xref: /openbmc/linux/fs/exec.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 int suid_dumpable = 0;
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	BUG_ON(!fmt);
83 	if (WARN_ON(!fmt->load_binary))
84 		return;
85 	write_lock(&binfmt_lock);
86 	insert ? list_add(&fmt->lh, &formats) :
87 		 list_add_tail(&fmt->lh, &formats);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 bool path_noexec(const struct path *path)
108 {
109 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112 
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 	struct linux_binfmt *fmt;
123 	struct file *file;
124 	struct filename *tmp = getname(library);
125 	int error = PTR_ERR(tmp);
126 	static const struct open_flags uselib_flags = {
127 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 		.acc_mode = MAY_READ | MAY_EXEC,
129 		.intent = LOOKUP_OPEN,
130 		.lookup_flags = LOOKUP_FOLLOW,
131 	};
132 
133 	if (IS_ERR(tmp))
134 		goto out;
135 
136 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 	putname(tmp);
138 	error = PTR_ERR(file);
139 	if (IS_ERR(file))
140 		goto out;
141 
142 	error = -EINVAL;
143 	if (!S_ISREG(file_inode(file)->i_mode))
144 		goto exit;
145 
146 	error = -EACCES;
147 	if (path_noexec(&file->f_path))
148 		goto exit;
149 
150 	fsnotify_open(file);
151 
152 	error = -ENOEXEC;
153 
154 	read_lock(&binfmt_lock);
155 	list_for_each_entry(fmt, &formats, lh) {
156 		if (!fmt->load_shlib)
157 			continue;
158 		if (!try_module_get(fmt->module))
159 			continue;
160 		read_unlock(&binfmt_lock);
161 		error = fmt->load_shlib(file);
162 		read_lock(&binfmt_lock);
163 		put_binfmt(fmt);
164 		if (error != -ENOEXEC)
165 			break;
166 	}
167 	read_unlock(&binfmt_lock);
168 exit:
169 	fput(file);
170 out:
171   	return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174 
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 	struct mm_struct *mm = current->mm;
185 	long diff = (long)(pages - bprm->vma_pages);
186 
187 	if (!mm || !diff)
188 		return;
189 
190 	bprm->vma_pages = pages;
191 	add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193 
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 		int write)
196 {
197 	struct page *page;
198 	int ret;
199 	unsigned int gup_flags = FOLL_FORCE;
200 
201 #ifdef CONFIG_STACK_GROWSUP
202 	if (write) {
203 		ret = expand_downwards(bprm->vma, pos);
204 		if (ret < 0)
205 			return NULL;
206 	}
207 #endif
208 
209 	if (write)
210 		gup_flags |= FOLL_WRITE;
211 
212 	/*
213 	 * We are doing an exec().  'current' is the process
214 	 * doing the exec and bprm->mm is the new process's mm.
215 	 */
216 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 			&page, NULL, NULL);
218 	if (ret <= 0)
219 		return NULL;
220 
221 	if (write)
222 		acct_arg_size(bprm, vma_pages(bprm->vma));
223 
224 	return page;
225 }
226 
227 static void put_arg_page(struct page *page)
228 {
229 	put_page(page);
230 }
231 
232 static void free_arg_pages(struct linux_binprm *bprm)
233 {
234 }
235 
236 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
237 		struct page *page)
238 {
239 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
240 }
241 
242 static int __bprm_mm_init(struct linux_binprm *bprm)
243 {
244 	int err;
245 	struct vm_area_struct *vma = NULL;
246 	struct mm_struct *mm = bprm->mm;
247 
248 	bprm->vma = vma = vm_area_alloc(mm);
249 	if (!vma)
250 		return -ENOMEM;
251 	vma_set_anonymous(vma);
252 
253 	if (down_write_killable(&mm->mmap_sem)) {
254 		err = -EINTR;
255 		goto err_free;
256 	}
257 
258 	/*
259 	 * Place the stack at the largest stack address the architecture
260 	 * supports. Later, we'll move this to an appropriate place. We don't
261 	 * use STACK_TOP because that can depend on attributes which aren't
262 	 * configured yet.
263 	 */
264 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
265 	vma->vm_end = STACK_TOP_MAX;
266 	vma->vm_start = vma->vm_end - PAGE_SIZE;
267 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
268 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
269 
270 	err = insert_vm_struct(mm, vma);
271 	if (err)
272 		goto err;
273 
274 	mm->stack_vm = mm->total_vm = 1;
275 	up_write(&mm->mmap_sem);
276 	bprm->p = vma->vm_end - sizeof(void *);
277 	return 0;
278 err:
279 	up_write(&mm->mmap_sem);
280 err_free:
281 	bprm->vma = NULL;
282 	vm_area_free(vma);
283 	return err;
284 }
285 
286 static bool valid_arg_len(struct linux_binprm *bprm, long len)
287 {
288 	return len <= MAX_ARG_STRLEN;
289 }
290 
291 #else
292 
293 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
294 {
295 }
296 
297 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
298 		int write)
299 {
300 	struct page *page;
301 
302 	page = bprm->page[pos / PAGE_SIZE];
303 	if (!page && write) {
304 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
305 		if (!page)
306 			return NULL;
307 		bprm->page[pos / PAGE_SIZE] = page;
308 	}
309 
310 	return page;
311 }
312 
313 static void put_arg_page(struct page *page)
314 {
315 }
316 
317 static void free_arg_page(struct linux_binprm *bprm, int i)
318 {
319 	if (bprm->page[i]) {
320 		__free_page(bprm->page[i]);
321 		bprm->page[i] = NULL;
322 	}
323 }
324 
325 static void free_arg_pages(struct linux_binprm *bprm)
326 {
327 	int i;
328 
329 	for (i = 0; i < MAX_ARG_PAGES; i++)
330 		free_arg_page(bprm, i);
331 }
332 
333 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
334 		struct page *page)
335 {
336 }
337 
338 static int __bprm_mm_init(struct linux_binprm *bprm)
339 {
340 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
341 	return 0;
342 }
343 
344 static bool valid_arg_len(struct linux_binprm *bprm, long len)
345 {
346 	return len <= bprm->p;
347 }
348 
349 #endif /* CONFIG_MMU */
350 
351 /*
352  * Create a new mm_struct and populate it with a temporary stack
353  * vm_area_struct.  We don't have enough context at this point to set the stack
354  * flags, permissions, and offset, so we use temporary values.  We'll update
355  * them later in setup_arg_pages().
