1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/init.h> 33 #include <linux/pagemap.h> 34 #include <linux/highmem.h> 35 #include <linux/spinlock.h> 36 #include <linux/key.h> 37 #include <linux/personality.h> 38 #include <linux/binfmts.h> 39 #include <linux/swap.h> 40 #include <linux/utsname.h> 41 #include <linux/pid_namespace.h> 42 #include <linux/module.h> 43 #include <linux/namei.h> 44 #include <linux/proc_fs.h> 45 #include <linux/ptrace.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/rmap.h> 50 #include <linux/tsacct_kern.h> 51 #include <linux/cn_proc.h> 52 #include <linux/audit.h> 53 #include <linux/signalfd.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef CONFIG_KMOD 60 #include <linux/kmod.h> 61 #endif 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 int suid_dumpable = 0; 66 67 EXPORT_SYMBOL(suid_dumpable); 68 /* The maximal length of core_pattern is also specified in sysctl.c */ 69 70 static struct linux_binfmt *formats; 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 int register_binfmt(struct linux_binfmt * fmt) 74 { 75 struct linux_binfmt ** tmp = &formats; 76 77 if (!fmt) 78 return -EINVAL; 79 if (fmt->next) 80 return -EBUSY; 81 write_lock(&binfmt_lock); 82 while (*tmp) { 83 if (fmt == *tmp) { 84 write_unlock(&binfmt_lock); 85 return -EBUSY; 86 } 87 tmp = &(*tmp)->next; 88 } 89 fmt->next = formats; 90 formats = fmt; 91 write_unlock(&binfmt_lock); 92 return 0; 93 } 94 95 EXPORT_SYMBOL(register_binfmt); 96 97 int unregister_binfmt(struct linux_binfmt * fmt) 98 { 99 struct linux_binfmt ** tmp = &formats; 100 101 write_lock(&binfmt_lock); 102 while (*tmp) { 103 if (fmt == *tmp) { 104 *tmp = fmt->next; 105 fmt->next = NULL; 106 write_unlock(&binfmt_lock); 107 return 0; 108 } 109 tmp = &(*tmp)->next; 110 } 111 write_unlock(&binfmt_lock); 112 return -EINVAL; 113 } 114 115 EXPORT_SYMBOL(unregister_binfmt); 116 117 static inline void put_binfmt(struct linux_binfmt * fmt) 118 { 119 module_put(fmt->module); 120 } 121 122 /* 123 * Note that a shared library must be both readable and executable due to 124 * security reasons. 125 * 126 * Also note that we take the address to load from from the file itself. 127 */ 128 asmlinkage long sys_uselib(const char __user * library) 129 { 130 struct file * file; 131 struct nameidata nd; 132 int error; 133 134 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 135 if (error) 136 goto out; 137 138 error = -EACCES; 139 if (nd.mnt->mnt_flags & MNT_NOEXEC) 140 goto exit; 141 error = -EINVAL; 142 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 143 goto exit; 144 145 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 146 if (error) 147 goto exit; 148 149 file = nameidata_to_filp(&nd, O_RDONLY); 150 error = PTR_ERR(file); 151 if (IS_ERR(file)) 152 goto out; 153 154 error = -ENOEXEC; 155 if(file->f_op) { 156 struct linux_binfmt * fmt; 157 158 read_lock(&binfmt_lock); 159 for (fmt = formats ; fmt ; fmt = fmt->next) { 160 if (!fmt->load_shlib) 161 continue; 162 if (!try_module_get(fmt->module)) 163 continue; 164 read_unlock(&binfmt_lock); 165 error = fmt->load_shlib(file); 166 read_lock(&binfmt_lock); 167 put_binfmt(fmt); 168 if (error != -ENOEXEC) 169 break; 170 } 171 read_unlock(&binfmt_lock); 172 } 173 fput(file); 174 out: 175 return error; 176 exit: 177 release_open_intent(&nd); 178 path_release(&nd); 179 goto out; 180 } 181 182 #ifdef CONFIG_MMU 183 184 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 185 int write) 186 { 187 struct page *page; 188 int ret; 189 190 #ifdef CONFIG_STACK_GROWSUP 191 if (write) { 192 ret = expand_stack_downwards(bprm->vma, pos); 193 if (ret < 0) 194 return NULL; 195 } 196 #endif 197 ret = get_user_pages(current, bprm->mm, pos, 198 1, write, 1, &page, NULL); 199 if (ret <= 0) 200 return NULL; 201 202 if (write) { 203 struct rlimit *rlim = current->signal->rlim; 204 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 205 206 /* 207 * Limit to 1/4-th the stack size for the argv+env strings. 208 * This ensures that: 209 * - the remaining binfmt code will not run out of stack space, 210 * - the program will have a reasonable amount of stack left 211 * to work from. 212 */ 213 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 214 put_page(page); 215 return NULL; 216 } 217 } 218 219 return page; 220 } 221 222 static void put_arg_page(struct page *page) 223 { 224 put_page(page); 225 } 226 227 static void free_arg_page(struct linux_binprm *bprm, int i) 228 { 229 } 230 231 static void free_arg_pages(struct linux_binprm *bprm) 232 { 233 } 234 235 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 236 struct page *page) 237 { 238 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 239 } 240 241 static int __bprm_mm_init(struct linux_binprm *bprm) 242 { 243 int err = -ENOMEM; 244 struct vm_area_struct *vma = NULL; 245 struct mm_struct *mm = bprm->mm; 246 247 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 248 if (!vma) 249 goto err; 250 251 down_write(&mm->mmap_sem); 252 vma->vm_mm = mm; 253 254 /* 255 * Place the stack at the largest stack address the architecture 256 * supports. Later, we'll move this to an appropriate place. We don't 257 * use STACK_TOP because that can depend on attributes which aren't 258 * configured yet. 259 */ 260 vma->vm_end = STACK_TOP_MAX; 261 vma->vm_start = vma->vm_end - PAGE_SIZE; 262 263 vma->vm_flags = VM_STACK_FLAGS; 264 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7]; 265 err = insert_vm_struct(mm, vma); 266 if (err) { 267 up_write(&mm->mmap_sem); 268 goto err; 269 } 270 271 mm->stack_vm = mm->total_vm = 1; 272 up_write(&mm->mmap_sem); 273 274 bprm->p = vma->vm_end - sizeof(void *); 275 276 return 0; 277 