1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/mm.h> 30 #include <linux/vmacache.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/tracehook.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 static int bprm_creds_from_file(struct linux_binprm *bprm); 76 77 int suid_dumpable = 0; 78 79 static LIST_HEAD(formats); 80 static DEFINE_RWLOCK(binfmt_lock); 81 82 void __register_binfmt(struct linux_binfmt * fmt, int insert) 83 { 84 BUG_ON(!fmt); 85 if (WARN_ON(!fmt->load_binary)) 86 return; 87 write_lock(&binfmt_lock); 88 insert ? list_add(&fmt->lh, &formats) : 89 list_add_tail(&fmt->lh, &formats); 90 write_unlock(&binfmt_lock); 91 } 92 93 EXPORT_SYMBOL(__register_binfmt); 94 95 void unregister_binfmt(struct linux_binfmt * fmt) 96 { 97 write_lock(&binfmt_lock); 98 list_del(&fmt->lh); 99 write_unlock(&binfmt_lock); 100 } 101 102 EXPORT_SYMBOL(unregister_binfmt); 103 104 static inline void put_binfmt(struct linux_binfmt * fmt) 105 { 106 module_put(fmt->module); 107 } 108 109 bool path_noexec(const struct path *path) 110 { 111 return (path->mnt->mnt_flags & MNT_NOEXEC) || 112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 113 } 114 115 #ifdef CONFIG_USELIB 116 /* 117 * Note that a shared library must be both readable and executable due to 118 * security reasons. 119 * 120 * Also note that we take the address to load from from the file itself. 121 */ 122 SYSCALL_DEFINE1(uselib, const char __user *, library) 123 { 124 struct linux_binfmt *fmt; 125 struct file *file; 126 struct filename *tmp = getname(library); 127 int error = PTR_ERR(tmp); 128 static const struct open_flags uselib_flags = { 129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 130 .acc_mode = MAY_READ | MAY_EXEC, 131 .intent = LOOKUP_OPEN, 132 .lookup_flags = LOOKUP_FOLLOW, 133 }; 134 135 if (IS_ERR(tmp)) 136 goto out; 137 138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 139 putname(tmp); 140 error = PTR_ERR(file); 141 if (IS_ERR(file)) 142 goto out; 143 144 error = -EINVAL; 145 if (!S_ISREG(file_inode(file)->i_mode)) 146 goto exit; 147 148 error = -EACCES; 149 if (path_noexec(&file->f_path)) 150 goto exit; 151 152 fsnotify_open(file); 153 154 error = -ENOEXEC; 155 156 read_lock(&binfmt_lock); 157 list_for_each_entry(fmt, &formats, lh) { 158 if (!fmt->load_shlib) 159 continue; 160 if (!try_module_get(fmt->module)) 161 continue; 162 read_unlock(&binfmt_lock); 163 error = fmt->load_shlib(file); 164 read_lock(&binfmt_lock); 165 put_binfmt(fmt); 166 if (error != -ENOEXEC) 167 break; 168 } 169 read_unlock(&binfmt_lock); 170 exit: 171 fput(file); 172 out: 173 return error; 174 } 175 #endif /* #ifdef CONFIG_USELIB */ 176 177 #ifdef CONFIG_MMU 178 /* 179 * The nascent bprm->mm is not visible until exec_mmap() but it can 180 * use a lot of memory, account these pages in current->mm temporary 181 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 182 * change the counter back via acct_arg_size(0). 183 */ 184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 185 { 186 struct mm_struct *mm = current->mm; 187 long diff = (long)(pages - bprm->vma_pages); 188 189 if (!mm || !diff) 190 return; 191 192 bprm->vma_pages = pages; 193 add_mm_counter(mm, MM_ANONPAGES, diff); 194 } 195 196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 197 int write) 198 { 199 struct page *page; 200 int ret; 201 unsigned int gup_flags = FOLL_FORCE; 202 203 #ifdef CONFIG_STACK_GROWSUP 204 if (write) { 205 ret = expand_downwards(bprm->vma, pos); 206 if (ret < 0) 207 return NULL; 208 } 209 #endif 210 211 if (write) 212 gup_flags |= FOLL_WRITE; 213 214 /* 215 * We are doing an exec(). 'current' is the process 216 * doing the exec and bprm->mm is the new process's mm. 217 */ 218 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 219 &page, NULL, NULL); 220 if (ret <= 0) 221 return NULL; 222 223 if (write) 224 acct_arg_size(bprm, vma_pages(bprm->vma)); 225 226 return page; 227 } 228 229 static void put_arg_page(struct page *page) 230 { 231 put_page(page); 232 } 233 234 static void free_arg_pages(struct linux_binprm *bprm) 235 { 236 } 237 238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 239 struct page *page) 240 { 241 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 242 } 243 244 static int __bprm_mm_init(struct linux_binprm *bprm) 245 { 246 int err; 247 struct vm_area_struct *vma = NULL; 248 struct mm_struct *mm = bprm->mm; 249 250 bprm->vma = vma = vm_area_alloc(mm); 251 if (!vma) 252 return -ENOMEM; 253 vma_set_anonymous(vma); 254 255 if (mmap_write_lock_killable(mm)) { 256 err = -EINTR; 257 goto err_free; 258 } 259 260 /* 261 * Place the stack at the largest stack address the architecture 262 * supports. Later, we'll move this to an appropriate place. We don't 263 * use STACK_TOP because that can depend on attributes which aren't 264 * configured yet. 265 */ 266 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 267 vma->vm_end = STACK_TOP_MAX; 268 vma->vm_start = vma->vm_end - PAGE_SIZE; 269 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 271 272 err = insert_vm_struct(mm, vma); 273 if (err) 274 goto err; 275 276 mm->stack_vm = mm->total_vm = 1; 277 mmap_write_unlock(mm); 278 bprm->p = vma->vm_end - sizeof(void *); 279 return 0; 280 err: 281 mmap_write_unlock(mm); 282 err_free: 283 bprm->vma = NULL; 284 vm_area_free(vma); 285 return err; 286 } 287 288 static bool valid_arg_len(struct linux_binprm *bprm, long len) 289 { 290 return len <= MAX_ARG_STRLEN; 291 } 292 293 #else 294 295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 296 { 297 } 298 299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 300 int write) 301 { 302 struct page *page; 303 304 page = bprm->page[pos / PAGE_SIZE]; 305 if (!page && write) { 306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 307 if (!page) 308 return NULL; 309 bprm->page[pos / PAGE_SIZE] = page; 310 } 311 312 return page; 313 } 314 315 static void put_arg_page(struct page *page) 316 { 317 } 318 319 static void free_arg_page(struct linux_binprm *bprm, int i) 320 { 321 if (bprm->page[i]) { 322 __free_page(bprm->page[i]); 323 bprm->page[i] = NULL; 324 } 325 } 326 327 static void free_arg_pages(struct linux_binprm *bprm) 328 { 329 int i; 330 331 for (i = 0; i < MAX_ARG_PAGES; i++) 332 free_arg_page(bprm, i); 333 } 334 335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 336 struct page *page) 337 { 338 } 339 340 static int __bprm_mm_init(struct linux_binprm *bprm) 341 { 342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 343 return 0; 344 } 345 346 static bool valid_arg_len(struct linux_binprm *bprm, long len) 347 { 348 return len <= bprm->p; 349 } 350 351 #endif /* CONFIG_MMU */ 352 353 /* 354 * Create a new mm_struct and populate it with a temporary stack 355 * vm_area_struct. We don't have enough context at this point to set the stack 356 * flags, permissions, and offset, so we use temporary values. We'll update 357 * them later in setup_arg_pages(). 