1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/mm.h> 30 #include <linux/vmacache.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/tracehook.h> 59 #include <linux/kmod.h> 60 #include <linux/fsnotify.h> 61 #include <linux/fs_struct.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 int suid_dumpable = 0; 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 void __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 BUG_ON(!fmt); 83 if (WARN_ON(!fmt->load_binary)) 84 return; 85 write_lock(&binfmt_lock); 86 insert ? list_add(&fmt->lh, &formats) : 87 list_add_tail(&fmt->lh, &formats); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 bool path_noexec(const struct path *path) 108 { 109 return (path->mnt->mnt_flags & MNT_NOEXEC) || 110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 111 } 112 113 #ifdef CONFIG_USELIB 114 /* 115 * Note that a shared library must be both readable and executable due to 116 * security reasons. 117 * 118 * Also note that we take the address to load from from the file itself. 119 */ 120 SYSCALL_DEFINE1(uselib, const char __user *, library) 121 { 122 struct linux_binfmt *fmt; 123 struct file *file; 124 struct filename *tmp = getname(library); 125 int error = PTR_ERR(tmp); 126 static const struct open_flags uselib_flags = { 127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 128 .acc_mode = MAY_READ | MAY_EXEC, 129 .intent = LOOKUP_OPEN, 130 .lookup_flags = LOOKUP_FOLLOW, 131 }; 132 133 if (IS_ERR(tmp)) 134 goto out; 135 136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 137 putname(tmp); 138 error = PTR_ERR(file); 139 if (IS_ERR(file)) 140 goto out; 141 142 error = -EINVAL; 143 if (!S_ISREG(file_inode(file)->i_mode)) 144 goto exit; 145 146 error = -EACCES; 147 if (path_noexec(&file->f_path)) 148 goto exit; 149 150 fsnotify_open(file); 151 152 error = -ENOEXEC; 153 154 read_lock(&binfmt_lock); 155 list_for_each_entry(fmt, &formats, lh) { 156 if (!fmt->load_shlib) 157 continue; 158 if (!try_module_get(fmt->module)) 159 continue; 160 read_unlock(&binfmt_lock); 161 error = fmt->load_shlib(file); 162 read_lock(&binfmt_lock); 163 put_binfmt(fmt); 164 if (error != -ENOEXEC) 165 break; 166 } 167 read_unlock(&binfmt_lock); 168 exit: 169 fput(file); 170 out: 171 return error; 172 } 173 #endif /* #ifdef CONFIG_USELIB */ 174 175 #ifdef CONFIG_MMU 176 /* 177 * The nascent bprm->mm is not visible until exec_mmap() but it can 178 * use a lot of memory, account these pages in current->mm temporary 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 180 * change the counter back via acct_arg_size(0). 181 */ 182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 183 { 184 struct mm_struct *mm = current->mm; 185 long diff = (long)(pages - bprm->vma_pages); 186 187 if (!mm || !diff) 188 return; 189 190 bprm->vma_pages = pages; 191 add_mm_counter(mm, MM_ANONPAGES, diff); 192 } 193 194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 195 int write) 196 { 197 struct page *page; 198 int ret; 199 unsigned int gup_flags = FOLL_FORCE; 200 201 #ifdef CONFIG_STACK_GROWSUP 202 if (write) { 203 ret = expand_downwards(bprm->vma, pos); 204 if (ret < 0) 205 return NULL; 206 } 207 #endif 208 209 if (write) 210 gup_flags |= FOLL_WRITE; 211 212 /* 213 * We are doing an exec(). 'current' is the process 214 * doing the exec and bprm->mm is the new process's mm. 215 */ 216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 217 &page, NULL, NULL); 218 if (ret <= 0) 219 return NULL; 220 221 if (write) 222 acct_arg_size(bprm, vma_pages(bprm->vma)); 223 224 return page; 225 } 226 227 static void put_arg_page(struct page *page) 228 { 229 put_page(page); 230 } 231 232 static void free_arg_pages(struct linux_binprm *bprm) 233 { 234 } 235 236 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 237 struct page *page) 238 { 239 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 240 } 241 242 static int __bprm_mm_init(struct linux_binprm *bprm) 243 { 244 int err; 245 struct vm_area_struct *vma = NULL; 246 struct mm_struct *mm = bprm->mm; 247 248 bprm->vma = vma = vm_area_alloc(mm); 249 if (!vma) 250 return -ENOMEM; 251 vma_set_anonymous(vma); 252 253 if (down_write_killable(&mm->mmap_sem)) { 254 err = -EINTR; 255 goto err_free; 256 } 257 258 /* 259 * Place the stack at the largest stack address the architecture 260 * supports. Later, we'll move this to an appropriate place. We don't 261 * use STACK_TOP because that can depend on attributes which aren't 262 * configured yet. 263 */ 264 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 265 vma->vm_end = STACK_TOP_MAX; 266 vma->vm_start = vma->vm_end - PAGE_SIZE; 267 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 268 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 269 270 err = insert_vm_struct(mm, vma); 271 if (err) 272 goto err; 273 274 mm->stack_vm = mm->total_vm = 1; 275 up_write(&mm->mmap_sem); 276 bprm->p = vma->vm_end - sizeof(void *); 277 return 0; 278 err: 279 up_write(&mm->mmap_sem); 280 err_free: 281 bprm->vma = NULL; 282 vm_area_free(vma); 283 return err; 284 } 285 286 static bool valid_arg_len(struct linux_binprm *bprm, long len) 287 { 288 return len <= MAX_ARG_STRLEN; 289 } 290 291 #else 292 293 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 294 { 295 } 296 297 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 298 int write) 299 { 300 struct page *page; 301 302 page = bprm->page[pos / PAGE_SIZE]; 303 if (!page && write) { 304 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 305 if (!page) 306 return NULL; 307 bprm->page[pos / PAGE_SIZE] = page; 308 } 309 310 return page; 311 } 312 313 static void put_arg_page(struct page *page) 314 { 315 } 316 317 static void free_arg_page(struct linux_binprm *bprm, int i) 318 { 319 if (bprm->page[i]) { 320 __free_page(bprm->page[i]); 321 bprm->page[i] = NULL; 322 } 323 } 324 325 static void free_arg_pages(struct linux_binprm *bprm) 326 { 327 int i; 328 329 for (i = 0; i < MAX_ARG_PAGES; i++) 330 free_arg_page(bprm, i); 331 } 332 333 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 334 struct page *page) 335 { 336 } 337 338 static int __bprm_mm_init(struct linux_binprm *bprm) 339 { 340 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 341 return 0; 342 } 343 344 static bool valid_arg_len(struct linux_binprm *bprm, long len) 345 { 346 return len <= bprm->p; 347 } 348 349 #endif /* CONFIG_MMU */ 350 351 /* 352 * Create a new mm_struct and populate it with a temporary stack 353 * vm_area_struct. We don't have enough context at this point to set the stack 354 * flags, permissions, and offset, so we use temporary values. We'll update 355 * them later in setup_arg_pages(). 