1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/mm.h> 30 #include <linux/vmacache.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/tracehook.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 static int bprm_creds_from_file(struct linux_binprm *bprm); 76 77 int suid_dumpable = 0; 78 79 static LIST_HEAD(formats); 80 static DEFINE_RWLOCK(binfmt_lock); 81 82 void __register_binfmt(struct linux_binfmt * fmt, int insert) 83 { 84 BUG_ON(!fmt); 85 if (WARN_ON(!fmt->load_binary)) 86 return; 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 error = -EINVAL; 145 if (!S_ISREG(file_inode(file)->i_mode)) 146 goto exit; 147 148 error = -EACCES; 149 if (path_noexec(&file->f_path)) 150 goto exit; 151 152 fsnotify_open(file); 153 154 error = -ENOEXEC; 155 156 read_lock(&binfmt_lock); 157 list_for_each_entry(fmt, &formats, lh) { 158 if (!fmt->load_shlib) 159 continue; 160 if (!try_module_get(fmt->module)) 161 continue; 162 read_unlock(&binfmt_lock); 163 error = fmt->load_shlib(file); 164 read_lock(&binfmt_lock); 165 put_binfmt(fmt); 166 if (error != -ENOEXEC) 167 break; 168 } 169 read_unlock(&binfmt_lock); 170 exit: 171 fput(file); 172 out: 173 return error; 174 } 175 #endif /* #ifdef CONFIG_USELIB */ 176 177 #ifdef CONFIG_MMU 178 /* 179 * The nascent bprm->mm is not visible until exec_mmap() but it can 180 * use a lot of memory, account these pages in current->mm temporary 181 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 182 * change the counter back via acct_arg_size(0). 183 */ 184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 185 { 186 struct mm_struct *mm = current->mm; 187 long diff = (long)(pages - bprm->vma_pages); 188 189 if (!mm || !diff) 190 return; 191 192 bprm->vma_pages = pages; 193 add_mm_counter(mm, MM_ANONPAGES, diff); 194 } 195 196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 197 int write) 198 { 199 struct page *page; 200 int ret; 201 unsigned int gup_flags = FOLL_FORCE; 202 203 #ifdef CONFIG_STACK_GROWSUP 204 if (write) { 205 ret = expand_downwards(bprm->vma, pos); 206 if (ret < 0) 207 return NULL; 208 } 209 #endif 210 211 if (write) 212 gup_flags |= FOLL_WRITE; 213 214 /* 215 * We are doing an exec(). 'current' is the process 216 * doing the exec and bprm->mm is the new process's mm. 217 */ 218 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 219 &page, NULL, NULL); 220 if (ret <= 0) 221 return NULL; 222 223 if (write) 224 acct_arg_size(bprm, vma_pages(bprm->vma)); 225 226 return page; 227 } 228 229 static void put_arg_page(struct page *page) 230 { 231 put_page(page); 232 } 233 234 static void free_arg_pages(struct linux_binprm *bprm) 235 { 236 } 237 238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 239 struct page *page) 240 { 241 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 242 } 243 244 static int __bprm_mm_init(struct linux_binprm *bprm) 245 { 246 int err; 247 struct vm_area_struct *vma = NULL; 248 struct mm_struct *mm = bprm->mm; 249 250 bprm->vma = vma = vm_area_alloc(mm); 251 if (!vma) 252 return -ENOMEM; 253 vma_set_anonymous(vma); 254 255 if (down_write_killable(&mm->mmap_sem)) { 256 err = -EINTR; 257 goto err_free; 258 } 259 260 /* 261 * Place the stack at the largest stack address the architecture 262 * supports. Later, we'll move this to an appropriate place. We don't 263 * use STACK_TOP because that can depend on attributes which aren't 264 * configured yet. 265 */ 266 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 267 vma->vm_end = STACK_TOP_MAX; 268 vma->vm_start = vma->vm_end - PAGE_SIZE; 269 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 271 272 err = insert_vm_struct(mm, vma); 273 if (err) 274 goto err; 275 276 mm->stack_vm = mm->total_vm = 1; 277 up_write(&mm->mmap_sem); 278 bprm->p = vma->vm_end - sizeof(void *); 279 return 0; 280 err: 281 up_write(&mm->mmap_sem); 282 err_free: 283 bprm->vma = NULL; 284 vm_area_free(vma); 285 return err; 286 } 287 288 static bool valid_arg_len(struct linux_binprm *bprm, long len) 289 { 290 return len <= MAX_ARG_STRLEN; 291 } 292 293 #else 294 295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 296 { 297 } 298 299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 300 int write) 301 { 302 struct page *page; 303 304 page = bprm->page[pos / PAGE_SIZE]; 305 if (!page && write) { 306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 307 if (!page) 308 return NULL; 309 bprm->page[pos / PAGE_SIZE] = page; 310 } 311 312 return page; 313 } 314 315 static void put_arg_page(struct page *page) 316 { 317 } 318 319 static void free_arg_page(struct linux_binprm *bprm, int i) 320 { 321 if (bprm->page[i]) { 322 __free_page(bprm->page[i]); 323 bprm->page[i] = NULL; 324 } 325 } 326 327 static void free_arg_pages(struct linux_binprm *bprm) 328 { 329 int i; 330 331 for (i = 0; i < MAX_ARG_PAGES; i++) 332 free_arg_page(bprm, i); 333 } 334 335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 336 struct page *page) 337 { 338 } 339 340 static int __bprm_mm_init(struct linux_binprm *bprm) 341 { 342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 343 return 0; 344 } 345 346 static bool valid_arg_len(struct linux_binprm *bprm, long len) 347 { 348 return len <= bprm->p; 349 } 350 351 #endif /* CONFIG_MMU */ 352 353 /* 354 * Create a new mm_struct and populate it with a temporary stack 355 * vm_area_struct. We don't have enough context at this point to set the stack 356 * flags, permissions, and offset, so we use temporary values. We'll update 357 * them later in setup_arg_pages(). 358 */ 359 static int bprm_mm_init(struct linux_binprm *bprm) 360 { 361 int err; 362 struct mm_struct *mm = NULL; 363 364 bprm->mm = mm = mm_alloc(); 365 err = -ENOMEM; 366 if (!mm) 367 goto err; 368 369 /* Save current stack limit for all calculations made during exec. */ 370 task_lock(current->group_leader); 371 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 372 task_unlock(current->group_leader); 373 374 err = __bprm_mm_init(bprm); 375 if (err) 376 goto err; 377 378 return 0; 379 380 err: 381 if (mm) { 382 bprm->mm = NULL; 383 mmdrop(mm); 384 } 385 386 return err; 387 } 388 389 struct user_arg_ptr { 390 #ifdef CONFIG_COMPAT 391 bool is_compat; 392 #endif 393 union { 394 const char __user *const __user *native; 395 #ifdef CONFIG_COMPAT 396 const compat_uptr_t __user *compat; 397 #endif 398 } ptr; 399 }; 400 401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 402 { 403 const char __user *native; 404 405 #ifdef CONFIG_COMPAT 406 if (unlikely(argv.is_compat)) { 407 compat_uptr_t compat; 408 409 if (get_user(compat, argv.ptr.compat + nr)) 410 return