278 err: 279 if (vma) { 280 bprm->vma = NULL; 281 kmem_cache_free(vm_area_cachep, vma); 282 } 283 284 return err; 285 } 286 287 static bool valid_arg_len(struct linux_binprm *bprm, long len) 288 { 289 return len <= MAX_ARG_STRLEN; 290 } 291 292 #else 293 294 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 295 int write) 296 { 297 struct page *page; 298 299 page = bprm->page[pos / PAGE_SIZE]; 300 if (!page && write) { 301 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 302 if (!page) 303 return NULL; 304 bprm->page[pos / PAGE_SIZE] = page; 305 } 306 307 return page; 308 } 309 310 static void put_arg_page(struct page *page) 311 { 312 } 313 314 static void free_arg_page(struct linux_binprm *bprm, int i) 315 { 316 if (bprm->page[i]) { 317 __free_page(bprm->page[i]); 318 bprm->page[i] = NULL; 319 } 320 } 321 322 static void free_arg_pages(struct linux_binprm *bprm) 323 { 324 int i; 325 326 for (i = 0; i < MAX_ARG_PAGES; i++) 327 free_arg_page(bprm, i); 328 } 329 330 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 331 struct page *page) 332 { 333 } 334 335 static int __bprm_mm_init(struct linux_binprm *bprm) 336 { 337 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 338 return 0; 339 } 340 341 static bool valid_arg_len(struct linux_binprm *bprm, long len) 342 { 343 return len <= bprm->p; 344 } 345 346 #endif /* CONFIG_MMU */ 347 348 /* 349 * Create a new mm_struct and populate it with a temporary stack 350 * vm_area_struct. We don't have enough context at this point to set the stack 351 * flags, permissions, and offset, so we use temporary values. We'll update 352 * them later in setup_arg_pages(). 353 */ 354 int bprm_mm_init(struct linux_binprm *bprm) 355 { 356 int err; 357 struct mm_struct *mm = NULL; 358 359 bprm->mm = mm = mm_alloc(); 360 err = -ENOMEM; 361 if (!mm) 362 goto err; 363 364 err = init_new_context(current, mm); 365 if (err) 366 goto err; 367 368 err = __bprm_mm_init(bprm); 369 if (err) 370 goto err; 371 372 return 0; 373 374 err: 375 if (mm) { 376 bprm->mm = NULL; 377 mmdrop(mm); 378 } 379 380 return err; 381 } 382 383 /* 384 * count() counts the number of strings in array ARGV. 385 */ 386 static int count(char __user * __user * argv, int max) 387 { 388 int i = 0; 389 390 if (argv != NULL) { 391 for (;;) { 392 char __user * p; 393 394 if (get_user(p, argv)) 395 return -EFAULT; 396 if (!p) 397 break; 398 argv++; 399 if(++i > max) 400 return -E2BIG; 401 cond_resched(); 402 } 403 } 404 return i; 405 } 406 407 /* 408 * 'copy_strings()' copies argument/environment strings from the old 409 * processes's memory to the new process's stack. The call to get_user_pages() 410 * ensures the destination page is created and not swapped out. 411 */ 412 static int copy_strings(int argc, char __user * __user * argv, 413 struct linux_binprm *bprm) 414 { 415 struct page *kmapped_page = NULL; 416 char *kaddr = NULL; 417 unsigned long kpos = 0; 418 int ret; 419 420 while (argc-- > 0) { 421 char __user *str; 422 int len; 423 unsigned long pos; 424 425 if (get_user(str, argv+argc) || 426 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 427 ret = -EFAULT; 428 goto out; 429 } 430 431 if (!valid_arg_len(bprm, len)) { 432 ret = -E2BIG; 433 goto out; 434 } 435 436 /* We're going to work our way backwords. */ 437 pos = bprm->p; 438 str += len; 439 bprm->p -= len; 440 441 while (len > 0) { 442 int offset, bytes_to_copy; 443 444 offset = pos % PAGE_SIZE; 445 if (offset == 0) 446 offset = PAGE_SIZE; 447 448 bytes_to_copy = offset; 449 if (bytes_to_copy > len) 450 bytes_to_copy = len; 451 452 offset -= bytes_to_copy; 453 pos -= bytes_to_copy; 454 str -= bytes_to_copy; 455 len -= bytes_to_copy; 456 457 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 458 struct page *page; 459 460 page = get_arg_page(bprm, pos, 1); 461 if (!page) { 462 ret = -E2BIG; 463 goto out; 464 } 465 466 if (kmapped_page) { 467 flush_kernel_dcache_page(kmapped_page); 468 kunmap(kmapped_page); 469 put_arg_page(kmapped_page); 470 } 471 kmapped_page = page; 472 kaddr = kmap(kmapped_page); 473 kpos = pos & PAGE_MASK; 474 flush_arg_page(bprm, kpos, kmapped_page); 475 } 476 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 477 ret = -EFAULT; 478 goto out; 479 } 480 } 481 } 482 ret = 0; 483 out: 484 if (kmapped_page) { 485 flush_kernel_dcache_page(kmapped_page); 486 kunmap(kmapped_page); 487 put_arg_page(kmapped_page); 488 } 489 return ret; 490 } 491 492 /* 493 * Like copy_strings, but get argv and its values from kernel memory. 494 */ 495 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 496 { 497 int r; 498 mm_segment_t oldfs = get_fs(); 499 set_fs(KERNEL_DS); 500 r = copy_strings(argc, (char __user * __user *)argv, bprm); 501 set_fs(oldfs); 502 return r; 503 } 504 EXPORT_SYMBOL(copy_strings_kernel); 505 506 #ifdef CONFIG_MMU 507 508 /* 509 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 510 * the binfmt code determines where the new stack should reside, we shift it to 511 * its final location. The process proceeds as follows: 512 * 513 * 1) Use shift to calculate the new vma endpoints. 514 * 2) Extend vma to cover both the old and new ranges. This ensures the 515 * arguments passed to subsequent functions are consistent. 516 * 3) Move vma's page tables to the new range. 517 * 4) Free up any cleared pgd range. 518 * 5) Shrink the vma to cover only the new range. 