356 */ 357 static int bprm_mm_init(struct linux_binprm *bprm) 358 { 359 int err; 360 struct mm_struct *mm = NULL; 361 362 bprm->mm = mm = mm_alloc(); 363 err = -ENOMEM; 364 if (!mm) 365 goto err; 366 367 /* Save current stack limit for all calculations made during exec. */ 368 task_lock(current->group_leader); 369 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 370 task_unlock(current->group_leader); 371 372 err = __bprm_mm_init(bprm); 373 if (err) 374 goto err; 375 376 return 0; 377 378 err: 379 if (mm) { 380 bprm->mm = NULL; 381 mmdrop(mm); 382 } 383 384 return err; 385 } 386 387 struct user_arg_ptr { 388 #ifdef CONFIG_COMPAT 389 bool is_compat; 390 #endif 391 union { 392 const char __user *const __user *native; 393 #ifdef CONFIG_COMPAT 394 const compat_uptr_t __user *compat; 395 #endif 396 } ptr; 397 }; 398 399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 400 { 401 const char __user *native; 402 403 #ifdef CONFIG_COMPAT 404 if (unlikely(argv.is_compat)) { 405 compat_uptr_t compat; 406 407 if (get_user(compat, argv.ptr.compat + nr)) 408 return ERR_PTR(-EFAULT); 409 410 return compat_ptr(compat); 411 } 412 #endif 413 414 if (get_user(native, argv.ptr.native + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return native; 418 } 419 420 /* 421 * count() counts the number of strings in array ARGV. 422 */ 423 static int count(struct user_arg_ptr argv, int max) 424 { 425 int i = 0; 426 427 if (argv.ptr.native != NULL) { 428 for (;;) { 429 const char __user *p = get_user_arg_ptr(argv, i); 430 431 if (!p) 432 break; 433 434 if (IS_ERR(p)) 435 return -EFAULT; 436 437 if (i >= max) 438 return -E2BIG; 439 ++i; 440 441 if (fatal_signal_pending(current)) 442 return -ERESTARTNOHAND; 443 cond_resched(); 444 } 445 } 446 return i; 447 } 448 449 static int prepare_arg_pages(struct linux_binprm *bprm, 450 struct user_arg_ptr argv, struct user_arg_ptr envp) 451 { 452 unsigned long limit, ptr_size; 453 454 bprm->argc = count(argv, MAX_ARG_STRINGS); 455 if (bprm->argc < 0) 456 return bprm->argc; 457 458 bprm->envc = count(envp, MAX_ARG_STRINGS); 459 if (bprm->envc < 0) 460 return bprm->envc; 461 462 /* 463 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 464 * (whichever is smaller) for the argv+env strings. 465 * This ensures that: 466 * - the remaining binfmt code will not run out of stack space, 467 * - the program will have a reasonable amount of stack left 468 * to work from. 469 */ 470 limit = _STK_LIM / 4 * 3; 471 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 472 /* 473 * We've historically supported up to 32 pages (ARG_MAX) 474 * of argument strings even with small stacks 475 */ 476 limit = max_t(unsigned long, limit, ARG_MAX); 477 /* 478 * We must account for the size of all the argv and envp pointers to 479 * the argv and envp strings, since they will also take up space in 480 * the stack. They aren't stored until much later when we can't 481 * signal to the parent that the child has run out of stack space. 482 * Instead, calculate it here so it's possible to fail gracefully. 483 */ 484 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 485 if (limit <= ptr_size) 486 return -E2BIG; 487 limit -= ptr_size; 488 489 bprm->argmin = bprm->p - limit; 490 return 0; 491 } 492 493 /* 494 * 'copy_strings()' copies argument/environment strings from the old 495 * processes's memory to the new process's stack. The call to get_user_pages() 496 * ensures the destination page is created and not swapped out. 497 */ 498 static int copy_strings(int argc, struct user_arg_ptr argv, 499 struct linux_binprm *bprm) 500 { 501 struct page *kmapped_page = NULL; 502 char *kaddr = NULL; 503 unsigned long kpos = 0; 504 int ret; 505 506 while (argc-- > 0) { 507 const char __user *str; 508 int len; 509 unsigned long pos; 510 511 ret = -EFAULT; 512 str = get_user_arg_ptr(argv, argc); 513 if (IS_ERR(str)) 514 goto out; 515 516 len = strnlen_user(str, MAX_ARG_STRLEN); 517 if (!len) 518 goto out; 519 520 ret = -E2BIG; 521 if (!valid_arg_len(bprm, len)) 522 goto out; 523 524 /* We're going to work our way backwords. */ 525 pos = bprm->p; 526 str += len; 527 bprm->p -= len; 528 #ifdef CONFIG_MMU 529 if (bprm->p < bprm->argmin) 530 goto out; 531 #endif 532 533 while (len > 0) { 534 int offset, bytes_to_copy; 535 536 if (fatal_signal_pending(current)) { 537 ret = -ERESTARTNOHAND; 538 goto out; 539 } 540 cond_resched(); 541 542 offset = pos % PAGE_SIZE; 543 if (offset == 0) 544 offset = PAGE_SIZE; 545 546 bytes_to_copy = offset; 547 if (bytes_to_copy > len) 548 bytes_to_copy = len; 549 550 offset -= bytes_to_copy; 551 pos -= bytes_to_copy; 552 str -= bytes_to_copy; 553 len -= bytes_to_copy; 554 555 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 556 struct page *page; 557 558 page = get_arg_page(bprm, pos, 1); 559 if (!page) { 560 ret = -E2BIG; 561 goto out; 562 } 563 564 if (kmapped_page) { 565 flush_kernel_dcache_page(kmapped_page); 566 kunmap(kmapped_page); 567 put_arg_page(kmapped_page); 568 } 569 kmapped_page = page; 570 kaddr = kmap(kmapped_page); 571 kpos = pos & PAGE_MASK; 572 flush_arg_page(bprm, kpos, kmapped_page); 573 } 574 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 575 ret = -EFAULT; 576 goto out; 577 } 578 } 579 } 580 ret = 0; 581 out: 582 if (kmapped_page) { 583 flush_kernel_dcache_page(kmapped_page); 584 kunmap(kmapped_page); 585 put_arg_page(kmapped_page); 586 } 587 return ret; 588 } 589 590 /* 591 * Like copy_strings, but get argv and its values from kernel memory. 592 */ 593 int copy_strings_kernel(int argc, const char *const *__argv, 594 struct linux_binprm *bprm) 595 { 596 int r; 597 mm_segment_t oldfs = get_fs(); 598 struct user_arg_ptr argv = { 599 .ptr.native = (const char __user *const __user *)__argv, 600 }; 601 602 set_fs(KERNEL_DS); 603 r = copy_strings(argc, argv, bprm); 604 set_fs(oldfs); 605 606 return r; 607 } 608 EXPORT_SYMBOL(copy_strings_kernel); 609 610 #ifdef CONFIG_MMU 611 612 /* 613 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 614 * the binfmt code determines where the new stack should reside, we shift it to 615 * its final location. The process proceeds as follows: 616 * 617 * 1) Use shift to calculate the new vma endpoints. 618 * 2) Extend vma to cover both the old and new ranges. This ensures the 619 * arguments passed to subsequent functions are consistent. 620 * 3) Move vma's page tables to the new range. 621 * 4) Free up any cleared pgd range. 622 * 5) Shrink the vma to cover only the new range. 