xref: /openbmc/linux/fs/exec.c (revision ce746d43)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 static int bprm_creds_from_file(struct linux_binprm *bprm);
76 
77 int suid_dumpable = 0;
78 
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81 
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 	BUG_ON(!fmt);
85 	if (WARN_ON(!fmt->load_binary))
86 		return;
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	error = -EINVAL;
145 	if (!S_ISREG(file_inode(file)->i_mode))
146 		goto exit;
147 
148 	error = -EACCES;
149 	if (path_noexec(&file->f_path))
150 		goto exit;
151 
152 	fsnotify_open(file);
153 
154 	error = -ENOEXEC;
155 
156 	read_lock(&binfmt_lock);
157 	list_for_each_entry(fmt, &formats, lh) {
158 		if (!fmt->load_shlib)
159 			continue;
160 		if (!try_module_get(fmt->module))
161 			continue;
162 		read_unlock(&binfmt_lock);
163 		error = fmt->load_shlib(file);
164 		read_lock(&binfmt_lock);
165 		put_binfmt(fmt);
166 		if (error != -ENOEXEC)
167 			break;
168 	}
169 	read_unlock(&binfmt_lock);
170 exit:
171 	fput(file);
172 out:
173   	return error;
174 }
175 #endif /* #ifdef CONFIG_USELIB */
176 
177 #ifdef CONFIG_MMU
178 /*
179  * The nascent bprm->mm is not visible until exec_mmap() but it can
180  * use a lot of memory, account these pages in current->mm temporary
181  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
182  * change the counter back via acct_arg_size(0).
183  */
184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
185 {
186 	struct mm_struct *mm = current->mm;
187 	long diff = (long)(pages - bprm->vma_pages);
188 
189 	if (!mm || !diff)
190 		return;
191 
192 	bprm->vma_pages = pages;
193 	add_mm_counter(mm, MM_ANONPAGES, diff);
194 }
195 
196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
197 		int write)
198 {
199 	struct page *page;
200 	int ret;
201 	unsigned int gup_flags = FOLL_FORCE;
202 
203 #ifdef CONFIG_STACK_GROWSUP
204 	if (write) {
205 		ret = expand_downwards(bprm->vma, pos);
206 		if (ret < 0)
207 			return NULL;
208 	}
209 #endif
210 
211 	if (write)
212 		gup_flags |= FOLL_WRITE;
213 
214 	/*
215 	 * We are doing an exec().  'current' is the process
216 	 * doing the exec and bprm->mm is the new process's mm.
217 	 */
218 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
219 			&page, NULL, NULL);
220 	if (ret <= 0)
221 		return NULL;
222 
223 	if (write)
224 		acct_arg_size(bprm, vma_pages(bprm->vma));
225 
226 	return page;
227 }
228 
229 static void put_arg_page(struct page *page)
230 {
231 	put_page(page);
232 }
233 
234 static void free_arg_pages(struct linux_binprm *bprm)
235 {
236 }
237 
238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
239 		struct page *page)
240 {
241 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
242 }
243 
244 static int __bprm_mm_init(struct linux_binprm *bprm)
245 {
246 	int err;
247 	struct vm_area_struct *vma = NULL;
248 	struct mm_struct *mm = bprm->mm;
249 
250 	bprm->vma = vma = vm_area_alloc(mm);
251 	if (!vma)
252 		return -ENOMEM;
253 	vma_set_anonymous(vma);
254 
255 	if (mmap_write_lock_killable(mm)) {
256 		err = -EINTR;
257 		goto err_free;
258 	}
259 
260 	/*
261 	 * Place the stack at the largest stack address the architecture
262 	 * supports. Later, we'll move this to an appropriate place. We don't
263 	 * use STACK_TOP because that can depend on attributes which aren't
264 	 * configured yet.
265 	 */
266 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267 	vma->vm_end = STACK_TOP_MAX;
268 	vma->vm_start = vma->vm_end - PAGE_SIZE;
269 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271 
272 	err = insert_vm_struct(mm, vma);
273 	if (err)
274 		goto err;
275 
276 	mm->stack_vm = mm->total_vm = 1;
277 	mmap_write_unlock(mm);
278 	bprm->p = vma->vm_end - sizeof(void *);
279 	return 0;
280 err:
281 	mmap_write_unlock(mm);
282 err_free:
283 	bprm->vma = NULL;
284 	vm_area_free(vma);
285 	return err;
286 }
287 
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290 	return len <= MAX_ARG_STRLEN;
291 }
292 
293 #else
294 
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298 
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 		int write)
301 {
302 	struct page *page;
303 
304 	page = bprm->page[pos / PAGE_SIZE];
305 	if (!page && write) {
306 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 		if (!page)
308 			return NULL;
309 		bprm->page[pos / PAGE_SIZE] = page;
310 	}
311 
312 	return page;
313 }
314 
315 static void put_arg_page(struct page *page)
316 {
317 }
318 
319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321 	if (bprm->page[i]) {
322 		__free_page(bprm->page[i]);
323 		bprm->page[i] = NULL;
324 	}
325 }
326 
327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329 	int i;
330 
331 	for (i = 0; i < MAX_ARG_PAGES; i++)
332 		free_arg_page(bprm, i);
333 }
334 
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 		struct page *page)
337 {
338 }
339 
340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 	return 0;
344 }
345 
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348 	return len <= bprm->p;
349 }
350 
351 #endif /* CONFIG_MMU */
352 
353 /*
354  * Create a new mm_struct and populate it with a temporary stack
355  * vm_area_struct.  We don't have enough context at this point to set the stack
356  * flags, permissions, and offset, so we use temporary values.  We'll update
357  * them later in setup_arg_pages().
358  */
359 static int bprm_mm_init(struct linux_binprm *bprm)
360 {
361 	int err;
362 	struct mm_struct *mm = NULL;
363 
364 	bprm->mm = mm = mm_alloc();
365 	err = -ENOMEM;
366 	if (!mm)
367 		goto err;
368 
369 	/* Save current stack limit for all calculations made during exec. */
370 	task_lock(current->group_leader);
371 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 	task_unlock(current->group_leader);
373 
374 	err = __bprm_mm_init(bprm);
375 	if (err)
376 		goto err;
377 
378 	return 0;
379 
380 err:
381 	if (mm) {
382 		bprm->mm = NULL;
383 		mmdrop(mm);
384 	}
385 
386 	return err;
387 }
388 
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 	bool is_compat;
392 #endif
393 	union {
394 		const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 		const compat_uptr_t __user *compat;
397 #endif
398 	} ptr;
399 };
400 
401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403 	const char __user *native;
404 
405 #ifdef CONFIG_COMPAT
406 	if (unlikely(argv.is_compat)) {
407 		compat_uptr_t compat;
408 
409 		if (get_user(compat, argv.ptr.compat + nr))
410 			return ERR_PTR(-EFAULT);
411 
412 		return compat_ptr(compat);
413 	}
414 #endif
415 
416 	if (get_user(native, argv.ptr.native + nr))
417 		return ERR_PTR(-EFAULT);
418 
419 	return native;
420 }
421 
422 /*
423  * count() counts the number of strings in array ARGV.
424  */
425 static int count(struct user_arg_ptr argv, int max)
426 {
427 	int i = 0;
428 
429 	if (argv.ptr.native != NULL) {
430 		for (;;) {
431 			const char __user *p = get_user_arg_ptr(argv, i);
432 
433 			if (!p)
434 				break;
435 
436 			if (IS_ERR(p))
437 				return -EFAULT;
438 
439 			if (i >= max)
440 				return -E2BIG;
441 			++i;
442 
443 			if (fatal_signal_pending(current))
444 				return -ERESTARTNOHAND;
445 			cond_resched();
446 		}
447 	}
448 	return i;
449 }
450 
451 static int count_strings_kernel(const char *const *argv)
452 {
453 	int i;
454 
455 	if (!argv)
456 		return 0;
457 
458 	for (i = 0; argv[i]; ++i) {
459 		if (i >= MAX_ARG_STRINGS)
460 			return -E2BIG;
461 		if (fatal_signal_pending(current))
462 			return -ERESTARTNOHAND;
463 		cond_resched();
464 	}
465 	return i;
466 }
467 
468 static int bprm_stack_limits(struct linux_binprm *bprm)
469 {
470 	unsigned long limit, ptr_size;
471 
472 	/*
473 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
474 	 * (whichever is smaller) for the argv+env strings.