519 */ 520 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 521 { 522 struct mm_struct *mm = vma->vm_mm; 523 unsigned long old_start = vma->vm_start; 524 unsigned long old_end = vma->vm_end; 525 unsigned long length = old_end - old_start; 526 unsigned long new_start = old_start - shift; 527 unsigned long new_end = old_end - shift; 528 struct mmu_gather *tlb; 529 530 BUG_ON(new_start > new_end); 531 532 /* 533 * ensure there are no vmas between where we want to go 534 * and where we are 535 */ 536 if (vma != find_vma(mm, new_start)) 537 return -EFAULT; 538 539 /* 540 * cover the whole range: [new_start, old_end) 541 */ 542 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 543 544 /* 545 * move the page tables downwards, on failure we rely on 546 * process cleanup to remove whatever mess we made. 547 */ 548 if (length != move_page_tables(vma, old_start, 549 vma, new_start, length)) 550 return -ENOMEM; 551 552 lru_add_drain(); 553 tlb = tlb_gather_mmu(mm, 0); 554 if (new_end > old_start) { 555 /* 556 * when the old and new regions overlap clear from new_end. 557 */ 558 free_pgd_range(&tlb, new_end, old_end, new_end, 559 vma->vm_next ? vma->vm_next->vm_start : 0); 560 } else { 561 /* 562 * otherwise, clean from old_start; this is done to not touch 563 * the address space in [new_end, old_start) some architectures 564 * have constraints on va-space that make this illegal (IA64) - 565 * for the others its just a little faster. 566 */ 567 free_pgd_range(&tlb, old_start, old_end, new_end, 568 vma->vm_next ? vma->vm_next->vm_start : 0); 569 } 570 tlb_finish_mmu(tlb, new_end, old_end); 571 572 /* 573 * shrink the vma to just the new range. 574 */ 575 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 576 577 return 0; 578 } 579 580 #define EXTRA_STACK_VM_PAGES 20 /* random */ 581 582 /* 583 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 584 * the stack is optionally relocated, and some extra space is added. 585 */ 586 int setup_arg_pages(struct linux_binprm *bprm, 587 unsigned long stack_top, 588 int executable_stack) 589 { 590 unsigned long ret; 591 unsigned long stack_shift; 592 struct mm_struct *mm = current->mm; 593 struct vm_area_struct *vma = bprm->vma; 594 struct vm_area_struct *prev = NULL; 595 unsigned long vm_flags; 596 unsigned long stack_base; 597 598 #ifdef CONFIG_STACK_GROWSUP 599 /* Limit stack size to 1GB */ 600 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 601 if (stack_base > (1 << 30)) 602 stack_base = 1 << 30; 603 604 /* Make sure we didn't let the argument array grow too large. */ 605 if (vma->vm_end - vma->vm_start > stack_base) 606 return -ENOMEM; 607 608 stack_base = PAGE_ALIGN(stack_top - stack_base); 609 610 stack_shift = vma->vm_start - stack_base; 611 mm->arg_start = bprm->p - stack_shift; 612 bprm->p = vma->vm_end - stack_shift; 613 #else 614 stack_top = arch_align_stack(stack_top); 615 stack_top = PAGE_ALIGN(stack_top); 616 stack_shift = vma->vm_end - stack_top; 617 618 bprm->p -= stack_shift; 619 mm->arg_start = bprm->p; 620 #endif 621 622 if (bprm->loader) 623 bprm->loader -= stack_shift; 624 bprm->exec -= stack_shift; 625 626 down_write(&mm->mmap_sem); 627 vm_flags = vma->vm_flags; 628 629 /* 630 * Adjust stack execute permissions; explicitly enable for 631 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 632 * (arch default) otherwise. 633 */ 634 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 635 vm_flags |= VM_EXEC; 636 else if (executable_stack == EXSTACK_DISABLE_X) 637 vm_flags &= ~VM_EXEC; 638 vm_flags |= mm->def_flags; 639 640 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 641 vm_flags); 642 if (ret) 643 goto out_unlock; 644 BUG_ON(prev != vma); 645 646 /* Move stack pages down in memory. */ 647 if (stack_shift) { 648 ret = shift_arg_pages(vma, stack_shift); 649 if (ret) { 650 up_write(&mm->mmap_sem); 651 return ret; 652 } 653 } 654 655 #ifdef CONFIG_STACK_GROWSUP 656 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 657 #else 658 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 659 #endif 660 ret = expand_stack(vma, stack_base); 661 if (ret) 662 ret = -EFAULT; 663 664 out_unlock: 665 up_write(&mm->mmap_sem); 666 return 0; 667 } 668 EXPORT_SYMBOL(setup_arg_pages); 669 670 #endif /* CONFIG_MMU */ 671 672 struct file *open_exec(const char *name) 673 { 674 struct nameidata nd; 675 int err; 676 struct file *file; 677 678 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 679 file = ERR_PTR(err); 680 681 if (!err) { 682 struct inode *inode = nd.dentry->d_inode; 683 file = ERR_PTR(-EACCES); 684 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && 685 S_ISREG(inode->i_mode)) { 686 int err = vfs_permission(&nd, MAY_EXEC); 687 file = ERR_PTR(err); 688 if (!err) { 689 file = nameidata_to_filp(&nd, O_RDONLY); 690 if (!IS_ERR(file)) { 691 err = deny_write_access(file); 692 if (err) { 693 fput(file); 694 file = ERR_PTR(err); 695 } 696 } 697 out: 698 return file; 699 } 700 } 701 release_open_intent(&nd); 702 path_release(&nd); 703 } 704 goto out; 705 } 706 707 EXPORT_SYMBOL(open_exec); 708 709 int kernel_read(struct file *file, unsigned long offset, 710 char *addr, unsigned long count) 711 { 712 mm_segment_t old_fs; 713 loff_t pos = offset; 714 int result; 715 716 old_fs = get_fs(); 717 set_fs(get_ds()); 718 /* The cast to a user pointer is valid due to the set_fs() */ 719 result = vfs_read(file, (void __user *)addr, count, &pos); 720 set_fs(old_fs); 721 return result; 722 } 723 724 EXPORT_SYMBOL(kernel_read); 725 726 static int exec_mmap(struct mm_struct *mm) 727 { 728 struct task_struct *tsk; 729 struct mm_struct * old_mm, *active_mm; 730 731 /* Notify parent that we're no longer interested in the old VM */ 732 tsk = current; 733 old_mm = current->mm; 734 mm_release(tsk, old_mm); 735 736 if (old_mm) { 737 /* 738 * Make sure that if there is a core dump in progress 739 * for the old mm, we get out and die instead of going 740 * through with the exec. We must hold mmap_sem around 741 * checking