ERR_PTR(-EFAULT); 411 412 return compat_ptr(compat); 413 } 414 #endif 415 416 if (get_user(native, argv.ptr.native + nr)) 417 return ERR_PTR(-EFAULT); 418 419 return native; 420 } 421 422 /* 423 * count() counts the number of strings in array ARGV. 424 */ 425 static int count(struct user_arg_ptr argv, int max) 426 { 427 int i = 0; 428 429 if (argv.ptr.native != NULL) { 430 for (;;) { 431 const char __user *p = get_user_arg_ptr(argv, i); 432 433 if (!p) 434 break; 435 436 if (IS_ERR(p)) 437 return -EFAULT; 438 439 if (i >= max) 440 return -E2BIG; 441 ++i; 442 443 if (fatal_signal_pending(current)) 444 return -ERESTARTNOHAND; 445 cond_resched(); 446 } 447 } 448 return i; 449 } 450 451 static int prepare_arg_pages(struct linux_binprm *bprm, 452 struct user_arg_ptr argv, struct user_arg_ptr envp) 453 { 454 unsigned long limit, ptr_size; 455 456 bprm->argc = count(argv, MAX_ARG_STRINGS); 457 if (bprm->argc < 0) 458 return bprm->argc; 459 460 bprm->envc = count(envp, MAX_ARG_STRINGS); 461 if (bprm->envc < 0) 462 return bprm->envc; 463 464 /* 465 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 466 * (whichever is smaller) for the argv+env strings. 467 * This ensures that: 468 * - the remaining binfmt code will not run out of stack space, 469 * - the program will have a reasonable amount of stack left 470 * to work from. 471 */ 472 limit = _STK_LIM / 4 * 3; 473 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 474 /* 475 * We've historically supported up to 32 pages (ARG_MAX) 476 * of argument strings even with small stacks 477 */ 478 limit = max_t(unsigned long, limit, ARG_MAX); 479 /* 480 * We must account for the size of all the argv and envp pointers to 481 * the argv and envp strings, since they will also take up space in 482 * the stack. They aren't stored until much later when we can't 483 * signal to the parent that the child has run out of stack space. 484 * Instead, calculate it here so it's possible to fail gracefully. 485 */ 486 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 487 if (limit <= ptr_size) 488 return -E2BIG; 489 limit -= ptr_size; 490 491 bprm->argmin = bprm->p - limit; 492 return 0; 493 } 494 495 /* 496 * 'copy_strings()' copies argument/environment strings from the old 497 * processes's memory to the new process's stack. The call to get_user_pages() 498 * ensures the destination page is created and not swapped out. 499 */ 500 static int copy_strings(int argc, struct user_arg_ptr argv, 501 struct linux_binprm *bprm) 502 { 503 struct page *kmapped_page = NULL; 504 char *kaddr = NULL; 505 unsigned long kpos = 0; 506 int ret; 507 508 while (argc-- > 0) { 509 const char __user *str; 510 int len; 511 unsigned long pos; 512 513 ret = -EFAULT; 514 str = get_user_arg_ptr(argv, argc); 515 if (IS_ERR(str)) 516 goto out; 517 518 len = strnlen_user(str, MAX_ARG_STRLEN); 519 if (!len) 520 goto out; 521 522 ret = -E2BIG; 523 if (!valid_arg_len(bprm, len)) 524 goto out; 525 526 /* We're going to work our way backwords. */ 527 pos = bprm->p; 528 str += len; 529 bprm->p -= len; 530 #ifdef CONFIG_MMU 531 if (bprm->p < bprm->argmin) 532 goto out; 533 #endif 534 535 while (len > 0) { 536 int offset, bytes_to_copy; 537 538 if (fatal_signal_pending(current)) { 539 ret = -ERESTARTNOHAND; 540 goto out; 541 } 542 cond_resched(); 543 544 offset = pos % PAGE_SIZE; 545 if (offset == 0) 546 offset = PAGE_SIZE; 547 548 bytes_to_copy = offset; 549 if (bytes_to_copy > len) 550 bytes_to_copy = len; 551 552 offset -= bytes_to_copy; 553 pos -= bytes_to_copy; 554 str -= bytes_to_copy; 555 len -= bytes_to_copy; 556 557 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 558 struct page *page; 559 560 page = get_arg_page(bprm, pos, 1); 561 if (!page) { 562 ret = -E2BIG; 563 goto out; 564 } 565 566 if (kmapped_page) { 567 flush_kernel_dcache_page(kmapped_page); 568 kunmap(kmapped_page); 569 put_arg_page(kmapped_page); 570 } 571 kmapped_page = page; 572 kaddr = kmap(kmapped_page); 573 kpos = pos & PAGE_MASK; 574 flush_arg_page(bprm, kpos, kmapped_page); 575 } 576 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 577 ret = -EFAULT; 578 goto out; 579 } 580 } 581 } 582 ret = 0; 583 out: 584 if (kmapped_page) { 585 flush_kernel_dcache_page(kmapped_page); 586 kunmap(kmapped_page); 587 put_arg_page(kmapped_page); 588 } 589 return ret; 590 } 591 592 /* 593 * Copy and argument/environment string from the kernel to the processes stack. 594 */ 595 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 596 { 597 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 598 unsigned long pos = bprm->p; 599 600 if (len == 0) 601 return -EFAULT; 602 if (!valid_arg_len(bprm, len)) 603 return -E2BIG; 604 605 /* We're going to work our way backwards. */ 606 arg += len; 607 bprm->p -= len; 608 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 609 return -E2BIG; 610 611 while (len > 0) { 612 unsigned int bytes_to_copy = min_t(unsigned int, len, 613 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 614 struct page *page; 615 char *kaddr; 616 617 pos -= bytes_to_copy; 618 arg -= bytes_to_copy; 619 len -= bytes_to_copy; 620 621 page = get_arg_page(bprm, pos, 1); 622 if (!page) 623 return -E2BIG; 624 kaddr = kmap_atomic(page); 625 flush_arg_page(bprm, pos & PAGE_MASK, page); 626 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 627 flush_kernel_dcache_page(page); 628 kunmap_atomic(kaddr); 629 put_arg_page(page); 630 } 631 632 return 0; 633 } 634 EXPORT_SYMBOL(copy_string_kernel); 635 636 #ifdef CONFIG_MMU 637 638 /* 639 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 640 * the binfmt code determines where the new stack should reside, we shift it to 641 * its final location. The process proceeds as follows: 642 * 643 * 1) Use shift to calculate the new vma endpoints. 644 * 2) Extend vma to cover both the old and new ranges. This ensures the 645 * arguments passed to subsequent functions are consistent. 646 * 3) Move vma's page tables to the new range. 647 * 4) Free up any cleared pgd range. 648 * 5) Shrink the vma to cover only the new range. 