475 	 * This ensures that:
476 	 *  - the remaining binfmt code will not run out of stack space,
477 	 *  - the program will have a reasonable amount of stack left
478 	 *    to work from.
479 	 */
480 	limit = _STK_LIM / 4 * 3;
481 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
482 	/*
483 	 * We've historically supported up to 32 pages (ARG_MAX)
484 	 * of argument strings even with small stacks
485 	 */
486 	limit = max_t(unsigned long, limit, ARG_MAX);
487 	/*
488 	 * We must account for the size of all the argv and envp pointers to
489 	 * the argv and envp strings, since they will also take up space in
490 	 * the stack. They aren't stored until much later when we can't
491 	 * signal to the parent that the child has run out of stack space.
492 	 * Instead, calculate it here so it's possible to fail gracefully.
493 	 */
494 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
495 	if (limit <= ptr_size)
496 		return -E2BIG;
497 	limit -= ptr_size;
498 
499 	bprm->argmin = bprm->p - limit;
500 	return 0;
501 }
502 
503 /*
504  * 'copy_strings()' copies argument/environment strings from the old
505  * processes's memory to the new process's stack.  The call to get_user_pages()
506  * ensures the destination page is created and not swapped out.
507  */
508 static int copy_strings(int argc, struct user_arg_ptr argv,
509 			struct linux_binprm *bprm)
510 {
511 	struct page *kmapped_page = NULL;
512 	char *kaddr = NULL;
513 	unsigned long kpos = 0;
514 	int ret;
515 
516 	while (argc-- > 0) {
517 		const char __user *str;
518 		int len;
519 		unsigned long pos;
520 
521 		ret = -EFAULT;
522 		str = get_user_arg_ptr(argv, argc);
523 		if (IS_ERR(str))
524 			goto out;
525 
526 		len = strnlen_user(str, MAX_ARG_STRLEN);
527 		if (!len)
528 			goto out;
529 
530 		ret = -E2BIG;
531 		if (!valid_arg_len(bprm, len))
532 			goto out;
533 
534 		/* We're going to work our way backwords. */
535 		pos = bprm->p;
536 		str += len;
537 		bprm->p -= len;
538 #ifdef CONFIG_MMU
539 		if (bprm->p < bprm->argmin)
540 			goto out;
541 #endif
542 
543 		while (len > 0) {
544 			int offset, bytes_to_copy;
545 
546 			if (fatal_signal_pending(current)) {
547 				ret = -ERESTARTNOHAND;
548 				goto out;
549 			}
550 			cond_resched();
551 
552 			offset = pos % PAGE_SIZE;
553 			if (offset == 0)
554 				offset = PAGE_SIZE;
555 
556 			bytes_to_copy = offset;
557 			if (bytes_to_copy > len)
558 				bytes_to_copy = len;
559 
560 			offset -= bytes_to_copy;
561 			pos -= bytes_to_copy;
562 			str -= bytes_to_copy;
563 			len -= bytes_to_copy;
564 
565 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
566 				struct page *page;
567 
568 				page = get_arg_page(bprm, pos, 1);
569 				if (!page) {
570 					ret = -E2BIG;
571 					goto out;
572 				}
573 
574 				if (kmapped_page) {
575 					flush_kernel_dcache_page(kmapped_page);
576 					kunmap(kmapped_page);
577 					put_arg_page(kmapped_page);
578 				}
579 				kmapped_page = page;
580 				kaddr = kmap(kmapped_page);
581 				kpos = pos & PAGE_MASK;
582 				flush_arg_page(bprm, kpos, kmapped_page);
583 			}
584 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
585 				ret = -EFAULT;
586 				goto out;
587 			}
588 		}
589 	}
590 	ret = 0;
591 out:
592 	if (kmapped_page) {
593 		flush_kernel_dcache_page(kmapped_page);
594 		kunmap(kmapped_page);
595 		put_arg_page(kmapped_page);
596 	}
597 	return ret;
598 }
599 
600 /*
601  * Copy and argument/environment string from the kernel to the processes stack.
602  */
603 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
604 {
605 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
606 	unsigned long pos = bprm->p;
607 
608 	if (len == 0)
609 		return -EFAULT;
610 	if (!valid_arg_len(bprm, len))
611 		return -E2BIG;
612 
613 	/* We're going to work our way backwards. */
614 	arg += len;
615 	bprm->p -= len;
616 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
617 		return -E2BIG;
618 
619 	while (len > 0) {
620 		unsigned int bytes_to_copy = min_t(unsigned int, len,
621 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
622 		struct page *page;
623 		char *kaddr;
624 
625 		pos -= bytes_to_copy;
626 		arg -= bytes_to_copy;
627 		len -= bytes_to_copy;
628 
629 		page = get_arg_page(bprm, pos, 1);
630 		if (!page)
631 			return -E2BIG;
632 		kaddr = kmap_atomic(page);
633 		flush_arg_page(bprm, pos & PAGE_MASK, page);
634 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
635 		flush_kernel_dcache_page(page);
636 		kunmap_atomic(kaddr);
637 		put_arg_page(page);
638 	}
639 
640 	return 0;
641 }
642 EXPORT_SYMBOL(copy_string_kernel);
643 
644 static int copy_strings_kernel(int argc, const char *const *argv,
645 			       struct linux_binprm *bprm)
646 {
647 	while (argc-- > 0) {
648 		int ret = copy_string_kernel(argv[argc], bprm);
649 		if (ret < 0)
650 			return ret;
651 		if (fatal_signal_pending(current))
652 			return -ERESTARTNOHAND;
653 		cond_resched();
654 	}
655 	return 0;
656 }
657 
658 #ifdef CONFIG_MMU
659 
660 /*
661  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
662  * the binfmt code determines where the new stack should reside, we shift it to
663  * its final location.  The process proceeds as follows:
664  *
665  * 1) Use shift to calculate the new vma endpoints.
666  * 2) Extend vma to cover both the old and new ranges.  This ensures the
667  *    arguments passed to subsequent functions are consistent.
668  * 3) Move vma's page tables to the new range.
669  * 4) Free up any cleared pgd range.
670  * 5) Shrink the vma to cover only the new range.
671  */
672 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
673 {
674 	struct mm_struct *mm = vma->vm_mm;
675 	unsigned long old_start = vma->vm_start;
676 	unsigned long old_end = vma->vm_end;
677 	unsigned long length = old_end - old_start;
678 	unsigned long new_start = old_start - shift;
679 	unsigned long new_end = old_end - shift;
680 	struct mmu_gather tlb;
681 
682 	BUG_ON(new_start > new_end);
683 
684 	/*
685 	 * ensure there are no vmas between where we want to go
686 	 * and where we are
687 	 */
688 	if (vma != find_vma(mm, new_start))
689 		return -EFAULT;
690 
691 	/*
692 	 * cover the whole range: [new_start, old_end)
693 	 */
694 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
695 		return -ENOMEM;
696 
697 	/*
698 	 * move the page tables downwards, on failure we rely on
699 	 * process cleanup to remove whatever mess we made.
700 	 */
701 	if (length != move_page_tables(vma, old_start,
702 				       vma, new_start, length, false))
703 		return -ENOMEM;
704 
705 	lru_add_drain();
706 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
707 	if (new_end > old_start) {
708 		/*
709 		 * when the old and new regions overlap clear from new_end.