358 */ 359 static int bprm_mm_init(struct linux_binprm *bprm) 360 { 361 int err; 362 struct mm_struct *mm = NULL; 363 364 bprm->mm = mm = mm_alloc(); 365 err = -ENOMEM; 366 if (!mm) 367 goto err; 368 369 /* Save current stack limit for all calculations made during exec. */ 370 task_lock(current->group_leader); 371 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 372 task_unlock(current->group_leader); 373 374 err = __bprm_mm_init(bprm); 375 if (err) 376 goto err; 377 378 return 0; 379 380 err: 381 if (mm) { 382 bprm->mm = NULL; 383 mmdrop(mm); 384 } 385 386 return err; 387 } 388 389 struct user_arg_ptr { 390 #ifdef CONFIG_COMPAT 391 bool is_compat; 392 #endif 393 union { 394 const char __user *const __user *native; 395 #ifdef CONFIG_COMPAT 396 const compat_uptr_t __user *compat; 397 #endif 398 } ptr; 399 }; 400 401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 402 { 403 const char __user *native; 404 405 #ifdef CONFIG_COMPAT 406 if (unlikely(argv.is_compat)) { 407 compat_uptr_t compat; 408 409 if (get_user(compat, argv.ptr.compat + nr)) 410 return ERR_PTR(-EFAULT); 411 412 return compat_ptr(compat); 413 } 414 #endif 415 416 if (get_user(native, argv.ptr.native + nr)) 417 return ERR_PTR(-EFAULT); 418 419 return native; 420 } 421 422 /* 423 * count() counts the number of strings in array ARGV. 424 */ 425 static int count(struct user_arg_ptr argv, int max) 426 { 427 int i = 0; 428 429 if (argv.ptr.native != NULL) { 430 for (;;) { 431 const char __user *p = get_user_arg_ptr(argv, i); 432 433 if (!p) 434 break; 435 436 if (IS_ERR(p)) 437 return -EFAULT; 438 439 if (i >= max) 440 return -E2BIG; 441 ++i; 442 443 if (fatal_signal_pending(current)) 444 return -ERESTARTNOHAND; 445 cond_resched(); 446 } 447 } 448 return i; 449 } 450 451 static int count_strings_kernel(const char *const *argv) 452 { 453 int i; 454 455 if (!argv) 456 return 0; 457 458 for (i = 0; argv[i]; ++i) { 459 if (i >= MAX_ARG_STRINGS) 460 return -E2BIG; 461 if (fatal_signal_pending(current)) 462 return -ERESTARTNOHAND; 463 cond_resched(); 464 } 465 return i; 466 } 467 468 static int bprm_stack_limits(struct linux_binprm *bprm) 469 { 470 unsigned long limit, ptr_size; 471 472 /* 473 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 474 * (whichever is smaller) for the argv+env strings. 475 * This ensures that: 476 * - the remaining binfmt code will not run out of stack space, 477 * - the program will have a reasonable amount of stack left 478 * to work from. 479 */ 480 limit = _STK_LIM / 4 * 3; 481 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 482 /* 483 * We've historically supported up to 32 pages (ARG_MAX) 484 * of argument strings even with small stacks 485 */ 486 limit = max_t(unsigned long, limit, ARG_MAX); 487 /* 488 * We must account for the size of all the argv and envp pointers to 489 * the argv and envp strings, since they will also take up space in 490 * the stack. They aren't stored until much later when we can't 491 * signal to the parent that the child has run out of stack space. 492 * Instead, calculate it here so it's possible to fail gracefully. 493 */ 494 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 495 if (limit <= ptr_size) 496 return -E2BIG; 497 limit -= ptr_size; 498 499 bprm->argmin = bprm->p - limit; 500 return 0; 501 } 502 503 /* 504 * 'copy_strings()' copies argument/environment strings from the old 505 * processes's memory to the new process's stack. The call to get_user_pages() 506 * ensures the destination page is created and not swapped out. 507 */ 508 static int copy_strings(int argc, struct user_arg_ptr argv, 509 struct linux_binprm *bprm) 510 { 511 struct page *kmapped_page = NULL; 512 char *kaddr = NULL; 513 unsigned long kpos = 0; 514 int ret; 515 516 while (argc-- > 0) { 517 const char __user *str; 518 int len; 519 unsigned long pos; 520 521 ret = -EFAULT; 522 str = get_user_arg_ptr(argv, argc); 523 if (IS_ERR(str)) 524 goto out; 525 526 len = strnlen_user(str, MAX_ARG_STRLEN); 527 if (!len) 528 goto out; 529 530 ret = -E2BIG; 531 if (!valid_arg_len(bprm, len)) 532 goto out; 533 534 /* We're going to work our way backwords. */ 535 pos = bprm->p; 536 str += len; 537 bprm->p -= len; 538 #ifdef CONFIG_MMU 539 if (bprm->p < bprm->argmin) 540 goto out; 541 #endif 542 543 while (len > 0) { 544 int offset, bytes_to_copy; 545 546 if (fatal_signal_pending(current)) { 547 ret = -ERESTARTNOHAND; 548 goto out; 549 } 550 cond_resched(); 551 552 offset = pos % PAGE_SIZE; 553 if (offset == 0) 554 offset = PAGE_SIZE; 555 556 bytes_to_copy = offset; 557 if (bytes_to_copy > len) 558 bytes_to_copy = len; 559 560 offset -= bytes_to_copy; 561 pos -= bytes_to_copy; 562 str -= bytes_to_copy; 563 len -= bytes_to_copy; 564 565 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 566 struct page *page; 567 568 page = get_arg_page(bprm, pos, 1); 569 if (!page) { 570 ret = -E2BIG; 571 goto out; 572 } 573 574 if (kmapped_page) { 575 flush_kernel_dcache_page(kmapped_page); 576 kunmap(kmapped_page); 577 put_arg_page(kmapped_page); 578 } 579 kmapped_page = page; 580 kaddr = kmap(kmapped_page); 581 kpos = pos & PAGE_MASK; 582 flush_arg_page(bprm, kpos, kmapped_page); 583 } 584 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 585 ret = -EFAULT; 586 goto out; 587 } 588 } 589 } 590 ret = 0; 591 out: 592 if (kmapped_page) { 593 flush_kernel_dcache_page(kmapped_page); 594 kunmap(kmapped_page); 595 put_arg_page(kmapped_page); 596 } 597 return ret; 598 } 599 600 /* 601 * Copy and argument/environment string from the kernel to the processes stack. 602 */ 603 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 604 { 605 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 606 unsigned long pos = bprm->p; 607 608 if (len == 0) 609 return -EFAULT; 610 if (!valid_arg_len(bprm, len)) 611 return -E2BIG; 612 613 /* We're going to work our way backwards. */ 614 arg += len; 615 bprm->p -= len; 616 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 617 return -E2BIG; 618 619 while (len > 0) { 620 unsigned int bytes_to_copy = min_t(unsigned int, len, 621 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 622 struct page *page; 623 char *kaddr; 624 625 pos -= bytes_to_copy; 626 arg -= bytes_to_copy; 627 len -= bytes_to_copy; 628 629 page = get_arg_page(bprm, pos, 1); 630 if (!page) 631 return -E2BIG; 632 kaddr = kmap_atomic(page); 633 flush_arg_page(bprm, pos & PAGE_MASK, page); 634 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 635 flush_kernel_dcache_page(page); 636 kunmap_atomic(kaddr); 637 put_arg_page(page); 638 } 639 640 return 0; 641 } 642 EXPORT_SYMBOL(copy_string_kernel); 643 644 static int copy_strings_kernel(int argc, const char *const *argv, 645 struct linux_binprm *bprm) 646 { 647 while (argc-- > 0) { 648 int ret = copy_string_kernel(argv[argc], bprm); 649 if (ret < 0) 650 return ret; 651 if (fatal_signal_pending(current)) 652 return -ERESTARTNOHAND; 653 cond_resched(); 654 } 655 return 0; 656 } 657 658 #ifdef CONFIG_MMU 659 660 /* 661 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 662 * the binfmt code determines where the new stack should reside, we shift it to 663 * its final location. The process proceeds as follows: 664 * 665 * 1) Use shift to calculate the new vma endpoints. 