core_waiters and changing tsk->mm. The 742 * core-inducing thread will increment core_waiters for 743 * each thread whose ->mm == old_mm. 744 */ 745 down_read(&old_mm->mmap_sem); 746 if (unlikely(old_mm->core_waiters)) { 747 up_read(&old_mm->mmap_sem); 748 return -EINTR; 749 } 750 } 751 task_lock(tsk); 752 active_mm = tsk->active_mm; 753 tsk->mm = mm; 754 tsk->active_mm = mm; 755 activate_mm(active_mm, mm); 756 task_unlock(tsk); 757 arch_pick_mmap_layout(mm); 758 if (old_mm) { 759 up_read(&old_mm->mmap_sem); 760 BUG_ON(active_mm != old_mm); 761 mmput(old_mm); 762 return 0; 763 } 764 mmdrop(active_mm); 765 return 0; 766 } 767 768 /* 769 * This function makes sure the current process has its own signal table, 770 * so that flush_signal_handlers can later reset the handlers without 771 * disturbing other processes. (Other processes might share the signal 772 * table via the CLONE_SIGHAND option to clone().) 773 */ 774 static int de_thread(struct task_struct *tsk) 775 { 776 struct signal_struct *sig = tsk->signal; 777 struct sighand_struct *newsighand, *oldsighand = tsk->sighand; 778 spinlock_t *lock = &oldsighand->siglock; 779 struct task_struct *leader = NULL; 780 int count; 781 782 /* 783 * Tell all the sighand listeners that this sighand has 784 * been detached. The signalfd_detach() function grabs the 785 * sighand lock, if signal listeners are present on the sighand. 786 */ 787 signalfd_detach(tsk); 788 789 /* 790 * If we don't share sighandlers, then we aren't sharing anything 791 * and we can just re-use it all. 792 */ 793 if (atomic_read(&oldsighand->count) <= 1) { 794 BUG_ON(atomic_read(&sig->count) != 1); 795 exit_itimers(sig); 796 return 0; 797 } 798 799 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 800 if (!newsighand) 801 return -ENOMEM; 802 803 if (thread_group_empty(tsk)) 804 goto no_thread_group; 805 806 /* 807 * Kill all other threads in the thread group. 808 * We must hold tasklist_lock to call zap_other_threads. 809 */ 810 read_lock(&tasklist_lock); 811 spin_lock_irq(lock); 812 if (sig->flags & SIGNAL_GROUP_EXIT) { 813 /* 814 * Another group action in progress, just 815 * return so that the signal is processed. 816 */ 817 spin_unlock_irq(lock); 818 read_unlock(&tasklist_lock); 819 kmem_cache_free(sighand_cachep, newsighand); 820 return -EAGAIN; 821 } 822 823 /* 824 * child_reaper ignores SIGKILL, change it now. 825 * Reparenting needs write_lock on tasklist_lock, 826 * so it is safe to do it under read_lock. 827 */ 828 if (unlikely(tsk->group_leader == child_reaper(tsk))) 829 tsk->nsproxy->pid_ns->child_reaper = tsk; 830 831 zap_other_threads(tsk); 832 read_unlock(&tasklist_lock); 833 834 /* 835 * Account for the thread group leader hanging around: 836 */ 837 count = 1; 838 if (!thread_group_leader(tsk)) { 839 count = 2; 840 /* 841 * The SIGALRM timer survives the exec, but needs to point 842 * at us as the new group leader now. We have a race with 843 * a timer firing now getting the old leader, so we need to 844 * synchronize with any firing (by calling del_timer_sync) 845 * before we can safely let the old group leader die. 846 */ 847 sig->tsk = tsk; 848 spin_unlock_irq(lock); 849 if (hrtimer_cancel(&sig->real_timer)) 850 hrtimer_restart(&sig->real_timer); 851 spin_lock_irq(lock); 852 } 853 while (atomic_read(&sig->count) > count) { 854 sig->group_exit_task = tsk; 855 sig->notify_count = count; 856 __set_current_state(TASK_UNINTERRUPTIBLE); 857 spin_unlock_irq(lock); 858 schedule(); 859 spin_lock_irq(lock); 860 } 861 sig->group_exit_task = NULL; 862 sig->notify_count = 0; 863 spin_unlock_irq(lock); 864 865 /* 866 * At this point all other threads have exited, all we have to 867 * do is to wait for the thread group leader to become inactive, 868 * and to assume its PID: 869 */ 870 if (!thread_group_leader(tsk)) { 871 /* 872 * Wait for the thread group leader to be a zombie. 873 * It should already be zombie at this point, most 874 * of the time. 875 */ 876 leader = tsk->group_leader; 877 while (leader->exit_state != EXIT_ZOMBIE) 878 yield(); 879 880 /* 881 * The only record we have of the real-time age of a 882 * process, regardless of execs it's done, is start_time. 883 * All the past CPU time is accumulated in signal_struct 884 * from sister threads now dead. But in this non-leader 885 * exec, nothing survives from the original leader thread, 886 * whose birth marks the true age of this process now. 887 * When we take on its identity by switching to its PID, we 888 * also take its birthdate (always earlier than our own). 889 */ 890 tsk->start_time = leader->start_time; 891 892 write_lock_irq(&tasklist_lock); 893 894 BUG_ON(leader->tgid != tsk->tgid); 895 BUG_ON(tsk->pid == tsk->tgid); 896 /* 897 * An exec() starts a new thread group with the 898 * TGID of the previous thread group. Rehash the 899 * two threads with a switched PID, and release 900 * the former thread group leader: 901 */ 902 903 /* Become a process group leader with the old leader's pid. 904 * The old leader becomes a thread of the this thread group. 905 * Note: The old leader also uses this pid until release_task 906 * is called. Odd but simple and correct. 907 */ 908 detach_pid(tsk, PIDTYPE_PID); 909 tsk->pid = leader->pid; 910 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid)); 911 transfer_pid(leader, tsk, PIDTYPE_PGID); 912 transfer_pid(leader, tsk, PIDTYPE_SID); 913 list_replace_rcu(&leader->tasks, &tsk->tasks); 914 915 tsk->group_leader = tsk; 916 leader->group_leader = tsk; 917 918 tsk->exit_signal = SIGCHLD; 919 920 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 921 leader->exit_state = EXIT_DEAD; 922 923 write_unlock_irq(&tasklist_lock); 924 } 925 926 /* 927 * There may be one thread left which is just exiting, 928 * but it's safe to stop telling the group to kill themselves. 