710 		 */
711 		free_pgd_range(&tlb, new_end, old_end, new_end,
712 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
713 	} else {
714 		/*
715 		 * otherwise, clean from old_start; this is done to not touch
716 		 * the address space in [new_end, old_start) some architectures
717 		 * have constraints on va-space that make this illegal (IA64) -
718 		 * for the others its just a little faster.
719 		 */
720 		free_pgd_range(&tlb, old_start, old_end, new_end,
721 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
722 	}
723 	tlb_finish_mmu(&tlb, old_start, old_end);
724 
725 	/*
726 	 * Shrink the vma to just the new range.  Always succeeds.
727 	 */
728 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
729 
730 	return 0;
731 }
732 
733 /*
734  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
735  * the stack is optionally relocated, and some extra space is added.
736  */
737 int setup_arg_pages(struct linux_binprm *bprm,
738 		    unsigned long stack_top,
739 		    int executable_stack)
740 {
741 	unsigned long ret;
742 	unsigned long stack_shift;
743 	struct mm_struct *mm = current->mm;
744 	struct vm_area_struct *vma = bprm->vma;
745 	struct vm_area_struct *prev = NULL;
746 	unsigned long vm_flags;
747 	unsigned long stack_base;
748 	unsigned long stack_size;
749 	unsigned long stack_expand;
750 	unsigned long rlim_stack;
751 
752 #ifdef CONFIG_STACK_GROWSUP
753 	/* Limit stack size */
754 	stack_base = bprm->rlim_stack.rlim_max;
755 	if (stack_base > STACK_SIZE_MAX)
756 		stack_base = STACK_SIZE_MAX;
757 
758 	/* Add space for stack randomization. */
759 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
760 
761 	/* Make sure we didn't let the argument array grow too large. */
762 	if (vma->vm_end - vma->vm_start > stack_base)
763 		return -ENOMEM;
764 
765 	stack_base = PAGE_ALIGN(stack_top - stack_base);
766 
767 	stack_shift = vma->vm_start - stack_base;
768 	mm->arg_start = bprm->p - stack_shift;
769 	bprm->p = vma->vm_end - stack_shift;
770 #else
771 	stack_top = arch_align_stack(stack_top);
772 	stack_top = PAGE_ALIGN(stack_top);
773 
774 	if (unlikely(stack_top < mmap_min_addr) ||
775 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
776 		return -ENOMEM;
777 
778 	stack_shift = vma->vm_end - stack_top;
779 
780 	bprm->p -= stack_shift;
781 	mm->arg_start = bprm->p;
782 #endif
783 
784 	if (bprm->loader)
785 		bprm->loader -= stack_shift;
786 	bprm->exec -= stack_shift;
787 
788 	if (mmap_write_lock_killable(mm))
789 		return -EINTR;
790 
791 	vm_flags = VM_STACK_FLAGS;
792 
793 	/*
794 	 * Adjust stack execute permissions; explicitly enable for
795 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
796 	 * (arch default) otherwise.
797 	 */
798 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
799 		vm_flags |= VM_EXEC;
800 	else if (executable_stack == EXSTACK_DISABLE_X)
801 		vm_flags &= ~VM_EXEC;
802 	vm_flags |= mm->def_flags;
803 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
804 
805 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
806 			vm_flags);
807 	if (ret)
808 		goto out_unlock;
809 	BUG_ON(prev != vma);
810 
811 	if (unlikely(vm_flags & VM_EXEC)) {
812 		pr_warn_once("process '%pD4' started with executable stack\n",
813 			     bprm->file);
814 	}
815 
816 	/* Move stack pages down in memory. */
817 	if (stack_shift) {
818 		ret = shift_arg_pages(vma, stack_shift);
819 		if (ret)
820 			goto out_unlock;
821 	}
822 
823 	/* mprotect_fixup is overkill to remove the temporary stack flags */
824 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
825 
826 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
827 	stack_size = vma->vm_end - vma->vm_start;
828 	/*
829 	 * Align this down to a page boundary as expand_stack
830 	 * will align it up.
831 	 */
832 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
833 #ifdef CONFIG_STACK_GROWSUP
834 	if (stack_size + stack_expand > rlim_stack)
835 		stack_base = vma->vm_start + rlim_stack;
836 	else
837 		stack_base = vma->vm_end + stack_expand;
838 #else
839 	if (stack_size + stack_expand > rlim_stack)
840 		stack_base = vma->vm_end - rlim_stack;
841 	else
842 		stack_base = vma->vm_start - stack_expand;
843 #endif
844 	current->mm->start_stack = bprm->p;
845 	ret = expand_stack(vma, stack_base);
846 	if (ret)
847 		ret = -EFAULT;
848 
849 out_unlock:
850 	mmap_write_unlock(mm);
851 	return ret;
852 }
853 EXPORT_SYMBOL(setup_arg_pages);
854 
855 #else
856 
857 /*
858  * Transfer the program arguments and environment from the holding pages
859  * onto the stack. The provided stack pointer is adjusted accordingly.
860  */
861 int transfer_args_to_stack(struct linux_binprm *bprm,
862 			   unsigned long *sp_location)
863 {
864 	unsigned long index, stop, sp;
865 	int ret = 0;
866 
867 	stop = bprm->p >> PAGE_SHIFT;
868 	sp = *sp_location;
869 
870 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
871 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
872 		char *src = kmap(bprm->page[index]) + offset;
873 		sp -= PAGE_SIZE - offset;
874 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
875 			ret = -EFAULT;
876 		kunmap(bprm->page[index]);
877 		if (ret)
878 			goto out;
879 	}
880 
881 	*sp_location = sp;
882 
883 out:
884 	return ret;
885 }
886 EXPORT_SYMBOL(transfer_args_to_stack);
887 
888 #endif /* CONFIG_MMU */
889 
890 static struct file *do_open_execat(int fd, struct filename *name, int flags)
891 {
892 	struct file *file;
893 	int err;
894 	struct open_flags open_exec_flags = {
895 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
896 		.acc_mode = MAY_EXEC,
897 		.intent = LOOKUP_OPEN,
898 		.lookup_flags = LOOKUP_FOLLOW,
899 	};
900 
901 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
902 		return ERR_PTR(-EINVAL);
903 	if (flags & AT_SYMLINK_NOFOLLOW)
904 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
905 	if (flags & AT_EMPTY_PATH)
906 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
907 
908 	file = do_filp_open(fd, name, &open_exec_flags);
909 	if (IS_ERR(file))
910 		goto out;
911 
912 	err = -EACCES;
913 	if (!S_ISREG(file_inode(file)->i_mode))
914 		goto exit;
915 
916 	if (path_noexec(&file->f_path))
917 		goto exit;
918 
919 	err = deny_write_access(file);
920 	if (err)
921 		goto exit;
922 
923 	if (name->name[0] != '\0')
924 		fsnotify_open(file);
925 
926 out:
927 	return file;
928 
929 exit:
930 	fput(file);
931 	return ERR_PTR(err);
932 }
933 
934 struct file *open_exec(const char *name)
935 {
936 	struct filename *filename = getname_kernel(name);
937 	struct file *f = ERR_CAST(filename);
938 
939 	if (!IS_ERR(filename)) {
940 		f = do_open_execat(AT_FDCWD, filename, 0);
941 		putname(filename);
942 	}
943 	return f;
944 }
945 EXPORT_SYMBOL(open_exec);
946 
947 int kernel_read_file(struct file *file, void **buf, loff_t *size,
948 		     loff_t max_size, enum kernel_read_file_id id)
949 {
950 	loff_t i_size, pos;
951 	ssize_t bytes = 0;
952 	int ret;
953 
954 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
955 		return -EINVAL;
956 