623 */ 624 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 625 { 626 struct mm_struct *mm = vma->vm_mm; 627 unsigned long old_start = vma->vm_start; 628 unsigned long old_end = vma->vm_end; 629 unsigned long length = old_end - old_start; 630 unsigned long new_start = old_start - shift; 631 unsigned long new_end = old_end - shift; 632 struct mmu_gather tlb; 633 634 BUG_ON(new_start > new_end); 635 636 /* 637 * ensure there are no vmas between where we want to go 638 * and where we are 639 */ 640 if (vma != find_vma(mm, new_start)) 641 return -EFAULT; 642 643 /* 644 * cover the whole range: [new_start, old_end) 645 */ 646 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 647 return -ENOMEM; 648 649 /* 650 * move the page tables downwards, on failure we rely on 651 * process cleanup to remove whatever mess we made. 652 */ 653 if (length != move_page_tables(vma, old_start, 654 vma, new_start, length, false)) 655 return -ENOMEM; 656 657 lru_add_drain(); 658 tlb_gather_mmu(&tlb, mm, old_start, old_end); 659 if (new_end > old_start) { 660 /* 661 * when the old and new regions overlap clear from new_end. 662 */ 663 free_pgd_range(&tlb, new_end, old_end, new_end, 664 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 665 } else { 666 /* 667 * otherwise, clean from old_start; this is done to not touch 668 * the address space in [new_end, old_start) some architectures 669 * have constraints on va-space that make this illegal (IA64) - 670 * for the others its just a little faster. 671 */ 672 free_pgd_range(&tlb, old_start, old_end, new_end, 673 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 674 } 675 tlb_finish_mmu(&tlb, old_start, old_end); 676 677 /* 678 * Shrink the vma to just the new range. Always succeeds. 679 */ 680 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 681 682 return 0; 683 } 684 685 /* 686 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 687 * the stack is optionally relocated, and some extra space is added. 688 */ 689 int setup_arg_pages(struct linux_binprm *bprm, 690 unsigned long stack_top, 691 int executable_stack) 692 { 693 unsigned long ret; 694 unsigned long stack_shift; 695 struct mm_struct *mm = current->mm; 696 struct vm_area_struct *vma = bprm->vma; 697 struct vm_area_struct *prev = NULL; 698 unsigned long vm_flags; 699 unsigned long stack_base; 700 unsigned long stack_size; 701 unsigned long stack_expand; 702 unsigned long rlim_stack; 703 704 #ifdef CONFIG_STACK_GROWSUP 705 /* Limit stack size */ 706 stack_base = bprm->rlim_stack.rlim_max; 707 if (stack_base > STACK_SIZE_MAX) 708 stack_base = STACK_SIZE_MAX; 709 710 /* Add space for stack randomization. */ 711 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 712 713 /* Make sure we didn't let the argument array grow too large. */ 714 if (vma->vm_end - vma->vm_start > stack_base) 715 return -ENOMEM; 716 717 stack_base = PAGE_ALIGN(stack_top - stack_base); 718 719 stack_shift = vma->vm_start - stack_base; 720 mm->arg_start = bprm->p - stack_shift; 721 bprm->p = vma->vm_end - stack_shift; 722 #else 723 stack_top = arch_align_stack(stack_top); 724 stack_top = PAGE_ALIGN(stack_top); 725 726 if (unlikely(stack_top < mmap_min_addr) || 727 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 728 return -ENOMEM; 729 730 stack_shift = vma->vm_end - stack_top; 731 732 bprm->p -= stack_shift; 733 mm->arg_start = bprm->p; 734 #endif 735 736 if (bprm->loader) 737 bprm->loader -= stack_shift; 738 bprm->exec -= stack_shift; 739 740 if (down_write_killable(&mm->mmap_sem)) 741 return -EINTR; 742 743 vm_flags = VM_STACK_FLAGS; 744 745 /* 746 * Adjust stack execute permissions; explicitly enable for 747 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 748 * (arch default) otherwise. 749 */ 750 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 751 vm_flags |= VM_EXEC; 752 else if (executable_stack == EXSTACK_DISABLE_X) 753 vm_flags &= ~VM_EXEC; 754 vm_flags |= mm->def_flags; 755 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 756 757 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 758 vm_flags); 759 if (ret) 760 goto out_unlock; 761 BUG_ON(prev != vma); 762 763 if (unlikely(vm_flags & VM_EXEC)) { 764 pr_warn_once("process '%pD4' started with executable stack\n", 765 bprm->file); 766 } 767 768 /* Move stack pages down in memory. */ 769 if (stack_shift) { 770 ret = shift_arg_pages(vma, stack_shift); 771 if (ret) 772 goto out_unlock; 773 } 774 775 /* mprotect_fixup is overkill to remove the temporary stack flags */ 776 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 777 778 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 779 stack_size = vma->vm_end - vma->vm_start; 780 /* 781 * Align this down to a page boundary as expand_stack 782 * will align it up. 783 */ 784 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 785 #ifdef CONFIG_STACK_GROWSUP 786 if (stack_size + stack_expand > rlim_stack) 787 stack_base = vma->vm_start + rlim_stack; 788 else 789 stack_base = vma->vm_end + stack_expand; 790 #else 791 if (stack_size + stack_expand > rlim_stack) 792 stack_base = vma->vm_end - rlim_stack; 793 else 794 stack_base = vma->vm_start - stack_expand; 795 #endif 796 current->mm->start_stack = bprm->p; 797 ret = expand_stack(vma, stack_base); 798 if (ret) 799 ret = -EFAULT; 800 801 out_unlock: 802 up_write(&mm->mmap_sem); 803 return ret; 804 } 805 EXPORT_SYMBOL(setup_arg_pages); 806 807 #else 808 809 /* 810 * Transfer the program arguments and environment from the holding pages 811 * onto the stack. The provided stack pointer is adjusted accordingly. 812 */ 813 int transfer_args_to_stack(struct linux_binprm *bprm, 814 unsigned long *sp_location) 815 { 816 unsigned long index, stop, sp; 817 int ret = 0; 818 819 stop = bprm->p >> PAGE_SHIFT; 820 sp = *sp_location; 821 822 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 823 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 824 char *src = kmap(bprm->page[index]) + offset; 825 sp -= PAGE_SIZE - offset; 826 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 827 ret = -EFAULT; 828 kunmap(bprm->page[index]); 829 if (ret) 830 goto out; 831 } 832 833 *sp_location = sp; 834 835 out: 836 return ret; 837 } 838 EXPORT_SYMBOL(transfer_args_to_stack); 839 840 #endif /* CONFIG_MMU */ 841 842 static struct file *do_open_execat(int fd, struct filename *name, int flags) 843 { 844 struct file *file; 845 int err; 846 struct open_flags open_exec_flags = { 847 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 848 .acc_mode = MAY_EXEC, 849 .intent = LOOKUP_OPEN, 850 .lookup_flags = LOOKUP_FOLLOW, 851 }; 852 853 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 854 return ERR_PTR(-EINVAL); 855 if (flags & AT_SYMLINK_NOFOLLOW) 856 