666 * 2) Extend vma to cover both the old and new ranges. This ensures the 667 * arguments passed to subsequent functions are consistent. 668 * 3) Move vma's page tables to the new range. 669 * 4) Free up any cleared pgd range. 670 * 5) Shrink the vma to cover only the new range. 671 */ 672 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 673 { 674 struct mm_struct *mm = vma->vm_mm; 675 unsigned long old_start = vma->vm_start; 676 unsigned long old_end = vma->vm_end; 677 unsigned long length = old_end - old_start; 678 unsigned long new_start = old_start - shift; 679 unsigned long new_end = old_end - shift; 680 struct mmu_gather tlb; 681 682 BUG_ON(new_start > new_end); 683 684 /* 685 * ensure there are no vmas between where we want to go 686 * and where we are 687 */ 688 if (vma != find_vma(mm, new_start)) 689 return -EFAULT; 690 691 /* 692 * cover the whole range: [new_start, old_end) 693 */ 694 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 695 return -ENOMEM; 696 697 /* 698 * move the page tables downwards, on failure we rely on 699 * process cleanup to remove whatever mess we made. 700 */ 701 if (length != move_page_tables(vma, old_start, 702 vma, new_start, length, false)) 703 return -ENOMEM; 704 705 lru_add_drain(); 706 tlb_gather_mmu(&tlb, mm, old_start, old_end); 707 if (new_end > old_start) { 708 /* 709 * when the old and new regions overlap clear from new_end. 710 */ 711 free_pgd_range(&tlb, new_end, old_end, new_end, 712 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 713 } else { 714 /* 715 * otherwise, clean from old_start; this is done to not touch 716 * the address space in [new_end, old_start) some architectures 717 * have constraints on va-space that make this illegal (IA64) - 718 * for the others its just a little faster. 719 */ 720 free_pgd_range(&tlb, old_start, old_end, new_end, 721 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 722 } 723 tlb_finish_mmu(&tlb, old_start, old_end); 724 725 /* 726 * Shrink the vma to just the new range. Always succeeds. 727 */ 728 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 729 730 return 0; 731 } 732 733 /* 734 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 735 * the stack is optionally relocated, and some extra space is added. 736 */ 737 int setup_arg_pages(struct linux_binprm *bprm, 738 unsigned long stack_top, 739 int executable_stack) 740 { 741 unsigned long ret; 742 unsigned long stack_shift; 743 struct mm_struct *mm = current->mm; 744 struct vm_area_struct *vma = bprm->vma; 745 struct vm_area_struct *prev = NULL; 746 unsigned long vm_flags; 747 unsigned long stack_base; 748 unsigned long stack_size; 749 unsigned long stack_expand; 750 unsigned long rlim_stack; 751 752 #ifdef CONFIG_STACK_GROWSUP 753 /* Limit stack size */ 754 stack_base = bprm->rlim_stack.rlim_max; 755 if (stack_base > STACK_SIZE_MAX) 756 stack_base = STACK_SIZE_MAX; 757 758 /* Add space for stack randomization. */ 759 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 760 761 /* Make sure we didn't let the argument array grow too large. */ 762 if (vma->vm_end - vma->vm_start > stack_base) 763 return -ENOMEM; 764 765 stack_base = PAGE_ALIGN(stack_top - stack_base); 766 767 stack_shift = vma->vm_start - stack_base; 768 mm->arg_start = bprm->p - stack_shift; 769 bprm->p = vma->vm_end - stack_shift; 770 #else 771 stack_top = arch_align_stack(stack_top); 772 stack_top = PAGE_ALIGN(stack_top); 773 774 if (unlikely(stack_top < mmap_min_addr) || 775 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 776 return -ENOMEM; 777 778 stack_shift = vma->vm_end - stack_top; 779 780 bprm->p -= stack_shift; 781 mm->arg_start = bprm->p; 782 #endif 783 784 if (bprm->loader) 785 bprm->loader -= stack_shift; 786 bprm->exec -= stack_shift; 787 788 if (mmap_write_lock_killable(mm)) 789 return -EINTR; 790 791 vm_flags = VM_STACK_FLAGS; 792 793 /* 794 * Adjust stack execute permissions; explicitly enable for 795 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 796 * (arch default) otherwise. 797 */ 798 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 799 vm_flags |= VM_EXEC; 800 else if (executable_stack == EXSTACK_DISABLE_X) 801 vm_flags &= ~VM_EXEC; 802 vm_flags |= mm->def_flags; 803 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 804 805 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 806 vm_flags); 807 if (ret) 808 goto out_unlock; 809 BUG_ON(prev != vma); 810 811 if (unlikely(vm_flags & VM_EXEC)) { 812 pr_warn_once("process '%pD4' started with executable stack\n", 813 bprm->file); 814 } 815 816 /* Move stack pages down in memory. */ 817 if (stack_shift) { 818 ret = shift_arg_pages(vma, stack_shift); 819 if (ret) 820 goto out_unlock; 821 } 822 823 /* mprotect_fixup is overkill to remove the temporary stack flags */ 824 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 825 826 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 827 stack_size = vma->vm_end - vma->vm_start; 828 /* 829 * Align this down to a page boundary as expand_stack 830 * will align it up. 831 */ 832 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 833 #ifdef CONFIG_STACK_GROWSUP 834 if (stack_size + stack_expand > rlim_stack) 835 stack_base = vma->vm_start + rlim_stack; 836 else 837 stack_base = vma->vm_end + stack_expand; 838 #else 839 if (stack_size + stack_expand > rlim_stack) 840 stack_base = vma->vm_end - rlim_stack; 841 else 842 stack_base = vma->vm_start - stack_expand; 843 #endif 844 current->mm->start_stack = bprm->p; 845 ret = expand_stack(vma, stack_base); 846 if (ret) 847 ret = -EFAULT; 848 849 out_unlock: 850 mmap_write_unlock(mm); 851 return ret; 852 } 853 EXPORT_SYMBOL(setup_arg_pages); 854 855 #else 856 857 /* 858 * Transfer the program arguments and environment from the holding pages 859 * onto the stack. The provided stack pointer is adjusted accordingly. 