957 	ret = deny_write_access(file);
958 	if (ret)
959 		return ret;
960 
961 	ret = security_kernel_read_file(file, id);
962 	if (ret)
963 		goto out;
964 
965 	i_size = i_size_read(file_inode(file));
966 	if (i_size <= 0) {
967 		ret = -EINVAL;
968 		goto out;
969 	}
970 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
971 		ret = -EFBIG;
972 		goto out;
973 	}
974 
975 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
976 		*buf = vmalloc(i_size);
977 	if (!*buf) {
978 		ret = -ENOMEM;
979 		goto out;
980 	}
981 
982 	pos = 0;
983 	while (pos < i_size) {
984 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
985 		if (bytes < 0) {
986 			ret = bytes;
987 			goto out_free;
988 		}
989 
990 		if (bytes == 0)
991 			break;
992 	}
993 
994 	if (pos != i_size) {
995 		ret = -EIO;
996 		goto out_free;
997 	}
998 
999 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
1000 	if (!ret)
1001 		*size = pos;
1002 
1003 out_free:
1004 	if (ret < 0) {
1005 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
1006 			vfree(*buf);
1007 			*buf = NULL;
1008 		}
1009 	}
1010 
1011 out:
1012 	allow_write_access(file);
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL_GPL(kernel_read_file);
1016 
1017 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1018 			       loff_t max_size, enum kernel_read_file_id id)
1019 {
1020 	struct file *file;
1021 	int ret;
1022 
1023 	if (!path || !*path)
1024 		return -EINVAL;
1025 
1026 	file = filp_open(path, O_RDONLY, 0);
1027 	if (IS_ERR(file))
1028 		return PTR_ERR(file);
1029 
1030 	ret = kernel_read_file(file, buf, size, max_size, id);
1031 	fput(file);
1032 	return ret;
1033 }
1034 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1035 
1036 int kernel_read_file_from_path_initns(const char *path, void **buf,
1037 				      loff_t *size, loff_t max_size,
1038 				      enum kernel_read_file_id id)
1039 {
1040 	struct file *file;
1041 	struct path root;
1042 	int ret;
1043 
1044 	if (!path || !*path)
1045 		return -EINVAL;
1046 
1047 	task_lock(&init_task);
1048 	get_fs_root(init_task.fs, &root);
1049 	task_unlock(&init_task);
1050 
1051 	file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1052 	path_put(&root);
1053 	if (IS_ERR(file))
1054 		return PTR_ERR(file);
1055 
1056 	ret = kernel_read_file(file, buf, size, max_size, id);
1057 	fput(file);
1058 	return ret;
1059 }
1060 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1061 
1062 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1063 			     enum kernel_read_file_id id)
1064 {
1065 	struct fd f = fdget(fd);
1066 	int ret = -EBADF;
1067 
1068 	if (!f.file)
1069 		goto out;
1070 
1071 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1072 out:
1073 	fdput(f);
1074 	return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1077 
1078 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1079     defined(CONFIG_BINFMT_ELF_FDPIC)
1080 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1081 {
1082 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1083 	if (res > 0)
1084 		flush_icache_user_range(addr, addr + len);
1085 	return res;
1086 }
1087 EXPORT_SYMBOL(read_code);
1088 #endif
1089 
1090 /*
1091  * Maps the mm_struct mm into the current task struct.
1092  * On success, this function returns with the mutex
1093  * exec_update_mutex locked.
1094  */
1095 static int exec_mmap(struct mm_struct *mm)
1096 {
1097 	struct task_struct *tsk;
1098 	struct mm_struct *old_mm, *active_mm;
1099 	int ret;
1100 
1101 	/* Notify parent that we're no longer interested in the old VM */
1102 	tsk = current;
1103 	old_mm = current->mm;
1104 	exec_mm_release(tsk, old_mm);
1105 	if (old_mm)
1106 		sync_mm_rss(old_mm);
1107 
1108 	ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1109 	if (ret)
1110 		return ret;
1111 
1112 	if (old_mm) {
1113 		/*
1114 		 * Make sure that if there is a core dump in progress
1115 		 * for the old mm, we get out and die instead of going
1116 		 * through with the exec.  We must hold mmap_lock around
1117 		 * checking core_state and changing tsk->mm.
1118 		 */
1119 		mmap_read_lock(old_mm);
1120 		if (unlikely(old_mm->core_state)) {
1121 			mmap_read_unlock(old_mm);
1122 			mutex_unlock(&tsk->signal->exec_update_mutex);
1123 			return -EINTR;
1124 		}
1125 	}
1126 
1127 	task_lock(tsk);
1128 	active_mm = tsk->active_mm;
1129 	membarrier_exec_mmap(mm);
1130 	tsk->mm = mm;
1131 	tsk->active_mm = mm;
1132 	activate_mm(active_mm, mm);
1133 	tsk->mm->vmacache_seqnum = 0;
1134 	vmacache_flush(tsk);
1135 	task_unlock(tsk);
1136 	if (old_mm) {
1137 		mmap_read_unlock(old_mm);
1138 		BUG_ON(active_mm != old_mm);
1139 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1140 		mm_update_next_owner(old_mm);
1141 		mmput(old_mm);
1142 		return 0;
1143 	}
1144 	mmdrop(active_mm);
1145 	return 0;
1146 }
1147 
1148 static int de_thread(struct task_struct *tsk)
1149 {
1150 	struct signal_struct *sig = tsk->signal;
1151 	struct sighand_struct *oldsighand = tsk->sighand;
1152 	spinlock_t *lock = &oldsighand->siglock;
1153 
1154 	if (thread_group_empty(tsk))
1155 		goto no_thread_group;
1156 
1157 	/*
1158 	 * Kill all other threads in the thread group.
1159 	 */
1160 	spin_lock_irq(lock);
1161 	if (signal_group_exit(sig)) {
1162 		/*
1163 		 * Another group action in progress, just
1164 		 * return so that the signal is processed.
1165 		 */
1166 		spin_unlock_irq(lock);
1167 		return -EAGAIN;
1168 	}
1169 
1170 	sig->group_exit_task = tsk;
1171 	sig->notify_count = zap_other_threads(tsk);
1172 	if (!thread_group_leader(tsk))
1173 		sig->notify_count--;
1174 
1175 	while (sig->notify_count) {
1176 		__set_current_state(TASK_KILLABLE);
1177 		spin_unlock_irq(lock);
1178 		schedule();
1179 		if (__fatal_signal_pending(tsk))
1180 			goto killed;
1181 		spin_lock_irq(lock);
1182 	}
1183 	spin_unlock_irq(lock);
1184 
1185 	/*
1186 	 * At this point all other threads have exited, all we have to
1187 	 * do is to wait for the thread group leader to become inactive,
1188 	 * and to assume its PID:
1189 	 */
1190 	if (!thread_group_leader(tsk)) {
1191 		struct task_struct *leader = tsk->group_leader;
1192 
1193 		for (;;) {
1194 			cgroup_threadgroup_change_begin(tsk);
1195 			write_lock_irq(&tasklist_lock);
1196 			/*
1197 			 * Do this under tasklist_lock to ensure that
1198 			 * exit_notify() can't miss ->group_exit_task
1199 			 */
1200 			sig->notify_count = -1;
1201 			if (likely(leader->exit_state))
1202 				break;
1203 			__set_current_state(TASK_KILLABLE);
1204 			write_unlock_irq(&tasklist_lock);
1205 			cgroup_threadgroup_change_end(tsk);
1206 			schedule();
1207 			if (__fatal_signal_pending(tsk))
1208 				goto killed;
1209 		}
1210 
1211 		/*
1212 		 * The only record we have of the real-time age of a
1213 		 * process, regardless of execs it's done, is start_time.
1214 		 * All the past CPU time is accumulated in signal_struct
1215 		 * from sister threads now dead.  But in this non-leader
1216 		 * exec, nothing survives from the original leader thread,
1217 		 * whose birth marks the true age of this process now.