356  */
357 static int bprm_mm_init(struct linux_binprm *bprm)
358 {
359 	int err;
360 	struct mm_struct *mm = NULL;
361 
362 	bprm->mm = mm = mm_alloc();
363 	err = -ENOMEM;
364 	if (!mm)
365 		goto err;
366 
367 	/* Save current stack limit for all calculations made during exec. */
368 	task_lock(current->group_leader);
369 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
370 	task_unlock(current->group_leader);
371 
372 	err = __bprm_mm_init(bprm);
373 	if (err)
374 		goto err;
375 
376 	return 0;
377 
378 err:
379 	if (mm) {
380 		bprm->mm = NULL;
381 		mmdrop(mm);
382 	}
383 
384 	return err;
385 }
386 
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 	bool is_compat;
390 #endif
391 	union {
392 		const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 		const compat_uptr_t __user *compat;
395 #endif
396 	} ptr;
397 };
398 
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401 	const char __user *native;
402 
403 #ifdef CONFIG_COMPAT
404 	if (unlikely(argv.is_compat)) {
405 		compat_uptr_t compat;
406 
407 		if (get_user(compat, argv.ptr.compat + nr))
408 			return ERR_PTR(-EFAULT);
409 
410 		return compat_ptr(compat);
411 	}
412 #endif
413 
414 	if (get_user(native, argv.ptr.native + nr))
415 		return ERR_PTR(-EFAULT);
416 
417 	return native;
418 }
419 
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425 	int i = 0;
426 
427 	if (argv.ptr.native != NULL) {
428 		for (;;) {
429 			const char __user *p = get_user_arg_ptr(argv, i);
430 
431 			if (!p)
432 				break;
433 
434 			if (IS_ERR(p))
435 				return -EFAULT;
436 
437 			if (i >= max)
438 				return -E2BIG;
439 			++i;
440 
441 			if (fatal_signal_pending(current))
442 				return -ERESTARTNOHAND;
443 			cond_resched();
444 		}
445 	}
446 	return i;
447 }
448 
449 static int prepare_arg_pages(struct linux_binprm *bprm,
450 			struct user_arg_ptr argv, struct user_arg_ptr envp)
451 {
452 	unsigned long limit, ptr_size;
453 
454 	bprm->argc = count(argv, MAX_ARG_STRINGS);
455 	if (bprm->argc < 0)
456 		return bprm->argc;
457 
458 	bprm->envc = count(envp, MAX_ARG_STRINGS);
459 	if (bprm->envc < 0)
460 		return bprm->envc;
461 
462 	/*
463 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
464 	 * (whichever is smaller) for the argv+env strings.
465 	 * This ensures that:
466 	 *  - the remaining binfmt code will not run out of stack space,
467 	 *  - the program will have a reasonable amount of stack left
468 	 *    to work from.
469 	 */
470 	limit = _STK_LIM / 4 * 3;
471 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
472 	/*
473 	 * We've historically supported up to 32 pages (ARG_MAX)
474 	 * of argument strings even with small stacks
475 	 */
476 	limit = max_t(unsigned long, limit, ARG_MAX);
477 	/*
478 	 * We must account for the size of all the argv and envp pointers to
479 	 * the argv and envp strings, since they will also take up space in
480 	 * the stack. They aren't stored until much later when we can't
481 	 * signal to the parent that the child has run out of stack space.
482 	 * Instead, calculate it here so it's possible to fail gracefully.
483 	 */
484 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
485 	if (limit <= ptr_size)
486 		return -E2BIG;
487 	limit -= ptr_size;
488 
489 	bprm->argmin = bprm->p - limit;
490 	return 0;
491 }
492 
493 /*
494  * 'copy_strings()' copies argument/environment strings from the old
495  * processes's memory to the new process's stack.  The call to get_user_pages()
496  * ensures the destination page is created and not swapped out.
497  */
498 static int copy_strings(int argc, struct user_arg_ptr argv,
499 			struct linux_binprm *bprm)
500 {
501 	struct page *kmapped_page = NULL;
502 	char *kaddr = NULL;
503 	unsigned long kpos = 0;
504 	int ret;
505 
506 	while (argc-- > 0) {
507 		const char __user *str;
508 		int len;
509 		unsigned long pos;
510 
511 		ret = -EFAULT;
512 		str = get_user_arg_ptr(argv, argc);
513 		if (IS_ERR(str))
514 			goto out;
515 
516 		len = strnlen_user(str, MAX_ARG_STRLEN);
517 		if (!len)
518 			goto out;
519 
520 		ret = -E2BIG;
521 		if (!valid_arg_len(bprm, len))
522 			goto out;
523 
524 		/* We're going to work our way backwords. */
525 		pos = bprm->p;
526 		str += len;
527 		bprm->p -= len;
528 #ifdef CONFIG_MMU
529 		if (bprm->p < bprm->argmin)
530 			goto out;
531 #endif
532 
533 		while (len > 0) {
534 			int offset, bytes_to_copy;
535 
536 			if (fatal_signal_pending(current)) {
537 				ret = -ERESTARTNOHAND;
538 				goto out;
539 			}
540 			cond_resched();
541 
542 			offset = pos % PAGE_SIZE;
543 			if (offset == 0)
544 				offset = PAGE_SIZE;
545 
546 			bytes_to_copy = offset;
547 			if (bytes_to_copy > len)
548 				bytes_to_copy = len;
549 
550 			offset -= bytes_to_copy;
551 			pos -= bytes_to_copy;
552 			str -= bytes_to_copy;
553 			len -= bytes_to_copy;
554 
555 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
556 				struct page *page;
557 
558 				page = get_arg_page(bprm, pos, 1);
559 				if (!page) {
560 					ret = -E2BIG;
561 					goto out;
562 				}
563 
564 				if (kmapped_page) {
565 					flush_kernel_dcache_page(kmapped_page);
566 					kunmap(kmapped_page);
567 					put_arg_page(kmapped_page);
568 				}
569 				kmapped_page = page;
570 				kaddr = kmap(kmapped_page);
571 				kpos = pos & PAGE_MASK;
572 				flush_arg_page(bprm, kpos, kmapped_page);
573 			}
574 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
575 				ret = -EFAULT;
576 				goto out;
577 			}
578 		}
579 	}
580 	ret = 0;
581 out:
582 	if (kmapped_page) {
583 		flush_kernel_dcache_page(kmapped_page);
584 		kunmap(kmapped_page);
585 		put_arg_page(kmapped_page);
586 	}
587 	return ret;
588 }
589 
590 /*
591  * Like copy_strings, but get argv and its values from kernel memory.
592  */
593 int copy_strings_kernel(int argc, const char *const *__argv,
594 			struct linux_binprm *bprm)
595 {
596 	int r;
597 	mm_segment_t oldfs = get_fs();
598 	struct user_arg_ptr argv = {
599 		.ptr.native = (const char __user *const  __user *)__argv,
600 	};
601 
602 	set_fs(KERNEL_DS);
603 	r = copy_strings(argc, argv, bprm);
604 	set_fs(oldfs);
605 
606 	return r;
607 }
608 EXPORT_SYMBOL(copy_strings_kernel);
609 
610 #ifdef CONFIG_MMU
611 
612 /*
613  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
614  * the binfmt code determines where the new stack should reside, we shift it to
615  * its final location.  The process proceeds as follows:
616  *
617  * 1) Use shift to calculate the new vma endpoints.
618  * 2) Extend vma to cover both the old and new ranges.  This ensures the
619  *    arguments passed to subsequent functions are consistent.
620  * 3) Move vma's page tables to the new range.
621  * 4) Free up any cleared pgd range.
622  * 5) Shrink the vma to cover only the new range.
623  */
624 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
625 {
626 	struct mm_struct *mm = vma->vm_mm;
627 	unsigned long old_start = vma->vm_start;
628 	unsigned long old_end = vma->vm_end;
629 	unsigned long length = old_end - old_start;
630 	unsigned long new_start = old_start - shift;
631 	unsigned long new_end = old_end - shift;
632 	struct mmu_gather tlb;
633 
634 	BUG_ON(new_start > new_end);
635 
636 	/*
637 	 * ensure there are no vmas between where we want to go
638 	 * and where we are
639 	 */
640 	if (vma != find_vma(mm, new_start))
641 		return -EFAULT;
642 
643 	/*
644 	 * cover the whole range: [new_start, old_end)
645 	 */
646 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
647 		return -ENOMEM;
648 
649 	/*
650 	 * move the page tables downwards, on failure we rely on
651 	 * process cleanup to remove whatever mess we made.