860 */ 861 int transfer_args_to_stack(struct linux_binprm *bprm, 862 unsigned long *sp_location) 863 { 864 unsigned long index, stop, sp; 865 int ret = 0; 866 867 stop = bprm->p >> PAGE_SHIFT; 868 sp = *sp_location; 869 870 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 871 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 872 char *src = kmap(bprm->page[index]) + offset; 873 sp -= PAGE_SIZE - offset; 874 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 875 ret = -EFAULT; 876 kunmap(bprm->page[index]); 877 if (ret) 878 goto out; 879 } 880 881 *sp_location = sp; 882 883 out: 884 return ret; 885 } 886 EXPORT_SYMBOL(transfer_args_to_stack); 887 888 #endif /* CONFIG_MMU */ 889 890 static struct file *do_open_execat(int fd, struct filename *name, int flags) 891 { 892 struct file *file; 893 int err; 894 struct open_flags open_exec_flags = { 895 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 896 .acc_mode = MAY_EXEC, 897 .intent = LOOKUP_OPEN, 898 .lookup_flags = LOOKUP_FOLLOW, 899 }; 900 901 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 902 return ERR_PTR(-EINVAL); 903 if (flags & AT_SYMLINK_NOFOLLOW) 904 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 905 if (flags & AT_EMPTY_PATH) 906 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 907 908 file = do_filp_open(fd, name, &open_exec_flags); 909 if (IS_ERR(file)) 910 goto out; 911 912 err = -EACCES; 913 if (!S_ISREG(file_inode(file)->i_mode)) 914 goto exit; 915 916 if (path_noexec(&file->f_path)) 917 goto exit; 918 919 err = deny_write_access(file); 920 if (err) 921 goto exit; 922 923 if (name->name[0] != '\0') 924 fsnotify_open(file); 925 926 out: 927 return file; 928 929 exit: 930 fput(file); 931 return ERR_PTR(err); 932 } 933 934 struct file *open_exec(const char *name) 935 { 936 struct filename *filename = getname_kernel(name); 937 struct file *f = ERR_CAST(filename); 938 939 if (!IS_ERR(filename)) { 940 f = do_open_execat(AT_FDCWD, filename, 0); 941 putname(filename); 942 } 943 return f; 944 } 945 EXPORT_SYMBOL(open_exec); 946 947 int kernel_read_file(struct file *file, void **buf, loff_t *size, 948 loff_t max_size, enum kernel_read_file_id id) 949 { 950 loff_t i_size, pos; 951 ssize_t bytes = 0; 952 int ret; 953 954 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 955 return -EINVAL; 956 957 ret = deny_write_access(file); 958 if (ret) 959 return ret; 960 961 ret = security_kernel_read_file(file, id); 962 if (ret) 963 goto out; 964 965 i_size = i_size_read(file_inode(file)); 966 if (i_size <= 0) { 967 ret = -EINVAL; 968 goto out; 969 } 970 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 971 ret = -EFBIG; 972 goto out; 973 } 974 975 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 976 *buf = vmalloc(i_size); 977 if (!*buf) { 978 ret = -ENOMEM; 979 goto out; 980 } 981 982 pos = 0; 983 while (pos < i_size) { 984 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 985 if (bytes < 0) { 986 ret = bytes; 987 goto out_free; 988 } 989 990 if (bytes == 0) 991 break; 992 } 993 994 if (pos != i_size) { 995 ret = -EIO; 996 goto out_free; 997 } 998 999 ret = security_kernel_post_read_file(file, *buf, i_size, id); 1000 if (!ret) 1001 *size = pos; 1002 1003 out_free: 1004 if (ret < 0) { 1005 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 1006 vfree(*buf); 1007 *buf = NULL; 1008 } 1009 } 1010 1011 out: 1012 allow_write_access(file); 1013 return ret; 1014 } 1015 EXPORT_SYMBOL_GPL(kernel_read_file); 1016 1017 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 1018 loff_t max_size, enum kernel_read_file_id id) 1019 { 1020 struct file *file; 1021 int ret; 1022 1023 if (!path || !*path) 1024 return -EINVAL; 1025 1026 file = filp_open(path, O_RDONLY, 0); 1027 if (IS_ERR(file)) 1028 return PTR_ERR(file); 1029 1030 ret = kernel_read_file(file, buf, size, max_size, id); 1031 fput(file); 1032 return ret; 1033 } 1034 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 1035 1036 int kernel_read_file_from_path_initns(const char *path, void **buf, 1037 loff_t *size, loff_t max_size, 1038 enum kernel_read_file_id id) 1039 { 1040 struct file *file; 1041 struct path root; 1042 int ret; 1043 1044 if (!path || !*path) 1045 return -EINVAL; 1046 1047 task_lock(&init_task); 1048 get_fs_root(init_task.fs, &root); 1049 task_unlock(&init_task); 1050 1051 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0); 1052 path_put(&root); 1053 if (IS_ERR(file)) 1054 return PTR_ERR(file); 1055 1056 ret = kernel_read_file(file, buf, size, max_size, id); 1057 fput(file); 1058 return ret; 1059 } 1060 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns); 1061 1062 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 1063 enum kernel_read_file_id id) 1064 { 1065 struct fd f = fdget(fd); 1066 int ret = -EBADF; 1067 1068 if (!f.file) 1069 goto out; 1070 1071 ret = kernel_read_file(f.file, buf, size, max_size, id); 1072 out: 1073 fdput(f); 1074 return ret; 1075 } 1076 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 1077 1078 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 1079 defined(CONFIG_BINFMT_ELF_FDPIC) 1080 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1081 { 1082 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1083 if (res > 0) 1084 flush_icache_user_range(addr, addr + len); 1085 return res; 1086 } 1087 EXPORT_SYMBOL(read_code); 1088 #endif 1089 1090 /* 1091 * Maps the mm_struct mm into the current task struct. 1092 * On success, this function returns with the mutex 1093 * exec_update_mutex locked. 1094 */ 1095 static int exec_mmap(struct mm_struct *mm) 1096 { 1097 struct task_struct *tsk; 1098 struct mm_struct *old_mm, *active_mm; 1099 int ret; 1100 1101 /* Notify parent that we're no longer interested in the old VM */ 1102 tsk = current; 1103 old_mm = current->mm; 1104 exec_mm_release(tsk, old_mm); 1105 if (old_mm) 1106 sync_mm_rss(old_mm); 1107 1108 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 1109 if (ret) 1110 return ret; 1111 1112 if (old_mm) { 1113 /* 1114 * Make sure that if there is a core dump in progress 1115 * for the old mm, we get out and die instead of going 1116 * through with the exec. We must hold mmap_lock around 1117 * checking core_state and changing tsk->mm. 1118 */ 1119 mmap_read_lock(old_mm); 1120 if (unlikely(old_mm->core_state)) { 1121 mmap_read_unlock(old_mm); 1122 mutex_unlock(&tsk->signal->exec_update_mutex); 1123 return -EINTR; 1124 } 1125 } 1126 1127 task_lock(tsk); 1128 active_mm = tsk->active_mm; 1129 membarrier_exec_mmap(mm); 1130 tsk->mm = mm; 1131 tsk->active_mm = mm; 1132 activate_mm(active_mm, mm); 1133 tsk->mm->vmacache_seqnum = 0; 1134 vmacache_flush(tsk); 1135 task_unlock(tsk); 1136 if (old_mm) { 1137 mmap_read_unlock(old_mm); 1138 BUG_ON(active_mm != old_mm); 1139 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1140 mm_update_next_owner(old_mm); 1141 mmput(old_mm); 1142 return 0; 1143 } 1144 mmdrop(active_mm); 1145 return 0; 1146 } 1147 1148 static int de_thread(struct task_struct *tsk) 1149 { 1150 struct signal_struct *sig = tsk->signal; 1151 struct sighand_struct *oldsighand = tsk->sighand; 1152 spinlock_t *lock = &oldsighand->siglock; 1153 1154 if (thread_group_empty(tsk)) 1155 goto no_thread_group; 1156 1157 /* 1158 * Kill all other threads in the thread group. 1159 */ 1160 spin_lock_irq(lock); 1161 if (signal_group_exit(sig)) { 1162 /* 1163 * Another group action in progress, just 1164 * return so that the signal is processed. 