1218 		 * When we take on its identity by switching to its PID, we
1219 		 * also take its birthdate (always earlier than our own).
1220 		 */
1221 		tsk->start_time = leader->start_time;
1222 		tsk->start_boottime = leader->start_boottime;
1223 
1224 		BUG_ON(!same_thread_group(leader, tsk));
1225 		/*
1226 		 * An exec() starts a new thread group with the
1227 		 * TGID of the previous thread group. Rehash the
1228 		 * two threads with a switched PID, and release
1229 		 * the former thread group leader:
1230 		 */
1231 
1232 		/* Become a process group leader with the old leader's pid.
1233 		 * The old leader becomes a thread of the this thread group.
1234 		 */
1235 		exchange_tids(tsk, leader);
1236 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1237 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1238 		transfer_pid(leader, tsk, PIDTYPE_SID);
1239 
1240 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1241 		list_replace_init(&leader->sibling, &tsk->sibling);
1242 
1243 		tsk->group_leader = tsk;
1244 		leader->group_leader = tsk;
1245 
1246 		tsk->exit_signal = SIGCHLD;
1247 		leader->exit_signal = -1;
1248 
1249 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1250 		leader->exit_state = EXIT_DEAD;
1251 
1252 		/*
1253 		 * We are going to release_task()->ptrace_unlink() silently,
1254 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1255 		 * the tracer wont't block again waiting for this thread.
1256 		 */
1257 		if (unlikely(leader->ptrace))
1258 			__wake_up_parent(leader, leader->parent);
1259 		write_unlock_irq(&tasklist_lock);
1260 		cgroup_threadgroup_change_end(tsk);
1261 
1262 		release_task(leader);
1263 	}
1264 
1265 	sig->group_exit_task = NULL;
1266 	sig->notify_count = 0;
1267 
1268 no_thread_group:
1269 	/* we have changed execution domain */
1270 	tsk->exit_signal = SIGCHLD;
1271 
1272 	BUG_ON(!thread_group_leader(tsk));
1273 	return 0;
1274 
1275 killed:
1276 	/* protects against exit_notify() and __exit_signal() */
1277 	read_lock(&tasklist_lock);
1278 	sig->group_exit_task = NULL;
1279 	sig->notify_count = 0;
1280 	read_unlock(&tasklist_lock);
1281 	return -EAGAIN;
1282 }
1283 
1284 
1285 /*
1286  * This function makes sure the current process has its own signal table,
1287  * so that flush_signal_handlers can later reset the handlers without
1288  * disturbing other processes.  (Other processes might share the signal
1289  * table via the CLONE_SIGHAND option to clone().)
1290  */
1291 static int unshare_sighand(struct task_struct *me)
1292 {
1293 	struct sighand_struct *oldsighand = me->sighand;
1294 
1295 	if (refcount_read(&oldsighand->count) != 1) {
1296 		struct sighand_struct *newsighand;
1297 		/*
1298 		 * This ->sighand is shared with the CLONE_SIGHAND
1299 		 * but not CLONE_THREAD task, switch to the new one.
1300 		 */
1301 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1302 		if (!newsighand)
1303 			return -ENOMEM;
1304 
1305 		refcount_set(&newsighand->count, 1);
1306 		memcpy(newsighand->action, oldsighand->action,
1307 		       sizeof(newsighand->action));
1308 
1309 		write_lock_irq(&tasklist_lock);
1310 		spin_lock(&oldsighand->siglock);
1311 		rcu_assign_pointer(me->sighand, newsighand);
1312 		spin_unlock(&oldsighand->siglock);
1313 		write_unlock_irq(&tasklist_lock);
1314 
1315 		__cleanup_sighand(oldsighand);
1316 	}
1317 	return 0;
1318 }
1319 
1320 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1321 {
1322 	task_lock(tsk);
1323 	strncpy(buf, tsk->comm, buf_size);
1324 	task_unlock(tsk);
1325 	return buf;
1326 }
1327 EXPORT_SYMBOL_GPL(__get_task_comm);
1328 
1329 /*
1330  * These functions flushes out all traces of the currently running executable
1331  * so that a new one can be started
1332  */
1333 
1334 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1335 {
1336 	task_lock(tsk);
1337 	trace_task_rename(tsk, buf);
1338 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1339 	task_unlock(tsk);
1340 	perf_event_comm(tsk, exec);
1341 }
1342 
1343 /*
1344  * Calling this is the point of no return. None of the failures will be
1345  * seen by userspace since either the process is already taking a fatal
1346  * signal (via de_thread() or coredump), or will have SEGV raised
1347  * (after exec_mmap()) by search_binary_handler (see below).
1348  */
1349 int begin_new_exec(struct linux_binprm * bprm)
1350 {
1351 	struct task_struct *me = current;
1352 	int retval;
1353 
1354 	/* Once we are committed compute the creds */
1355 	retval = bprm_creds_from_file(bprm);
1356 	if (retval)
1357 		return retval;
1358 
1359 	/*
1360 	 * Ensure all future errors are fatal.
1361 	 */
1362 	bprm->point_of_no_return = true;
1363 
1364 	/*
1365 	 * Make this the only thread in the thread group.
1366 	 */
1367 	retval = de_thread(me);
1368 	if (retval)
1369 		goto out;
1370 
1371 	/*
1372 	 * Must be called _before_ exec_mmap() as bprm->mm is
1373 	 * not visibile until then. This also enables the update
1374 	 * to be lockless.
1375 	 */
1376 	set_mm_exe_file(bprm->mm, bprm->file);
1377 
1378 	/* If the binary is not readable then enforce mm->dumpable=0 */
1379 	would_dump(bprm, bprm->file);
1380 	if (bprm->have_execfd)
1381 		would_dump(bprm, bprm->executable);
1382 
1383 	/*
1384 	 * Release all of the old mmap stuff
1385 	 */
1386 	acct_arg_size(bprm, 0);
1387 	retval = exec_mmap(bprm->mm);
1388 	if (retval)
1389 		goto out;
1390 
1391 	bprm->mm = NULL;
1392 
1393 #ifdef CONFIG_POSIX_TIMERS
1394 	exit_itimers(me->signal);
1395 	flush_itimer_signals();
1396 #endif
1397 
1398 	/*
1399 	 * Make the signal table private.
1400 	 */
1401 	retval = unshare_sighand(me);
1402 	if (retval)
1403 		goto out_unlock;
1404 
1405 	set_fs(USER_DS);
1406 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1407 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1408 	flush_thread();
1409 	me->personality &= ~bprm->per_clear;
1410 
1411 	/*
1412 	 * We have to apply CLOEXEC before we change whether the process is
1413 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1414 	 * trying to access the should-be-closed file descriptors of a process
1415 	 * undergoing exec(2).
1416 	 */
1417 	do_close_on_exec(me->files);
1418 
1419 	if (bprm->secureexec) {
1420 		/* Make sure parent cannot signal privileged process. */
1421 		me->pdeath_signal = 0;
1422 
1423 		/*
1424 		 * For secureexec, reset the stack limit to sane default to
1425 		 * avoid bad behavior from the prior rlimits. This has to
1426 		 * happen before arch_pick_mmap_layout(), which examines
1427 		 * RLIMIT_STACK, but after the point of no return to avoid
1428 		 * needing to clean up the change on failure.
1429 		 */
1430 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1431 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1432 	}
1433 
1434 	me->sas_ss_sp = me->sas_ss_size = 0;
1435 
1436 	/*
1437 	 * Figure out dumpability. Note that this checking only of current
1438 	 * is wrong, but userspace depends on it. This should be testing
1439 	 * bprm->secureexec instead.