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 857 if (flags & AT_EMPTY_PATH) 858 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 859 860 file = do_filp_open(fd, name, &open_exec_flags); 861 if (IS_ERR(file)) 862 goto out; 863 864 err = -EACCES; 865 if (!S_ISREG(file_inode(file)->i_mode)) 866 goto exit; 867 868 if (path_noexec(&file->f_path)) 869 goto exit; 870 871 err = deny_write_access(file); 872 if (err) 873 goto exit; 874 875 if (name->name[0] != '\0') 876 fsnotify_open(file); 877 878 out: 879 return file; 880 881 exit: 882 fput(file); 883 return ERR_PTR(err); 884 } 885 886 struct file *open_exec(const char *name) 887 { 888 struct filename *filename = getname_kernel(name); 889 struct file *f = ERR_CAST(filename); 890 891 if (!IS_ERR(filename)) { 892 f = do_open_execat(AT_FDCWD, filename, 0); 893 putname(filename); 894 } 895 return f; 896 } 897 EXPORT_SYMBOL(open_exec); 898 899 int kernel_read_file(struct file *file, void **buf, loff_t *size, 900 loff_t max_size, enum kernel_read_file_id id) 901 { 902 loff_t i_size, pos; 903 ssize_t bytes = 0; 904 int ret; 905 906 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 907 return -EINVAL; 908 909 ret = deny_write_access(file); 910 if (ret) 911 return ret; 912 913 ret = security_kernel_read_file(file, id); 914 if (ret) 915 goto out; 916 917 i_size = i_size_read(file_inode(file)); 918 if (i_size <= 0) { 919 ret = -EINVAL; 920 goto out; 921 } 922 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 923 ret = -EFBIG; 924 goto out; 925 } 926 927 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 928 *buf = vmalloc(i_size); 929 if (!*buf) { 930 ret = -ENOMEM; 931 goto out; 932 } 933 934 pos = 0; 935 while (pos < i_size) { 936 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 937 if (bytes < 0) { 938 ret = bytes; 939 goto out_free; 940 } 941 942 if (bytes == 0) 943 break; 944 } 945 946 if (pos != i_size) { 947 ret = -EIO; 948 goto out_free; 949 } 950 951 ret = security_kernel_post_read_file(file, *buf, i_size, id); 952 if (!ret) 953 *size = pos; 954 955 out_free: 956 if (ret < 0) { 957 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 958 vfree(*buf); 959 *buf = NULL; 960 } 961 } 962 963 out: 964 allow_write_access(file); 965 return ret; 966 } 967 EXPORT_SYMBOL_GPL(kernel_read_file); 968 969 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 970 loff_t max_size, enum kernel_read_file_id id) 971 { 972 struct file *file; 973 int ret; 974 975 if (!path || !*path) 976 return -EINVAL; 977 978 file = filp_open(path, O_RDONLY, 0); 979 if (IS_ERR(file)) 980 return PTR_ERR(file); 981 982 ret = kernel_read_file(file, buf, size, max_size, id); 983 fput(file); 984 return ret; 985 } 986 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 987 988 int kernel_read_file_from_path_initns(const char *path, void **buf, 989 loff_t *size, loff_t max_size, 990 enum kernel_read_file_id id) 991 { 992 struct file *file; 993 struct path root; 994 int ret; 995 996 if (!path || !*path) 997 return -EINVAL; 998 999 task_lock(&init_task); 1000 get_fs_root(init_task.fs, &root); 1001 task_unlock(&init_task); 1002 1003 file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0); 1004 path_put(&root); 1005 if (IS_ERR(file)) 1006 return PTR_ERR(file); 1007 1008 ret = kernel_read_file(file, buf, size, max_size, id); 1009 fput(file); 1010 return ret; 1011 } 1012 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns); 1013 1014 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 1015 enum kernel_read_file_id id) 1016 { 1017 struct fd f = fdget(fd); 1018 int ret = -EBADF; 1019 1020 if (!f.file) 1021 goto out; 1022 1023 ret = kernel_read_file(f.file, buf, size, max_size, id); 1024 out: 1025 fdput(f); 1026 return ret; 1027 } 1028 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 1029 1030 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 1031 { 1032 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1033 if (res > 0) 1034 flush_icache_range(addr, addr + len); 1035 return res; 1036 } 1037 EXPORT_SYMBOL(read_code); 1038 1039 /* 1040 * Maps the mm_struct mm into the current task struct. 1041 * On success, this function returns with the mutex 1042 * exec_update_mutex locked. 1043 */ 1044 static int exec_mmap(struct mm_struct *mm) 1045 { 1046 struct task_struct *tsk; 1047 struct mm_struct *old_mm, *active_mm; 1048 int ret; 1049 1050 /* Notify parent that we're no longer interested in the old VM */ 1051 tsk = current; 1052 old_mm = current->mm; 1053 exec_mm_release(tsk, old_mm); 1054 1055 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 1056 if (ret) 1057 return ret; 1058 1059 if (old_mm) { 1060 sync_mm_rss(old_mm); 1061 /* 1062 * Make sure that if there is a core dump in progress 1063 * for the old mm, we get out and die instead of going 1064 * through with the exec. We must hold mmap_sem around 1065 * checking core_state and changing tsk->mm. 1066 */ 1067 down_read(&old_mm->mmap_sem); 1068 if (unlikely(old_mm->core_state)) { 1069 up_read(&old_mm->mmap_sem); 1070 mutex_unlock(&tsk->signal->exec_update_mutex); 1071 return -EINTR; 1072 } 1073 } 1074 1075 task_lock(tsk); 1076 active_mm = tsk->active_mm; 1077 membarrier_exec_mmap(mm); 1078 tsk->mm = mm; 1079 tsk->active_mm = mm; 1080 activate_mm(active_mm, mm); 1081 tsk->mm->vmacache_seqnum = 0; 1082 vmacache_flush(tsk); 1083 task_unlock(tsk); 1084 if (old_mm) { 1085 up_read(&old_mm->mmap_sem); 1086 BUG_ON(active_mm != old_mm); 1087 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1088 mm_update_next_owner(old_mm); 1089 mmput(old_mm); 1090 return 0; 1091 } 1092 mmdrop(active_mm); 1093 return 0; 1094 } 1095 1096 /* 1097 * This function makes sure the current process has its own signal table, 1098 * so that flush_signal_handlers can later reset the handlers without 1099 * disturbing other processes. (Other processes might share the signal 1100 * table via the CLONE_SIGHAND option to clone().) 1101 */ 1102 static int de_thread(struct task_struct *tsk) 1103 { 1104 struct signal_struct *sig = tsk->signal; 1105 struct sighand_struct *oldsighand = tsk->sighand; 1106 spinlock_t *lock = &oldsighand->siglock; 1107 1108 if (thread_group_empty(tsk)) 1109 goto no_thread_group; 1110 1111 /* 1112 * Kill all other threads in the thread group. 1113 */ 1114 spin_lock_irq(lock); 1115 if (signal_group_exit(sig)) { 1116 /* 1117 * Another group action in progress, just 1118 * return so that the signal is processed. 