1165 */ 1166 spin_unlock_irq(lock); 1167 return -EAGAIN; 1168 } 1169 1170 sig->group_exit_task = tsk; 1171 sig->notify_count = zap_other_threads(tsk); 1172 if (!thread_group_leader(tsk)) 1173 sig->notify_count--; 1174 1175 while (sig->notify_count) { 1176 __set_current_state(TASK_KILLABLE); 1177 spin_unlock_irq(lock); 1178 schedule(); 1179 if (__fatal_signal_pending(tsk)) 1180 goto killed; 1181 spin_lock_irq(lock); 1182 } 1183 spin_unlock_irq(lock); 1184 1185 /* 1186 * At this point all other threads have exited, all we have to 1187 * do is to wait for the thread group leader to become inactive, 1188 * and to assume its PID: 1189 */ 1190 if (!thread_group_leader(tsk)) { 1191 struct task_struct *leader = tsk->group_leader; 1192 1193 for (;;) { 1194 cgroup_threadgroup_change_begin(tsk); 1195 write_lock_irq(&tasklist_lock); 1196 /* 1197 * Do this under tasklist_lock to ensure that 1198 * exit_notify() can't miss ->group_exit_task 1199 */ 1200 sig->notify_count = -1; 1201 if (likely(leader->exit_state)) 1202 break; 1203 __set_current_state(TASK_KILLABLE); 1204 write_unlock_irq(&tasklist_lock); 1205 cgroup_threadgroup_change_end(tsk); 1206 schedule(); 1207 if (__fatal_signal_pending(tsk)) 1208 goto killed; 1209 } 1210 1211 /* 1212 * The only record we have of the real-time age of a 1213 * process, regardless of execs it's done, is start_time. 1214 * All the past CPU time is accumulated in signal_struct 1215 * from sister threads now dead. But in this non-leader 1216 * exec, nothing survives from the original leader thread, 1217 * whose birth marks the true age of this process now. 1218 * When we take on its identity by switching to its PID, we 1219 * also take its birthdate (always earlier than our own). 1220 */ 1221 tsk->start_time = leader->start_time; 1222 tsk->start_boottime = leader->start_boottime; 1223 1224 BUG_ON(!same_thread_group(leader, tsk)); 1225 /* 1226 * An exec() starts a new thread group with the 1227 * TGID of the previous thread group. Rehash the 1228 * two threads with a switched PID, and release 1229 * the former thread group leader: 1230 */ 1231 1232 /* Become a process group leader with the old leader's pid. 1233 * The old leader becomes a thread of the this thread group. 1234 */ 1235 exchange_tids(tsk, leader); 1236 transfer_pid(leader, tsk, PIDTYPE_TGID); 1237 transfer_pid(leader, tsk, PIDTYPE_PGID); 1238 transfer_pid(leader, tsk, PIDTYPE_SID); 1239 1240 list_replace_rcu(&leader->tasks, &tsk->tasks); 1241 list_replace_init(&leader->sibling, &tsk->sibling); 1242 1243 tsk->group_leader = tsk; 1244 leader->group_leader = tsk; 1245 1246 tsk->exit_signal = SIGCHLD; 1247 leader->exit_signal = -1; 1248 1249 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1250 leader->exit_state = EXIT_DEAD; 1251 1252 /* 1253 * We are going to release_task()->ptrace_unlink() silently, 1254 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1255 * the tracer wont't block again waiting for this thread. 1256 */ 1257 if (unlikely(leader->ptrace)) 1258 __wake_up_parent(leader, leader->parent); 1259 write_unlock_irq(&tasklist_lock); 1260 cgroup_threadgroup_change_end(tsk); 1261 1262 release_task(leader); 1263 } 1264 1265 sig->group_exit_task = NULL; 1266 sig->notify_count = 0; 1267 1268 no_thread_group: 1269 /* we have changed execution domain */ 1270 tsk->exit_signal = SIGCHLD; 1271 1272 BUG_ON(!thread_group_leader(tsk)); 1273 return 0; 1274 1275 killed: 1276 /* protects against exit_notify() and __exit_signal() */ 1277 read_lock(&tasklist_lock); 1278 sig->group_exit_task = NULL; 1279 sig->notify_count = 0; 1280 read_unlock(&tasklist_lock); 1281 return -EAGAIN; 1282 } 1283 1284 1285 /* 1286 * This function makes sure the current process has its own signal table, 1287 * so that flush_signal_handlers can later reset the handlers without 1288 * disturbing other processes. (Other processes might share the signal 1289 * table via the CLONE_SIGHAND option to clone().) 1290 */ 1291 static int unshare_sighand(struct task_struct *me) 1292 { 1293 struct sighand_struct *oldsighand = me->sighand; 1294 1295 if (refcount_read(&oldsighand->count) != 1) { 1296 struct sighand_struct *newsighand; 1297 /* 1298 * This ->sighand is shared with the CLONE_SIGHAND 1299 * but not CLONE_THREAD task, switch to the new one. 1300 */ 1301 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1302 if (!newsighand) 1303 return -ENOMEM; 1304 1305 refcount_set(&newsighand->count, 1); 1306 memcpy(newsighand->action, oldsighand->action, 1307 sizeof(newsighand->action)); 1308 1309 write_lock_irq(&tasklist_lock); 1310 spin_lock(&oldsighand->siglock); 1311 rcu_assign_pointer(me->sighand, newsighand); 1312 spin_unlock(&oldsighand->siglock); 1313 write_unlock_irq(&tasklist_lock); 1314 1315 __cleanup_sighand(oldsighand); 1316 } 1317 return 0; 1318 } 1319 1320 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1321 { 1322 task_lock(tsk); 1323 strncpy(buf, tsk->comm, buf_size); 1324 task_unlock(tsk); 1325 return buf; 1326 } 1327 EXPORT_SYMBOL_GPL(__get_task_comm); 1328 1329 /* 1330 * These functions flushes out all traces of the currently running executable 1331 * so that a new one can be started 1332 */ 1333 1334 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1335 { 1336 task_lock(tsk); 1337 trace_task_rename(tsk, buf); 1338 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1339 task_unlock(tsk); 1340 perf_event_comm(tsk, exec); 1341 } 1342 1343 /* 1344 * Calling this is the point of no return. None of the failures will be 1345 * seen by userspace since either the process is already taking a fatal 1346 * signal (via de_thread() or coredump), or will have SEGV raised 1347 * (after exec_mmap()) by search_binary_handler (see below). 1348 */ 1349 int begin_new_exec(struct linux_binprm * bprm) 1350 { 1351 struct task_struct *me = current; 1352 int retval; 1353 1354 /* Once we are committed compute the creds */ 1355 retval = bprm_creds_from_file(bprm); 1356 if (retval) 1357 return retval; 1358 1359 /* 1360 * Ensure all future errors are fatal. 1361 */ 1362 bprm->point_of_no_return = true; 1363 1364 /* 1365 * Make this the only thread in the thread group. 1366 */ 1367 retval = de_thread(me); 1368 if (retval) 1369 goto out; 1370 1371 /* 1372 * Must be called _before_ exec_mmap() as bprm->mm is 1373 * not visibile until then. This also enables the update 1374 * to be lockless. 1375 */ 1376 set_mm_exe_file(bprm->mm, bprm->file); 1377 1378 /* If the binary is not readable then enforce mm->dumpable=0 */ 1379 would_dump(bprm, bprm->file); 1380 if (bprm->have_execfd) 1381 would_dump(bprm, bprm->executable); 1382 1383 /* 1384 * Release all of the old mmap stuff 1385 */ 1386 acct_arg_size(bprm, 0); 1387 retval = exec_mmap(bprm->mm); 1388 if (retval) 1389 goto out; 1390 1391 bprm->mm = NULL; 1392 1393 #ifdef CONFIG_POSIX_TIMERS 1394 exit_itimers(me->signal); 1395 flush_itimer_signals(); 1396 #endif 1397 1398 /* 1399 * Make the signal table private. 1400 */ 1401 retval = unshare_sighand(me); 1402 if (retval) 1403 goto out_unlock; 1404 1405 set_fs(USER_DS); 1406 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1407 PF_NOFREEZE | PF_NO_SETAFFINITY); 1408 flush_thread(); 1409 me->personality &= ~bprm->per_clear; 1410 1411 /* 1412 * We have to apply CLOEXEC before we change whether the process is 1413 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1414 * trying to access the should-be-closed file descriptors of a process 1415 * undergoing exec(2). 