (!IS_ERR(filename)) { 888 f = do_open_execat(AT_FDCWD, filename, 0); 889 putname(filename); 890 } 891 return f; 892 } 893 EXPORT_SYMBOL(open_exec); 894 895 int kernel_read_file(struct file *file, void **buf, loff_t *size, 896 loff_t max_size, enum kernel_read_file_id id) 897 { 898 loff_t i_size, pos; 899 ssize_t bytes = 0; 900 int ret; 901 902 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 903 return -EINVAL; 904 905 ret = deny_write_access(file); 906 if (ret) 907 return ret; 908 909 ret = security_kernel_read_file(file, id); 910 if (ret) 911 goto out; 912 913 i_size = i_size_read(file_inode(file)); 914 if (i_size <= 0) { 915 ret = -EINVAL; 916 goto out; 917 } 918 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 919 ret = -EFBIG; 920 goto out; 921 } 922 923 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 924 *buf = vmalloc(i_size); 925 if (!*buf) { 926 ret = -ENOMEM; 927 goto out; 928 } 929 930 pos = 0; 931 while (pos < i_size) { 932 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 933 if (bytes < 0) { 934 ret = bytes; 935 goto out; 936 } 937 938 if (bytes == 0) 939 break; 940 } 941 942 if (pos != i_size) { 943 ret = -EIO; 944 goto out_free; 945 } 946 947 ret = security_kernel_post_read_file(file, *buf, i_size, id); 948 if (!ret) 949 *size = pos; 950 951 out_free: 952 if (ret < 0) { 953 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 954 vfree(*buf); 955 *buf = NULL; 956 } 957 } 958 959 out: 960 allow_write_access(file); 961 return ret; 962 } 963 EXPORT_SYMBOL_GPL(kernel_read_file); 964 965 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 966 loff_t max_size, enum kernel_read_file_id id) 967 { 968 struct file *file; 969 int ret; 970 971 if (!path || !*path) 972 return -EINVAL; 973 974 file = filp_open(path, O_RDONLY, 0); 975 if (IS_ERR(file)) 976 return PTR_ERR(file); 977 978 ret = kernel_read_file(file, buf, size, max_size, id); 979 fput(file); 980 return ret; 981 } 982 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 983 984 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 985 enum kernel_read_file_id id) 986 { 987 struct fd f = fdget(fd); 988 int ret = -EBADF; 989 990 if (!f.file) 991 goto out; 992 993 ret = kernel_read_file(f.file, buf, size, max_size, id); 994 out: 995 fdput(f); 996 return ret; 997 } 998 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 999 1000 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1001 { 1002 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1003 if (res > 0) 1004 flush_icache_range(addr, addr + len); 1005 return res; 1006 } 1007 EXPORT_SYMBOL(read_code); 1008 1009 static int exec_mmap(struct mm_struct *mm) 1010 { 1011 struct task_struct *tsk; 1012 struct mm_struct *old_mm, *active_mm; 1013 1014 /* Notify parent that we're no longer interested in the old VM */ 1015 tsk = current; 1016 old_mm = current->mm; 1017 mm_release(tsk, old_mm); 1018 1019 if (old_mm) { 1020 sync_mm_rss(old_mm); 1021 /* 1022 * Make sure that if there is a core dump in progress 1023 * for the old mm, we get out and die instead of going 1024 * through with the exec. We must hold mmap_sem around 1025 * checking core_state and changing tsk->mm. 1026 */ 1027 down_read(&old_mm->mmap_sem); 1028 if (unlikely(old_mm->core_state)) { 1029 up_read(&old_mm->mmap_sem); 1030 return -EINTR; 1031 } 1032 } 1033 task_lock(tsk); 1034 active_mm = tsk->active_mm; 1035 tsk->mm = mm; 1036 tsk->active_mm = mm; 1037 activate_mm(active_mm, mm); 1038 tsk->mm->vmacache_seqnum = 0; 1039 vmacache_flush(tsk); 1040 task_unlock(tsk); 1041 if (old_mm) { 1042 up_read(&old_mm->mmap_sem); 1043 BUG_ON(active_mm != old_mm); 1044 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1045 mm_update_next_owner(old_mm); 1046 mmput(old_mm); 1047 return 0; 1048 } 1049 mmdrop(active_mm); 1050 return 0; 1051 } 1052 1053 /* 1054 * This function makes sure the current process has its own signal table, 1055 * so that flush_signal_handlers can later reset the handlers without 1056 * disturbing other processes. (Other processes might share the signal 1057 * table via the CLONE_SIGHAND option to clone().) 