652 	 */
653 	if (length != move_page_tables(vma, old_start,
654 				       vma, new_start, length, false))
655 		return -ENOMEM;
656 
657 	lru_add_drain();
658 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
659 	if (new_end > old_start) {
660 		/*
661 		 * when the old and new regions overlap clear from new_end.
662 		 */
663 		free_pgd_range(&tlb, new_end, old_end, new_end,
664 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
665 	} else {
666 		/*
667 		 * otherwise, clean from old_start; this is done to not touch
668 		 * the address space in [new_end, old_start) some architectures
669 		 * have constraints on va-space that make this illegal (IA64) -
670 		 * for the others its just a little faster.
671 		 */
672 		free_pgd_range(&tlb, old_start, old_end, new_end,
673 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
674 	}
675 	tlb_finish_mmu(&tlb, old_start, old_end);
676 
677 	/*
678 	 * Shrink the vma to just the new range.  Always succeeds.
679 	 */
680 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
681 
682 	return 0;
683 }
684 
685 /*
686  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
687  * the stack is optionally relocated, and some extra space is added.
688  */
689 int setup_arg_pages(struct linux_binprm *bprm,
690 		    unsigned long stack_top,
691 		    int executable_stack)
692 {
693 	unsigned long ret;
694 	unsigned long stack_shift;
695 	struct mm_struct *mm = current->mm;
696 	struct vm_area_struct *vma = bprm->vma;
697 	struct vm_area_struct *prev = NULL;
698 	unsigned long vm_flags;
699 	unsigned long stack_base;
700 	unsigned long stack_size;
701 	unsigned long stack_expand;
702 	unsigned long rlim_stack;
703 
704 #ifdef CONFIG_STACK_GROWSUP
705 	/* Limit stack size */
706 	stack_base = bprm->rlim_stack.rlim_max;
707 	if (stack_base > STACK_SIZE_MAX)
708 		stack_base = STACK_SIZE_MAX;
709 
710 	/* Add space for stack randomization. */
711 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
712 
713 	/* Make sure we didn't let the argument array grow too large. */
714 	if (vma->vm_end - vma->vm_start > stack_base)
715 		return -ENOMEM;
716 
717 	stack_base = PAGE_ALIGN(stack_top - stack_base);
718 
719 	stack_shift = vma->vm_start - stack_base;
720 	mm->arg_start = bprm->p - stack_shift;
721 	bprm->p = vma->vm_end - stack_shift;
722 #else
723 	stack_top = arch_align_stack(stack_top);
724 	stack_top = PAGE_ALIGN(stack_top);
725 
726 	if (unlikely(stack_top < mmap_min_addr) ||
727 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
728 		return -ENOMEM;
729 
730 	stack_shift = vma->vm_end - stack_top;
731 
732 	bprm->p -= stack_shift;
733 	mm->arg_start = bprm->p;
734 #endif
735 
736 	if (bprm->loader)
737 		bprm->loader -= stack_shift;
738 	bprm->exec -= stack_shift;
739 
740 	if (down_write_killable(&mm->mmap_sem))
741 		return -EINTR;
742 
743 	vm_flags = VM_STACK_FLAGS;
744 
745 	/*
746 	 * Adjust stack execute permissions; explicitly enable for
747 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
748 	 * (arch default) otherwise.
749 	 */
750 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
751 		vm_flags |= VM_EXEC;
752 	else if (executable_stack == EXSTACK_DISABLE_X)
753 		vm_flags &= ~VM_EXEC;
754 	vm_flags |= mm->def_flags;
755 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
756 
757 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
758 			vm_flags);
759 	if (ret)
760 		goto out_unlock;
761 	BUG_ON(prev != vma);
762 
763 	if (unlikely(vm_flags & VM_EXEC)) {
764 		pr_warn_once("process '%pD4' started with executable stack\n",
765 			     bprm->file);
766 	}
767 
768 	/* Move stack pages down in memory. */
769 	if (stack_shift) {
770 		ret = shift_arg_pages(vma, stack_shift);
771 		if (ret)
772 			goto out_unlock;
773 	}
774 
775 	/* mprotect_fixup is overkill to remove the temporary stack flags */
776 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
777 
778 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
779 	stack_size = vma->vm_end - vma->vm_start;
780 	/*
781 	 * Align this down to a page boundary as expand_stack
782 	 * will align it up.
783 	 */
784 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
785 #ifdef CONFIG_STACK_GROWSUP
786 	if (stack_size + stack_expand > rlim_stack)
787 		stack_base = vma->vm_start + rlim_stack;
788 	else
789 		stack_base = vma->vm_end + stack_expand;
790 #else
791 	if (stack_size + stack_expand > rlim_stack)
792 		stack_base = vma->vm_end - rlim_stack;
793 	else
794 		stack_base = vma->vm_start - stack_expand;
795 #endif
796 	current->mm->start_stack = bprm->p;
797 	ret = expand_stack(vma, stack_base);
798 	if (ret)
799 		ret = -EFAULT;
800 
801 out_unlock:
802 	up_write(&mm->mmap_sem);
803 	return ret;
804 }
805 EXPORT_SYMBOL(setup_arg_pages);
806 
807 #else
808 
809 /*
810  * Transfer the program arguments and environment from the holding pages
811  * onto the stack. The provided stack pointer is adjusted accordingly.