649 */ 650 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 651 { 652 struct mm_struct *mm = vma->vm_mm; 653 unsigned long old_start = vma->vm_start; 654 unsigned long old_end = vma->vm_end; 655 unsigned long length = old_end - old_start; 656 unsigned long new_start = old_start - shift; 657 unsigned long new_end = old_end - shift; 658 struct mmu_gather tlb; 659 660 BUG_ON(new_start > new_end); 661 662 /* 663 * ensure there are no vmas between where we want to go 664 * and where we are 665 */ 666 if (vma != find_vma(mm, new_start)) 667 return -EFAULT; 668 669 /* 670 * cover the whole range: [new_start, old_end) 671 */ 672 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 673 return -ENOMEM; 674 675 /* 676 * move the page tables downwards, on failure we rely on 677 * process cleanup to remove whatever mess we made. 678 */ 679 if (length != move_page_tables(vma, old_start, 680 vma, new_start, length, false)) 681 return -ENOMEM; 682 683 lru_add_drain(); 684 tlb_gather_mmu(&tlb, mm, old_start, old_end); 685 if (new_end > old_start) { 686 /* 687 * when the old and new regions overlap clear from new_end. 688 */ 689 free_pgd_range(&tlb, new_end, old_end, new_end, 690 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 691 } else { 692 /* 693 * otherwise, clean from old_start; this is done to not touch 694 * the address space in [new_end, old_start) some architectures 695 * have constraints on va-space that make this illegal (IA64) - 696 * for the others its just a little faster. 697 */ 698 free_pgd_range(&tlb, old_start, old_end, new_end, 699 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 700 } 701 tlb_finish_mmu(&tlb, old_start, old_end); 702 703 /* 704 * Shrink the vma to just the new range. Always succeeds. 705 */ 706 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 707 708 return 0; 709 } 710 711 /* 712 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 713 * the stack is optionally relocated, and some extra space is added. 714 */ 715 int setup_arg_pages(struct linux_binprm *bprm, 716 unsigned long stack_top, 717 int executable_stack) 718 { 719 unsigned long ret; 720 unsigned long stack_shift; 721 struct mm_struct *mm = current->mm; 722 struct vm_area_struct *vma = bprm->vma; 723 struct vm_area_struct *prev = NULL; 724 unsigned long vm_flags; 725 unsigned long stack_base; 726 unsigned long stack_size; 727 unsigned long stack_expand; 728 unsigned long rlim_stack; 729 730 #ifdef CONFIG_STACK_GROWSUP 731 /* Limit stack size */ 732 stack_base = bprm->rlim_stack.rlim_max; 733 if (stack_base > STACK_SIZE_MAX) 734 stack_base = STACK_SIZE_MAX; 735 736 /* Add space for stack randomization. */ 737 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 738 739 /* Make sure we didn't let the argument array grow too large. */ 740 if (vma->vm_end - vma->vm_start > stack_base) 741 return -ENOMEM; 742 743 stack_base = PAGE_ALIGN(stack_top - stack_base); 744 745 stack_shift = vma->vm_start - stack_base; 746 mm->arg_start = bprm->p - stack_shift; 747 bprm->p = vma->vm_end - stack_shift; 748 #else 749 stack_top = arch_align_stack(stack_top); 750 stack_top = PAGE_ALIGN(stack_top); 751 752 if (unlikely(stack_top < mmap_min_addr) || 753 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 754 return -ENOMEM; 755 756 stack_shift = vma->vm_end - stack_top; 757 758 bprm->p -= stack_shift; 759 mm->arg_start = bprm->p; 760 #endif 761 762 if (bprm->loader) 763 bprm->loader -= stack_shift; 764 bprm->exec -= stack_shift; 765 766 if (down_write_killable(&mm->mmap_sem)) 767 return -EINTR; 768 769 vm_flags = VM_STACK_FLAGS; 770 771 /* 772 * Adjust stack execute permissions; explicitly enable for 773 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 774 * (arch default) otherwise. 775 */ 776 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 777 vm_flags |= VM_EXEC; 778 else if (executable_stack == EXSTACK_DISABLE_X) 779 vm_flags &= ~VM_EXEC; 780 vm_flags |= mm->def_flags; 781 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 782 783 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 784 vm_flags); 785 if (ret) 786 goto out_unlock; 787 BUG_ON(prev != vma); 788 789 if (unlikely(vm_flags & VM_EXEC)) { 790 pr_warn_once("process '%pD4' started with executable stack\n", 791 bprm->file); 792 } 793 794 /* Move stack pages down in memory. */ 795 if (stack_shift) { 796 ret = shift_arg_pages(vma, stack_shift); 797 if (ret) 798 goto out_unlock; 799 } 800 801 /* mprotect_fixup is overkill to remove the temporary stack flags */ 802 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 803 804 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 805 stack_size = vma->vm_end - vma->vm_start; 806 /* 807 * Align this down to a page boundary as expand_stack 808 * will align it up. 809 */ 810 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 811 #ifdef CONFIG_STACK_GROWSUP 812 if (stack_size + stack_expand > rlim_stack) 813 stack_base = vma->vm_start + rlim_stack; 814 else 815 stack_base = vma->vm_end + stack_expand; 816 #else 817 if (stack_size + stack_expand > rlim_stack) 818 stack_base = vma->vm_end - rlim_stack; 819 else 820 stack_base = vma->vm_start - stack_expand; 821 #endif 822 current->mm->start_stack = bprm->p; 823 ret = expand_stack(vma, stack_base); 824 if (ret) 825 ret = -EFAULT; 826 827 out_unlock: 828 up_write(&mm->mmap_sem); 829 return ret; 830 } 831 EXPORT_SYMBOL(setup_arg_pages); 832 833 #else 834 835 /* 836 * Transfer the program arguments and environment from the holding pages 837 * onto the stack. The provided stack pointer is adjusted accordingly. 838 */ 839 int transfer_args_to_stack(struct linux_binprm *bprm, 840 unsigned long *sp_location) 841 { 842 unsigned long index, stop, sp; 843 int ret = 0; 844 845 stop = bprm->p >> PAGE_SHIFT; 846 sp = *sp_location; 847 848 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 849 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 850 char *src = kmap(bprm->page[index]) + offset; 851 sp -= PAGE_SIZE - offset; 852 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 853 ret = -EFAULT; 854 kunmap(bprm->page[index]); 855 if (ret) 856 goto out; 857 } 858 859 *sp_location = sp; 860 861 out: 862 return ret; 863 } 864 EXPORT_SYMBOL(transfer_args_to_stack); 865 866 #endif /* CONFIG_MMU */ 867 868 static struct file *do_open_execat(int fd, struct filename *name, int flags) 869 { 870 struct file *file; 871 int err; 872 struct open_flags open_exec_flags = { 873 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 874 .acc_mode = MAY_EXEC, 875 .intent = LOOKUP_OPEN, 876 .lookup_flags = LOOKUP_FOLLOW, 877 }; 878 879 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 880 return ERR_PTR(-EINVAL); 881 if (flags & AT_SYMLINK_NOFOLLOW) 882 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 883 if (flags & AT_EMPTY_PATH) 884 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 885 886 file = do_filp_open(fd, name, &open_exec_flags); 887 if (IS_ERR(file)) 888 goto out; 889 890 err = -EACCES; 891 if (!S_ISREG(file_inode(file)->i_mode)) 892 goto exit; 893 894 if (path_noexec(&file->f_path)) 895 goto exit; 896 897 err = deny_write_access(file); 