929 */ 930 sig->flags = 0; 931 932 no_thread_group: 933 exit_itimers(sig); 934 if (leader) 935 release_task(leader); 936 937 BUG_ON(atomic_read(&sig->count) != 1); 938 939 if (atomic_read(&oldsighand->count) == 1) { 940 /* 941 * Now that we nuked the rest of the thread group, 942 * it turns out we are not sharing sighand any more either. 943 * So we can just keep it. 944 */ 945 kmem_cache_free(sighand_cachep, newsighand); 946 } else { 947 /* 948 * Move our state over to newsighand and switch it in. 949 */ 950 atomic_set(&newsighand->count, 1); 951 memcpy(newsighand->action, oldsighand->action, 952 sizeof(newsighand->action)); 953 954 write_lock_irq(&tasklist_lock); 955 spin_lock(&oldsighand->siglock); 956 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING); 957 958 rcu_assign_pointer(tsk->sighand, newsighand); 959 recalc_sigpending(); 960 961 spin_unlock(&newsighand->siglock); 962 spin_unlock(&oldsighand->siglock); 963 write_unlock_irq(&tasklist_lock); 964 965 __cleanup_sighand(oldsighand); 966 } 967 968 BUG_ON(!thread_group_leader(tsk)); 969 return 0; 970 } 971 972 /* 973 * These functions flushes out all traces of the currently running executable 974 * so that a new one can be started 975 */ 976 977 static void flush_old_files(struct files_struct * files) 978 { 979 long j = -1; 980 struct fdtable *fdt; 981 982 spin_lock(&files->file_lock); 983 for (;;) { 984 unsigned long set, i; 985 986 j++; 987 i = j * __NFDBITS; 988 fdt = files_fdtable(files); 989 if (i >= fdt->max_fds) 990 break; 991 set = fdt->close_on_exec->fds_bits[j]; 992 if (!set) 993 continue; 994 fdt->close_on_exec->fds_bits[j] = 0; 995 spin_unlock(&files->file_lock); 996 for ( ; set ; i++,set >>= 1) { 997 if (set & 1) { 998 sys_close(i); 999 } 1000 } 1001 spin_lock(&files->file_lock); 1002 1003 } 1004 spin_unlock(&files->file_lock); 1005 } 1006 1007 void get_task_comm(char *buf, struct task_struct *tsk) 1008 { 1009 /* buf must be at least sizeof(tsk->comm) in size */ 1010 task_lock(tsk); 1011 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1012 task_unlock(tsk); 1013 } 1014 1015 void set_task_comm(struct task_struct *tsk, char *buf) 1016 { 1017 task_lock(tsk); 1018 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1019 task_unlock(tsk); 1020 } 1021 1022 int flush_old_exec(struct linux_binprm * bprm) 1023 { 1024 char * name; 1025 int i, ch, retval; 1026 struct files_struct *files; 1027 char tcomm[sizeof(current->comm)]; 1028 1029 /* 1030 * Make sure we have a private signal table and that 1031 * we are unassociated from the previous thread group. 1032 */ 1033 retval = de_thread(current); 1034 if (retval) 1035 goto out; 1036 1037 /* 1038 * Make sure we have private file handles. Ask the 1039 * fork helper to do the work for us and the exit 1040 * helper to do the cleanup of the old one. 1041 */ 1042 files = current->files; /* refcounted so safe to hold */ 1043 retval = unshare_files(); 1044 if (retval) 1045 goto out; 1046 /* 1047 * Release all of the old mmap stuff 1048 */ 1049 retval = exec_mmap(bprm->mm); 1050 if (retval) 1051 goto mmap_failed; 1052 1053 bprm->mm = NULL; /* We're using it now */ 1054 1055 /* This is the point of no return */ 1056 put_files_struct(files); 1057 1058 current->sas_ss_sp = current->sas_ss_size = 0; 1059 1060 if (current->euid == current->uid && current->egid == current->gid) 1061 set_dumpable(current->mm, 1); 1062 else 1063 set_dumpable(current->mm, suid_dumpable); 1064 1065 name = bprm->filename; 1066 1067 /* Copies the binary name from after last slash */ 1068 for (i=0; (ch = *(name++)) != '\0';) { 1069 if (ch == '/') 1070 i = 0; /* overwrite what we wrote */ 1071 else 1072 if (i < (sizeof(tcomm) - 1)) 1073 tcomm[i++] = ch; 1074 } 1075 tcomm[i] = '\0'; 1076 set_task_comm(current, tcomm); 1077 1078 current->flags &= ~PF_RANDOMIZE; 1079 flush_thread(); 1080 1081 /* Set the new mm task size. We have to do that late because it may 1082 * depend on TIF_32BIT which is only updated in flush_thread() on 1083 * some architectures like powerpc 1084 */ 1085 current->mm->task_size = TASK_SIZE; 1086 1087 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid || 1088 file_permission(bprm->file, MAY_READ) || 1089 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1090 suid_keys(current); 1091 set_dumpable(current->mm, suid_dumpable); 1092 } 1093 1094 /* An exec changes our domain. We are no longer part of the thread 1095 group */ 1096 1097 current->self_exec_id++; 1098 1099 flush_signal_handlers(current, 0); 1100 flush_old_files(current->files); 1101 1102 return 0; 1103 1104 mmap_failed: 1105 reset_files_struct(current, files); 1106 out: 1107 return retval; 1108 } 1109 1110 EXPORT_SYMBOL(flush_old_exec); 1111 1112 /* 1113 * Fill the binprm structure from the inode. 1114 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1115 */ 1116 int prepare_binprm(struct linux_binprm *bprm) 1117 { 1118 int mode; 1119 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1120 int retval; 1121 1122 mode = inode->i_mode; 1123 if (bprm->file->f_op == NULL) 1124 return -EACCES; 1125 1126 bprm->e_uid = current->euid; 1127 bprm->e_gid = current->egid; 1128 1129 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1130 /* Set-uid? */ 1131 if (mode & S_ISUID) { 1132 current->personality &= ~PER_CLEAR_ON_SETID; 1133 bprm->e_uid = inode->i_uid; 1134 } 1135 1136 /* Set-gid? */ 1137 /* 1138 * If setgid is set but no group execute bit then this 1139 * is a candidate for mandatory locking, not a setgid 1140 * executable. 