812  */
813 int transfer_args_to_stack(struct linux_binprm *bprm,
814 			   unsigned long *sp_location)
815 {
816 	unsigned long index, stop, sp;
817 	int ret = 0;
818 
819 	stop = bprm->p >> PAGE_SHIFT;
820 	sp = *sp_location;
821 
822 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
823 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
824 		char *src = kmap(bprm->page[index]) + offset;
825 		sp -= PAGE_SIZE - offset;
826 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
827 			ret = -EFAULT;
828 		kunmap(bprm->page[index]);
829 		if (ret)
830 			goto out;
831 	}
832 
833 	*sp_location = sp;
834 
835 out:
836 	return ret;
837 }
838 EXPORT_SYMBOL(transfer_args_to_stack);
839 
840 #endif /* CONFIG_MMU */
841 
842 static struct file *do_open_execat(int fd, struct filename *name, int flags)
843 {
844 	struct file *file;
845 	int err;
846 	struct open_flags open_exec_flags = {
847 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
848 		.acc_mode = MAY_EXEC,
849 		.intent = LOOKUP_OPEN,
850 		.lookup_flags = LOOKUP_FOLLOW,
851 	};
852 
853 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
854 		return ERR_PTR(-EINVAL);
855 	if (flags & AT_SYMLINK_NOFOLLOW)
856 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
857 	if (flags & AT_EMPTY_PATH)
858 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
859 
860 	file = do_filp_open(fd, name, &open_exec_flags);
861 	if (IS_ERR(file))
862 		goto out;
863 
864 	err = -EACCES;
865 	if (!S_ISREG(file_inode(file)->i_mode))
866 		goto exit;
867 
868 	if (path_noexec(&file->f_path))
869 		goto exit;
870 
871 	err = deny_write_access(file);
872 	if (err)
873 		goto exit;
874 
875 	if (name->name[0] != '\0')
876 		fsnotify_open(file);
877 
878 out:
879 	return file;
880 
881 exit:
882 	fput(file);
883 	return ERR_PTR(err);
884 }
885 
886 struct file *open_exec(const char *name)
887 {
888 	struct filename *filename = getname_kernel(name);
889 	struct file *f = ERR_CAST(filename);
890 
891 	if (!IS_ERR(filename)) {
892 		f = do_open_execat(AT_FDCWD, filename, 0);
893 		putname(filename);
894 	}
895 	return f;
896 }
897 EXPORT_SYMBOL(open_exec);
898 
899 int kernel_read_file(struct file *file, void **buf, loff_t *size,
900 		     loff_t max_size, enum kernel_read_file_id id)
901 {
902 	loff_t i_size, pos;
903 	ssize_t bytes = 0;
904 	int ret;
905 
906 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
907 		return -EINVAL;
908 
909 	ret = deny_write_access(file);
910 	if (ret)
911 		return ret;
912 
913 	ret = security_kernel_read_file(file, id);
914 	if (ret)
915 		goto out;
916 
917 	i_size = i_size_read(file_inode(file));
918 	if (i_size <= 0) {
919 		ret = -EINVAL;
920 		goto out;
921 	}
922 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
923 		ret = -EFBIG;
924 		goto out;
925 	}
926 
927 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
928 		*buf = vmalloc(i_size);
929 	if (!*buf) {
930 		ret = -ENOMEM;
931 		goto out;
932 	}
933 
934 	pos = 0;
935 	while (pos < i_size) {
936 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
937 		if (bytes < 0) {
938 			ret = bytes;
939 			goto out_free;
940 		}
941 
942 		if (bytes == 0)
943 			break;
944 	}
945 
946 	if (pos != i_size) {
947 		ret = -EIO;
948 		goto out_free;
949 	}
950 
951 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
952 	if (!ret)
953 		*size = pos;
954 
955 out_free:
956 	if (ret < 0) {
957 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
958 			vfree(*buf);
959 			*buf = NULL;
960 		}
961 	}
962 
963 out:
964 	allow_write_access(file);
965 	return ret;
966 }
967 EXPORT_SYMBOL_GPL(kernel_read_file);
968 
969 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
970 			       loff_t max_size, enum kernel_read_file_id id)
971 {
972 	struct file *file;
973 	int ret;
974 
975 	if (!path || !*path)
976 		return -EINVAL;
977 
978 	file = filp_open(path, O_RDONLY, 0);
979 	if (IS_ERR(file))
980 		return PTR_ERR(file);
981 
982 	ret = kernel_read_file(file, buf, size, max_size, id);
983 	fput(file);
984 	return ret;
985 }
986 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
987 
988 int kernel_read_file_from_path_initns(const char *path, void **buf,
989 				      loff_t *size, loff_t max_size,
990 				      enum kernel_read_file_id id)
991 {
992 	struct file *file;
993 	struct path root;
994 	int ret;
995 
996 	if (!path || !*path)
997 		return -EINVAL;
998 
999 	task_lock(&init_task);
1000 	get_fs_root(init_task.fs, &root);
1001 	task_unlock(&init_task);
1002 
1003 	file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1004 	path_put(&root);
1005 	if (IS_ERR(file))
1006 		return PTR_ERR(file);
1007 
1008 	ret = kernel_read_file(file, buf, size, max_size, id);
1009 	fput(file);
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1013 
1014 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1015 			     enum kernel_read_file_id id)
1016 {
1017 	struct fd f = fdget(fd);
1018 	int ret = -EBADF;
1019 
1020 	if (!f.file)
1021 		goto out;
1022 
1023 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1024 out:
1025 	fdput(f);
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1029 
1030 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1031 {
1032 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1033 	if (res > 0)
1034 		flush_icache_range(addr, addr + len);
1035 	return res;
1036 }
1037 EXPORT_SYMBOL(read_code);
1038 
1039 /*
1040  * Maps the mm_struct mm into the current task struct.
1041  * On success, this function returns with the mutex
1042  * exec_update_mutex locked.
1043  */
1044 static int exec_mmap(struct mm_struct *mm)
1045 {
1046 	struct task_struct *tsk;
1047 	struct mm_struct *old_mm, *active_mm;
1048 	int ret;
1049 
1050 	/* Notify parent that we're no longer interested in the old VM */
1051 	tsk = current;
1052 	old_mm = current->mm;
1053 	exec_mm_release(tsk, old_mm);
1054 
1055 	ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1056 	if (ret)
1057 		return ret;
1058 
1059 	if (old_mm) {
1060 		sync_mm_rss(old_mm);
1061 		/*
1062 		 * Make sure that if there is a core dump in progress
1063 		 * for the old mm, we get out and die instead of going
1064 		 * through with the exec.  We must hold mmap_sem around
1065 		 * checking core_state and changing tsk->mm.
1066 		 */
1067 		down_read(&old_mm->mmap_sem);
1068 		if (unlikely(old_mm->core_state)) {
1069 			up_read(&old_mm->mmap_sem);
1070 			mutex_unlock(&tsk->signal->exec_update_mutex);
1071 			return -EINTR;
1072 		}
1073 	}
1074 
1075 	task_lock(tsk);
1076 	active_mm = tsk->active_mm;
1077 	membarrier_exec_mmap(mm);
1078 	tsk->mm = mm;
1079 	tsk->active_mm = mm;
1080 	activate_mm(active_mm, mm);
1081 	tsk->mm->vmacache_seqnum = 0;
1082 	vmacache_flush(tsk);
1083 	task_unlock(tsk);
1084 	if (old_mm) {
1085 		up_read(&old_mm->mmap_sem);
1086 		BUG_ON(active_mm != old_mm);
1087 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1088 		mm_update_next_owner(old_mm);
1089 		mmput(old_mm);
1090 		return 0;
1091 	}
1092 	mmdrop(active_mm);
1093 	return 0;
1094 }
1095 
1096 /*
1097  * This function makes sure the current process has its own signal table,
1098  * so that flush_signal_handlers can later reset the handlers without
1099  * disturbing other processes.  (Other processes might share the signal
1100  * table via the CLONE_SIGHAND option to clone().)
1101  */
1102 static int de_thread(struct task_struct *tsk)
1103 {
1104 	struct signal_struct *sig = tsk->signal;
1105 	struct sighand_struct *oldsighand = tsk->sighand;
1106 	spinlock_t *lock = &oldsighand->siglock;
1107 
1108 	if (thread_group_empty(tsk))
1109 		goto no_thread_group;
1110 
1111 	/*
1112 	 * Kill all other threads in the thread group.
1113 	 */
1114 	spin_lock_irq(lock);
1115 	if (signal_group_exit(sig)) {
1116 		/*
1117 		 * Another group action in progress, just
1118 		 * return so that the signal is processed.
