xref: /openbmc/linux/fs/exec.c (revision b94b10aa)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60 
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64 
65 #include <trace/events/task.h>
66 #include "internal.h"
67 
68 #include <trace/events/sched.h>
69 
70 int suid_dumpable = 0;
71 
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74 
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 	BUG_ON(!fmt);
78 	if (WARN_ON(!fmt->load_binary))
79 		return;
80 	write_lock(&binfmt_lock);
81 	insert ? list_add(&fmt->lh, &formats) :
82 		 list_add_tail(&fmt->lh, &formats);
83 	write_unlock(&binfmt_lock);
84 }
85 
86 EXPORT_SYMBOL(__register_binfmt);
87 
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 	write_lock(&binfmt_lock);
91 	list_del(&fmt->lh);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(unregister_binfmt);
96 
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 	module_put(fmt->module);
100 }
101 
102 bool path_noexec(const struct path *path)
103 {
104 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107 
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 	struct linux_binfmt *fmt;
118 	struct file *file;
119 	struct filename *tmp = getname(library);
120 	int error = PTR_ERR(tmp);
121 	static const struct open_flags uselib_flags = {
122 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 		.acc_mode = MAY_READ | MAY_EXEC,
124 		.intent = LOOKUP_OPEN,
125 		.lookup_flags = LOOKUP_FOLLOW,
126 	};
127 
128 	if (IS_ERR(tmp))
129 		goto out;
130 
131 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 	putname(tmp);
133 	error = PTR_ERR(file);
134 	if (IS_ERR(file))
135 		goto out;
136 
137 	error = -EINVAL;
138 	if (!S_ISREG(file_inode(file)->i_mode))
139 		goto exit;
140 
141 	error = -EACCES;
142 	if (path_noexec(&file->f_path))
143 		goto exit;
144 
145 	fsnotify_open(file);
146 
147 	error = -ENOEXEC;
148 
149 	read_lock(&binfmt_lock);
150 	list_for_each_entry(fmt, &formats, lh) {
151 		if (!fmt->load_shlib)
152 			continue;
153 		if (!try_module_get(fmt->module))
154 			continue;
155 		read_unlock(&binfmt_lock);
156 		error = fmt->load_shlib(file);
157 		read_lock(&binfmt_lock);
158 		put_binfmt(fmt);
159 		if (error != -ENOEXEC)
160 			break;
161 	}
162 	read_unlock(&binfmt_lock);
163 exit:
164 	fput(file);
165 out:
166   	return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169 
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 	struct mm_struct *mm = current->mm;
180 	long diff = (long)(pages - bprm->vma_pages);
181 
182 	if (!mm || !diff)
183 		return;
184 
185 	bprm->vma_pages = pages;
186 	add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188 
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 		int write)
191 {
192 	struct page *page;
193 	int ret;
194 
195 #ifdef CONFIG_STACK_GROWSUP
196 	if (write) {
197 		ret = expand_downwards(bprm->vma, pos);
198 		if (ret < 0)
199 			return NULL;
200 	}
201 #endif
202 	/*
203 	 * We are doing an exec().  'current' is the process
204 	 * doing the exec and bprm->mm is the new process's mm.
205 	 */
206 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
207 			1, &page, NULL);
208 	if (ret <= 0)
209 		return NULL;
210 
211 	if (write) {
212 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
213 		struct rlimit *rlim;
214 
215 		acct_arg_size(bprm, size / PAGE_SIZE);
216 
217 		/*
218 		 * We've historically supported up to 32 pages (ARG_MAX)
219 		 * of argument strings even with small stacks
220 		 */
221 		if (size <= ARG_MAX)
222 			return page;
223 
224 		/*
225 		 * Limit to 1/4-th the stack size for the argv+env strings.
226 		 * This ensures that:
227 		 *  - the remaining binfmt code will not run out of stack space,
228 		 *  - the program will have a reasonable amount of stack left
229 		 *    to work from.