1440 	 */
1441 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1442 	    !(uid_eq(current_euid(), current_uid()) &&
1443 	      gid_eq(current_egid(), current_gid())))
1444 		set_dumpable(current->mm, suid_dumpable);
1445 	else
1446 		set_dumpable(current->mm, SUID_DUMP_USER);
1447 
1448 	perf_event_exec();
1449 	__set_task_comm(me, kbasename(bprm->filename), true);
1450 
1451 	/* An exec changes our domain. We are no longer part of the thread
1452 	   group */
1453 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1454 	flush_signal_handlers(me, 0);
1455 
1456 	/*
1457 	 * install the new credentials for this executable
1458 	 */
1459 	security_bprm_committing_creds(bprm);
1460 
1461 	commit_creds(bprm->cred);
1462 	bprm->cred = NULL;
1463 
1464 	/*
1465 	 * Disable monitoring for regular users
1466 	 * when executing setuid binaries. Must
1467 	 * wait until new credentials are committed
1468 	 * by commit_creds() above
1469 	 */
1470 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1471 		perf_event_exit_task(me);
1472 	/*
1473 	 * cred_guard_mutex must be held at least to this point to prevent
1474 	 * ptrace_attach() from altering our determination of the task's
1475 	 * credentials; any time after this it may be unlocked.
1476 	 */
1477 	security_bprm_committed_creds(bprm);
1478 
1479 	/* Pass the opened binary to the interpreter. */
1480 	if (bprm->have_execfd) {
1481 		retval = get_unused_fd_flags(0);
1482 		if (retval < 0)
1483 			goto out_unlock;
1484 		fd_install(retval, bprm->executable);
1485 		bprm->executable = NULL;
1486 		bprm->execfd = retval;
1487 	}
1488 	return 0;
1489 
1490 out_unlock:
1491 	mutex_unlock(&me->signal->exec_update_mutex);
1492 out:
1493 	return retval;
1494 }
1495 EXPORT_SYMBOL(begin_new_exec);
1496 
1497 void would_dump(struct linux_binprm *bprm, struct file *file)
1498 {
1499 	struct inode *inode = file_inode(file);
1500 	if (inode_permission(inode, MAY_READ) < 0) {
1501 		struct user_namespace *old, *user_ns;
1502 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1503 
1504 		/* Ensure mm->user_ns contains the executable */
1505 		user_ns = old = bprm->mm->user_ns;
1506 		while ((user_ns != &init_user_ns) &&
1507 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1508 			user_ns = user_ns->parent;
1509 
1510 		if (old != user_ns) {
1511 			bprm->mm->user_ns = get_user_ns(user_ns);
1512 			put_user_ns(old);
1513 		}
1514 	}
1515 }
1516 EXPORT_SYMBOL(would_dump);
1517 
1518 void setup_new_exec(struct linux_binprm * bprm)
1519 {
1520 	/* Setup things that can depend upon the personality */
1521 	struct task_struct *me = current;
1522 
1523 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1524 
1525 	arch_setup_new_exec();
1526 
1527 	/* Set the new mm task size. We have to do that late because it may
1528 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1529 	 * some architectures like powerpc
1530 	 */
1531 	me->mm->task_size = TASK_SIZE;
1532 	mutex_unlock(&me->signal->exec_update_mutex);
1533 	mutex_unlock(&me->signal->cred_guard_mutex);
1534 }
1535 EXPORT_SYMBOL(setup_new_exec);
1536 
1537 /* Runs immediately before start_thread() takes over. */
1538 void finalize_exec(struct linux_binprm *bprm)
1539 {
1540 	/* Store any stack rlimit changes before starting thread. */
1541 	task_lock(current->group_leader);
1542 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1543 	task_unlock(current->group_leader);
1544 }
1545 EXPORT_SYMBOL(finalize_exec);
1546 
1547 /*
1548  * Prepare credentials and lock ->cred_guard_mutex.
1549  * setup_new_exec() commits the new creds and drops the lock.
1550  * Or, if exec fails before, free_bprm() should release ->cred and
1551  * and unlock.
1552  */
1553 static int prepare_bprm_creds(struct linux_binprm *bprm)
1554 {
1555 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1556 		return -ERESTARTNOINTR;
1557 
1558 	bprm->cred = prepare_exec_creds();
1559 	if (likely(bprm->cred))
1560 		return 0;
1561 
1562 	mutex_unlock(&current->signal->cred_guard_mutex);
1563 	return -ENOMEM;
1564 }
1565 
1566 static void free_bprm(struct linux_binprm *bprm)
1567 {
1568 	if (bprm->mm) {
1569 		acct_arg_size(bprm, 0);
1570 		mmput(bprm->mm);
1571 	}
1572 	free_arg_pages(bprm);
1573 	if (bprm->cred) {
1574 		mutex_unlock(&current->signal->cred_guard_mutex);
1575 		abort_creds(bprm->cred);
1576 	}
1577 	if (bprm->file) {
1578 		allow_write_access(bprm->file);
1579 		fput(bprm->file);
1580 	}
1581 	if (bprm->executable)
1582 		fput(bprm->executable);
1583 	/* If a binfmt changed the interp, free it. */
1584 	if (bprm->interp != bprm->filename)
1585 		kfree(bprm->interp);
1586 	kfree(bprm->fdpath);
1587 	kfree(bprm);
1588 }
1589 
1590 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1591 {
1592 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1593 	int retval = -ENOMEM;
1594 	if (!bprm)
1595 		goto out;
1596 
1597 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1598 		bprm->filename = filename->name;
1599 	} else {
1600 		if (filename->name[0] == '\0')
1601 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1602 		else
1603 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1604 						  fd, filename->name);
1605 		if (!bprm->fdpath)
1606 			goto out_free;
1607 
1608 		bprm->filename = bprm->fdpath;
1609 	}
1610 	bprm->interp = bprm->filename;
1611 
1612 	retval = bprm_mm_init(bprm);
1613 	if (retval)
1614 		goto out_free;
1615 	return bprm;
1616 
1617 out_free:
1618 	free_bprm(bprm);
1619 out:
1620 	return ERR_PTR(retval);
1621 }
1622 
1623 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1624 {
1625 	/* If a binfmt changed the interp, free it first. */
1626 	if (bprm->interp != bprm->filename)
1627 		kfree(bprm->interp);
1628 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1629 	if (!bprm->interp)
1630 		return -ENOMEM;
1631 	return 0;
1632 }
1633 EXPORT_SYMBOL(bprm_change_interp);
1634 
1635 /*
1636  * determine how safe it is to execute the proposed program
1637  * - the caller must hold ->cred_guard_mutex to protect against
1638  *   PTRACE_ATTACH or seccomp thread-sync
1639  */
1640 static void check_unsafe_exec(struct linux_binprm *bprm)
1641 {
1642 	struct task_struct *p = current, *t;
1643 	unsigned n_fs;
1644 
1645 	if (p->ptrace)
1646 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1647 
1648 	/*
1649 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1650 	 * mess up.
1651 	 */
1652 	if (task_no_new_privs(current))
1653 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1654 
1655 	t = p;
1656 	n_fs = 1;
1657 	spin_lock(&p->fs->lock);
1658 	rcu_read_lock();
1659 	while_each_thread(p, t) {
1660 		if (t->fs == p->fs)
1661 			n_fs++;
1662 	}
1663 	rcu_read_unlock();
1664 
1665 	if (p->fs->users > n_fs)
1666 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1667 	else
1668 		p->fs->in_exec = 1;
1669 	spin_unlock(&p->fs->lock);
1670 }
1671 
1672 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1673 {
1674 	/* Handle suid and sgid on files */
1675 	struct inode *inode;
1676 	unsigned int mode;
1677 	kuid_t uid;
1678 	kgid_t gid;
1679 
1680 	if (!mnt_may_suid(file->f_path.mnt))
1681 		return;
1682 
1683 	if (task_no_new_privs(current))
1684 		return;
1685 
1686 	inode = file->f_path.dentry->d_inode;
1687 	mode = READ_ONCE(inode->i_mode);
1688 	if (!(mode & (S_ISUID|S_ISGID)))
1689 		return;
1690 
1691 	/* Be careful if suid/sgid is set */
1692 	inode_lock(inode);
1693 
1694 	/* reload atomically mode/uid/gid now that lock held */
1695 	mode = inode->i_mode;
1696 	uid = inode->i_uid;
1697 	gid = inode->i_gid;
1698 	inode_unlock(inode);
1699 
1700 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1701 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1702 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1703 		return;
1704 
1705 	if (mode & S_ISUID) {
1706 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1707 		bprm->cred->euid = uid;
1708 	}
1709 
1710 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1711 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1712 		bprm->cred->egid = gid;
1713 	}
1714 }
1715 
1716 /*
1717  * Compute brpm->cred based upon the final binary.