1119 		 */
1120 		spin_unlock_irq(lock);
1121 		return -EAGAIN;
1122 	}
1123 
1124 	sig->group_exit_task = tsk;
1125 	sig->notify_count = zap_other_threads(tsk);
1126 	if (!thread_group_leader(tsk))
1127 		sig->notify_count--;
1128 
1129 	while (sig->notify_count) {
1130 		__set_current_state(TASK_KILLABLE);
1131 		spin_unlock_irq(lock);
1132 		schedule();
1133 		if (__fatal_signal_pending(tsk))
1134 			goto killed;
1135 		spin_lock_irq(lock);
1136 	}
1137 	spin_unlock_irq(lock);
1138 
1139 	/*
1140 	 * At this point all other threads have exited, all we have to
1141 	 * do is to wait for the thread group leader to become inactive,
1142 	 * and to assume its PID:
1143 	 */
1144 	if (!thread_group_leader(tsk)) {
1145 		struct task_struct *leader = tsk->group_leader;
1146 
1147 		for (;;) {
1148 			cgroup_threadgroup_change_begin(tsk);
1149 			write_lock_irq(&tasklist_lock);
1150 			/*
1151 			 * Do this under tasklist_lock to ensure that
1152 			 * exit_notify() can't miss ->group_exit_task
1153 			 */
1154 			sig->notify_count = -1;
1155 			if (likely(leader->exit_state))
1156 				break;
1157 			__set_current_state(TASK_KILLABLE);
1158 			write_unlock_irq(&tasklist_lock);
1159 			cgroup_threadgroup_change_end(tsk);
1160 			schedule();
1161 			if (__fatal_signal_pending(tsk))
1162 				goto killed;
1163 		}
1164 
1165 		/*
1166 		 * The only record we have of the real-time age of a
1167 		 * process, regardless of execs it's done, is start_time.
1168 		 * All the past CPU time is accumulated in signal_struct
1169 		 * from sister threads now dead.  But in this non-leader
1170 		 * exec, nothing survives from the original leader thread,
1171 		 * whose birth marks the true age of this process now.
1172 		 * When we take on its identity by switching to its PID, we
1173 		 * also take its birthdate (always earlier than our own).
1174 		 */
1175 		tsk->start_time = leader->start_time;
1176 		tsk->start_boottime = leader->start_boottime;
1177 
1178 		BUG_ON(!same_thread_group(leader, tsk));
1179 		BUG_ON(has_group_leader_pid(tsk));
1180 		/*
1181 		 * An exec() starts a new thread group with the
1182 		 * TGID of the previous thread group. Rehash the
1183 		 * two threads with a switched PID, and release
1184 		 * the former thread group leader:
1185 		 */
1186 
1187 		/* Become a process group leader with the old leader's pid.
1188 		 * The old leader becomes a thread of the this thread group.
1189 		 * Note: The old leader also uses this pid until release_task
1190 		 *       is called.  Odd but simple and correct.
1191 		 */
1192 		tsk->pid = leader->pid;
1193 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1194 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1195 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1196 		transfer_pid(leader, tsk, PIDTYPE_SID);
1197 
1198 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1199 		list_replace_init(&leader->sibling, &tsk->sibling);
1200 
1201 		tsk->group_leader = tsk;
1202 		leader->group_leader = tsk;
1203 
1204 		tsk->exit_signal = SIGCHLD;
1205 		leader->exit_signal = -1;
1206 
1207 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1208 		leader->exit_state = EXIT_DEAD;
1209 
1210 		/*
1211 		 * We are going to release_task()->ptrace_unlink() silently,
1212 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1213 		 * the tracer wont't block again waiting for this thread.
1214 		 */
1215 		if (unlikely(leader->ptrace))
1216 			__wake_up_parent(leader, leader->parent);
1217 		write_unlock_irq(&tasklist_lock);
1218 		cgroup_threadgroup_change_end(tsk);
1219 
1220 		release_task(leader);
1221 	}
1222 
1223 	sig->group_exit_task = NULL;
1224 	sig->notify_count = 0;
1225 
1226 no_thread_group:
1227 	/* we have changed execution domain */
1228 	tsk->exit_signal = SIGCHLD;
1229 
1230 	BUG_ON(!thread_group_leader(tsk));
1231 	return 0;
1232 
1233 killed:
1234 	/* protects against exit_notify() and __exit_signal() */
1235 	read_lock(&tasklist_lock);
1236 	sig->group_exit_task = NULL;
1237 	sig->notify_count = 0;
1238 	read_unlock(&tasklist_lock);
1239 	return -EAGAIN;
1240 }
1241 
1242 
1243 static int unshare_sighand(struct task_struct *me)
1244 {
1245 	struct sighand_struct *oldsighand = me->sighand;
1246 
1247 	if (refcount_read(&oldsighand->count) != 1) {
1248 		struct sighand_struct *newsighand;
1249 		/*
1250 		 * This ->sighand is shared with the CLONE_SIGHAND
1251 		 * but not CLONE_THREAD task, switch to the new one.
1252 		 */
1253 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1254 		if (!newsighand)
1255 			return -ENOMEM;
1256 
1257 		refcount_set(&newsighand->count, 1);
1258 		memcpy(newsighand->action, oldsighand->action,
1259 		       sizeof(newsighand->action));
1260 
1261 		write_lock_irq(&tasklist_lock);
1262 		spin_lock(&oldsighand->siglock);
1263 		rcu_assign_pointer(me->sighand, newsighand);
1264 		spin_unlock(&oldsighand->siglock);
1265 		write_unlock_irq(&tasklist_lock);
1266 
1267 		__cleanup_sighand(oldsighand);
1268 	}
1269 	return 0;
1270 }
1271 
1272 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1273 {
1274 	task_lock(tsk);
1275 	strncpy(buf, tsk->comm, buf_size);
1276 	task_unlock(tsk);
1277 	return buf;
1278 }
1279 EXPORT_SYMBOL_GPL(__get_task_comm);
1280 
1281 /*
1282  * These functions flushes out all traces of the currently running executable
1283  * so that a new one can be started
1284  */
1285 
1286 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1287 {
1288 	task_lock(tsk);
1289 	trace_task_rename(tsk, buf);
1290 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1291 	task_unlock(tsk);
1292 	perf_event_comm(tsk, exec);
1293 }
1294 
1295 /*
1296  * Calling this is the point of no return. None of the failures will be
1297  * seen by userspace since either the process is already taking a fatal
1298  * signal (via de_thread() or coredump), or will have SEGV raised
1299  * (after exec_mmap()) by search_binary_handlers (see below).
1300  */
1301 int flush_old_exec(struct linux_binprm * bprm)
1302 {
1303 	struct task_struct *me = current;
1304 	int retval;
1305 
1306 	/*
1307 	 * Make this the only thread in the thread group.
1308 	 */
1309 	retval = de_thread(me);
1310 	if (retval)
1311 		goto out;
1312 
1313 	/*
1314 	 * Must be called _before_ exec_mmap() as bprm->mm is
1315 	 * not visibile until then. This also enables the update
1316 	 * to be lockless.
1317 	 */
1318 	set_mm_exe_file(bprm->mm, bprm->file);
1319 
1320 	/*
1321 	 * Release all of the old mmap stuff
1322 	 */
1323 	acct_arg_size(bprm, 0);
1324 	retval = exec_mmap(bprm->mm);
1325 	if (retval)
1326 		goto out;
1327 
1328 	/*
1329 	 * After setting bprm->called_exec_mmap (to mark that current is
1330 	 * using the prepared mm now), we have nothing left of the original
1331 	 * process. If anything from here on returns an error, the check
1332 	 * in search_binary_handler() will SEGV current.
1333 	 */
1334 	bprm->called_exec_mmap = 1;
1335 	bprm->mm = NULL;
1336 
1337 #ifdef CONFIG_POSIX_TIMERS
1338 	exit_itimers(me->signal);
1339 	flush_itimer_signals();
1340 #endif
1341 
1342 	/*
1343 	 * Make the signal table private.
1344 	 */
1345 	retval = unshare_sighand(me);
1346 	if (retval)
1347 		goto out;
1348 
1349 	set_fs(USER_DS);
1350 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1351 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1352 	flush_thread();
1353 	me->personality &= ~bprm->per_clear;
1354 
1355 	/*
1356 	 * We have to apply CLOEXEC before we change whether the process is
1357 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1358 	 * trying to access the should-be-closed file descriptors of a process
1359 	 * undergoing exec(2).