1119 */ 1120 spin_unlock_irq(lock); 1121 return -EAGAIN; 1122 } 1123 1124 sig->group_exit_task = tsk; 1125 sig->notify_count = zap_other_threads(tsk); 1126 if (!thread_group_leader(tsk)) 1127 sig->notify_count--; 1128 1129 while (sig->notify_count) { 1130 __set_current_state(TASK_KILLABLE); 1131 spin_unlock_irq(lock); 1132 schedule(); 1133 if (__fatal_signal_pending(tsk)) 1134 goto killed; 1135 spin_lock_irq(lock); 1136 } 1137 spin_unlock_irq(lock); 1138 1139 /* 1140 * At this point all other threads have exited, all we have to 1141 * do is to wait for the thread group leader to become inactive, 1142 * and to assume its PID: 1143 */ 1144 if (!thread_group_leader(tsk)) { 1145 struct task_struct *leader = tsk->group_leader; 1146 1147 for (;;) { 1148 cgroup_threadgroup_change_begin(tsk); 1149 write_lock_irq(&tasklist_lock); 1150 /* 1151 * Do this under tasklist_lock to ensure that 1152 * exit_notify() can't miss ->group_exit_task 1153 */ 1154 sig->notify_count = -1; 1155 if (likely(leader->exit_state)) 1156 break; 1157 __set_current_state(TASK_KILLABLE); 1158 write_unlock_irq(&tasklist_lock); 1159 cgroup_threadgroup_change_end(tsk); 1160 schedule(); 1161 if (__fatal_signal_pending(tsk)) 1162 goto killed; 1163 } 1164 1165 /* 1166 * The only record we have of the real-time age of a 1167 * process, regardless of execs it's done, is start_time. 1168 * All the past CPU time is accumulated in signal_struct 1169 * from sister threads now dead. But in this non-leader 1170 * exec, nothing survives from the original leader thread, 1171 * whose birth marks the true age of this process now. 1172 * When we take on its identity by switching to its PID, we 1173 * also take its birthdate (always earlier than our own). 1174 */ 1175 tsk->start_time = leader->start_time; 1176 tsk->start_boottime = leader->start_boottime; 1177 1178 BUG_ON(!same_thread_group(leader, tsk)); 1179 BUG_ON(has_group_leader_pid(tsk)); 1180 /* 1181 * An exec() starts a new thread group with the 1182 * TGID of the previous thread group. Rehash the 1183 * two threads with a switched PID, and release 1184 * the former thread group leader: 1185 */ 1186 1187 /* Become a process group leader with the old leader's pid. 1188 * The old leader becomes a thread of the this thread group. 1189 * Note: The old leader also uses this pid until release_task 1190 * is called. Odd but simple and correct. 1191 */ 1192 tsk->pid = leader->pid; 1193 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1194 transfer_pid(leader, tsk, PIDTYPE_TGID); 1195 transfer_pid(leader, tsk, PIDTYPE_PGID); 1196 transfer_pid(leader, tsk, PIDTYPE_SID); 1197 1198 list_replace_rcu(&leader->tasks, &tsk->tasks); 1199 list_replace_init(&leader->sibling, &tsk->sibling); 1200 1201 tsk->group_leader = tsk; 1202 leader->group_leader = tsk; 1203 1204 tsk->exit_signal = SIGCHLD; 1205 leader->exit_signal = -1; 1206 1207 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1208 leader->exit_state = EXIT_DEAD; 1209 1210 /* 1211 * We are going to release_task()->ptrace_unlink() silently, 1212 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1213 * the tracer wont't block again waiting for this thread. 1214 */ 1215 if (unlikely(leader->ptrace)) 1216 __wake_up_parent(leader, leader->parent); 1217 write_unlock_irq(&tasklist_lock); 1218 cgroup_threadgroup_change_end(tsk); 1219 1220 release_task(leader); 1221 } 1222 1223 sig->group_exit_task = NULL; 1224 sig->notify_count = 0; 1225 1226 no_thread_group: 1227 /* we have changed execution domain */ 1228 tsk->exit_signal = SIGCHLD; 1229 1230 BUG_ON(!thread_group_leader(tsk)); 1231 return 0; 1232 1233 killed: 1234 /* protects against exit_notify() and __exit_signal() */ 1235 read_lock(&tasklist_lock); 1236 sig->group_exit_task = NULL; 1237 sig->notify_count = 0; 1238 read_unlock(&tasklist_lock); 1239 return -EAGAIN; 1240 } 1241 1242 1243 static int unshare_sighand(struct task_struct *me) 1244 { 1245 struct sighand_struct *oldsighand = me->sighand; 1246 1247 if (refcount_read(&oldsighand->count) != 1) { 1248 struct sighand_struct *newsighand; 1249 /* 1250 * This ->sighand is shared with the CLONE_SIGHAND 1251 * but not CLONE_THREAD task, switch to the new one. 1252 */ 1253 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1254 if (!newsighand) 1255 return -ENOMEM; 1256 1257 refcount_set(&newsighand->count, 1); 1258 memcpy(newsighand->action, oldsighand->action, 1259 sizeof(newsighand->action)); 1260 1261 write_lock_irq(&tasklist_lock); 1262 spin_lock(&oldsighand->siglock); 1263 rcu_assign_pointer(me->sighand, newsighand); 1264 spin_unlock(&oldsighand->siglock); 1265 write_unlock_irq(&tasklist_lock); 1266 1267 __cleanup_sighand(oldsighand); 1268 } 1269 return 0; 1270 } 1271 1272 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1273 { 1274 task_lock(tsk); 1275 strncpy(buf, tsk->comm, buf_size); 1276 task_unlock(tsk); 1277 return buf; 1278 } 1279 EXPORT_SYMBOL_GPL(__get_task_comm); 1280 1281 /* 1282 * These functions flushes out all traces of the currently running executable 1283 * so that a new one can be started 1284 */ 1285 1286 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1287 { 1288 task_lock(tsk); 1289 trace_task_rename(tsk, buf); 1290 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1291 task_unlock(tsk); 1292 perf_event_comm(tsk, exec); 1293 } 1294 1295 /* 1296 * Calling this is the point of no return. None of the failures will be 1297 * seen by userspace since either the process is already taking a fatal 1298 * signal (via de_thread() or coredump), or will have SEGV raised 1299 * (after exec_mmap()) by search_binary_handlers (see below). 1300 */ 1301 int flush_old_exec(struct linux_binprm * bprm) 1302 { 1303 struct task_struct *me = current; 1304 int retval; 1305 1306 /* 1307 * Make this the only thread in the thread group. 1308 */ 1309 retval = de_thread(me); 1310 if (retval) 1311 goto out; 1312 1313 /* 1314 * Must be called _before_ exec_mmap() as bprm->mm is 1315 * not visibile until then. This also enables the update 1316 * to be lockless. 1317 */ 1318 set_mm_exe_file(bprm->mm, bprm->file); 1319 1320 /* 1321 * Release all of the old mmap stuff 1322 */ 1323 acct_arg_size(bprm, 0); 1324 retval = exec_mmap(bprm->mm); 1325 if (retval) 1326 goto out; 1327 1328 /* 1329 * After setting bprm->called_exec_mmap (to mark that current is 1330 * using the prepared mm now), we have nothing left of the original 1331 * process. If anything from here on returns an error, the check 1332 * in search_binary_handler() will SEGV current. 1333 */ 1334 bprm->called_exec_mmap = 1; 1335 bprm->mm = NULL; 1336 1337 #ifdef CONFIG_POSIX_TIMERS 1338 exit_itimers(me->signal); 1339 flush_itimer_signals(); 1340 #endif 1341 1342 /* 1343 * Make the signal table private. 