898 if (err) 899 goto exit; 900 901 if (name->name[0] != '\0') 902 fsnotify_open(file); 903 904 out: 905 return file; 906 907 exit: 908 fput(file); 909 return ERR_PTR(err); 910 } 911 912 struct file *open_exec(const char *name) 913 { 914 struct filename *filename = getname_kernel(name); 915 struct file *f = ERR_CAST(filename); 916 917 if (!IS_ERR(filename)) { 918 f = do_open_execat(AT_FDCWD, filename, 0); 919 putname(filename); 920 } 921 return f; 922 } 923 EXPORT_SYMBOL(open_exec); 924 925 int kernel_read_file(struct file *file, void **buf, loff_t *size, 926 loff_t max_size, enum kernel_read_file_id id) 927 { 928 loff_t i_size, pos; 929 ssize_t bytes = 0; 930 int ret; 931 932 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 933 return -EINVAL; 934 935 ret = deny_write_access(file); 936 if (ret) 937 return ret; 938 939 ret = security_kernel_read_file(file, id); 940 if (ret) 941 goto out; 942 943 i_size = i_size_read(file_inode(file)); 944 if (i_size <= 0) { 945 ret = -EINVAL; 946 goto out; 947 } 948 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 949 ret = -EFBIG; 950 goto out; 951 } 952 953 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 954 *buf = vmalloc(i_size); 955 if (!*buf) { 956 ret = -ENOMEM; 957 goto out; 958 } 959 960 pos = 0; 961 while (pos < i_size) { 962 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 963 if (bytes < 0) { 964 ret = bytes; 965 goto out_free; 966 } 967 968 if (bytes == 0) 969 break; 970 } 971 972 if (pos != i_size) { 973 ret = -EIO; 974 goto out_free; 975 } 976 977 ret = security_kernel_post_read_file(file, *buf, i_size, id); 978 if (!ret) 979 *size = pos; 980 981 out_free: 982 if (ret < 0) { 983 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 984 vfree(*buf); 985 *buf = NULL; 986 } 987 } 988 989 out: 990 allow_write_access(file); 991 return ret; 992 } 993 EXPORT_SYMBOL_GPL(kernel_read_file); 994 995 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 996 loff_t max_size, enum kernel_read_file_id id) 997 { 998 struct file *file; 999 int ret; 1000 1001 if (!path || !*path) 1002 return -EINVAL; 1003 1004 file = filp_open(path, O_RDONLY, 0); 1005 if (IS_ERR(file)) 1006 return PTR_ERR(file); 1007 1008 ret = kernel_read_file(file, buf, size, max_size, id); 1009 fput(file); 1010 return ret; 1011 } 1012 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 1013 1014 int kernel_read_file_from_path_initns(const char *path, void **buf, 1015 loff_t *size, loff_t max_size, 1016 enum kernel_read_file_id id) 1017 { 1018 struct file *file; 1019 struct path root; 1020 int ret; 1021 1022 if (!path || !*path) 1023 return -EINVAL; 1024 1025 task_lock(&init_task); 1026 get_fs_root(init_task.fs, &root); 1027 task_unlock(&init_task); 1028 1029 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0); 1030 path_put(&root); 1031 if (IS_ERR(file)) 1032 return PTR_ERR(file); 1033 1034 ret = kernel_read_file(file, buf, size, max_size, id); 1035 fput(file); 1036 return ret; 1037 } 1038 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns); 1039 1040 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 1041 enum kernel_read_file_id id) 1042 { 1043 struct fd f = fdget(fd); 1044 int ret = -EBADF; 1045 1046 if (!f.file) 1047 goto out; 1048 1049 ret = kernel_read_file(f.file, buf, size, max_size, id); 1050 out: 1051 fdput(f); 1052 return ret; 1053 } 1054 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 1055 1056 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1057 { 1058 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1059 if (res > 0) 1060 flush_icache_range(addr, addr + len); 1061 return res; 1062 } 1063 EXPORT_SYMBOL(read_code); 1064 1065 /* 1066 * Maps the mm_struct mm into the current task struct. 1067 * On success, this function returns with the mutex 1068 * exec_update_mutex locked. 1069 */ 1070 static int exec_mmap(struct mm_struct *mm) 1071 { 1072 struct task_struct *tsk; 1073 struct mm_struct *old_mm, *active_mm; 1074 int ret; 1075 1076 /* Notify parent that we're no longer interested in the old VM */ 1077 tsk = current; 1078 old_mm = current->mm; 1079 exec_mm_release(tsk, old_mm); 1080 if (old_mm) 1081 sync_mm_rss(old_mm); 1082 1083 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 1084 if (ret) 1085 return ret; 1086 1087 if (old_mm) { 1088 /* 1089 * Make sure that if there is a core dump in progress 1090 * for the old mm, we get out and die instead of going 1091 * through with the exec. We must hold mmap_sem around 1092 * checking core_state and changing tsk->mm. 1093 */ 1094 down_read(&old_mm->mmap_sem); 1095 if (unlikely(old_mm->core_state)) { 1096 up_read(&old_mm->mmap_sem); 1097 mutex_unlock(&tsk->signal->exec_update_mutex); 1098 return -EINTR; 1099 } 1100 } 1101 1102 task_lock(tsk); 1103 active_mm = tsk->active_mm; 1104 membarrier_exec_mmap(mm); 1105 tsk->mm = mm; 1106 tsk->active_mm = mm; 1107 activate_mm(active_mm, mm); 1108 tsk->mm->vmacache_seqnum = 0; 1109 vmacache_flush(tsk); 1110 task_unlock(tsk); 1111 if (old_mm) { 1112 up_read(&old_mm->mmap_sem); 1113 BUG_ON(active_mm != old_mm); 1114 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1115 mm_update_next_owner(old_mm); 1116 mmput(old_mm); 1117 return 0; 1118 } 1119 mmdrop(active_mm); 1120 return 0; 1121 } 1122 1123 static int de_thread(struct task_struct *tsk) 1124 { 1125 struct signal_struct *sig = tsk->signal; 1126 struct sighand_struct *oldsighand = tsk->sighand; 1127 spinlock_t *lock = &oldsighand->siglock; 1128 1129 if (thread_group_empty(tsk)) 1130 goto no_thread_group; 1131 1132 /* 1133 * Kill all other threads in the thread group. 1134 */ 1135 spin_lock_irq(lock); 1136 if (signal_group_exit(sig)) { 1137 /* 1138 * Another group action in progress, just 1139 * return so that the signal is processed. 