1058 */ 1059 static int de_thread(struct task_struct *tsk) 1060 { 1061 struct signal_struct *sig = tsk->signal; 1062 struct sighand_struct *oldsighand = tsk->sighand; 1063 spinlock_t *lock = &oldsighand->siglock; 1064 1065 if (thread_group_empty(tsk)) 1066 goto no_thread_group; 1067 1068 /* 1069 * Kill all other threads in the thread group. 1070 */ 1071 spin_lock_irq(lock); 1072 if (signal_group_exit(sig)) { 1073 /* 1074 * Another group action in progress, just 1075 * return so that the signal is processed. 1076 */ 1077 spin_unlock_irq(lock); 1078 return -EAGAIN; 1079 } 1080 1081 sig->group_exit_task = tsk; 1082 sig->notify_count = zap_other_threads(tsk); 1083 if (!thread_group_leader(tsk)) 1084 sig->notify_count--; 1085 1086 while (sig->notify_count) { 1087 __set_current_state(TASK_KILLABLE); 1088 spin_unlock_irq(lock); 1089 schedule(); 1090 if (__fatal_signal_pending(tsk)) 1091 goto killed; 1092 spin_lock_irq(lock); 1093 } 1094 spin_unlock_irq(lock); 1095 1096 /* 1097 * At this point all other threads have exited, all we have to 1098 * do is to wait for the thread group leader to become inactive, 1099 * and to assume its PID: 1100 */ 1101 if (!thread_group_leader(tsk)) { 1102 struct task_struct *leader = tsk->group_leader; 1103 1104 for (;;) { 1105 cgroup_threadgroup_change_begin(tsk); 1106 write_lock_irq(&tasklist_lock); 1107 /* 1108 * Do this under tasklist_lock to ensure that 1109 * exit_notify() can't miss ->group_exit_task 1110 */ 1111 sig->notify_count = -1; 1112 if (likely(leader->exit_state)) 1113 break; 1114 __set_current_state(TASK_KILLABLE); 1115 write_unlock_irq(&tasklist_lock); 1116 cgroup_threadgroup_change_end(tsk); 1117 schedule(); 1118 if (__fatal_signal_pending(tsk)) 1119 goto killed; 1120 } 1121 1122 /* 1123 * The only record we have of the real-time age of a 1124 * process, regardless of execs it's done, is start_time. 1125 * All the past CPU time is accumulated in signal_struct 1126 * from sister threads now dead. But in this non-leader 1127 * exec, nothing survives from the original leader thread, 1128 * whose birth marks the true age of this process now. 1129 * When we take on its identity by switching to its PID, we 1130 * also take its birthdate (always earlier than our own). 1131 */ 1132 tsk->start_time = leader->start_time; 1133 tsk->real_start_time = leader->real_start_time; 1134 1135 BUG_ON(!same_thread_group(leader, tsk)); 1136 BUG_ON(has_group_leader_pid(tsk)); 1137 /* 1138 * An exec() starts a new thread group with the 1139 * TGID of the previous thread group. Rehash the 1140 * two threads with a switched PID, and release 1141 * the former thread group leader: 1142 */ 1143 1144 /* Become a process group leader with the old leader's pid. 1145 * The old leader becomes a thread of the this thread group. 1146 * Note: The old leader also uses this pid until release_task 1147 * is called. Odd but simple and correct. 1148 */ 1149 tsk->pid = leader->pid; 1150 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1151 transfer_pid(leader, tsk, PIDTYPE_TGID); 1152 transfer_pid(leader, tsk, PIDTYPE_PGID); 1153 transfer_pid(leader, tsk, PIDTYPE_SID); 1154 1155 list_replace_rcu(&leader->tasks, &tsk->tasks); 1156 list_replace_init(&leader->sibling, &tsk->sibling); 1157 1158 tsk->group_leader = tsk; 1159 leader->group_leader = tsk; 1160 1161 tsk->exit_signal = SIGCHLD; 1162 leader->exit_signal = -1; 1163 1164 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1165 leader->exit_state = EXIT_DEAD; 1166 1167 /* 1168 * We are going to release_task()->ptrace_unlink() silently, 1169 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1170 * the tracer wont't block again waiting for this thread. 