1141 */ 1142 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1143 current->personality &= ~PER_CLEAR_ON_SETID; 1144 bprm->e_gid = inode->i_gid; 1145 } 1146 } 1147 1148 /* fill in binprm security blob */ 1149 retval = security_bprm_set(bprm); 1150 if (retval) 1151 return retval; 1152 1153 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1154 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1155 } 1156 1157 EXPORT_SYMBOL(prepare_binprm); 1158 1159 static int unsafe_exec(struct task_struct *p) 1160 { 1161 int unsafe = 0; 1162 if (p->ptrace & PT_PTRACED) { 1163 if (p->ptrace & PT_PTRACE_CAP) 1164 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1165 else 1166 unsafe |= LSM_UNSAFE_PTRACE; 1167 } 1168 if (atomic_read(&p->fs->count) > 1 || 1169 atomic_read(&p->files->count) > 1 || 1170 atomic_read(&p->sighand->count) > 1) 1171 unsafe |= LSM_UNSAFE_SHARE; 1172 1173 return unsafe; 1174 } 1175 1176 void compute_creds(struct linux_binprm *bprm) 1177 { 1178 int unsafe; 1179 1180 if (bprm->e_uid != current->uid) 1181 suid_keys(current); 1182 exec_keys(current); 1183 1184 task_lock(current); 1185 unsafe = unsafe_exec(current); 1186 security_bprm_apply_creds(bprm, unsafe); 1187 task_unlock(current); 1188 security_bprm_post_apply_creds(bprm); 1189 } 1190 EXPORT_SYMBOL(compute_creds); 1191 1192 /* 1193 * Arguments are '\0' separated strings found at the location bprm->p 1194 * points to; chop off the first by relocating brpm->p to right after 1195 * the first '\0' encountered. 1196 */ 1197 int remove_arg_zero(struct linux_binprm *bprm) 1198 { 1199 int ret = 0; 1200 unsigned long offset; 1201 char *kaddr; 1202 struct page *page; 1203 1204 if (!bprm->argc) 1205 return 0; 1206 1207 do { 1208 offset = bprm->p & ~PAGE_MASK; 1209 page = get_arg_page(bprm, bprm->p, 0); 1210 if (!page) { 1211 ret = -EFAULT; 1212 goto out; 1213 } 1214 kaddr = kmap_atomic(page, KM_USER0); 1215 1216 for (; offset < PAGE_SIZE && kaddr[offset]; 1217 offset++, bprm->p++) 1218 ; 1219 1220 kunmap_atomic(kaddr, KM_USER0); 1221 put_arg_page(page); 1222 1223 if (offset == PAGE_SIZE) 1224 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1225 } while (offset == PAGE_SIZE); 1226 1227 bprm->p++; 1228 bprm->argc--; 1229 ret = 0; 1230 1231 out: 1232 return ret; 1233 } 1234 EXPORT_SYMBOL(remove_arg_zero); 1235 1236 /* 1237 * cycle the list of binary formats handler, until one recognizes the image 1238 */ 1239 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1240 { 1241 int try,retval; 1242 struct linux_binfmt *fmt; 1243 #ifdef __alpha__ 1244 /* handle /sbin/loader.. */ 1245 { 1246 struct exec * eh = (struct exec *) bprm->buf; 1247 1248 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1249 (eh->fh.f_flags & 0x3000) == 0x3000) 1250 { 1251 struct file * file; 1252 unsigned long loader; 1253 1254 allow_write_access(bprm->file); 1255 fput(bprm->file); 1256 bprm->file = NULL; 1257 1258 loader = bprm->vma->vm_end - sizeof(void *); 1259 1260 file = open_exec("/sbin/loader"); 1261 retval = PTR_ERR(file); 1262 if (IS_ERR(file)) 1263 return retval; 1264 1265 /* Remember if the application is TASO. */ 1266 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1267 1268 bprm->file = file; 1269 bprm->loader = loader; 1270 retval = prepare_binprm(bprm); 1271 if (retval<0) 1272 return retval; 1273 /* should call search_binary_handler recursively here, 1274 but it does not matter */ 1275 } 1276 } 1277 #endif 1278 retval = security_bprm_check(bprm); 1279 if (retval) 1280 return retval; 1281 1282 /* kernel module loader fixup */ 1283 /* so we don't try to load run modprobe in kernel space. */ 1284 set_fs(USER_DS); 1285 1286 retval = audit_bprm(bprm); 1287 if (retval) 1288 return retval; 1289 1290 retval = -ENOENT; 1291 for (try=0; try<2; try++) { 1292 read_lock(&binfmt_lock); 1293 for (fmt = formats ; fmt ; fmt = fmt->next) { 1294 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1295 if (!fn) 1296 continue; 1297 if (!try_module_get(fmt->module)) 1298 continue; 1299 read_unlock(&binfmt_lock); 1300 retval = fn(bprm, regs); 1301 if (retval >= 0) { 1302 put_binfmt(fmt); 1303 allow_write_access(bprm->file); 1304 if (bprm->file) 1305 fput(bprm->file); 1306 bprm->file = NULL; 1307 current->did_exec = 1; 1308 proc_exec_connector(current); 1309 return retval; 1310 } 1311 read_lock(&binfmt_lock); 1312 put_binfmt(fmt); 1313 if (retval != -ENOEXEC || bprm->mm == NULL) 1314 break; 1315 if (!bprm->file) { 1316 read_unlock(&binfmt_lock); 1317 return retval; 1318 } 1319 } 1320 read_unlock(&binfmt_lock); 1321 if (retval != -ENOEXEC || bprm->mm == NULL) { 1322 break; 1323 #ifdef CONFIG_KMOD 1324 }else{ 1325 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1326 if (printable(bprm->buf[0]) && 1327 printable(bprm->buf[1]) && 1328 printable(bprm->buf[2]) && 1329 printable(bprm->buf[3])) 1330 break; /* -ENOEXEC */ 1331 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1332 #endif 1333 } 1334 } 1335 return retval; 1336 } 1337 1338 EXPORT_SYMBOL(search_binary_handler); 1339 1340 /* 1341 * sys_execve() executes a new program. 