1416 */ 1417 do_close_on_exec(me->files); 1418 1419 if (bprm->secureexec) { 1420 /* Make sure parent cannot signal privileged process. */ 1421 me->pdeath_signal = 0; 1422 1423 /* 1424 * For secureexec, reset the stack limit to sane default to 1425 * avoid bad behavior from the prior rlimits. This has to 1426 * happen before arch_pick_mmap_layout(), which examines 1427 * RLIMIT_STACK, but after the point of no return to avoid 1428 * needing to clean up the change on failure. 1429 */ 1430 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1431 bprm->rlim_stack.rlim_cur = _STK_LIM; 1432 } 1433 1434 me->sas_ss_sp = me->sas_ss_size = 0; 1435 1436 /* 1437 * Figure out dumpability. Note that this checking only of current 1438 * is wrong, but userspace depends on it. This should be testing 1439 * bprm->secureexec instead. 1440 */ 1441 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1442 !(uid_eq(current_euid(), current_uid()) && 1443 gid_eq(current_egid(), current_gid()))) 1444 set_dumpable(current->mm, suid_dumpable); 1445 else 1446 set_dumpable(current->mm, SUID_DUMP_USER); 1447 1448 perf_event_exec(); 1449 __set_task_comm(me, kbasename(bprm->filename), true); 1450 1451 /* An exec changes our domain. We are no longer part of the thread 1452 group */ 1453 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1454 flush_signal_handlers(me, 0); 1455 1456 /* 1457 * install the new credentials for this executable 1458 */ 1459 security_bprm_committing_creds(bprm); 1460 1461 commit_creds(bprm->cred); 1462 bprm->cred = NULL; 1463 1464 /* 1465 * Disable monitoring for regular users 1466 * when executing setuid binaries. Must 1467 * wait until new credentials are committed 1468 * by commit_creds() above 1469 */ 1470 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1471 perf_event_exit_task(me); 1472 /* 1473 * cred_guard_mutex must be held at least to this point to prevent 1474 * ptrace_attach() from altering our determination of the task's 1475 * credentials; any time after this it may be unlocked. 1476 */ 1477 security_bprm_committed_creds(bprm); 1478 1479 /* Pass the opened binary to the interpreter. */ 1480 if (bprm->have_execfd) { 1481 retval = get_unused_fd_flags(0); 1482 if (retval < 0) 1483 goto out_unlock; 1484 fd_install(retval, bprm->executable); 1485 bprm->executable = NULL; 1486 bprm->execfd = retval; 1487 } 1488 return 0; 1489 1490 out_unlock: 1491 mutex_unlock(&me->signal->exec_update_mutex); 1492 out: 1493 return retval; 1494 } 1495 EXPORT_SYMBOL(begin_new_exec); 1496 1497 void would_dump(struct linux_binprm *bprm, struct file *file) 1498 { 1499 struct inode *inode = file_inode(file); 1500 if (inode_permission(inode, MAY_READ) < 0) { 1501 struct user_namespace *old, *user_ns; 1502 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1503 1504 /* Ensure mm->user_ns contains the executable */ 1505 user_ns = old = bprm->mm->user_ns; 1506 while ((user_ns != &init_user_ns) && 1507 !privileged_wrt_inode_uidgid(user_ns, inode)) 1508 user_ns = user_ns->parent; 1509 1510 if (old != user_ns) { 1511 bprm->mm->user_ns = get_user_ns(user_ns); 1512 put_user_ns(old); 1513 } 1514 } 1515 } 1516 EXPORT_SYMBOL(would_dump); 1517 1518 void setup_new_exec(struct linux_binprm * bprm) 1519 { 1520 /* Setup things that can depend upon the personality */ 1521 struct task_struct *me = current; 1522 1523 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1524 1525 arch_setup_new_exec(); 1526 1527 /* Set the new mm task size. We have to do that late because it may 1528 * depend on TIF_32BIT which is only updated in flush_thread() on 1529 * some architectures like powerpc 1530 */ 1531 me->mm->task_size = TASK_SIZE; 1532 mutex_unlock(&me->signal->exec_update_mutex); 1533 mutex_unlock(&me->signal->cred_guard_mutex); 1534 } 1535 EXPORT_SYMBOL(setup_new_exec); 1536 1537 /* Runs immediately before start_thread() takes over. */ 1538 void finalize_exec(struct linux_binprm *bprm) 1539 { 1540 /* Store any stack rlimit changes before starting thread. */ 1541 task_lock(current->group_leader); 1542 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1543 task_unlock(current->group_leader); 1544 } 1545 EXPORT_SYMBOL(finalize_exec); 1546 1547 /* 1548 * Prepare credentials and lock ->cred_guard_mutex. 1549 * setup_new_exec() commits the new creds and drops the lock. 1550 * Or, if exec fails before, free_bprm() should release ->cred and 1551 * and unlock. 1552 */ 1553 static int prepare_bprm_creds(struct linux_binprm *bprm) 1554 { 1555 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1556 return -ERESTARTNOINTR; 1557 1558 bprm->cred = prepare_exec_creds(); 1559 if (likely(bprm->cred)) 1560 return 0; 1561 1562 mutex_unlock(¤t->signal->cred_guard_mutex); 1563 return -ENOMEM; 1564 } 1565 1566 static void free_bprm(struct linux_binprm *bprm) 1567 { 1568 if (bprm->mm) { 1569 acct_arg_size(bprm, 0); 1570 mmput(bprm->mm); 1571 } 1572 free_arg_pages(bprm); 1573 if (bprm->cred) { 1574 mutex_unlock(¤t->signal->cred_guard_mutex); 1575 abort_creds(bprm->cred); 1576 } 1577 if (bprm->file) { 1578 allow_write_access(bprm->file); 1579 fput(bprm->file); 1580 } 1581 if (bprm->executable) 1582 fput(bprm->executable); 1583 /* If a binfmt changed the interp, free it. */ 1584 if (bprm->interp != bprm->filename) 1585 kfree(bprm->interp); 1586 kfree(bprm->fdpath); 1587 kfree(bprm); 1588 } 1589 1590 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1591 { 1592 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1593 int retval = -ENOMEM; 1594 if (!bprm) 1595 goto out; 1596 1597 if (fd == AT_FDCWD || filename->name[0] == '/') { 1598 bprm->filename = filename->name; 1599 } else { 1600 if (filename->name[0] == '\0') 1601 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1602 else 1603 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1604 fd, filename->name); 1605 if (!bprm->fdpath) 1606 goto out_free; 1607 1608 bprm->filename = bprm->fdpath; 1609 } 1610 bprm->interp = bprm->filename; 1611 1612 retval = bprm_mm_init(bprm); 1613 if (retval) 1614 goto out_free; 1615 return bprm; 1616 1617 out_free: 1618 free_bprm(bprm); 1619 out: 1620 return ERR_PTR(retval); 1621 } 1622 1623 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1624 { 1625 /* If a binfmt changed the interp, free it first. */ 1626 if (bprm->interp != bprm->filename) 1627 kfree(bprm->interp); 1628 bprm->interp = kstrdup(interp, GFP_KERNEL); 1629 if (!bprm->interp) 1630 return -ENOMEM; 1631 return 0; 1632 } 1633 EXPORT_SYMBOL(bprm_change_interp); 1634 1635 /* 1636 * determine how safe it is to execute the proposed program 1637 * - the caller must hold ->cred_guard_mutex to protect against 1638 * PTRACE_ATTACH or seccomp thread-sync 1639 */ 1640 static void check_unsafe_exec(struct linux_binprm *bprm) 1641 { 1642 struct task_struct *p = current, *t; 1643 unsigned n_fs; 1644 1645 if (p->ptrace) 1646 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1647 1648 /* 1649 * This isn't strictly necessary, but it makes it harder for LSMs to 1650 * mess up. 1651 */ 1652 if (task_no_new_privs(current)) 1653 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1654 1655 t = p; 1656 n_fs = 1; 1657 spin_lock(&p->fs->lock); 1658 rcu_read_lock(); 1659 while_each_thread(p, t) { 1660 if (t->fs == p->fs) 1661 n_fs++; 1662 } 1663 rcu_read_unlock(); 1664 1665 if (p->fs->users > n_fs) 1666 bprm->unsafe |= LSM_UNSAFE_SHARE; 1667 else 1668 p->fs->in_exec = 1; 1669 spin_unlock(&p->fs->lock); 1670 } 1671 1672 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1673 { 1674 /* Handle suid and sgid on files */ 1675 struct inode *inode; 1676 unsigned int mode; 1677 kuid_t uid; 1678 kgid_t gid; 1679 1680 if (!mnt_may_suid(file->f_path.mnt)) 1681 return; 1682 1683 if (task_no_new_privs(current)) 1684 return; 1685 1686 inode = file->f_path.dentry->d_inode; 1687 mode = READ_ONCE(inode->i_mode); 1688 if (!