1171 */ 1172 if (unlikely(leader->ptrace)) 1173 __wake_up_parent(leader, leader->parent); 1174 write_unlock_irq(&tasklist_lock); 1175 cgroup_threadgroup_change_end(tsk); 1176 1177 release_task(leader); 1178 } 1179 1180 sig->group_exit_task = NULL; 1181 sig->notify_count = 0; 1182 1183 no_thread_group: 1184 /* we have changed execution domain */ 1185 tsk->exit_signal = SIGCHLD; 1186 1187 #ifdef CONFIG_POSIX_TIMERS 1188 exit_itimers(sig); 1189 flush_itimer_signals(); 1190 #endif 1191 1192 if (atomic_read(&oldsighand->count) != 1) { 1193 struct sighand_struct *newsighand; 1194 /* 1195 * This ->sighand is shared with the CLONE_SIGHAND 1196 * but not CLONE_THREAD task, switch to the new one. 1197 */ 1198 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1199 if (!newsighand) 1200 return -ENOMEM; 1201 1202 atomic_set(&newsighand->count, 1); 1203 memcpy(newsighand->action, oldsighand->action, 1204 sizeof(newsighand->action)); 1205 1206 write_lock_irq(&tasklist_lock); 1207 spin_lock(&oldsighand->siglock); 1208 rcu_assign_pointer(tsk->sighand, newsighand); 1209 spin_unlock(&oldsighand->siglock); 1210 write_unlock_irq(&tasklist_lock); 1211 1212 __cleanup_sighand(oldsighand); 1213 } 1214 1215 BUG_ON(!thread_group_leader(tsk)); 1216 return 0; 1217 1218 killed: 1219 /* protects against exit_notify() and __exit_signal() */ 1220 read_lock(&tasklist_lock); 1221 sig->group_exit_task = NULL; 1222 sig->notify_count = 0; 1223 read_unlock(&tasklist_lock); 1224 return -EAGAIN; 1225 } 1226 1227 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1228 { 1229 task_lock(tsk); 1230 strncpy(buf, tsk->comm, buf_size); 1231 task_unlock(tsk); 1232 return buf; 1233 } 1234 EXPORT_SYMBOL_GPL(__get_task_comm); 1235 1236 /* 1237 * These functions flushes out all traces of the currently running executable 1238 * so that a new one can be started 1239 */ 1240 1241 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1242 { 1243 task_lock(tsk); 1244 trace_task_rename(tsk, buf); 1245 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1246 task_unlock(tsk); 1247 perf_event_comm(tsk, exec); 1248 } 1249 1250 /* 1251 * Calling this is the point of no return. None of the failures will be 1252 * seen by userspace since either the process is already taking a fatal 1253 * signal (via de_thread() or coredump), or will have SEGV raised 1254 * (after exec_mmap()) by search_binary_handlers (see below). 1255 */ 1256 int flush_old_exec(struct linux_binprm * bprm) 1257 { 1258 int retval; 1259 1260 /* 1261 * Make sure we have a private signal table and that 1262 * we are unassociated from the previous thread group. 1263 */ 1264 retval = de_thread(current); 1265 if (retval) 1266 goto out; 1267 1268 /* 1269 * Must be called _before_ exec_mmap() as bprm->mm is 1270 * not visibile until then. This also enables the update 1271 * to be lockless. 1272 */ 1273 set_mm_exe_file(bprm->mm, bprm->file); 1274 1275 /* 1276 * Release all of the old mmap stuff 1277 */ 1278 acct_arg_size(bprm, 0); 1279 retval = exec_mmap(bprm->mm); 1280 if (retval) 1281 goto out; 1282 1283 /* 1284 * After clearing bprm->mm (to mark that current is using the 1285 * prepared mm now), we have nothing left of the original 1286 * process. If anything from here on returns an error, the check 1287 * in search_binary_handler() will SEGV current. 1288 */ 1289 bprm->mm = NULL; 1290 1291 set_fs(USER_DS); 1292 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1293 PF_NOFREEZE | PF_NO_SETAFFINITY); 1294 flush_thread(); 1295 current->personality &= ~bprm->per_clear; 1296 1297 /* 1298 * We have to apply CLOEXEC before we change whether the process is 1299 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1300 * trying to access the should-be-closed file descriptors of a process 1301 * undergoing exec(2). 