1360 	 */
1361 	do_close_on_exec(me->files);
1362 	return 0;
1363 
1364 out:
1365 	return retval;
1366 }
1367 EXPORT_SYMBOL(flush_old_exec);
1368 
1369 void would_dump(struct linux_binprm *bprm, struct file *file)
1370 {
1371 	struct inode *inode = file_inode(file);
1372 	if (inode_permission(inode, MAY_READ) < 0) {
1373 		struct user_namespace *old, *user_ns;
1374 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1375 
1376 		/* Ensure mm->user_ns contains the executable */
1377 		user_ns = old = bprm->mm->user_ns;
1378 		while ((user_ns != &init_user_ns) &&
1379 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1380 			user_ns = user_ns->parent;
1381 
1382 		if (old != user_ns) {
1383 			bprm->mm->user_ns = get_user_ns(user_ns);
1384 			put_user_ns(old);
1385 		}
1386 	}
1387 }
1388 EXPORT_SYMBOL(would_dump);
1389 
1390 void setup_new_exec(struct linux_binprm * bprm)
1391 {
1392 	/*
1393 	 * Once here, prepare_binrpm() will not be called any more, so
1394 	 * the final state of setuid/setgid/fscaps can be merged into the
1395 	 * secureexec flag.
1396 	 */
1397 	bprm->secureexec |= bprm->cap_elevated;
1398 
1399 	if (bprm->secureexec) {
1400 		/* Make sure parent cannot signal privileged process. */
1401 		current->pdeath_signal = 0;
1402 
1403 		/*
1404 		 * For secureexec, reset the stack limit to sane default to
1405 		 * avoid bad behavior from the prior rlimits. This has to
1406 		 * happen before arch_pick_mmap_layout(), which examines
1407 		 * RLIMIT_STACK, but after the point of no return to avoid
1408 		 * needing to clean up the change on failure.
1409 		 */
1410 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1411 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1412 	}
1413 
1414 	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1415 
1416 	current->sas_ss_sp = current->sas_ss_size = 0;
1417 
1418 	/*
1419 	 * Figure out dumpability. Note that this checking only of current
1420 	 * is wrong, but userspace depends on it. This should be testing
1421 	 * bprm->secureexec instead.
1422 	 */
1423 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1424 	    !(uid_eq(current_euid(), current_uid()) &&
1425 	      gid_eq(current_egid(), current_gid())))
1426 		set_dumpable(current->mm, suid_dumpable);
1427 	else
1428 		set_dumpable(current->mm, SUID_DUMP_USER);
1429 
1430 	arch_setup_new_exec();
1431 	perf_event_exec();
1432 	__set_task_comm(current, kbasename(bprm->filename), true);
1433 
1434 	/* Set the new mm task size. We have to do that late because it may
1435 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1436 	 * some architectures like powerpc
1437 	 */
1438 	current->mm->task_size = TASK_SIZE;
1439 
1440 	/* An exec changes our domain. We are no longer part of the thread
1441 	   group */
1442 	WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1443 	flush_signal_handlers(current, 0);
1444 }
1445 EXPORT_SYMBOL(setup_new_exec);
1446 
1447 /* Runs immediately before start_thread() takes over. */
1448 void finalize_exec(struct linux_binprm *bprm)
1449 {
1450 	/* Store any stack rlimit changes before starting thread. */
1451 	task_lock(current->group_leader);
1452 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1453 	task_unlock(current->group_leader);
1454 }
1455 EXPORT_SYMBOL(finalize_exec);
1456 
1457 /*
1458  * Prepare credentials and lock ->cred_guard_mutex.
1459  * install_exec_creds() commits the new creds and drops the lock.
1460  * Or, if exec fails before, free_bprm() should release ->cred and
1461  * and unlock.
1462  */
1463 static int prepare_bprm_creds(struct linux_binprm *bprm)
1464 {
1465 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1466 		return -ERESTARTNOINTR;
1467 
1468 	bprm->cred = prepare_exec_creds();
1469 	if (likely(bprm->cred))
1470 		return 0;
1471 
1472 	mutex_unlock(&current->signal->cred_guard_mutex);
1473 	return -ENOMEM;
1474 }
1475 
1476 static void free_bprm(struct linux_binprm *bprm)
1477 {
1478 	free_arg_pages(bprm);
1479 	if (bprm->cred) {
1480 		if (bprm->called_exec_mmap)
1481 			mutex_unlock(&current->signal->exec_update_mutex);
1482 		mutex_unlock(&current->signal->cred_guard_mutex);
1483 		abort_creds(bprm->cred);
1484 	}
1485 	if (bprm->file) {
1486 		allow_write_access(bprm->file);
1487 		fput(bprm->file);
1488 	}
1489 	/* If a binfmt changed the interp, free it. */
1490 	if (bprm->interp != bprm->filename)
1491 		kfree(bprm->interp);
1492 	kfree(bprm);
1493 }
1494 
1495 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1496 {
1497 	/* If a binfmt changed the interp, free it first. */
1498 	if (bprm->interp != bprm->filename)
1499 		kfree(bprm->interp);
1500 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1501 	if (!bprm->interp)
1502 		return -ENOMEM;
1503 	return 0;
1504 }
1505 EXPORT_SYMBOL(bprm_change_interp);
1506 
1507 /*
1508  * install the new credentials for this executable
1509  */
1510 void install_exec_creds(struct linux_binprm *bprm)
1511 {
1512 	security_bprm_committing_creds(bprm);
1513 
1514 	commit_creds(bprm->cred);
1515 	bprm->cred = NULL;
1516 
1517 	/*
1518 	 * Disable monitoring for regular users
1519 	 * when executing setuid binaries. Must
1520 	 * wait until new credentials are committed
1521 	 * by commit_creds() above
1522 	 */
1523 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1524 		perf_event_exit_task(current);
1525 	/*
1526 	 * cred_guard_mutex must be held at least to this point to prevent
1527 	 * ptrace_attach() from altering our determination of the task's
1528 	 * credentials; any time after this it may be unlocked.
1529 	 */
1530 	security_bprm_committed_creds(bprm);
1531 	mutex_unlock(&current->signal->exec_update_mutex);
1532 	mutex_unlock(&current->signal->cred_guard_mutex);
1533 }
1534 EXPORT_SYMBOL(install_exec_creds);
1535 
1536 /*
1537  * determine how safe it is to execute the proposed program
1538  * - the caller must hold ->cred_guard_mutex to protect against
1539  *   PTRACE_ATTACH or seccomp thread-sync
1540  */
1541 static void check_unsafe_exec(struct linux_binprm *bprm)
1542 {
1543 	struct task_struct *p = current, *t;
1544 	unsigned n_fs;
1545 
1546 	if (p->ptrace)
1547 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1548 
1549 	/*
1550 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1551 	 * mess up.