1344 */ 1345 retval = unshare_sighand(me); 1346 if (retval) 1347 goto out; 1348 1349 set_fs(USER_DS); 1350 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1351 PF_NOFREEZE | PF_NO_SETAFFINITY); 1352 flush_thread(); 1353 me->personality &= ~bprm->per_clear; 1354 1355 /* 1356 * We have to apply CLOEXEC before we change whether the process is 1357 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1358 * trying to access the should-be-closed file descriptors of a process 1359 * undergoing exec(2). 1360 */ 1361 do_close_on_exec(me->files); 1362 return 0; 1363 1364 out: 1365 return retval; 1366 } 1367 EXPORT_SYMBOL(flush_old_exec); 1368 1369 void would_dump(struct linux_binprm *bprm, struct file *file) 1370 { 1371 struct inode *inode = file_inode(file); 1372 if (inode_permission(inode, MAY_READ) < 0) { 1373 struct user_namespace *old, *user_ns; 1374 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1375 1376 /* Ensure mm->user_ns contains the executable */ 1377 user_ns = old = bprm->mm->user_ns; 1378 while ((user_ns != &init_user_ns) && 1379 !privileged_wrt_inode_uidgid(user_ns, inode)) 1380 user_ns = user_ns->parent; 1381 1382 if (old != user_ns) { 1383 bprm->mm->user_ns = get_user_ns(user_ns); 1384 put_user_ns(old); 1385 } 1386 } 1387 } 1388 EXPORT_SYMBOL(would_dump); 1389 1390 void setup_new_exec(struct linux_binprm * bprm) 1391 { 1392 /* 1393 * Once here, prepare_binrpm() will not be called any more, so 1394 * the final state of setuid/setgid/fscaps can be merged into the 1395 * secureexec flag. 1396 */ 1397 bprm->secureexec |= bprm->cap_elevated; 1398 1399 if (bprm->secureexec) { 1400 /* Make sure parent cannot signal privileged process. */ 1401 current->pdeath_signal = 0; 1402 1403 /* 1404 * For secureexec, reset the stack limit to sane default to 1405 * avoid bad behavior from the prior rlimits. This has to 1406 * happen before arch_pick_mmap_layout(), which examines 1407 * RLIMIT_STACK, but after the point of no return to avoid 1408 * needing to clean up the change on failure. 1409 */ 1410 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1411 bprm->rlim_stack.rlim_cur = _STK_LIM; 1412 } 1413 1414 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack); 1415 1416 current->sas_ss_sp = current->sas_ss_size = 0; 1417 1418 /* 1419 * Figure out dumpability. Note that this checking only of current 1420 * is wrong, but userspace depends on it. This should be testing 1421 * bprm->secureexec instead. 1422 */ 1423 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1424 !(uid_eq(current_euid(), current_uid()) && 1425 gid_eq(current_egid(), current_gid()))) 1426 set_dumpable(current->mm, suid_dumpable); 1427 else 1428 set_dumpable(current->mm, SUID_DUMP_USER); 1429 1430 arch_setup_new_exec(); 1431 perf_event_exec(); 1432 __set_task_comm(current, kbasename(bprm->filename), true); 1433 1434 /* Set the new mm task size. We have to do that late because it may 1435 * depend on TIF_32BIT which is only updated in flush_thread() on 1436 * some architectures like powerpc 1437 */ 1438 current->mm->task_size = TASK_SIZE; 1439 1440 /* An exec changes our domain. We are no longer part of the thread 1441 group */ 1442 WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1); 1443 flush_signal_handlers(current, 0); 1444 } 1445 EXPORT_SYMBOL(setup_new_exec); 1446 1447 /* Runs immediately before start_thread() takes over. */ 1448 void finalize_exec(struct linux_binprm *bprm) 1449 { 1450 /* Store any stack rlimit changes before starting thread. */ 1451 task_lock(current->group_leader); 1452 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1453 task_unlock(current->group_leader); 1454 } 1455 EXPORT_SYMBOL(finalize_exec); 1456 1457 /* 1458 * Prepare credentials and lock ->cred_guard_mutex. 1459 * install_exec_creds() commits the new creds and drops the lock. 1460 * Or, if exec fails before, free_bprm() should release ->cred and 1461 * and unlock. 1462 */ 1463 static int prepare_bprm_creds(struct linux_binprm *bprm) 1464 { 1465 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1466 return -ERESTARTNOINTR; 1467 1468 bprm->cred = prepare_exec_creds(); 1469 if (likely(bprm->cred)) 1470 return 0; 1471 1472 mutex_unlock(¤t->signal->cred_guard_mutex); 1473 return -ENOMEM; 1474 } 1475 1476 static void free_bprm(struct linux_binprm *bprm) 1477 { 1478 free_arg_pages(bprm); 1479 if (bprm->cred) { 1480 if (bprm->called_exec_mmap) 1481 mutex_unlock(¤t->signal->exec_update_mutex); 1482 mutex_unlock(¤t->signal->cred_guard_mutex); 1483 abort_creds(bprm->cred); 1484 } 1485 if (bprm->file) { 1486 allow_write_access(bprm->file); 1487 fput(bprm->file); 1488 } 1489 /* If a binfmt changed the interp, free it. */ 1490 if (bprm->interp != bprm->filename) 1491 kfree(bprm->interp); 1492 kfree(bprm); 1493 } 1494 1495 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1496 { 1497 /* If a binfmt changed the interp, free it first. */ 1498 if (bprm->interp != bprm->filename) 1499 kfree(bprm->interp); 1500 bprm->interp = kstrdup(interp, GFP_KERNEL); 1501 if (!bprm->interp) 1502 return -ENOMEM; 1503 return 0; 1504 } 1505 EXPORT_SYMBOL(bprm_change_interp); 1506 1507 /* 1508 * install the new credentials for this executable 1509 */ 1510 void install_exec_creds(struct linux_binprm *bprm) 1511 { 1512 security_bprm_committing_creds(bprm); 1513 1514 commit_creds(bprm->cred); 1515 bprm->cred = NULL; 1516 1517 /* 1518 * Disable monitoring for regular users 1519 * when executing setuid binaries. Must 1520 * wait until new credentials are committed 1521 * by commit_creds() above 1522 */ 1523 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1524 perf_event_exit_task(current); 1525 /* 1526 * cred_guard_mutex must be held at least to this point to prevent 1527 * ptrace_attach() from altering our determination of the task's 1528 * credentials; any time after this it may be unlocked. 1529 */ 1530 security_bprm_committed_creds(bprm); 1531 mutex_unlock(¤t->signal->exec_update_mutex); 1532 mutex_unlock(¤t->signal->cred_guard_mutex); 1533 } 1534 EXPORT_SYMBOL(install_exec_creds); 1535 1536 /* 1537 * determine how safe it is to execute the proposed program 1538 * - the caller must hold ->cred_guard_mutex to protect against 1539 * PTRACE_ATTACH or seccomp thread-sync 1540 */ 1541 static void check_unsafe_exec(struct linux_binprm *bprm) 1542 { 1543 struct task_struct *p = current, *t; 1544 unsigned n_fs; 1545 1546 if (p->ptrace) 1547 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1548 1549 /* 1550 * This isn't strictly necessary, but it makes it harder for LSMs to 1551 * mess up. 1552 */ 1553 if (task_no_new_privs(current)) 1554 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1555 1556 t = p; 1557 n_fs = 1; 1558 spin_lock(&p->fs->lock); 1559 rcu_read_lock(); 1560 while_each_thread(p, t) { 1561 if (t->fs == p->fs) 1562 n_fs++; 1563 } 1564 rcu_read_unlock(); 1565 1566 if (p->fs->users > n_fs) 1567 bprm->unsafe |= LSM_UNSAFE_SHARE; 1568 else 1569 p->fs->in_exec = 1; 1570 spin_unlock(&p->fs->lock); 1571 } 1572 1573 static void bprm_fill_uid(struct linux_binprm *bprm) 1574 { 1575 struct inode *inode; 1576 unsigned int mode; 1577 kuid_t uid; 1578 kgid_t gid; 1579 1580 /* 1581 * Since this can be called multiple times (via prepare_binprm), 1582 * we must clear any previous work done when setting set[ug]id 1583 * bits from any earlier bprm->file uses (for example when run 1584 * first for a setuid script then again for its interpreter). 