1302 */ 1303 do_close_on_exec(current->files); 1304 return 0; 1305 1306 out: 1307 return retval; 1308 } 1309 EXPORT_SYMBOL(flush_old_exec); 1310 1311 void would_dump(struct linux_binprm *bprm, struct file *file) 1312 { 1313 struct inode *inode = file_inode(file); 1314 if (inode_permission(inode, MAY_READ) < 0) { 1315 struct user_namespace *old, *user_ns; 1316 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1317 1318 /* Ensure mm->user_ns contains the executable */ 1319 user_ns = old = bprm->mm->user_ns; 1320 while ((user_ns != &init_user_ns) && 1321 !privileged_wrt_inode_uidgid(user_ns, inode)) 1322 user_ns = user_ns->parent; 1323 1324 if (old != user_ns) { 1325 bprm->mm->user_ns = get_user_ns(user_ns); 1326 put_user_ns(old); 1327 } 1328 } 1329 } 1330 EXPORT_SYMBOL(would_dump); 1331 1332 void setup_new_exec(struct linux_binprm * bprm) 1333 { 1334 /* 1335 * Once here, prepare_binrpm() will not be called any more, so 1336 * the final state of setuid/setgid/fscaps can be merged into the 1337 * secureexec flag. 1338 */ 1339 bprm->secureexec |= bprm->cap_elevated; 1340 1341 if (bprm->secureexec) { 1342 /* Make sure parent cannot signal privileged process. */ 1343 current->pdeath_signal = 0; 1344 1345 /* 1346 * For secureexec, reset the stack limit to sane default to 1347 * avoid bad behavior from the prior rlimits. This has to 1348 * happen before arch_pick_mmap_layout(), which examines 1349 * RLIMIT_STACK, but after the point of no return to avoid 1350 * needing to clean up the change on failure. 1351 */ 1352 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1353 bprm->rlim_stack.rlim_cur = _STK_LIM; 1354 } 1355 1356 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack); 1357 1358 current->sas_ss_sp = current->sas_ss_size = 0; 1359 1360 /* 1361 * Figure out dumpability. Note that this checking only of current 1362 * is wrong, but userspace depends on it. This should be testing 1363 * bprm->secureexec instead. 1364 */ 1365 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1366 !(uid_eq(current_euid(), current_uid()) && 1367 gid_eq(current_egid(), current_gid()))) 1368 set_dumpable(current->mm, suid_dumpable); 1369 else 1370 set_dumpable(current->mm, SUID_DUMP_USER); 1371 1372 arch_setup_new_exec(); 1373 perf_event_exec(); 1374 __set_task_comm(current, kbasename(bprm->filename), true); 1375 1376 /* Set the new mm task size. We have to do that late because it may 1377 * depend on TIF_32BIT which is only updated in flush_thread() on 1378 * some architectures like powerpc 1379 */ 1380 current->mm->task_size = TASK_SIZE; 1381 1382 /* An exec changes our domain. We are no longer part of the thread 1383 group */ 1384 current->self_exec_id++; 1385 flush_signal_handlers(current, 0); 1386 } 1387 EXPORT_SYMBOL(setup_new_exec); 1388 1389 /* Runs immediately before start_thread() takes over. */ 1390 void finalize_exec(struct linux_binprm *bprm) 1391 { 1392 /* Store any stack rlimit changes before starting thread. */ 1393 task_lock(current->group_leader); 1394 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1395 task_unlock(current->group_leader); 1396 } 1397 EXPORT_SYMBOL(finalize_exec); 1398 1399 /* 1400 * Prepare credentials and lock ->cred_guard_mutex. 1401 * install_exec_creds() commits the new creds and drops the lock. 1402 * Or, if exec fails before, free_bprm() should release ->cred and 1403 * and unlock. 