1342 */ 1343 int do_execve(char * filename, 1344 char __user *__user *argv, 1345 char __user *__user *envp, 1346 struct pt_regs * regs) 1347 { 1348 struct linux_binprm *bprm; 1349 struct file *file; 1350 unsigned long env_p; 1351 int retval; 1352 1353 retval = -ENOMEM; 1354 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1355 if (!bprm) 1356 goto out_ret; 1357 1358 file = open_exec(filename); 1359 retval = PTR_ERR(file); 1360 if (IS_ERR(file)) 1361 goto out_kfree; 1362 1363 sched_exec(); 1364 1365 bprm->file = file; 1366 bprm->filename = filename; 1367 bprm->interp = filename; 1368 1369 retval = bprm_mm_init(bprm); 1370 if (retval) 1371 goto out_file; 1372 1373 bprm->argc = count(argv, MAX_ARG_STRINGS); 1374 if ((retval = bprm->argc) < 0) 1375 goto out_mm; 1376 1377 bprm->envc = count(envp, MAX_ARG_STRINGS); 1378 if ((retval = bprm->envc) < 0) 1379 goto out_mm; 1380 1381 retval = security_bprm_alloc(bprm); 1382 if (retval) 1383 goto out; 1384 1385 retval = prepare_binprm(bprm); 1386 if (retval < 0) 1387 goto out; 1388 1389 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1390 if (retval < 0) 1391 goto out; 1392 1393 bprm->exec = bprm->p; 1394 retval = copy_strings(bprm->envc, envp, bprm); 1395 if (retval < 0) 1396 goto out; 1397 1398 env_p = bprm->p; 1399 retval = copy_strings(bprm->argc, argv, bprm); 1400 if (retval < 0) 1401 goto out; 1402 bprm->argv_len = env_p - bprm->p; 1403 1404 retval = search_binary_handler(bprm,regs); 1405 if (retval >= 0) { 1406 /* execve success */ 1407 free_arg_pages(bprm); 1408 security_bprm_free(bprm); 1409 acct_update_integrals(current); 1410 kfree(bprm); 1411 return retval; 1412 } 1413 1414 out: 1415 free_arg_pages(bprm); 1416 if (bprm->security) 1417 security_bprm_free(bprm); 1418 1419 out_mm: 1420 if (bprm->mm) 1421 mmput (bprm->mm); 1422 1423 out_file: 1424 if (bprm->file) { 1425 allow_write_access(bprm->file); 1426 fput(bprm->file); 1427 } 1428 out_kfree: 1429 kfree(bprm); 1430 1431 out_ret: 1432 return retval; 1433 } 1434 1435 int set_binfmt(struct linux_binfmt *new) 1436 { 1437 struct linux_binfmt *old = current->binfmt; 1438 1439 if (new) { 1440 if (!try_module_get(new->module)) 1441 return -1; 1442 } 1443 current->binfmt = new; 1444 if (old) 1445 module_put(old->module); 1446 return 0; 1447 } 1448 1449 EXPORT_SYMBOL(set_binfmt); 1450 1451 /* format_corename will inspect the pattern parameter, and output a 1452 * name into corename, which must have space for at least 1453 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1454 */ 1455 static int format_corename(char *corename, const char *pattern, long signr) 1456 { 1457 const char *pat_ptr = pattern; 1458 char *out_ptr = corename; 1459 char *const out_end = corename + CORENAME_MAX_SIZE; 1460 int rc; 1461 int pid_in_pattern = 0; 1462 int ispipe = 0; 1463 1464 if (*pattern == '|') 1465 ispipe = 1; 1466 1467 /* Repeat as long as we have more pattern to process and more output 1468 space */ 1469 while (*pat_ptr) { 1470 if (*pat_ptr != '%') { 1471 if (out_ptr == out_end) 1472 goto out; 1473 *out_ptr++ = *pat_ptr++; 1474 } else { 1475 switch (*++pat_ptr) { 1476 case 0: 1477 goto out; 1478 /* Double percent, output one percent */ 1479 case '%': 1480 if (out_ptr == out_end) 1481 goto out; 1482 *out_ptr++ = '%'; 1483 break; 1484 /* pid */ 1485 case 'p': 1486 pid_in_pattern = 1; 1487 rc = snprintf(out_ptr, out_end - out_ptr, 1488 "%d", current->tgid); 1489 if (rc > out_end - out_ptr) 1490 goto out; 1491 out_ptr += rc; 1492 break; 1493 /* uid */ 1494 case 'u': 1495 rc = snprintf(out_ptr, out_end - out_ptr, 1496 "%d", current->uid); 1497 if (rc > out_end - out_ptr) 1498 goto out; 1499 out_ptr += rc; 1500 break; 1501 /* gid */ 1502 case 'g': 1503 rc = snprintf(out_ptr, out_end - out_ptr, 1504 "%d", current->gid); 1505 if (rc > out_end - out_ptr) 1506 goto out; 1507 out_ptr += rc; 1508 break; 1509 /* signal that caused the coredump */ 1510 case 's': 1511 rc = snprintf(out_ptr, out_end - out_ptr, 1512 "%ld", signr); 1513 if (rc > out_end - out_ptr) 1514 goto out; 1515 out_ptr += rc; 1516 break; 1517 /* UNIX time of coredump */ 1518 case 't': { 1519 struct timeval tv; 1520 do_gettimeofday(&tv); 1521 rc = snprintf(out_ptr, out_end - out_ptr, 1522 "%lu", tv.tv_sec); 1523 if (rc > out_end - out_ptr) 1524 goto out; 1525 out_ptr += rc; 1526 break; 1527 } 1528 /* hostname */ 1529 case 'h': 1530 down_read(&uts_sem); 1531 rc = snprintf(out_ptr, out_end - out_ptr, 1532 "%s", utsname()->nodename); 1533 up_read(&uts_sem); 1534 if (rc > out_end - out_ptr) 1535 goto out; 1536 out_ptr += rc; 1537 break; 1538 /* executable */ 1539 case 'e': 1540 rc = snprintf(out_ptr, out_end - out_ptr, 1541 "%s", current->comm); 1542 if (rc > out_end - out_ptr) 1543 goto out; 1544 out_ptr += rc; 1545 break; 1546 default: 1547 break; 1548 } 1549 ++pat_ptr; 1550 } 1551 } 1552 /* Backward compatibility with core_uses_pid: 1553 * 1554 * If core_pattern does not include a %p (as is the default) 1555 * and core_uses_pid is set, then .%pid will be appended to 1556 * the filename. Do not do this for piped commands. */ 1557 if (!ispipe && !pid_in_pattern 1558 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1559 rc = snprintf(out_ptr, out_end - out_ptr, 1560 ".%d", current->tgid); 1561 if (rc > out_end - out_ptr) 1562 goto out; 1563 out_ptr += rc; 1564 } 1565 out: 1566 *out_ptr = 0; 1567 return ispipe; 1568 } 1569 1570 static void zap_process(struct task_struct *start) 1571 { 1572 struct task_struct *t; 1573 1574 start->signal->flags = SIGNAL_GROUP_EXIT; 1575 start->signal->group_stop_count = 0; 1576 1577 t = start; 1578 do { 1579 if (t != current && t->mm) { 1580 t->mm->core_waiters++; 1581 sigaddset(&t->pending.signal, SIGKILL); 1582 signal_wake_up(t, 1); 1583 } 1584 } while ((t = next_thread(t)) != start); 1585 } 1586 1587 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1588 int exit_code) 1589 { 1590 struct task_struct *g, *p; 1591 unsigned long flags; 1592 int err = -EAGAIN; 1593 1594 spin_lock_irq(&tsk->sighand->siglock); 1595 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 1596 tsk->signal->group_exit_code = exit_code; 1597 zap_process(tsk); 1598 err = 0; 1599 } 1600 spin_unlock_irq(&tsk->sighand->siglock); 1601 if (err) 1602 return err; 1603 1604 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1605 goto done; 1606 1607 