1585 */ 1586 bprm->cred->euid = current_euid(); 1587 bprm->cred->egid = current_egid(); 1588 1589 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1590 return; 1591 1592 if (task_no_new_privs(current)) 1593 return; 1594 1595 inode = bprm->file->f_path.dentry->d_inode; 1596 mode = READ_ONCE(inode->i_mode); 1597 if (!(mode & (S_ISUID|S_ISGID))) 1598 return; 1599 1600 /* Be careful if suid/sgid is set */ 1601 inode_lock(inode); 1602 1603 /* reload atomically mode/uid/gid now that lock held */ 1604 mode = inode->i_mode; 1605 uid = inode->i_uid; 1606 gid = inode->i_gid; 1607 inode_unlock(inode); 1608 1609 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1610 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1611 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1612 return; 1613 1614 if (mode & S_ISUID) { 1615 bprm->per_clear |= PER_CLEAR_ON_SETID; 1616 bprm->cred->euid = uid; 1617 } 1618 1619 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1620 bprm->per_clear |= PER_CLEAR_ON_SETID; 1621 bprm->cred->egid = gid; 1622 } 1623 } 1624 1625 /* 1626 * Fill the binprm structure from the inode. 1627 * Check permissions, then read the first BINPRM_BUF_SIZE bytes 1628 * 1629 * This may be called multiple times for binary chains (scripts for example). 1630 */ 1631 int prepare_binprm(struct linux_binprm *bprm) 1632 { 1633 int retval; 1634 loff_t pos = 0; 1635 1636 bprm_fill_uid(bprm); 1637 1638 /* fill in binprm security blob */ 1639 retval = security_bprm_set_creds(bprm); 1640 if (retval) 1641 return retval; 1642 bprm->called_set_creds = 1; 1643 1644 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1645 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1646 } 1647 1648 EXPORT_SYMBOL(prepare_binprm); 1649 1650 /* 1651 * Arguments are '\0' separated strings found at the location bprm->p 1652 * points to; chop off the first by relocating brpm->p to right after 1653 * the first '\0' encountered. 1654 */ 1655 int remove_arg_zero(struct linux_binprm *bprm) 1656 { 1657 int ret = 0; 1658 unsigned long offset; 1659 char *kaddr; 1660 struct page *page; 1661 1662 if (!bprm->argc) 1663 return 0; 1664 1665 do { 1666 offset = bprm->p & ~PAGE_MASK; 1667 page = get_arg_page(bprm, bprm->p, 0); 1668 if (!page) { 1669 ret = -EFAULT; 1670 goto out; 1671 } 1672 kaddr = kmap_atomic(page); 1673 1674 for (; offset < PAGE_SIZE && kaddr[offset]; 1675 offset++, bprm->p++) 1676 ; 1677 1678 kunmap_atomic(kaddr); 1679 put_arg_page(page); 1680 } while (offset == PAGE_SIZE); 1681 1682 bprm->p++; 1683 bprm->argc--; 1684 ret = 0; 1685 1686 out: 1687 return ret; 1688 } 1689 EXPORT_SYMBOL(remove_arg_zero); 1690 1691 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1692 /* 1693 * cycle the list of binary formats handler, until one recognizes the image 1694 */ 1695 int search_binary_handler(struct linux_binprm *bprm) 1696 { 1697 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1698 struct linux_binfmt *fmt; 1699 int retval; 1700 1701 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1702 if (bprm->recursion_depth > 5) 1703 return -ELOOP; 1704 1705 retval = security_bprm_check(bprm); 1706 if (retval) 1707 return retval; 1708 1709 retval = -ENOENT; 1710 retry: 1711 read_lock(&binfmt_lock); 1712 list_for_each_entry(fmt, &formats, lh) { 1713 if (!try_module_get(fmt->module)) 1714 continue; 1715 read_unlock(&binfmt_lock); 1716 1717 bprm->recursion_depth++; 1718 retval = fmt->load_binary(bprm); 1719 bprm->recursion_depth--; 1720 1721 read_lock(&binfmt_lock); 1722 put_binfmt(fmt); 1723 if (retval < 0 && bprm->called_exec_mmap) { 1724 /* we got to flush_old_exec() and failed after it */ 1725 read_unlock(&binfmt_lock); 1726 force_sigsegv(SIGSEGV); 1727 return retval; 1728 } 1729 if (retval != -ENOEXEC || !bprm->file) { 1730 read_unlock(&binfmt_lock); 1731 return retval; 1732 } 1733 } 1734 read_unlock(&binfmt_lock); 1735 1736 if (need_retry) { 1737 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1738 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1739 return retval; 1740 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1741 return retval; 1742 need_retry = false; 1743 goto retry; 1744 } 1745 1746 return retval; 1747 } 1748 EXPORT_SYMBOL(search_binary_handler); 1749 1750 static int exec_binprm(struct linux_binprm *bprm) 1751 { 1752 pid_t old_pid, old_vpid; 1753 int ret; 1754 1755 /* Need to fetch pid before load_binary changes it */ 1756 old_pid = current->pid; 1757 rcu_read_lock(); 1758 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1759 rcu_read_unlock(); 1760 1761 ret = search_binary_handler(bprm); 1762 if (ret >= 0) { 1763 audit_bprm(bprm); 1764 trace_sched_process_exec(current, old_pid, bprm); 1765 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1766 proc_exec_connector(current); 1767 } 1768 1769 return ret; 1770 } 1771 1772 /* 1773 * sys_execve() executes a new program. 1774 */ 1775 static int __do_execve_file(int fd, struct filename *filename, 1776 struct user_arg_ptr argv, 1777 struct user_arg_ptr envp, 1778 int flags, struct file *file) 1779 { 1780 char *pathbuf = NULL; 1781 struct linux_binprm *bprm; 1782 struct files_struct *displaced; 1783 int retval; 1784 1785 if (IS_ERR(filename)) 1786 return PTR_ERR(filename); 1787 1788 /* 1789 * We move the actual failure in case of RLIMIT_NPROC excess from 1790 * set*uid() to execve() because too many poorly written programs 1791 * don't check setuid() return code. Here we additionally recheck 1792 * whether NPROC limit is still exceeded. 