1404 */ 1405 static int prepare_bprm_creds(struct linux_binprm *bprm) 1406 { 1407 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1408 return -ERESTARTNOINTR; 1409 1410 bprm->cred = prepare_exec_creds(); 1411 if (likely(bprm->cred)) 1412 return 0; 1413 1414 mutex_unlock(¤t->signal->cred_guard_mutex); 1415 return -ENOMEM; 1416 } 1417 1418 static void free_bprm(struct linux_binprm *bprm) 1419 { 1420 free_arg_pages(bprm); 1421 if (bprm->cred) { 1422 mutex_unlock(¤t->signal->cred_guard_mutex); 1423 abort_creds(bprm->cred); 1424 } 1425 if (bprm->file) { 1426 allow_write_access(bprm->file); 1427 fput(bprm->file); 1428 } 1429 /* If a binfmt changed the interp, free it. */ 1430 if (bprm->interp != bprm->filename) 1431 kfree(bprm->interp); 1432 kfree(bprm); 1433 } 1434 1435 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1436 { 1437 /* If a binfmt changed the interp, free it first. */ 1438 if (bprm->interp != bprm->filename) 1439 kfree(bprm->interp); 1440 bprm->interp = kstrdup(interp, GFP_KERNEL); 1441 if (!bprm->interp) 1442 return -ENOMEM; 1443 return 0; 1444 } 1445 EXPORT_SYMBOL(bprm_change_interp); 1446 1447 /* 1448 * install the new credentials for this executable 1449 */ 1450 void install_exec_creds(struct linux_binprm *bprm) 1451 { 1452 security_bprm_committing_creds(bprm); 1453 1454 commit_creds(bprm->cred); 1455 bprm->cred = NULL; 1456 1457 /* 1458 * Disable monitoring for regular users 1459 * when executing setuid binaries. Must 1460 * wait until new credentials are committed 1461 * by commit_creds() above 1462 */ 1463 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1464 perf_event_exit_task(current); 1465 /* 1466 * cred_guard_mutex must be held at least to this point to prevent 1467 * ptrace_attach() from altering our determination of the task's 1468 * credentials; any time after this it may be unlocked. 1469 */ 1470 security_bprm_committed_creds(bprm); 1471 mutex_unlock(¤t->signal->cred_guard_mutex); 1472 } 1473 EXPORT_SYMBOL(install_exec_creds); 1474 1475 /* 1476 * determine how safe it is to execute the proposed program 1477 * - the caller must hold ->cred_guard_mutex to protect against 1478 * PTRACE_ATTACH or seccomp thread-sync 1479 */ 1480 static void check_unsafe_exec(struct linux_binprm *bprm) 1481 { 1482 struct task_struct *p = current, *t; 1483 unsigned n_fs; 1484 1485 if (p->ptrace) 1486 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1487 1488 /* 1489 * This isn't strictly necessary, but it makes it harder for LSMs to 1490 * mess up. 1491 */ 1492 if (task_no_new_privs(current)) 1493 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1494 1495 t = p; 1496 n_fs = 1; 1497 spin_lock(&p->fs->lock); 1498 rcu_read_lock(); 1499 while_each_thread(p, t) { 1500 if (t->fs == p->fs) 1501 n_fs++; 1502 } 1503 rcu_read_unlock(); 1504 1505 if (p->fs->users > n_fs) 1506 bprm->unsafe |= LSM_UNSAFE_SHARE; 1507 else 1508 p->fs->in_exec = 1; 1509 spin_unlock(&p->fs->lock); 1510 } 1511 1512 static void bprm_fill_uid(struct linux_binprm *bprm) 1513 { 1514 struct inode *inode; 1515 unsigned int mode; 1516 kuid_t uid; 1517 kgid_t gid; 1518 1519 /* 1520 * Since this can be called multiple times (via prepare_binprm), 1521 * we must clear any previous work done when setting set[ug]id 1522 * bits from any earlier bprm->file uses (for example when run 1523 * first for a setuid script then again for its interpreter). 1524 */ 1525 bprm->cred->euid = current_euid(); 1526 bprm->cred->egid = current_egid(); 1527 1528 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1529 return; 1530 1531 if (task_no_new_privs(current)) 1532 return; 1533 1534 inode = bprm->file->f_path.dentry->d_inode; 1535 mode = READ_ONCE(inode->i_mode); 1536 if (!(mode & (S_ISUID|S_ISGID))) 1537 return; 1538 1539 /* Be careful if suid/sgid is set */ 1540 inode_lock(inode); 1541 1542 /* reload atomically mode/uid/gid now that lock held */ 1543 mode = inode->i_mode; 1544 uid = inode->i_uid; 1545 gid = inode->i_gid; 1546 inode_unlock(inode); 1547 1548 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1549 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1550 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1551 return; 1552 1553 if (mode & S_ISUID) { 1554 bprm->per_clear |= PER_CLEAR_ON_SETID; 1555 bprm->cred->euid = uid; 1556 } 1557 1558 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1559 bprm->per_clear |= PER_CLEAR_ON_SETID; 1560 bprm->cred->egid = gid; 1561 } 1562 } 1563 1564 /* 1565 * Fill the binprm structure from the inode. 