1718  */
1719 static int bprm_creds_from_file(struct linux_binprm *bprm)
1720 {
1721 	/* Compute creds based on which file? */
1722 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1723 
1724 	bprm_fill_uid(bprm, file);
1725 	return security_bprm_creds_from_file(bprm, file);
1726 }
1727 
1728 /*
1729  * Fill the binprm structure from the inode.
1730  * Read the first BINPRM_BUF_SIZE bytes
1731  *
1732  * This may be called multiple times for binary chains (scripts for example).
1733  */
1734 static int prepare_binprm(struct linux_binprm *bprm)
1735 {
1736 	loff_t pos = 0;
1737 
1738 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1739 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1740 }
1741 
1742 /*
1743  * Arguments are '\0' separated strings found at the location bprm->p
1744  * points to; chop off the first by relocating brpm->p to right after
1745  * the first '\0' encountered.
1746  */
1747 int remove_arg_zero(struct linux_binprm *bprm)
1748 {
1749 	int ret = 0;
1750 	unsigned long offset;
1751 	char *kaddr;
1752 	struct page *page;
1753 
1754 	if (!bprm->argc)
1755 		return 0;
1756 
1757 	do {
1758 		offset = bprm->p & ~PAGE_MASK;
1759 		page = get_arg_page(bprm, bprm->p, 0);
1760 		if (!page) {
1761 			ret = -EFAULT;
1762 			goto out;
1763 		}
1764 		kaddr = kmap_atomic(page);
1765 
1766 		for (; offset < PAGE_SIZE && kaddr[offset];
1767 				offset++, bprm->p++)
1768 			;
1769 
1770 		kunmap_atomic(kaddr);
1771 		put_arg_page(page);
1772 	} while (offset == PAGE_SIZE);
1773 
1774 	bprm->p++;
1775 	bprm->argc--;
1776 	ret = 0;
1777 
1778 out:
1779 	return ret;
1780 }
1781 EXPORT_SYMBOL(remove_arg_zero);
1782 
1783 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1784 /*
1785  * cycle the list of binary formats handler, until one recognizes the image
1786  */
1787 static int search_binary_handler(struct linux_binprm *bprm)
1788 {
1789 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1790 	struct linux_binfmt *fmt;
1791 	int retval;
1792 
1793 	retval = prepare_binprm(bprm);
1794 	if (retval < 0)
1795 		return retval;
1796 
1797 	retval = security_bprm_check(bprm);
1798 	if (retval)
1799 		return retval;
1800 
1801 	retval = -ENOENT;
1802  retry:
1803 	read_lock(&binfmt_lock);
1804 	list_for_each_entry(fmt, &formats, lh) {
1805 		if (!try_module_get(fmt->module))
1806 			continue;
1807 		read_unlock(&binfmt_lock);
1808 
1809 		retval = fmt->load_binary(bprm);
1810 
1811 		read_lock(&binfmt_lock);
1812 		put_binfmt(fmt);
1813 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1814 			read_unlock(&binfmt_lock);
1815 			return retval;
1816 		}
1817 	}
1818 	read_unlock(&binfmt_lock);
1819 
1820 	if (need_retry) {
1821 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1822 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1823 			return retval;
1824 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1825 			return retval;
1826 		need_retry = false;
1827 		goto retry;
1828 	}
1829 
1830 	return retval;
1831 }
1832 
1833 static int exec_binprm(struct linux_binprm *bprm)
1834 {
1835 	pid_t old_pid, old_vpid;
1836 	int ret, depth;
1837 
1838 	/* Need to fetch pid before load_binary changes it */
1839 	old_pid = current->pid;
1840 	rcu_read_lock();
1841 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1842 	rcu_read_unlock();
1843 
1844 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1845 	for (depth = 0;; depth++) {
1846 		struct file *exec;
1847 		if (depth > 5)
1848 			return -ELOOP;
1849 
1850 		ret = search_binary_handler(bprm);
1851 		if (ret < 0)
1852 			return ret;
1853 		if (!bprm->interpreter)
1854 			break;
1855 
1856 		exec = bprm->file;
1857 		bprm->file = bprm->interpreter;
1858 		bprm->interpreter = NULL;
1859 
1860 		allow_write_access(exec);
1861 		if (unlikely(bprm->have_execfd)) {
1862 			if (bprm->executable) {
1863 				fput(exec);
1864 				return -ENOEXEC;
1865 			}
1866 			bprm->executable = exec;
1867 		} else
1868 			fput(exec);
1869 	}
1870 
1871 	audit_bprm(bprm);
1872 	trace_sched_process_exec(current, old_pid, bprm);
1873 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1874 	proc_exec_connector(current);
1875 	return 0;
1876 }
1877 
1878 /*
1879  * sys_execve() executes a new program.
1880  */
1881 static int bprm_execve(struct linux_binprm *bprm,
1882 		       int fd, struct filename *filename, int flags)
1883 {
1884 	struct file *file;
1885 	struct files_struct *displaced;
1886 	int retval;
1887 
1888 	retval = unshare_files(&displaced);
1889 	if (retval)
1890 		return retval;
1891 
1892 	retval = prepare_bprm_creds(bprm);
1893 	if (retval)
1894 		goto out_files;
1895 
1896 	check_unsafe_exec(bprm);
1897 	current->in_execve = 1;
1898 
1899 	file = do_open_execat(fd, filename, flags);
1900 	retval = PTR_ERR(file);
1901 	if (IS_ERR(file))
1902 		goto out_unmark;
1903 
1904 	sched_exec();
1905 
1906 	bprm->file = file;
1907 	/*
1908 	 * Record that a name derived from an O_CLOEXEC fd will be
1909 	 * inaccessible after exec. Relies on having exclusive access to
1910 	 * current->files (due to unshare_files above).
1911 	 */
1912 	if (bprm->fdpath &&
1913 	    close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1914 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1915 
1916 	/* Set the unchanging part of bprm->cred */
1917 	retval = security_bprm_creds_for_exec(bprm);
1918 	if (retval)
1919 		goto out;
1920 
1921 	retval = exec_binprm(bprm);
1922 	if (retval < 0)
1923 		goto out;
1924 
1925 	/* execve succeeded */
1926 	current->fs->in_exec = 0;
1927 	current->in_execve = 0;
1928 	rseq_execve(current);
1929 	acct_update_integrals(current);
1930 	task_numa_free(current, false);
1931 	if (displaced)
1932 		put_files_struct(displaced);
1933 	return retval;
1934 
1935 out:
1936 	/*
1937 	 * If past the point of no return ensure the the code never
1938 	 * returns to the userspace process.  Use an existing fatal
1939 	 * signal if present otherwise terminate the process with
1940 	 * SIGSEGV.