1793 */ 1794 if ((current->flags & PF_NPROC_EXCEEDED) && 1795 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1796 retval = -EAGAIN; 1797 goto out_ret; 1798 } 1799 1800 /* We're below the limit (still or again), so we don't want to make 1801 * further execve() calls fail. */ 1802 current->flags &= ~PF_NPROC_EXCEEDED; 1803 1804 retval = unshare_files(&displaced); 1805 if (retval) 1806 goto out_ret; 1807 1808 retval = -ENOMEM; 1809 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1810 if (!bprm) 1811 goto out_files; 1812 1813 retval = prepare_bprm_creds(bprm); 1814 if (retval) 1815 goto out_free; 1816 1817 check_unsafe_exec(bprm); 1818 current->in_execve = 1; 1819 1820 if (!file) 1821 file = do_open_execat(fd, filename, flags); 1822 retval = PTR_ERR(file); 1823 if (IS_ERR(file)) 1824 goto out_unmark; 1825 1826 sched_exec(); 1827 1828 bprm->file = file; 1829 if (!filename) { 1830 bprm->filename = "none"; 1831 } else if (fd == AT_FDCWD || filename->name[0] == '/') { 1832 bprm->filename = filename->name; 1833 } else { 1834 if (filename->name[0] == '\0') 1835 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1836 else 1837 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1838 fd, filename->name); 1839 if (!pathbuf) { 1840 retval = -ENOMEM; 1841 goto out_unmark; 1842 } 1843 /* 1844 * Record that a name derived from an O_CLOEXEC fd will be 1845 * inaccessible after exec. Relies on having exclusive access to 1846 * current->files (due to unshare_files above). 1847 */ 1848 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1849 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1850 bprm->filename = pathbuf; 1851 } 1852 bprm->interp = bprm->filename; 1853 1854 retval = bprm_mm_init(bprm); 1855 if (retval) 1856 goto out_unmark; 1857 1858 retval = prepare_arg_pages(bprm, argv, envp); 1859 if (retval < 0) 1860 goto out; 1861 1862 retval = prepare_binprm(bprm); 1863 if (retval < 0) 1864 goto out; 1865 1866 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1867 if (retval < 0) 1868 goto out; 1869 1870 bprm->exec = bprm->p; 1871 retval = copy_strings(bprm->envc, envp, bprm); 1872 if (retval < 0) 1873 goto out; 1874 1875 retval = copy_strings(bprm->argc, argv, bprm); 1876 if (retval < 0) 1877 goto out; 1878 1879 would_dump(bprm, bprm->file); 1880 1881 retval = exec_binprm(bprm); 1882 if (retval < 0) 1883 goto out; 1884 1885 /* execve succeeded */ 1886 current->fs->in_exec = 0; 1887 current->in_execve = 0; 1888 rseq_execve(current); 1889 acct_update_integrals(current); 1890 task_numa_free(current, false); 1891 free_bprm(bprm); 1892 kfree(pathbuf); 1893 if (filename) 1894 putname(filename); 1895 if (displaced) 1896 put_files_struct(displaced); 1897 return retval; 1898 1899 out: 1900 if (bprm->mm) { 1901 acct_arg_size(bprm, 0); 1902 mmput(bprm->mm); 1903 } 1904 1905 out_unmark: 1906 current->fs->in_exec = 0; 1907 current->in_execve = 0; 1908 1909 out_free: 1910 free_bprm(bprm); 1911 kfree(pathbuf); 1912 1913 out_files: 1914 if (displaced) 1915 reset_files_struct(displaced); 1916 out_ret: 1917 if (filename) 1918 putname(filename); 1919 return retval; 1920 } 1921 1922 static int do_execveat_common(int fd, struct filename *filename, 1923 struct user_arg_ptr argv, 1924 struct user_arg_ptr envp, 1925 int flags) 1926 { 1927 return __do_execve_file(fd, filename, argv, envp, flags, NULL); 1928 } 1929 1930 int do_execve_file(struct file *file, void *__argv, void *__envp) 1931 { 1932 struct user_arg_ptr argv = { .ptr.native = __argv }; 1933 struct user_arg_ptr envp = { .ptr.native = __envp }; 1934 1935 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); 1936 } 1937 1938 int do_execve(struct filename *filename, 1939 const char __user *const __user *__argv, 1940 const char __user *const __user *__envp) 1941 { 1942 struct user_arg_ptr argv = { .ptr.native = __argv }; 1943 struct user_arg_ptr envp = { .ptr.native = __envp }; 1944 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1945 } 1946 1947 int do_execveat(int fd, struct filename *filename, 1948 const char __user *const __user *__argv, 1949 const char __user *const __user *__envp, 1950 int flags) 1951 { 1952 struct user_arg_ptr argv = { .ptr.native = __argv }; 1953 struct user_arg_ptr envp = { .ptr.native = __envp }; 1954 1955 return do_execveat_common(fd, filename, argv, envp, flags); 1956 } 1957 1958 #ifdef CONFIG_COMPAT 1959 static int compat_do_execve(struct filename *filename, 1960 const compat_uptr_t __user *__argv, 1961 const compat_uptr_t __user *__envp) 1962 { 1963 struct user_arg_ptr argv = { 1964 .is_compat = true, 1965 .ptr.compat = __argv, 1966 }; 1967 struct user_arg_ptr envp = { 1968 .is_compat = true, 1969 .ptr.compat = __envp, 1970 }; 1971 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1972 } 1973 1974 static int compat_do_execveat(int fd, struct filename *filename, 1975 const compat_uptr_t __user *__argv, 1976 const compat_uptr_t __user *__envp, 1977 int flags) 1978 { 1979 struct user_arg_ptr argv = { 1980 .is_compat = true, 1981 .ptr.compat = __argv, 1982 }; 1983 struct user_arg_ptr envp = { 1984 .is_compat = true, 1985 .ptr.compat = __envp, 1986 }; 1987 return do_execveat_common(fd, filename, argv, envp, flags); 1988 } 1989 #endif 1990 1991 void set_binfmt(struct linux_binfmt *new) 1992 { 1993 struct mm_struct *mm = current->mm; 1994 1995 if (mm->binfmt) 1996 module_put(mm->binfmt->module); 1997 1998 mm->binfmt = new; 1999 if (new) 2000 __module_get(new->module); 2001 } 2002 EXPORT_SYMBOL(set_binfmt); 2003 2004 /* 2005 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2006 */ 2007 void set_dumpable(struct mm_struct *mm, int value) 2008 { 2009 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2010 return; 2011 2012 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2013 } 2014 2015 SYSCALL_DEFINE3(execve, 2016 const char __user *, filename, 2017 const char __user *const __user *, argv, 2018 const char __user *const __user *, envp) 2019 { 2020 return do_execve(getname(filename), argv, envp); 2021 } 2022 2023 SYSCALL_DEFINE5(execveat, 2024 int, fd, const char __user *, filename, 2025 const char __user *const __user *, argv, 2026 const char __user *const __user *, envp, 2027 int, flags) 2028 { 2029 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2030 2031 return do_execveat(fd, 2032 getname_flags(filename, lookup_flags, NULL), 2033 argv, envp, flags); 2034 } 2035 2036 #ifdef CONFIG_COMPAT 2037 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2038 const compat_uptr_t __user *, argv, 2039 const compat_uptr_t __user *, envp) 2040 { 2041 return compat_do_execve(getname(filename), argv, envp); 2042 } 2043 2044 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2045 const char __user *, filename, 2046 const compat_uptr_t __user *, argv, 2047 const compat_uptr_t __user *, envp, 2048 int, flags) 2049 { 2050 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2051 2052 return compat_do_execveat(fd, 2053 getname_flags(filename, lookup_flags, NULL), 2054 argv, envp, flags); 2055 } 2056 #endif 2057