rcu_read_lock(); 1608 for_each_process(g) { 1609 if (g == tsk->group_leader) 1610 continue; 1611 1612 p = g; 1613 do { 1614 if (p->mm) { 1615 if (p->mm == mm) { 1616 /* 1617 * p->sighand can't disappear, but 1618 * may be changed by de_thread() 1619 */ 1620 lock_task_sighand(p, &flags); 1621 zap_process(p); 1622 unlock_task_sighand(p, &flags); 1623 } 1624 break; 1625 } 1626 } while ((p = next_thread(p)) != g); 1627 } 1628 rcu_read_unlock(); 1629 done: 1630 return mm->core_waiters; 1631 } 1632 1633 static int coredump_wait(int exit_code) 1634 { 1635 struct task_struct *tsk = current; 1636 struct mm_struct *mm = tsk->mm; 1637 struct completion startup_done; 1638 struct completion *vfork_done; 1639 int core_waiters; 1640 1641 init_completion(&mm->core_done); 1642 init_completion(&startup_done); 1643 mm->core_startup_done = &startup_done; 1644 1645 core_waiters = zap_threads(tsk, mm, exit_code); 1646 up_write(&mm->mmap_sem); 1647 1648 if (unlikely(core_waiters < 0)) 1649 goto fail; 1650 1651 /* 1652 * Make sure nobody is waiting for us to release the VM, 1653 * otherwise we can deadlock when we wait on each other 1654 */ 1655 vfork_done = tsk->vfork_done; 1656 if (vfork_done) { 1657 tsk->vfork_done = NULL; 1658 complete(vfork_done); 1659 } 1660 1661 if (core_waiters) 1662 wait_for_completion(&startup_done); 1663 fail: 1664 BUG_ON(mm->core_waiters); 1665 return core_waiters; 1666 } 1667 1668 /* 1669 * set_dumpable converts traditional three-value dumpable to two flags and 1670 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1671 * these bits are not changed atomically. So get_dumpable can observe the 1672 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1673 * return either old dumpable or new one by paying attention to the order of 1674 * modifying the bits. 1675 * 1676 * dumpable | mm->flags (binary) 1677 * old new | initial interim final 1678 * ---------+----------------------- 1679 * 0 1 | 00 01 01 1680 * 0 2 | 00 10(*) 11 1681 * 1 0 | 01 00 00 1682 * 1 2 | 01 11 11 1683 * 2 0 | 11 10(*) 00 1684 * 2 1 | 11 11 01 1685 * 1686 * (*) get_dumpable regards interim value of 10 as 11. 1687 */ 1688 void set_dumpable(struct mm_struct *mm, int value) 1689 { 1690 switch (value) { 1691 case 0: 1692 clear_bit(MMF_DUMPABLE, &mm->flags); 1693 smp_wmb(); 1694 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1695 break; 1696 case 1: 1697 set_bit(MMF_DUMPABLE, &mm->flags); 1698 smp_wmb(); 1699 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1700 break; 1701 case 2: 1702 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1703 smp_wmb(); 1704 set_bit(MMF_DUMPABLE, &mm->flags); 1705 break; 1706 } 1707 } 1708 EXPORT_SYMBOL_GPL(set_dumpable); 1709 1710 int get_dumpable(struct mm_struct *mm) 1711 { 1712 int ret; 1713 1714 ret = mm->flags & 0x3; 1715 return (ret >= 2) ? 2 : ret; 1716 } 1717 1718 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1719 { 1720 char corename[CORENAME_MAX_SIZE + 1]; 1721 struct mm_struct *mm = current->mm; 1722 struct linux_binfmt * binfmt; 1723 struct inode * inode; 1724 struct file * file; 1725 int retval = 0; 1726 int fsuid = current->fsuid; 1727 int flag = 0; 1728 int ispipe = 0; 1729 1730 audit_core_dumps(signr); 1731 1732 binfmt = current->binfmt; 1733 if (!binfmt || !binfmt->core_dump) 1734 goto fail; 1735 down_write(&mm->mmap_sem); 1736 if (!get_dumpable(mm)) { 1737 up_write(&mm->mmap_sem); 1738 goto fail; 1739 } 1740 1741 /* 1742 * We cannot trust fsuid as being the "true" uid of the 1743 * process nor do we know its entire history. We only know it 1744 * was tainted so we dump it as root in mode 2. 1745 */ 1746 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1747 flag = O_EXCL; /* Stop rewrite attacks */ 1748 current->fsuid = 0; /* Dump root private */ 1749 } 1750 set_dumpable(mm, 0); 1751 1752 retval = coredump_wait(exit_code); 1753 if (retval < 0) 1754 goto fail; 1755 1756 /* 1757 * Clear any false indication of pending signals that might 1758 * be seen by the filesystem code called to write the core file. 1759 */ 1760 clear_thread_flag(TIF_SIGPENDING); 1761 1762 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump) 1763 goto fail_unlock; 1764 1765 /* 1766 * lock_kernel() because format_corename() is controlled by sysctl, which 1767 * uses lock_kernel() 1768 */ 1769 lock_kernel(); 1770 ispipe = format_corename(corename, core_pattern, signr); 1771 unlock_kernel(); 1772 if (ispipe) { 1773 /* SIGPIPE can happen, but it's just never processed */ 1774 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) { 1775 printk(KERN_INFO "Core dump to %s pipe failed\n", 1776 corename); 1777 goto fail_unlock; 1778 } 1779 } else 1780 file = filp_open(corename, 1781 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1782 0600); 1783 if (IS_ERR(file)) 1784 goto fail_unlock; 1785 inode = file->f_path.dentry->d_inode; 1786 if (inode->i_nlink > 1) 1787 goto close_fail; /* multiple links - don't dump */ 1788 if (!ispipe && d_unhashed(file->f_path.dentry)) 1789 goto close_fail; 1790 1791 /* AK: actually i see no reason to not allow this for named pipes etc., 1792 but keep the previous behaviour for now. */ 1793 if (!ispipe && !S_ISREG(inode->i_mode)) 1794 goto close_fail; 1795 if (!file->f_op) 1796 goto close_fail; 1797 if (!file->f_op->write) 1798 goto close_fail; 1799 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1800 goto close_fail; 1801 1802 retval = binfmt->core_dump(signr, regs, file); 1803 1804 if (retval) 1805 current->signal->group_exit_code |= 0x80; 1806 close_fail: 1807 filp_close(file, NULL); 1808 fail_unlock: 1809 current->fsuid = fsuid; 1810 complete_all(&mm->core_done); 1811 fail: 1812 return retval; 1813 } 1814