1140 */ 1141 spin_unlock_irq(lock); 1142 return -EAGAIN; 1143 } 1144 1145 sig->group_exit_task = tsk; 1146 sig->notify_count = zap_other_threads(tsk); 1147 if (!thread_group_leader(tsk)) 1148 sig->notify_count--; 1149 1150 while (sig->notify_count) { 1151 __set_current_state(TASK_KILLABLE); 1152 spin_unlock_irq(lock); 1153 schedule(); 1154 if (__fatal_signal_pending(tsk)) 1155 goto killed; 1156 spin_lock_irq(lock); 1157 } 1158 spin_unlock_irq(lock); 1159 1160 /* 1161 * At this point all other threads have exited, all we have to 1162 * do is to wait for the thread group leader to become inactive, 1163 * and to assume its PID: 1164 */ 1165 if (!thread_group_leader(tsk)) { 1166 struct task_struct *leader = tsk->group_leader; 1167 1168 for (;;) { 1169 cgroup_threadgroup_change_begin(tsk); 1170 write_lock_irq(&tasklist_lock); 1171 /* 1172 * Do this under tasklist_lock to ensure that 1173 * exit_notify() can't miss ->group_exit_task 1174 */ 1175 sig->notify_count = -1; 1176 if (likely(leader->exit_state)) 1177 break; 1178 __set_current_state(TASK_KILLABLE); 1179 write_unlock_irq(&tasklist_lock); 1180 cgroup_threadgroup_change_end(tsk); 1181 schedule(); 1182 if (__fatal_signal_pending(tsk)) 1183 goto killed; 1184 } 1185 1186 /* 1187 * The only record we have of the real-time age of a 1188 * process, regardless of execs it's done, is start_time. 1189 * All the past CPU time is accumulated in signal_struct 1190 * from sister threads now dead. But in this non-leader 1191 * exec, nothing survives from the original leader thread, 1192 * whose birth marks the true age of this process now. 1193 * When we take on its identity by switching to its PID, we 1194 * also take its birthdate (always earlier than our own). 1195 */ 1196 tsk->start_time = leader->start_time; 1197 tsk->start_boottime = leader->start_boottime; 1198 1199 BUG_ON(!same_thread_group(leader, tsk)); 1200 /* 1201 * An exec() starts a new thread group with the 1202 * TGID of the previous thread group. Rehash the 1203 * two threads with a switched PID, and release 1204 * the former thread group leader: 1205 */ 1206 1207 /* Become a process group leader with the old leader's pid. 1208 * The old leader becomes a thread of the this thread group. 1209 */ 1210 exchange_tids(tsk, leader); 1211 transfer_pid(leader, tsk, PIDTYPE_TGID); 1212 transfer_pid(leader, tsk, PIDTYPE_PGID); 1213 transfer_pid(leader, tsk, PIDTYPE_SID); 1214 1215 list_replace_rcu(&leader->tasks, &tsk->tasks); 1216 list_replace_init(&leader->sibling, &tsk->sibling); 1217 1218 tsk->group_leader = tsk; 1219 leader->group_leader = tsk; 1220 1221 tsk->exit_signal = SIGCHLD; 1222 leader->exit_signal = -1; 1223 1224 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1225 leader->exit_state = EXIT_DEAD; 1226 1227 /* 1228 * We are going to release_task()->ptrace_unlink() silently, 1229 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1230 * the tracer wont't block again waiting for this thread. 1231 */ 1232 if (unlikely(leader->ptrace)) 1233 __wake_up_parent(leader, leader->parent); 1234 write_unlock_irq(&tasklist_lock); 1235 cgroup_threadgroup_change_end(tsk); 1236 1237 release_task(leader); 1238 } 1239 1240 sig->group_exit_task = NULL; 1241 sig->notify_count = 0; 1242 1243 no_thread_group: 1244 /* we have changed execution domain */ 1245 tsk->exit_signal = SIGCHLD; 1246 1247 BUG_ON(!thread_group_leader(tsk)); 1248 return 0; 1249 1250 killed: 1251 /* protects against exit_notify() and __exit_signal() */ 1252 read_lock(&tasklist_lock); 1253 sig->group_exit_task = NULL; 1254 sig->notify_count = 0; 1255 read_unlock(&tasklist_lock); 1256 return -EAGAIN; 1257 } 1258 1259 1260 /* 1261 * This function makes sure the current process has its own signal table, 1262 * so that flush_signal_handlers can later reset the handlers without 1263 * disturbing other processes. (Other processes might share the signal 1264 * table via the CLONE_SIGHAND option to clone().) 1265 */ 1266 static int unshare_sighand(struct task_struct *me) 1267 { 1268 struct sighand_struct *oldsighand = me->sighand; 1269 1270 if (refcount_read(&oldsighand->count) != 1) { 1271 struct sighand_struct *newsighand; 1272 /* 1273 * This ->sighand is shared with the CLONE_SIGHAND 1274 * but not CLONE_THREAD task, switch to the new one. 1275 */ 1276 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1277 if (!newsighand) 1278 return -ENOMEM; 1279 1280 refcount_set(&newsighand->count, 1); 1281 memcpy(newsighand->action, oldsighand->action, 1282 sizeof(newsighand->action)); 1283 1284 write_lock_irq(&tasklist_lock); 1285 spin_lock(&oldsighand->siglock); 1286 rcu_assign_pointer(me->sighand, newsighand); 1287 spin_unlock(&oldsighand->siglock); 1288 write_unlock_irq(&tasklist_lock); 1289 1290 __cleanup_sighand(oldsighand); 1291 } 1292 return 0; 1293 } 1294 1295 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1296 { 1297 task_lock(tsk); 1298 strncpy(buf, tsk->comm, buf_size); 1299 task_unlock(tsk); 1300 return buf; 1301 } 1302 EXPORT_SYMBOL_GPL(__get_task_comm); 1303 1304 /* 1305 * These functions flushes out all traces of the currently running executable 1306 * so that a new one can be started 1307 */ 1308 1309 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1310 { 1311 task_lock(tsk); 1312 trace_task_rename(tsk, buf); 1313 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1314 task_unlock(tsk); 1315 perf_event_comm(tsk, exec); 1316 } 1317 1318 /* 1319 * Calling this is the point of no return. None of the failures will be 1320 * seen by userspace since either the process is already taking a fatal 1321 * signal (via de_thread() or coredump), or will have SEGV raised 1322 * (after exec_mmap()) by search_binary_handler (see below). 1323 */ 1324 int begin_new_exec(struct linux_binprm * bprm) 1325 { 1326 struct task_struct *me = current; 1327 int retval; 1328 1329 /* Once we are committed compute the creds */ 1330 retval = bprm_creds_from_file(bprm); 1331 if (retval) 1332 return retval; 1333 1334 /* 1335 * Ensure all future errors are fatal. 1336 */ 1337 bprm->point_of_no_return = true; 1338 1339 /* 1340 * Make this the only thread in the thread group. 1341 */ 1342 retval = de_thread(me); 1343 if (retval) 1344 goto out; 1345 1346 /* 1347 * Must be called _before_ exec_mmap() as bprm->mm is 1348 * not visibile until then. This also enables the update 1349 * to be lockless. 1350 */ 1351 set_mm_exe_file(bprm->mm, bprm->file); 1352 1353 /* If the binary is not readable then enforce mm->dumpable=0 */ 1354 would_dump(bprm, bprm->file); 1355 if (bprm->have_execfd) 1356 would_dump(bprm, bprm->executable); 1357 1358 /* 1359 * Release all of the old mmap stuff 1360 */ 1361 acct_arg_size(bprm, 0); 1362 retval = exec_mmap(bprm->mm); 1363 if (retval) 1364 goto out; 1365 1366 bprm->mm = NULL; 1367 1368 #ifdef CONFIG_POSIX_TIMERS 1369 exit_itimers(me->signal); 1370 flush_itimer_signals(); 1371 #endif 1372 1373 /* 1374 * Make the signal table private. 1375 */ 1376 retval = unshare_sighand(me); 1377 if (retval) 1378 goto out_unlock; 1379 1380 set_fs(USER_DS); 1381 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1382 PF_NOFREEZE | PF_NO_SETAFFINITY); 1383 flush_thread(); 1384 me->personality &= ~bprm->per_clear; 1385 1386 /* 1387 * We have to apply CLOEXEC before we change whether the process is 1388 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1389 * trying to access the should-be-closed file descriptors of a process 1390 * undergoing exec(2). 