(mode & (S_ISUID|S_ISGID))) 1689 return; 1690 1691 /* Be careful if suid/sgid is set */ 1692 inode_lock(inode); 1693 1694 /* reload atomically mode/uid/gid now that lock held */ 1695 mode = inode->i_mode; 1696 uid = inode->i_uid; 1697 gid = inode->i_gid; 1698 inode_unlock(inode); 1699 1700 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1701 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1702 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1703 return; 1704 1705 if (mode & S_ISUID) { 1706 bprm->per_clear |= PER_CLEAR_ON_SETID; 1707 bprm->cred->euid = uid; 1708 } 1709 1710 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1711 bprm->per_clear |= PER_CLEAR_ON_SETID; 1712 bprm->cred->egid = gid; 1713 } 1714 } 1715 1716 /* 1717 * Compute brpm->cred based upon the final binary. 1718 */ 1719 static int bprm_creds_from_file(struct linux_binprm *bprm) 1720 { 1721 /* Compute creds based on which file? */ 1722 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1723 1724 bprm_fill_uid(bprm, file); 1725 return security_bprm_creds_from_file(bprm, file); 1726 } 1727 1728 /* 1729 * Fill the binprm structure from the inode. 1730 * Read the first BINPRM_BUF_SIZE bytes 1731 * 1732 * This may be called multiple times for binary chains (scripts for example). 1733 */ 1734 static int prepare_binprm(struct linux_binprm *bprm) 1735 { 1736 loff_t pos = 0; 1737 1738 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1739 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1740 } 1741 1742 /* 1743 * Arguments are '\0' separated strings found at the location bprm->p 1744 * points to; chop off the first by relocating brpm->p to right after 1745 * the first '\0' encountered. 1746 */ 1747 int remove_arg_zero(struct linux_binprm *bprm) 1748 { 1749 int ret = 0; 1750 unsigned long offset; 1751 char *kaddr; 1752 struct page *page; 1753 1754 if (!bprm->argc) 1755 return 0; 1756 1757 do { 1758 offset = bprm->p & ~PAGE_MASK; 1759 page = get_arg_page(bprm, bprm->p, 0); 1760 if (!page) { 1761 ret = -EFAULT; 1762 goto out; 1763 } 1764 kaddr = kmap_atomic(page); 1765 1766 for (; offset < PAGE_SIZE && kaddr[offset]; 1767 offset++, bprm->p++) 1768 ; 1769 1770 kunmap_atomic(kaddr); 1771 put_arg_page(page); 1772 } while (offset == PAGE_SIZE); 1773 1774 bprm->p++; 1775 bprm->argc--; 1776 ret = 0; 1777 1778 out: 1779 return ret; 1780 } 1781 EXPORT_SYMBOL(remove_arg_zero); 1782 1783 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1784 /* 1785 * cycle the list of binary formats handler, until one recognizes the image 1786 */ 1787 static int search_binary_handler(struct linux_binprm *bprm) 1788 { 1789 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1790 struct linux_binfmt *fmt; 1791 int retval; 1792 1793 retval = prepare_binprm(bprm); 1794 if (retval < 0) 1795 return retval; 1796 1797 retval = security_bprm_check(bprm); 1798 if (retval) 1799 return retval; 1800 1801 retval = -ENOENT; 1802 retry: 1803 read_lock(&binfmt_lock); 1804 list_for_each_entry(fmt, &formats, lh) { 1805 if (!try_module_get(fmt->module)) 1806 continue; 1807 read_unlock(&binfmt_lock); 1808 1809 retval = fmt->load_binary(bprm); 1810 1811 read_lock(&binfmt_lock); 1812 put_binfmt(fmt); 1813 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1814 read_unlock(&binfmt_lock); 1815 return retval; 1816 } 1817 } 1818 read_unlock(&binfmt_lock); 1819 1820 if (need_retry) { 1821 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1822 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1823 return retval; 1824 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1825 return retval; 1826 need_retry = false; 1827 goto retry; 1828 } 1829 1830 return retval; 1831 } 1832 1833 static int exec_binprm(struct linux_binprm *bprm) 1834 { 1835 pid_t old_pid, old_vpid; 1836 int ret, depth; 1837 1838 /* Need to fetch pid before load_binary changes it */ 1839 old_pid = current->pid; 1840 rcu_read_lock(); 1841 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1842 rcu_read_unlock(); 1843 1844 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1845 for (depth = 0;; depth++) { 1846 struct file *exec; 1847 if (depth > 5) 1848 return -ELOOP; 1849 1850 ret = search_binary_handler(bprm); 1851 if (ret < 0) 1852 return ret; 1853 if (!bprm->interpreter) 1854 break; 1855 1856 exec = bprm->file; 1857 bprm->file = bprm->interpreter; 1858 bprm->interpreter = NULL; 1859 1860 allow_write_access(exec); 1861 if (unlikely(bprm->have_execfd)) { 1862 if (bprm->executable) { 1863 fput(exec); 1864 return -ENOEXEC; 1865 } 1866 bprm->executable = exec; 1867 } else 1868 fput(exec); 1869 } 1870 1871 audit_bprm(bprm); 1872 trace_sched_process_exec(current, old_pid, bprm); 1873 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1874 proc_exec_connector(current); 1875 return 0; 1876 } 1877 1878 /* 1879 * sys_execve() executes a new program. 1880 */ 1881 static int bprm_execve(struct linux_binprm *bprm, 1882 int fd, struct filename *filename, int flags) 1883 { 1884 struct file *file; 1885 struct files_struct *displaced; 1886 int retval; 1887 1888 retval = unshare_files(&displaced); 1889 if (retval) 1890 return retval; 1891 1892 retval = prepare_bprm_creds(bprm); 1893 if (retval) 1894 goto out_files; 1895 1896 check_unsafe_exec(bprm); 1897 current->in_execve = 1; 1898 1899 file = do_open_execat(fd, filename, flags); 1900 retval = PTR_ERR(file); 1901 if (IS_ERR(file)) 1902 goto out_unmark; 1903 1904 sched_exec(); 1905 1906 bprm->file = file; 1907 /* 1908 * Record that a name derived from an O_CLOEXEC fd will be 1909 * inaccessible after exec. Relies on having exclusive access to 1910 * current->files (due to unshare_files above). 1911 */ 1912 if (bprm->fdpath && 1913 close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1914 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1915 1916 /* Set the unchanging part of bprm->cred */ 1917 retval = security_bprm_creds_for_exec(bprm); 1918 if (retval) 1919 goto out; 1920 1921 retval = exec_binprm(bprm); 1922 if (retval < 0) 1923 goto out; 1924 1925 /* execve succeeded */ 1926 current->fs->in_exec = 0; 1927 current->in_execve = 0; 1928 rseq_execve(current); 1929 acct_update_integrals(current); 1930 task_numa_free(current, false); 1931 if (displaced) 1932 put_files_struct(displaced); 1933 return retval; 1934 1935 out: 1936 /* 1937 * If past the point of no return ensure the the code never 1938 * returns to the userspace process. Use an existing fatal 1939 * signal if present otherwise terminate the process with 1940 * SIGSEGV. 