1941 	 */
1942 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1943 		force_sigsegv(SIGSEGV);
1944 
1945 out_unmark:
1946 	current->fs->in_exec = 0;
1947 	current->in_execve = 0;
1948 
1949 out_files:
1950 	if (displaced)
1951 		reset_files_struct(displaced);
1952 
1953 	return retval;
1954 }
1955 
1956 static int do_execveat_common(int fd, struct filename *filename,
1957 			      struct user_arg_ptr argv,
1958 			      struct user_arg_ptr envp,
1959 			      int flags)
1960 {
1961 	struct linux_binprm *bprm;
1962 	int retval;
1963 
1964 	if (IS_ERR(filename))
1965 		return PTR_ERR(filename);
1966 
1967 	/*
1968 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1969 	 * set*uid() to execve() because too many poorly written programs
1970 	 * don't check setuid() return code.  Here we additionally recheck
1971 	 * whether NPROC limit is still exceeded.
1972 	 */
1973 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1974 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1975 		retval = -EAGAIN;
1976 		goto out_ret;
1977 	}
1978 
1979 	/* We're below the limit (still or again), so we don't want to make
1980 	 * further execve() calls fail. */
1981 	current->flags &= ~PF_NPROC_EXCEEDED;
1982 
1983 	bprm = alloc_bprm(fd, filename);
1984 	if (IS_ERR(bprm)) {
1985 		retval = PTR_ERR(bprm);
1986 		goto out_ret;
1987 	}
1988 
1989 	retval = count(argv, MAX_ARG_STRINGS);
1990 	if (retval < 0)
1991 		goto out_free;
1992 	bprm->argc = retval;
1993 
1994 	retval = count(envp, MAX_ARG_STRINGS);
1995 	if (retval < 0)
1996 		goto out_free;
1997 	bprm->envc = retval;
1998 
1999 	retval = bprm_stack_limits(bprm);
2000 	if (retval < 0)
2001 		goto out_free;
2002 
2003 	retval = copy_string_kernel(bprm->filename, bprm);
2004 	if (retval < 0)
2005 		goto out_free;
2006 	bprm->exec = bprm->p;
2007 
2008 	retval = copy_strings(bprm->envc, envp, bprm);
2009 	if (retval < 0)
2010 		goto out_free;
2011 
2012 	retval = copy_strings(bprm->argc, argv, bprm);
2013 	if (retval < 0)
2014 		goto out_free;
2015 
2016 	retval = bprm_execve(bprm, fd, filename, flags);
2017 out_free:
2018 	free_bprm(bprm);
2019 
2020 out_ret:
2021 	putname(filename);
2022 	return retval;
2023 }
2024 
2025 int kernel_execve(const char *kernel_filename,
2026 		  const char *const *argv, const char *const *envp)
2027 {
2028 	struct filename *filename;
2029 	struct linux_binprm *bprm;
2030 	int fd = AT_FDCWD;
2031 	int retval;
2032 
2033 	filename = getname_kernel(kernel_filename);
2034 	if (IS_ERR(filename))
2035 		return PTR_ERR(filename);
2036 
2037 	bprm = alloc_bprm(fd, filename);
2038 	if (IS_ERR(bprm)) {
2039 		retval = PTR_ERR(bprm);
2040 		goto out_ret;
2041 	}
2042 
2043 	retval = count_strings_kernel(argv);
2044 	if (retval < 0)
2045 		goto out_free;
2046 	bprm->argc = retval;
2047 
2048 	retval = count_strings_kernel(envp);
2049 	if (retval < 0)
2050 		goto out_free;
2051 	bprm->envc = retval;
2052 
2053 	retval = bprm_stack_limits(bprm);
2054 	if (retval < 0)
2055 		goto out_free;
2056 
2057 	retval = copy_string_kernel(bprm->filename, bprm);
2058 	if (retval < 0)
2059 		goto out_free;
2060 	bprm->exec = bprm->p;
2061 
2062 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2063 	if (retval < 0)
2064 		goto out_free;
2065 
2066 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2067 	if (retval < 0)
2068 		goto out_free;
2069 
2070 	retval = bprm_execve(bprm, fd, filename, 0);
2071 out_free:
2072 	free_bprm(bprm);
2073 out_ret:
2074 	putname(filename);
2075 	return retval;
2076 }
2077 
2078 static int do_execve(struct filename *filename,
2079 	const char __user *const __user *__argv,
2080 	const char __user *const __user *__envp)
2081 {
2082 	struct user_arg_ptr argv = { .ptr.native = __argv };
2083 	struct user_arg_ptr envp = { .ptr.native = __envp };
2084 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2085 }
2086 
2087 static int do_execveat(int fd, struct filename *filename,
2088 		const char __user *const __user *__argv,
2089 		const char __user *const __user *__envp,
2090 		int flags)
2091 {
2092 	struct user_arg_ptr argv = { .ptr.native = __argv };
2093 	struct user_arg_ptr envp = { .ptr.native = __envp };
2094 
2095 	return do_execveat_common(fd, filename, argv, envp, flags);
2096 }
2097 
2098 #ifdef CONFIG_COMPAT
2099 static int compat_do_execve(struct filename *filename,
2100 	const compat_uptr_t __user *__argv,
2101 	const compat_uptr_t __user *__envp)
2102 {
2103 	struct user_arg_ptr argv = {
2104 		.is_compat = true,
2105 		.ptr.compat = __argv,
2106 	};
2107 	struct user_arg_ptr envp = {
2108 		.is_compat = true,
2109 		.ptr.compat = __envp,
2110 	};
2111 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2112 }
2113 
2114 static int compat_do_execveat(int fd, struct filename *filename,
2115 			      const compat_uptr_t __user *__argv,
2116 			      const compat_uptr_t __user *__envp,
2117 			      int flags)
2118 {
2119 	struct user_arg_ptr argv = {
2120 		.is_compat = true,
2121 		.ptr.compat = __argv,
2122 	};
2123 	struct user_arg_ptr envp = {
2124 		.is_compat = true,
2125 		.ptr.compat = __envp,
2126 	};
2127 	return do_execveat_common(fd, filename, argv, envp, flags);
2128 }
2129 #endif
2130 
2131 void set_binfmt(struct linux_binfmt *new)
2132 {
2133 	struct mm_struct *mm = current->mm;
2134 
2135 	if (mm->binfmt)
2136 		module_put(mm->binfmt->module);
2137 
2138 	mm->binfmt = new;
2139 	if (new)
2140 		__module_get(new->module);
2141 }
2142 EXPORT_SYMBOL(set_binfmt);
2143 
2144 /*
2145  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2146  */
2147 void set_dumpable(struct mm_struct *mm, int value)
2148 {
2149 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2150 		return;
2151 
2152 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2153 }
2154 
2155 SYSCALL_DEFINE3(execve,
2156 		const char __user *, filename,
2157 		const char __user *const __user *, argv,
2158 		const char __user *const __user *, envp)
2159 {
2160 	return do_execve(getname(filename), argv, envp);
2161 }
2162 
2163 SYSCALL_DEFINE5(execveat,
2164 		int, fd, const char __user *, filename,
2165 		const char __user *const __user *, argv,
2166 		const char __user *const __user *, envp,
2167 		int, flags)
2168 {
2169 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2170 
2171 	return do_execveat(fd,
2172 			   getname_flags(filename, lookup_flags, NULL),
2173 			   argv, envp, flags);
2174 }
2175 
2176 #ifdef CONFIG_COMPAT
2177 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2178 	const compat_uptr_t __user *, argv,
2179 	const compat_uptr_t __user *, envp)
2180 {
2181 	return compat_do_execve(getname(filename), argv, envp);
2182 }
2183 
2184 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2185 		       const char __user *, filename,
2186 		       const compat_uptr_t __user *, argv,
2187 		       const compat_uptr_t __user *, envp,
2188 		       int,  flags)
2189 {
2190 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2191 
2192 	return compat_do_execveat(fd,
2193 				  getname_flags(filename, lookup_flags, NULL),
2194 				  argv, envp, flags);
2195 }
2196 #endif
2197