1391 */ 1392 do_close_on_exec(me->files); 1393 1394 if (bprm->secureexec) { 1395 /* Make sure parent cannot signal privileged process. */ 1396 me->pdeath_signal = 0; 1397 1398 /* 1399 * For secureexec, reset the stack limit to sane default to 1400 * avoid bad behavior from the prior rlimits. This has to 1401 * happen before arch_pick_mmap_layout(), which examines 1402 * RLIMIT_STACK, but after the point of no return to avoid 1403 * needing to clean up the change on failure. 1404 */ 1405 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1406 bprm->rlim_stack.rlim_cur = _STK_LIM; 1407 } 1408 1409 me->sas_ss_sp = me->sas_ss_size = 0; 1410 1411 /* 1412 * Figure out dumpability. Note that this checking only of current 1413 * is wrong, but userspace depends on it. This should be testing 1414 * bprm->secureexec instead. 1415 */ 1416 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1417 !(uid_eq(current_euid(), current_uid()) && 1418 gid_eq(current_egid(), current_gid()))) 1419 set_dumpable(current->mm, suid_dumpable); 1420 else 1421 set_dumpable(current->mm, SUID_DUMP_USER); 1422 1423 perf_event_exec(); 1424 __set_task_comm(me, kbasename(bprm->filename), true); 1425 1426 /* An exec changes our domain. We are no longer part of the thread 1427 group */ 1428 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1429 flush_signal_handlers(me, 0); 1430 1431 /* 1432 * install the new credentials for this executable 1433 */ 1434 security_bprm_committing_creds(bprm); 1435 1436 commit_creds(bprm->cred); 1437 bprm->cred = NULL; 1438 1439 /* 1440 * Disable monitoring for regular users 1441 * when executing setuid binaries. Must 1442 * wait until new credentials are committed 1443 * by commit_creds() above 1444 */ 1445 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1446 perf_event_exit_task(me); 1447 /* 1448 * cred_guard_mutex must be held at least to this point to prevent 1449 * ptrace_attach() from altering our determination of the task's 1450 * credentials; any time after this it may be unlocked. 1451 */ 1452 security_bprm_committed_creds(bprm); 1453 1454 /* Pass the opened binary to the interpreter. */ 1455 if (bprm->have_execfd) { 1456 retval = get_unused_fd_flags(0); 1457 if (retval < 0) 1458 goto out_unlock; 1459 fd_install(retval, bprm->executable); 1460 bprm->executable = NULL; 1461 bprm->execfd = retval; 1462 } 1463 return 0; 1464 1465 out_unlock: 1466 mutex_unlock(&me->signal->exec_update_mutex); 1467 out: 1468 return retval; 1469 } 1470 EXPORT_SYMBOL(begin_new_exec); 1471 1472 void would_dump(struct linux_binprm *bprm, struct file *file) 1473 { 1474 struct inode *inode = file_inode(file); 1475 if (inode_permission(inode, MAY_READ) < 0) { 1476 struct user_namespace *old, *user_ns; 1477 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1478 1479 /* Ensure mm->user_ns contains the executable */ 1480 user_ns = old = bprm->mm->user_ns; 1481 while ((user_ns != &init_user_ns) && 1482 !privileged_wrt_inode_uidgid(user_ns, inode)) 1483 user_ns = user_ns->parent; 1484 1485 if (old != user_ns) { 1486 bprm->mm->user_ns = get_user_ns(user_ns); 1487 put_user_ns(old); 1488 } 1489 } 1490 } 1491 EXPORT_SYMBOL(would_dump); 1492 1493 void setup_new_exec(struct linux_binprm * bprm) 1494 { 1495 /* Setup things that can depend upon the personality */ 1496 struct task_struct *me = current; 1497 1498 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1499 1500 arch_setup_new_exec(); 1501 1502 /* Set the new mm task size. We have to do that late because it may 1503 * depend on TIF_32BIT which is only updated in flush_thread() on 1504 * some architectures like powerpc 1505 */ 1506 me->mm->task_size = TASK_SIZE; 1507 mutex_unlock(&me->signal->exec_update_mutex); 1508 mutex_unlock(&me->signal->cred_guard_mutex); 1509 } 1510 EXPORT_SYMBOL(setup_new_exec); 1511 1512 /* Runs immediately before start_thread() takes over. */ 1513 void finalize_exec(struct linux_binprm *bprm) 1514 { 1515 /* Store any stack rlimit changes before starting thread. */ 1516 task_lock(current->group_leader); 1517 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1518 task_unlock(current->group_leader); 1519 } 1520 EXPORT_SYMBOL(finalize_exec); 1521 1522 /* 1523 * Prepare credentials and lock ->cred_guard_mutex. 1524 * setup_new_exec() commits the new creds and drops the lock. 1525 * Or, if exec fails before, free_bprm() should release ->cred and 1526 * and unlock. 1527 */ 1528 static int prepare_bprm_creds(struct linux_binprm *bprm) 1529 { 1530 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1531 return -ERESTARTNOINTR; 1532 1533 bprm->cred = prepare_exec_creds(); 1534 if (likely(bprm->cred)) 1535 return 0; 1536 1537 mutex_unlock(¤t->signal->cred_guard_mutex); 1538 return -ENOMEM; 1539 } 1540 1541 static void free_bprm(struct linux_binprm *bprm) 1542 { 1543 free_arg_pages(bprm); 1544 if (bprm->cred) { 1545 mutex_unlock(¤t->signal->cred_guard_mutex); 1546 abort_creds(bprm->cred); 1547 } 1548 if (bprm->file) { 1549 allow_write_access(bprm->file); 1550 fput(bprm->file); 1551 } 1552 if (bprm->executable) 1553 fput(bprm->executable); 1554 /* If a binfmt changed the interp, free it. */ 1555 if (bprm->interp != bprm->filename) 1556 kfree(bprm->interp); 1557 kfree(bprm); 1558 } 1559 1560 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1561 { 1562 /* If a binfmt changed the interp, free it first. */ 1563 if (bprm->interp != bprm->filename) 1564 kfree(bprm->interp); 1565 bprm->interp = kstrdup(interp, GFP_KERNEL); 1566 if (!bprm->interp) 1567 return -ENOMEM; 1568 return 0; 1569 } 1570 EXPORT_SYMBOL(bprm_change_interp); 1571 1572 /* 1573 * determine how safe it is to execute the proposed program 1574 * - the caller must hold ->cred_guard_mutex to protect against 1575 * PTRACE_ATTACH or seccomp thread-sync 1576 */ 1577 static void check_unsafe_exec(struct linux_binprm *bprm) 1578 { 1579 struct task_struct *p = current, *t; 1580 unsigned n_fs; 1581 1582 if (p->ptrace) 1583 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1584 1585 /* 1586 * This isn't strictly necessary, but it makes it harder for LSMs to 1587 * mess up. 1588 */ 1589 if (task_no_new_privs(current)) 1590 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1591 1592 t = p; 1593 n_fs = 1; 1594 spin_lock(&p->fs->lock); 1595 rcu_read_lock(); 1596 while_each_thread(p, t) { 1597 if (t->fs == p->fs) 1598 n_fs++; 1599 } 1600 rcu_read_unlock(); 1601 1602 if (p->fs->users > n_fs) 1603 bprm->unsafe |= LSM_UNSAFE_SHARE; 1604 else 1605 p->fs->in_exec = 1; 1606 spin_unlock(&p->fs->lock); 1607 } 1608 1609 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1610 { 1611 /* Handle suid and sgid on files */ 1612 struct inode *inode; 1613 unsigned int mode; 1614 kuid_t uid; 1615 kgid_t gid; 1616 1617 if (!mnt_may_suid(file->f_path.mnt)) 1618 return; 1619 1620 if (task_no_new_privs(current)) 1621 return; 1622 1623 inode = file->f_path.dentry->d_inode; 1624 mode = READ_ONCE(inode->i_mode); 1625 if (!