1941 */ 1942 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1943 force_sigsegv(SIGSEGV); 1944 1945 out_unmark: 1946 current->fs->in_exec = 0; 1947 current->in_execve = 0; 1948 1949 out_files: 1950 if (displaced) 1951 reset_files_struct(displaced); 1952 1953 return retval; 1954 } 1955 1956 static int do_execveat_common(int fd, struct filename *filename, 1957 struct user_arg_ptr argv, 1958 struct user_arg_ptr envp, 1959 int flags) 1960 { 1961 struct linux_binprm *bprm; 1962 int retval; 1963 1964 if (IS_ERR(filename)) 1965 return PTR_ERR(filename); 1966 1967 /* 1968 * We move the actual failure in case of RLIMIT_NPROC excess from 1969 * set*uid() to execve() because too many poorly written programs 1970 * don't check setuid() return code. Here we additionally recheck 1971 * whether NPROC limit is still exceeded. 1972 */ 1973 if ((current->flags & PF_NPROC_EXCEEDED) && 1974 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1975 retval = -EAGAIN; 1976 goto out_ret; 1977 } 1978 1979 /* We're below the limit (still or again), so we don't want to make 1980 * further execve() calls fail. */ 1981 current->flags &= ~PF_NPROC_EXCEEDED; 1982 1983 bprm = alloc_bprm(fd, filename); 1984 if (IS_ERR(bprm)) { 1985 retval = PTR_ERR(bprm); 1986 goto out_ret; 1987 } 1988 1989 retval = count(argv, MAX_ARG_STRINGS); 1990 if (retval < 0) 1991 goto out_free; 1992 bprm->argc = retval; 1993 1994 retval = count(envp, MAX_ARG_STRINGS); 1995 if (retval < 0) 1996 goto out_free; 1997 bprm->envc = retval; 1998 1999 retval = bprm_stack_limits(bprm); 2000 if (retval < 0) 2001 goto out_free; 2002 2003 retval = copy_string_kernel(bprm->filename, bprm); 2004 if (retval < 0) 2005 goto out_free; 2006 bprm->exec = bprm->p; 2007 2008 retval = copy_strings(bprm->envc, envp, bprm); 2009 if (retval < 0) 2010 goto out_free; 2011 2012 retval = copy_strings(bprm->argc, argv, bprm); 2013 if (retval < 0) 2014 goto out_free; 2015 2016 retval = bprm_execve(bprm, fd, filename, flags); 2017 out_free: 2018 free_bprm(bprm); 2019 2020 out_ret: 2021 putname(filename); 2022 return retval; 2023 } 2024 2025 int kernel_execve(const char *kernel_filename, 2026 const char *const *argv, const char *const *envp) 2027 { 2028 struct filename *filename; 2029 struct linux_binprm *bprm; 2030 int fd = AT_FDCWD; 2031 int retval; 2032 2033 filename = getname_kernel(kernel_filename); 2034 if (IS_ERR(filename)) 2035 return PTR_ERR(filename); 2036 2037 bprm = alloc_bprm(fd, filename); 2038 if (IS_ERR(bprm)) { 2039 retval = PTR_ERR(bprm); 2040 goto out_ret; 2041 } 2042 2043 retval = count_strings_kernel(argv); 2044 if (retval < 0) 2045 goto out_free; 2046 bprm->argc = retval; 2047 2048 retval = count_strings_kernel(envp); 2049 if (retval < 0) 2050 goto out_free; 2051 bprm->envc = retval; 2052 2053 retval = bprm_stack_limits(bprm); 2054 if (retval < 0) 2055 goto out_free; 2056 2057 retval = copy_string_kernel(bprm->filename, bprm); 2058 if (retval < 0) 2059 goto out_free; 2060 bprm->exec = bprm->p; 2061 2062 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2063 if (retval < 0) 2064 goto out_free; 2065 2066 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2067 if (retval < 0) 2068 goto out_free; 2069 2070 retval = bprm_execve(bprm, fd, filename, 0); 2071 out_free: 2072 free_bprm(bprm); 2073 out_ret: 2074 putname(filename); 2075 return retval; 2076 } 2077 2078 static int do_execve(struct filename *filename, 2079 const char __user *const __user *__argv, 2080 const char __user *const __user *__envp) 2081 { 2082 struct user_arg_ptr argv = { .ptr.native = __argv }; 2083 struct user_arg_ptr envp = { .ptr.native = __envp }; 2084 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2085 } 2086 2087 static int do_execveat(int fd, struct filename *filename, 2088 const char __user *const __user *__argv, 2089 const char __user *const __user *__envp, 2090 int flags) 2091 { 2092 struct user_arg_ptr argv = { .ptr.native = __argv }; 2093 struct user_arg_ptr envp = { .ptr.native = __envp }; 2094 2095 return do_execveat_common(fd, filename, argv, envp, flags); 2096 } 2097 2098 #ifdef CONFIG_COMPAT 2099 static int compat_do_execve(struct filename *filename, 2100 const compat_uptr_t __user *__argv, 2101 const compat_uptr_t __user *__envp) 2102 { 2103 struct user_arg_ptr argv = { 2104 .is_compat = true, 2105 .ptr.compat = __argv, 2106 }; 2107 struct user_arg_ptr envp = { 2108 .is_compat = true, 2109 .ptr.compat = __envp, 2110 }; 2111 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2112 } 2113 2114 static int compat_do_execveat(int fd, struct filename *filename, 2115 const compat_uptr_t __user *__argv, 2116 const compat_uptr_t __user *__envp, 2117 int flags) 2118 { 2119 struct user_arg_ptr argv = { 2120 .is_compat = true, 2121 .ptr.compat = __argv, 2122 }; 2123 struct user_arg_ptr envp = { 2124 .is_compat = true, 2125 .ptr.compat = __envp, 2126 }; 2127 return do_execveat_common(fd, filename, argv, envp, flags); 2128 } 2129 #endif 2130 2131 void set_binfmt(struct linux_binfmt *new) 2132 { 2133 struct mm_struct *mm = current->mm; 2134 2135 if (mm->binfmt) 2136 module_put(mm->binfmt->module); 2137 2138 mm->binfmt = new; 2139 if (new) 2140 __module_get(new->module); 2141 } 2142 EXPORT_SYMBOL(set_binfmt); 2143 2144 /* 2145 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2146 */ 2147 void set_dumpable(struct mm_struct *mm, int value) 2148 { 2149 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2150 return; 2151 2152 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2153 } 2154 2155 SYSCALL_DEFINE3(execve, 2156 const char __user *, filename, 2157 const char __user *const __user *, argv, 2158 const char __user *const __user *, envp) 2159 { 2160 return do_execve(getname(filename), argv, envp); 2161 } 2162 2163 SYSCALL_DEFINE5(execveat, 2164 int, fd, const char __user *, filename, 2165 const char __user *const __user *, argv, 2166 const char __user *const __user *, envp, 2167 int, flags) 2168 { 2169 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2170 2171 return do_execveat(fd, 2172 getname_flags(filename, lookup_flags, NULL), 2173 argv, envp, flags); 2174 } 2175 2176 #ifdef CONFIG_COMPAT 2177 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2178 const compat_uptr_t __user *, argv, 2179 const compat_uptr_t __user *, envp) 2180 { 2181 return compat_do_execve(getname(filename), argv, envp); 2182 } 2183 2184 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2185 const char __user *, filename, 2186 const compat_uptr_t __user *, argv, 2187 const compat_uptr_t __user *, envp, 2188 int, flags) 2189 { 2190 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2191 2192 return compat_do_execveat(fd, 2193 getname_flags(filename, lookup_flags, NULL), 2194 argv, envp, flags); 2195 } 2196 #endif 2197