1566 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1567 * 1568 * This may be called multiple times for binary chains (scripts for example). 1569 */ 1570 int prepare_binprm(struct linux_binprm *bprm) 1571 { 1572 int retval; 1573 loff_t pos = 0; 1574 1575 bprm_fill_uid(bprm); 1576 1577 /* fill in binprm security blob */ 1578 retval = security_bprm_set_creds(bprm); 1579 if (retval) 1580 return retval; 1581 bprm->called_set_creds = 1; 1582 1583 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1584 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1585 } 1586 1587 EXPORT_SYMBOL(prepare_binprm); 1588 1589 /* 1590 * Arguments are '\0' separated strings found at the location bprm->p 1591 * points to; chop off the first by relocating brpm->p to right after 1592 * the first '\0' encountered. 1593 */ 1594 int remove_arg_zero(struct linux_binprm *bprm) 1595 { 1596 int ret = 0; 1597 unsigned long offset; 1598 char *kaddr; 1599 struct page *page; 1600 1601 if (!bprm->argc) 1602 return 0; 1603 1604 do { 1605 offset = bprm->p & ~PAGE_MASK; 1606 page = get_arg_page(bprm, bprm->p, 0); 1607 if (!page) { 1608 ret = -EFAULT; 1609 goto out; 1610 } 1611 kaddr = kmap_atomic(page); 1612 1613 for (; offset < PAGE_SIZE && kaddr[offset]; 1614 offset++, bprm->p++) 1615 ; 1616 1617 kunmap_atomic(kaddr); 1618 put_arg_page(page); 1619 } while (offset == PAGE_SIZE); 1620 1621 bprm->p++; 1622 bprm->argc--; 1623 ret = 0; 1624 1625 out: 1626 return ret; 1627 } 1628 EXPORT_SYMBOL(remove_arg_zero); 1629 1630 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1631 /* 1632 * cycle the list of binary formats handler, until one recognizes the image 1633 */ 1634 int search_binary_handler(struct linux_binprm *bprm) 1635 { 1636 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1637 struct linux_binfmt *fmt; 1638 int retval; 1639 1640 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1641 if (bprm->recursion_depth > 5) 1642 return -ELOOP; 1643 1644 retval = security_bprm_check(bprm); 1645 if (retval) 1646 return retval; 1647 1648 retval = -ENOENT; 1649 retry: 1650 read_lock(&binfmt_lock); 1651 list_for_each_entry(fmt, &formats, lh) { 1652 if (!try_module_get(fmt->module)) 1653 continue; 1654 read_unlock(&binfmt_lock); 1655 bprm->recursion_depth++; 1656 retval = fmt->load_binary(bprm); 1657 read_lock(&binfmt_lock); 1658 put_binfmt(fmt); 1659 bprm->recursion_depth--; 1660 if (retval < 0 && !bprm->mm) { 1661 /* we got to flush_old_exec() and failed after it */ 1662 read_unlock(&binfmt_lock); 1663 force_sigsegv(SIGSEGV, current); 1664 return retval; 1665 } 1666 if (retval != -ENOEXEC || !bprm->file) { 1667 read_unlock(&binfmt_lock); 1668 return retval; 1669 } 1670 } 1671 read_unlock(&binfmt_lock); 1672 1673 if (need_retry) { 1674 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1675 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1676 return retval; 1677 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1678 return retval; 1679 need_retry = false; 1680 goto retry; 1681 } 1682 1683 return retval; 1684 } 1685 EXPORT_SYMBOL(search_binary_handler); 1686 1687 static int exec_binprm(struct linux_binprm *bprm) 1688 { 1689 pid_t old_pid, old_vpid; 1690 int ret; 1691 1692 /* Need to fetch pid before load_binary changes it */ 1693 old_pid = current->pid; 1694 rcu_read_lock(); 1695 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1696 rcu_read_unlock(); 1697 1698 ret = search_binary_handler(bprm); 1699 if (ret >= 0) { 1700 audit_bprm(bprm); 1701 trace_sched_process_exec(current, old_pid, bprm); 1702 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1703 proc_exec_connector(current); 1704 } 1705 1706 return ret; 1707 } 1708 1709 /* 1710 * sys_execve() executes a new program. 