1552 	 */
1553 	if (task_no_new_privs(current))
1554 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1555 
1556 	t = p;
1557 	n_fs = 1;
1558 	spin_lock(&p->fs->lock);
1559 	rcu_read_lock();
1560 	while_each_thread(p, t) {
1561 		if (t->fs == p->fs)
1562 			n_fs++;
1563 	}
1564 	rcu_read_unlock();
1565 
1566 	if (p->fs->users > n_fs)
1567 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1568 	else
1569 		p->fs->in_exec = 1;
1570 	spin_unlock(&p->fs->lock);
1571 }
1572 
1573 static void bprm_fill_uid(struct linux_binprm *bprm)
1574 {
1575 	struct inode *inode;
1576 	unsigned int mode;
1577 	kuid_t uid;
1578 	kgid_t gid;
1579 
1580 	/*
1581 	 * Since this can be called multiple times (via prepare_binprm),
1582 	 * we must clear any previous work done when setting set[ug]id
1583 	 * bits from any earlier bprm->file uses (for example when run
1584 	 * first for a setuid script then again for its interpreter).
1585 	 */
1586 	bprm->cred->euid = current_euid();
1587 	bprm->cred->egid = current_egid();
1588 
1589 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1590 		return;
1591 
1592 	if (task_no_new_privs(current))
1593 		return;
1594 
1595 	inode = bprm->file->f_path.dentry->d_inode;
1596 	mode = READ_ONCE(inode->i_mode);
1597 	if (!(mode & (S_ISUID|S_ISGID)))
1598 		return;
1599 
1600 	/* Be careful if suid/sgid is set */
1601 	inode_lock(inode);
1602 
1603 	/* reload atomically mode/uid/gid now that lock held */
1604 	mode = inode->i_mode;
1605 	uid = inode->i_uid;
1606 	gid = inode->i_gid;
1607 	inode_unlock(inode);
1608 
1609 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1610 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1611 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1612 		return;
1613 
1614 	if (mode & S_ISUID) {
1615 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1616 		bprm->cred->euid = uid;
1617 	}
1618 
1619 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1620 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1621 		bprm->cred->egid = gid;
1622 	}
1623 }
1624 
1625 /*
1626  * Fill the binprm structure from the inode.
1627  * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1628  *
1629  * This may be called multiple times for binary chains (scripts for example).
1630  */
1631 int prepare_binprm(struct linux_binprm *bprm)
1632 {
1633 	int retval;
1634 	loff_t pos = 0;
1635 
1636 	bprm_fill_uid(bprm);
1637 
1638 	/* fill in binprm security blob */
1639 	retval = security_bprm_set_creds(bprm);
1640 	if (retval)
1641 		return retval;
1642 	bprm->called_set_creds = 1;
1643 
1644 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1645 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1646 }
1647 
1648 EXPORT_SYMBOL(prepare_binprm);
1649 
1650 /*
1651  * Arguments are '\0' separated strings found at the location bprm->p
1652  * points to; chop off the first by relocating brpm->p to right after
1653  * the first '\0' encountered.
1654  */
1655 int remove_arg_zero(struct linux_binprm *bprm)
1656 {
1657 	int ret = 0;
1658 	unsigned long offset;
1659 	char *kaddr;
1660 	struct page *page;
1661 
1662 	if (!bprm->argc)
1663 		return 0;
1664 
1665 	do {
1666 		offset = bprm->p & ~PAGE_MASK;
1667 		page = get_arg_page(bprm, bprm->p, 0);
1668 		if (!page) {
1669 			ret = -EFAULT;
1670 			goto out;
1671 		}
1672 		kaddr = kmap_atomic(page);
1673 
1674 		for (; offset < PAGE_SIZE && kaddr[offset];
1675 				offset++, bprm->p++)
1676 			;
1677 
1678 		kunmap_atomic(kaddr);
1679 		put_arg_page(page);
1680 	} while (offset == PAGE_SIZE);
1681 
1682 	bprm->p++;
1683 	bprm->argc--;
1684 	ret = 0;
1685 
1686 out:
1687 	return ret;
1688 }
1689 EXPORT_SYMBOL(remove_arg_zero);
1690 
1691 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1692 /*
1693  * cycle the list of binary formats handler, until one recognizes the image
1694  */
1695 int search_binary_handler(struct linux_binprm *bprm)
1696 {
1697 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1698 	struct linux_binfmt *fmt;
1699 	int retval;
1700 
1701 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1702 	if (bprm->recursion_depth > 5)
1703 		return -ELOOP;
1704 
1705 	retval = security_bprm_check(bprm);
1706 	if (retval)
1707 		return retval;
1708 
1709 	retval = -ENOENT;
1710  retry:
1711 	read_lock(&binfmt_lock);
1712 	list_for_each_entry(fmt, &formats, lh) {
1713 		if (!try_module_get(fmt->module))
1714 			continue;
1715 		read_unlock(&binfmt_lock);
1716 
1717 		bprm->recursion_depth++;
1718 		retval = fmt->load_binary(bprm);
1719 		bprm->recursion_depth--;
1720 
1721 		read_lock(&binfmt_lock);
1722 		put_binfmt(fmt);
1723 		if (retval < 0 && bprm->called_exec_mmap) {
1724 			/* we got to flush_old_exec() and failed after it */
1725 			read_unlock(&binfmt_lock);
1726 			force_sigsegv(SIGSEGV);
1727 			return retval;
1728 		}
1729 		if (retval != -ENOEXEC || !bprm->file) {
1730 			read_unlock(&binfmt_lock);
1731 			return retval;
1732 		}
1733 	}
1734 	read_unlock(&binfmt_lock);
1735 
1736 	if (need_retry) {
1737 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1738 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1739 			return retval;
1740 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1741 			return retval;
1742 		need_retry = false;
1743 		goto retry;
1744 	}
1745 
1746 	return retval;
1747 }
1748 EXPORT_SYMBOL(search_binary_handler);
1749 
1750 static int exec_binprm(struct linux_binprm *bprm)
1751 {
1752 	pid_t old_pid, old_vpid;
1753 	int ret;
1754 
1755 	/* Need to fetch pid before load_binary changes it */
1756 	old_pid = current->pid;
1757 	rcu_read_lock();
1758 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1759 	rcu_read_unlock();
1760 
1761 	ret = search_binary_handler(bprm);
1762 	if (ret >= 0) {
1763 		audit_bprm(bprm);
1764 		trace_sched_process_exec(current, old_pid, bprm);
1765 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1766 		proc_exec_connector(current);
1767 	}
1768 
1769 	return ret;
1770 }
1771 
1772 /*
1773  * sys_execve() executes a new program.
1774  */
1775 static int __do_execve_file(int fd, struct filename *filename,
1776 			    struct user_arg_ptr argv,
1777 			    struct user_arg_ptr envp,
1778 			    int flags, struct file *file)
1779 {
1780 	char *pathbuf = NULL;
1781 	struct linux_binprm *bprm;
1782 	struct files_struct *displaced;
1783 	int retval;
1784 
1785 	if (IS_ERR(filename))
1786 		return PTR_ERR(filename);
1787 
1788 	/*
1789 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1790 	 * set*uid() to execve() because too many poorly written programs
1791 	 * don't check setuid() return code.  Here we additionally recheck
1792 	 * whether NPROC limit is still exceeded.