(mode & (S_ISUID|S_ISGID))) 1626 return; 1627 1628 /* Be careful if suid/sgid is set */ 1629 inode_lock(inode); 1630 1631 /* reload atomically mode/uid/gid now that lock held */ 1632 mode = inode->i_mode; 1633 uid = inode->i_uid; 1634 gid = inode->i_gid; 1635 inode_unlock(inode); 1636 1637 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1638 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1639 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1640 return; 1641 1642 if (mode & S_ISUID) { 1643 bprm->per_clear |= PER_CLEAR_ON_SETID; 1644 bprm->cred->euid = uid; 1645 } 1646 1647 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1648 bprm->per_clear |= PER_CLEAR_ON_SETID; 1649 bprm->cred->egid = gid; 1650 } 1651 } 1652 1653 /* 1654 * Compute brpm->cred based upon the final binary. 1655 */ 1656 static int bprm_creds_from_file(struct linux_binprm *bprm) 1657 { 1658 /* Compute creds based on which file? */ 1659 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1660 1661 bprm_fill_uid(bprm, file); 1662 return security_bprm_creds_from_file(bprm, file); 1663 } 1664 1665 /* 1666 * Fill the binprm structure from the inode. 1667 * Read the first BINPRM_BUF_SIZE bytes 1668 * 1669 * This may be called multiple times for binary chains (scripts for example). 1670 */ 1671 static int prepare_binprm(struct linux_binprm *bprm) 1672 { 1673 loff_t pos = 0; 1674 1675 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1676 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1677 } 1678 1679 /* 1680 * Arguments are '\0' separated strings found at the location bprm->p 1681 * points to; chop off the first by relocating brpm->p to right after 1682 * the first '\0' encountered. 1683 */ 1684 int remove_arg_zero(struct linux_binprm *bprm) 1685 { 1686 int ret = 0; 1687 unsigned long offset; 1688 char *kaddr; 1689 struct page *page; 1690 1691 if (!bprm->argc) 1692 return 0; 1693 1694 do { 1695 offset = bprm->p & ~PAGE_MASK; 1696 page = get_arg_page(bprm, bprm->p, 0); 1697 if (!page) { 1698 ret = -EFAULT; 1699 goto out; 1700 } 1701 kaddr = kmap_atomic(page); 1702 1703 for (; offset < PAGE_SIZE && kaddr[offset]; 1704 offset++, bprm->p++) 1705 ; 1706 1707 kunmap_atomic(kaddr); 1708 put_arg_page(page); 1709 } while (offset == PAGE_SIZE); 1710 1711 bprm->p++; 1712 bprm->argc--; 1713 ret = 0; 1714 1715 out: 1716 return ret; 1717 } 1718 EXPORT_SYMBOL(remove_arg_zero); 1719 1720 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1721 /* 1722 * cycle the list of binary formats handler, until one recognizes the image 1723 */ 1724 static int search_binary_handler(struct linux_binprm *bprm) 1725 { 1726 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1727 struct linux_binfmt *fmt; 1728 int retval; 1729 1730 retval = prepare_binprm(bprm); 1731 if (retval < 0) 1732 return retval; 1733 1734 retval = security_bprm_check(bprm); 1735 if (retval) 1736 return retval; 1737 1738 retval = -ENOENT; 1739 retry: 1740 read_lock(&binfmt_lock); 1741 list_for_each_entry(fmt, &formats, lh) { 1742 if (!try_module_get(fmt->module)) 1743 continue; 1744 read_unlock(&binfmt_lock); 1745 1746 retval = fmt->load_binary(bprm); 1747 1748 read_lock(&binfmt_lock); 1749 put_binfmt(fmt); 1750 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1751 read_unlock(&binfmt_lock); 1752 return retval; 1753 } 1754 } 1755 read_unlock(&binfmt_lock); 1756 1757 if (need_retry) { 1758 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1759 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1760 return retval; 1761 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1762 return retval; 1763 need_retry = false; 1764 goto retry; 1765 } 1766 1767 return retval; 1768 } 1769 1770 static int exec_binprm(struct linux_binprm *bprm) 1771 { 1772 pid_t old_pid, old_vpid; 1773 int ret, depth; 1774 1775 /* Need to fetch pid before load_binary changes it */ 1776 old_pid = current->pid; 1777 rcu_read_lock(); 1778 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1779 rcu_read_unlock(); 1780 1781 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1782 for (depth = 0;; depth++) { 1783 struct file *exec; 1784 if (depth > 5) 1785 return -ELOOP; 1786 1787 ret = search_binary_handler(bprm); 1788 if (ret < 0) 1789 return ret; 1790 if (!bprm->interpreter) 1791 break; 1792 1793 exec = bprm->file; 1794 bprm->file = bprm->interpreter; 1795 bprm->interpreter = NULL; 1796 1797 allow_write_access(exec); 1798 if (unlikely(bprm->have_execfd)) { 1799 if (bprm->executable) { 1800 fput(exec); 1801 return -ENOEXEC; 1802 } 1803 bprm->executable = exec; 1804 } else 1805 fput(exec); 1806 } 1807 1808 audit_bprm(bprm); 1809 trace_sched_process_exec(current, old_pid, bprm); 1810 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1811 proc_exec_connector(current); 1812 return 0; 1813 } 1814 1815 /* 1816 * sys_execve() executes a new program. 1817 */ 1818 static int __do_execve_file(int fd, struct filename *filename, 1819 struct user_arg_ptr argv, 1820 struct user_arg_ptr envp, 1821 int flags, struct file *file) 1822 { 1823 char *pathbuf = NULL; 1824 struct linux_binprm *bprm; 1825 struct files_struct *displaced; 1826 int retval; 1827 1828 if (IS_ERR(filename)) 1829 return PTR_ERR(filename); 1830 1831 /* 1832 * We move the actual failure in case of RLIMIT_NPROC excess from 1833 * set*uid() to execve() because too many poorly written programs 1834 * don't check setuid() return code. Here we additionally recheck 1835 * whether NPROC limit is still exceeded. 1836 */ 1837 if ((current->flags & PF_NPROC_EXCEEDED) && 1838 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1839 retval = -EAGAIN; 1840 goto out_ret; 1841 } 1842 1843 /* We're below the limit (still or again), so we don't want to make 1844 * further execve() calls fail. */ 1845 current->flags &= ~PF_NPROC_EXCEEDED; 1846 1847 retval = unshare_files(&displaced); 1848 if (retval) 1849 goto out_ret; 1850 1851 retval = -ENOMEM; 1852 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1853 if (!bprm) 1854 goto out_files; 1855 1856 retval = prepare_bprm_creds(bprm); 1857 if (retval) 1858 goto out_free; 1859 1860 check_unsafe_exec(bprm); 1861 current->in_execve = 1; 1862 1863 if (!file) 1864 file = do_open_execat(fd, filename, flags); 1865 retval = PTR_ERR(file); 1866 if (IS_ERR(file)) 1867 goto out_unmark; 1868 1869 sched_exec(); 1870 1871 bprm->file = file; 1872 if (!filename) { 1873 bprm->filename = "none"; 1874 } else if (fd == AT_FDCWD || filename->name[0] == '/') { 1875 bprm->filename = filename->name; 1876 } else { 1877 if (filename->name[0] == '\0') 1878 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1879 else 1880 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1881 fd, filename->name); 1882 if (!pathbuf) { 1883 retval = -ENOMEM; 1884 goto out_unmark; 1885 } 1886 /* 1887 * Record that a name derived from an O_CLOEXEC fd will be 1888 * inaccessible after exec. Relies on having exclusive access to 1889 * current->files (due to unshare_files above). 