1711 */ 1712 static int __do_execve_file(int fd, struct filename *filename, 1713 struct user_arg_ptr argv, 1714 struct user_arg_ptr envp, 1715 int flags, struct file *file) 1716 { 1717 char *pathbuf = NULL; 1718 struct linux_binprm *bprm; 1719 struct files_struct *displaced; 1720 int retval; 1721 1722 if (IS_ERR(filename)) 1723 return PTR_ERR(filename); 1724 1725 /* 1726 * We move the actual failure in case of RLIMIT_NPROC excess from 1727 * set*uid() to execve() because too many poorly written programs 1728 * don't check setuid() return code. Here we additionally recheck 1729 * whether NPROC limit is still exceeded. 1730 */ 1731 if ((current->flags & PF_NPROC_EXCEEDED) && 1732 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1733 retval = -EAGAIN; 1734 goto out_ret; 1735 } 1736 1737 /* We're below the limit (still or again), so we don't want to make 1738 * further execve() calls fail. */ 1739 current->flags &= ~PF_NPROC_EXCEEDED; 1740 1741 retval = unshare_files(&displaced); 1742 if (retval) 1743 goto out_ret; 1744 1745 retval = -ENOMEM; 1746 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1747 if (!bprm) 1748 goto out_files; 1749 1750 retval = prepare_bprm_creds(bprm); 1751 if (retval) 1752 goto out_free; 1753 1754 check_unsafe_exec(bprm); 1755 current->in_execve = 1; 1756 1757 if (!file) 1758 file = do_open_execat(fd, filename, flags); 1759 retval = PTR_ERR(file); 1760 if (IS_ERR(file)) 1761 goto out_unmark; 1762 1763 sched_exec(); 1764 1765 bprm->file = file; 1766 if (!filename) { 1767 bprm->filename = "none"; 1768 } else if (fd == AT_FDCWD || filename->name[0] == '/') { 1769 bprm->filename = filename->name; 1770 } else { 1771 if (filename->name[0] == '\0') 1772 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1773 else 1774 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1775 fd, filename->name); 1776 if (!pathbuf) { 1777 retval = -ENOMEM; 1778 goto out_unmark; 1779 } 1780 /* 1781 * Record that a name derived from an O_CLOEXEC fd will be 1782 * inaccessible after exec. Relies on having exclusive access to 1783 * current->files (due to unshare_files above). 1784 */ 1785 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1786 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1787 bprm->filename = pathbuf; 1788 } 1789 bprm->interp = bprm->filename; 1790 1791 retval = bprm_mm_init(bprm); 1792 if (retval) 1793 goto out_unmark; 1794 1795 retval = prepare_arg_pages(bprm, argv, envp); 1796 if (retval < 0) 1797 goto out; 1798 1799 retval = prepare_binprm(bprm); 1800 if (retval < 0) 1801 goto out; 1802 1803 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1804 if (retval < 0) 1805 goto out; 1806 1807 bprm->exec = bprm->p; 1808 retval = copy_strings(bprm->envc, envp, bprm); 1809 if (retval < 0) 1810 goto out; 1811 1812 retval = copy_strings(bprm->argc, argv, bprm); 1813 if (retval < 0) 1814 goto out; 1815 1816 would_dump(bprm, bprm->file); 1817 1818 retval = exec_binprm(bprm); 1819 if (retval < 0) 1820 goto out; 1821 1822 /* execve succeeded */ 1823 current->fs->in_exec = 0; 1824 current->in_execve = 0; 1825 membarrier_execve(current); 1826 rseq_execve(current); 1827 acct_update_integrals(current); 1828 task_numa_free(current); 1829 free_bprm(bprm); 1830 kfree(pathbuf); 1831 if (filename) 1832 putname(filename); 1833 if (displaced) 1834 put_files_struct(displaced); 1835 return retval; 1836 1837 out: 1838 if (bprm->mm) { 1839 acct_arg_size(bprm, 0); 1840 mmput(bprm->mm); 1841 } 1842 1843 out_unmark: 1844 current->fs->in_exec = 0; 1845 current->in_execve = 0; 1846 1847 out_free: 1848 free_bprm(bprm); 1849 kfree(pathbuf); 1850 1851 out_files: 1852 if (displaced) 1853 reset_files_struct(displaced); 1854 out_ret: 1855 if (filename) 1856 putname(filename); 1857 return retval; 1858 } 1859 1860 static int do_execveat_common(int fd, struct filename *filename, 1861 struct user_arg_ptr argv, 1862 struct user_arg_ptr envp, 1863 int