1793 	 */
1794 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1795 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1796 		retval = -EAGAIN;
1797 		goto out_ret;
1798 	}
1799 
1800 	/* We're below the limit (still or again), so we don't want to make
1801 	 * further execve() calls fail. */
1802 	current->flags &= ~PF_NPROC_EXCEEDED;
1803 
1804 	retval = unshare_files(&displaced);
1805 	if (retval)
1806 		goto out_ret;
1807 
1808 	retval = -ENOMEM;
1809 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1810 	if (!bprm)
1811 		goto out_files;
1812 
1813 	retval = prepare_bprm_creds(bprm);
1814 	if (retval)
1815 		goto out_free;
1816 
1817 	check_unsafe_exec(bprm);
1818 	current->in_execve = 1;
1819 
1820 	if (!file)
1821 		file = do_open_execat(fd, filename, flags);
1822 	retval = PTR_ERR(file);
1823 	if (IS_ERR(file))
1824 		goto out_unmark;
1825 
1826 	sched_exec();
1827 
1828 	bprm->file = file;
1829 	if (!filename) {
1830 		bprm->filename = "none";
1831 	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1832 		bprm->filename = filename->name;
1833 	} else {
1834 		if (filename->name[0] == '\0')
1835 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1836 		else
1837 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1838 					    fd, filename->name);
1839 		if (!pathbuf) {
1840 			retval = -ENOMEM;
1841 			goto out_unmark;
1842 		}
1843 		/*
1844 		 * Record that a name derived from an O_CLOEXEC fd will be
1845 		 * inaccessible after exec. Relies on having exclusive access to
1846 		 * current->files (due to unshare_files above).
1847 		 */
1848 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1849 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1850 		bprm->filename = pathbuf;
1851 	}
1852 	bprm->interp = bprm->filename;
1853 
1854 	retval = bprm_mm_init(bprm);
1855 	if (retval)
1856 		goto out_unmark;
1857 
1858 	retval = prepare_arg_pages(bprm, argv, envp);
1859 	if (retval < 0)
1860 		goto out;
1861 
1862 	retval = prepare_binprm(bprm);
1863 	if (retval < 0)
1864 		goto out;
1865 
1866 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1867 	if (retval < 0)
1868 		goto out;
1869 
1870 	bprm->exec = bprm->p;
1871 	retval = copy_strings(bprm->envc, envp, bprm);
1872 	if (retval < 0)
1873 		goto out;
1874 
1875 	retval = copy_strings(bprm->argc, argv, bprm);
1876 	if (retval < 0)
1877 		goto out;
1878 
1879 	would_dump(bprm, bprm->file);
1880 
1881 	retval = exec_binprm(bprm);
1882 	if (retval < 0)
1883 		goto out;
1884 
1885 	/* execve succeeded */
1886 	current->fs->in_exec = 0;
1887 	current->in_execve = 0;
1888 	rseq_execve(current);
1889 	acct_update_integrals(current);
1890 	task_numa_free(current, false);
1891 	free_bprm(bprm);
1892 	kfree(pathbuf);
1893 	if (filename)
1894 		putname(filename);
1895 	if (displaced)
1896 		put_files_struct(displaced);
1897 	return retval;
1898 
1899 out:
1900 	if (bprm->mm) {
1901 		acct_arg_size(bprm, 0);
1902 		mmput(bprm->mm);
1903 	}
1904 
1905 out_unmark:
1906 	current->fs->in_exec = 0;
1907 	current->in_execve = 0;
1908 
1909 out_free:
1910 	free_bprm(bprm);
1911 	kfree(pathbuf);
1912 
1913 out_files:
1914 	if (displaced)
1915 		reset_files_struct(displaced);
1916 out_ret:
1917 	if (filename)
1918 		putname(filename);
1919 	return retval;
1920 }
1921 
1922 static int do_execveat_common(int fd, struct filename *filename,
1923 			      struct user_arg_ptr argv,
1924 			      struct user_arg_ptr envp,
1925 			      int flags)
1926 {
1927 	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1928 }
1929 
1930 int do_execve_file(struct file *file, void *__argv, void *__envp)
1931 {
1932 	struct user_arg_ptr argv = { .ptr.native = __argv };
1933 	struct user_arg_ptr envp = { .ptr.native = __envp };
1934 
1935 	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1936 }
1937 
1938 int do_execve(struct filename *filename,
1939 	const char __user *const __user *__argv,
1940 	const char __user *const __user *__envp)
1941 {
1942 	struct user_arg_ptr argv = { .ptr.native = __argv };
1943 	struct user_arg_ptr envp = { .ptr.native = __envp };
1944 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1945 }
1946 
1947 int do_execveat(int fd, struct filename *filename,
1948 		const char __user *const __user *__argv,
1949 		const char __user *const __user *__envp,
1950 		int flags)
1951 {
1952 	struct user_arg_ptr argv = { .ptr.native = __argv };
1953 	struct user_arg_ptr envp = { .ptr.native = __envp };
1954 
1955 	return do_execveat_common(fd, filename, argv, envp, flags);
1956 }
1957 
1958 #ifdef CONFIG_COMPAT
1959 static int compat_do_execve(struct filename *filename,
1960 	const compat_uptr_t __user *__argv,
1961 	const compat_uptr_t __user *__envp)
1962 {
1963 	struct user_arg_ptr argv = {
1964 		.is_compat = true,
1965 		.ptr.compat = __argv,
1966 	};
1967 	struct user_arg_ptr envp = {
1968 		.is_compat = true,
1969 		.ptr.compat = __envp,
1970 	};
1971 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1972 }
1973 
1974 static int compat_do_execveat(int fd, struct filename *filename,
1975 			      const compat_uptr_t __user *__argv,
1976 			      const compat_uptr_t __user *__envp,
1977 			      int flags)
1978 {
1979 	struct user_arg_ptr argv = {
1980 		.is_compat = true,
1981 		.ptr.compat = __argv,
1982 	};
1983 	struct user_arg_ptr envp = {
1984 		.is_compat = true,
1985 		.ptr.compat = __envp,
1986 	};
1987 	return do_execveat_common(fd, filename, argv, envp, flags);
1988 }
1989 #endif
1990 
1991 void set_binfmt(struct linux_binfmt *new)
1992 {
1993 	struct mm_struct *mm = current->mm;
1994 
1995 	if (mm->binfmt)
1996 		module_put(mm->binfmt->module);
1997 
1998 	mm->binfmt = new;
1999 	if (new)
2000 		__module_get(new->module);
2001 }
2002 EXPORT_SYMBOL(set_binfmt);
2003 
2004 /*
2005  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2006  */
2007 void set_dumpable(struct mm_struct *mm, int value)
2008 {
2009 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2010 		return;
2011 
2012 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2013 }
2014 
2015 SYSCALL_DEFINE3(execve,
2016 		const char __user *, filename,
2017 		const char __user *const __user *, argv,
2018 		const char __user *const __user *, envp)
2019 {
2020 	return do_execve(getname(filename), argv, envp);
2021 }
2022 
2023 SYSCALL_DEFINE5(execveat,
2024 		int, fd, const char __user *, filename,
2025 		const char __user *const __user *, argv,
2026 		const char __user *const __user *, envp,
2027 		int, flags)
2028 {
2029 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2030 
2031 	return do_execveat(fd,
2032 			   getname_flags(filename, lookup_flags, NULL),
2033 			   argv, envp, flags);
2034 }
2035 
2036 #ifdef CONFIG_COMPAT
2037 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2038 	const compat_uptr_t __user *, argv,
2039 	const compat_uptr_t __user *, envp)
2040 {
2041 	return compat_do_execve(getname(filename), argv, envp);
2042 }
2043 
2044 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2045 		       const char __user *, filename,
2046 		       const compat_uptr_t __user *, argv,
2047 		       const compat_uptr_t __user *, envp,
2048 		       int,  flags)
2049 {
2050 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2051 
2052 	return compat_do_execveat(fd,
2053 				  getname_flags(filename, lookup_flags, NULL),
2054 				  argv, envp, flags);
2055 }
2056 #endif
2057