1890 */ 1891 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1892 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1893 bprm->filename = pathbuf; 1894 } 1895 bprm->interp = bprm->filename; 1896 1897 retval = bprm_mm_init(bprm); 1898 if (retval) 1899 goto out_unmark; 1900 1901 retval = prepare_arg_pages(bprm, argv, envp); 1902 if (retval < 0) 1903 goto out; 1904 1905 /* Set the unchanging part of bprm->cred */ 1906 retval = security_bprm_creds_for_exec(bprm); 1907 if (retval) 1908 goto out; 1909 1910 retval = copy_string_kernel(bprm->filename, bprm); 1911 if (retval < 0) 1912 goto out; 1913 1914 bprm->exec = bprm->p; 1915 retval = copy_strings(bprm->envc, envp, bprm); 1916 if (retval < 0) 1917 goto out; 1918 1919 retval = copy_strings(bprm->argc, argv, bprm); 1920 if (retval < 0) 1921 goto out; 1922 1923 retval = exec_binprm(bprm); 1924 if (retval < 0) 1925 goto out; 1926 1927 /* execve succeeded */ 1928 current->fs->in_exec = 0; 1929 current->in_execve = 0; 1930 rseq_execve(current); 1931 acct_update_integrals(current); 1932 task_numa_free(current, false); 1933 free_bprm(bprm); 1934 kfree(pathbuf); 1935 if (filename) 1936 putname(filename); 1937 if (displaced) 1938 put_files_struct(displaced); 1939 return retval; 1940 1941 out: 1942 /* 1943 * If past the point of no return ensure the the code never 1944 * returns to the userspace process. Use an existing fatal 1945 * signal if present otherwise terminate the process with 1946 * SIGSEGV. 1947 */ 1948 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1949 force_sigsegv(SIGSEGV); 1950 if (bprm->mm) { 1951 acct_arg_size(bprm, 0); 1952 mmput(bprm->mm); 1953 } 1954 1955 out_unmark: 1956 current->fs->in_exec = 0; 1957 current->in_execve = 0; 1958 1959 out_free: 1960 free_bprm(bprm); 1961 kfree(pathbuf); 1962 1963 out_files: 1964 if (displaced) 1965 reset_files_struct(displaced); 1966 out_ret: 1967 if (filename) 1968 putname(filename); 1969 return retval; 1970 } 1971 1972 static int do_execveat_common(int fd, struct filename *filename, 1973 struct user_arg_ptr argv, 1974 struct user_arg_ptr envp, 1975 int flags) 1976 { 1977 return __do_execve_file(fd, filename, argv, envp, flags, NULL); 1978 } 1979 1980 int do_execve_file(struct file *file, void *__argv, void *__envp) 1981 { 1982 struct user_arg_ptr argv = { .ptr.native = __argv }; 1983 struct user_arg_ptr envp = { .ptr.native = __envp }; 1984 1985 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); 1986 } 1987 1988 int do_execve(struct filename *filename, 1989 const char __user *const __user *__argv, 1990 const char __user *const __user *__envp) 1991 { 1992 struct user_arg_ptr argv = { .ptr.native = __argv }; 1993 struct user_arg_ptr envp = { .ptr.native = __envp }; 1994 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1995 } 1996 1997 int do_execveat(int fd, struct filename *filename, 1998 const char __user *const __user *__argv, 1999 const char __user *const __user *__envp, 2000 int flags) 2001 { 2002 struct user_arg_ptr argv = { .ptr.native = __argv }; 2003 struct user_arg_ptr envp = { .ptr.native = __envp }; 2004 2005 return do_execveat_common(fd, filename, argv, envp, flags); 2006 } 2007 2008 #ifdef CONFIG_COMPAT 2009 static int compat_do_execve(struct filename *filename, 2010 const compat_uptr_t __user *__argv, 2011 const compat_uptr_t __user *__envp) 2012 { 2013 struct user_arg_ptr argv = { 2014 .is_compat = true, 2015 .ptr.compat = __argv, 2016 }; 2017 struct user_arg_ptr envp = { 2018 .is_compat = true, 2019 .ptr.compat = __envp, 2020 }; 2021 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2022 } 2023 2024 static int compat_do_execveat(int fd, struct filename *filename, 2025 const compat_uptr_t __user *__argv, 2026 const compat_uptr_t __user *__envp, 2027 int flags) 2028 { 2029 struct user_arg_ptr argv = { 2030 .is_compat = true, 2031 .ptr.compat = __argv, 2032 }; 2033 struct user_arg_ptr envp = { 2034 .is_compat = true, 2035 .ptr.compat = __envp, 2036 }; 2037 return do_execveat_common(fd, filename, argv, envp, flags); 2038 } 2039 #endif 2040 2041 void set_binfmt(struct linux_binfmt *new) 2042 { 2043 struct mm_struct *mm = current->mm; 2044 2045 if (mm->binfmt) 2046 module_put(mm->binfmt->module); 2047 2048 mm->binfmt = new; 2049 if (new) 2050 __module_get(new->module); 2051 } 2052 EXPORT_SYMBOL(set_binfmt); 2053 2054 /* 2055 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2056 */ 2057 void set_dumpable(struct mm_struct *mm, int value) 2058 { 2059 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2060 return; 2061 2062 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2063 } 2064 2065 SYSCALL_DEFINE3(execve, 2066 const char __user *, filename, 2067 const char __user *const __user *, argv, 2068 const char __user *const __user *, envp) 2069 { 2070 return do_execve(getname(filename), argv, envp); 2071 } 2072 2073 SYSCALL_DEFINE5(execveat, 2074 int, fd, const char __user *, filename, 2075 const char __user *const __user *, argv, 2076 const char __user *const __user *, envp, 2077 int, flags) 2078 { 2079 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2080 2081 return do_execveat(fd, 2082 getname_flags(filename, lookup_flags, NULL), 2083 argv, envp, flags); 2084 } 2085 2086 #ifdef CONFIG_COMPAT 2087 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2088 const compat_uptr_t __user *, argv, 2089 const compat_uptr_t __user *, envp) 2090 { 2091 return compat_do_execve(getname(filename), argv, envp); 2092 } 2093 2094 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2095 const char __user *, filename, 2096 const compat_uptr_t __user *, argv, 2097 const compat_uptr_t __user *, envp, 2098 int, flags) 2099 { 2100 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2101 2102 return compat_do_execveat(fd, 2103 getname_flags(filename, lookup_flags, NULL), 2104 argv, envp, flags); 2105 } 2106 #endif 2107