flags) 1864 { 1865 return __do_execve_file(fd, filename, argv, envp, flags, NULL); 1866 } 1867 1868 int do_execve_file(struct file *file, void *__argv, void *__envp) 1869 { 1870 struct user_arg_ptr argv = { .ptr.native = __argv }; 1871 struct user_arg_ptr envp = { .ptr.native = __envp }; 1872 1873 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); 1874 } 1875 1876 int do_execve(struct filename *filename, 1877 const char __user *const __user *__argv, 1878 const char __user *const __user *__envp) 1879 { 1880 struct user_arg_ptr argv = { .ptr.native = __argv }; 1881 struct user_arg_ptr envp = { .ptr.native = __envp }; 1882 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1883 } 1884 1885 int do_execveat(int fd, struct filename *filename, 1886 const char __user *const __user *__argv, 1887 const char __user *const __user *__envp, 1888 int flags) 1889 { 1890 struct user_arg_ptr argv = { .ptr.native = __argv }; 1891 struct user_arg_ptr envp = { .ptr.native = __envp }; 1892 1893 return do_execveat_common(fd, filename, argv, envp, flags); 1894 } 1895 1896 #ifdef CONFIG_COMPAT 1897 static int compat_do_execve(struct filename *filename, 1898 const compat_uptr_t __user *__argv, 1899 const compat_uptr_t __user *__envp) 1900 { 1901 struct user_arg_ptr argv = { 1902 .is_compat = true, 1903 .ptr.compat = __argv, 1904 }; 1905 struct user_arg_ptr envp = { 1906 .is_compat = true, 1907 .ptr.compat = __envp, 1908 }; 1909 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1910 } 1911 1912 static int compat_do_execveat(int fd, struct filename *filename, 1913 const compat_uptr_t __user *__argv, 1914 const compat_uptr_t __user *__envp, 1915 int flags) 1916 { 1917 struct user_arg_ptr argv = { 1918 .is_compat = true, 1919 .ptr.compat = __argv, 1920 }; 1921 struct user_arg_ptr envp = { 1922 .is_compat = true, 1923 .ptr.compat = __envp, 1924 }; 1925 return do_execveat_common(fd, filename, argv, envp, flags); 1926 } 1927 #endif 1928 1929 void set_binfmt(struct linux_binfmt *new) 1930 { 1931 struct mm_struct *mm = current->mm; 1932 1933 if (mm->binfmt) 1934 module_put(mm->binfmt->module); 1935 1936 mm->binfmt = new; 1937 if (new) 1938 __module_get(new->module); 1939 } 1940 EXPORT_SYMBOL(set_binfmt); 1941 1942 /* 1943 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1944 */ 1945 void set_dumpable(struct mm_struct *mm, int value) 1946 { 1947 unsigned long old, new; 1948 1949 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1950 return; 1951 1952 do { 1953 old = READ_ONCE(mm->flags); 1954 new = (old & ~MMF_DUMPABLE_MASK) | value; 1955 } while (cmpxchg(&mm->flags, old, new) != old); 1956 } 1957 1958 SYSCALL_DEFINE3(execve, 1959 const char __user *, filename, 1960 const char __user *const __user *, argv, 1961 const char __user *const __user *, envp) 1962 { 1963 return do_execve(getname(filename), argv, envp); 1964 } 1965 1966 SYSCALL_DEFINE5(execveat, 1967 int, fd, const char __user *, filename, 1968 const char __user *const __user *, argv, 1969 const char __user *const __user *, envp, 1970 int, flags) 1971 { 1972 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1973 1974 return do_execveat(fd, 1975 getname_flags(filename, lookup_flags, NULL), 1976 argv, envp, flags); 1977 } 1978 1979 #ifdef CONFIG_COMPAT 1980 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1981 const compat_uptr_t __user *, argv, 1982 const compat_uptr_t __user *, envp) 1983 { 1984 return compat_do_execve(getname(filename), argv, envp); 1985 } 1986 1987 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1988 const char __user *, filename, 1989 const compat_uptr_t __user *, argv, 1990 const compat_uptr_t __user *, envp, 1991 int, flags) 1992 { 1993 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1994 1995 return compat_do_execveat(fd, 1996 getname_flags(filename, lookup_flags, NULL), 1997 argv, envp, flags); 1998 } 1999 #endif 2000