230 		 */
231 		rlim = current->signal->rlim;
232 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
233 			put_page(page);
234 			return NULL;
235 		}
236 	}
237 
238 	return page;
239 }
240 
241 static void put_arg_page(struct page *page)
242 {
243 	put_page(page);
244 }
245 
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249 
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 		struct page *page)
252 {
253 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255 
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258 	int err;
259 	struct vm_area_struct *vma = NULL;
260 	struct mm_struct *mm = bprm->mm;
261 
262 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 	if (!vma)
264 		return -ENOMEM;
265 
266 	if (down_write_killable(&mm->mmap_sem)) {
267 		err = -EINTR;
268 		goto err_free;
269 	}
270 	vma->vm_mm = mm;
271 
272 	/*
273 	 * Place the stack at the largest stack address the architecture
274 	 * supports. Later, we'll move this to an appropriate place. We don't
275 	 * use STACK_TOP because that can depend on attributes which aren't
276 	 * configured yet.
277 	 */
278 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
279 	vma->vm_end = STACK_TOP_MAX;
280 	vma->vm_start = vma->vm_end - PAGE_SIZE;
281 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
282 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
283 	INIT_LIST_HEAD(&vma->anon_vma_chain);
284 
285 	err = insert_vm_struct(mm, vma);
286 	if (err)
287 		goto err;
288 
289 	mm->stack_vm = mm->total_vm = 1;
290 	arch_bprm_mm_init(mm, vma);
291 	up_write(&mm->mmap_sem);
292 	bprm->p = vma->vm_end - sizeof(void *);
293 	return 0;
294 err:
295 	up_write(&mm->mmap_sem);
296 err_free:
297 	bprm->vma = NULL;
298 	kmem_cache_free(vm_area_cachep, vma);
299 	return err;
300 }
301 
302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304 	return len <= MAX_ARG_STRLEN;
305 }
306 
307 #else
308 
309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312 
313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 		int write)
315 {
316 	struct page *page;
317 
318 	page = bprm->page[pos / PAGE_SIZE];
319 	if (!page && write) {
320 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 		if (!page)
322 			return NULL;
323 		bprm->page[pos / PAGE_SIZE] = page;
324 	}
325 
326 	return page;
327 }
328 
329 static void put_arg_page(struct page *page)
330 {
331 }
332 
333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335 	if (bprm->page[i]) {
336 		__free_page(bprm->page[i]);
337 		bprm->page[i] = NULL;
338 	}
339 }
340 
341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343 	int i;
344 
345 	for (i = 0; i < MAX_ARG_PAGES; i++)
346 		free_arg_page(bprm, i);
347 }
348 
349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 		struct page *page)
351 {
352 }
353 
354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 	return 0;
358 }
359 
360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362 	return len <= bprm->p;
363 }
364 
365 #endif /* CONFIG_MMU */
366 
367 /*
368  * Create a new mm_struct and populate it with a temporary stack
369  * vm_area_struct.  We don't have enough context at this point to set the stack
370  * flags, permissions, and offset, so we use temporary values.  We'll update
371  * them later in setup_arg_pages().
372  */
373 static int bprm_mm_init(struct linux_binprm *bprm)
374 {
375 	int err;
376 	struct mm_struct *mm = NULL;
377 
378 	bprm->mm = mm = mm_alloc();
379 	err = -ENOMEM;
380 	if (!mm)
381 		goto err;
382 
383 	err = __bprm_mm_init(bprm);
384 	if (err)
385 		goto err;
386 
387 	return 0;
388 
389 err:
390 	if (mm) {
391 		bprm->mm = NULL;
392 		mmdrop(mm);
393 	}
394 
395 	return err;
396 }
397 
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 	bool is_compat;
401 #endif
402 	union {
403 		const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 		const compat_uptr_t __user *compat;
406 #endif
407 	} ptr;
408 };
409 
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 	const char __user *native;
413 
414 #ifdef CONFIG_COMPAT
415 	if (unlikely(argv.is_compat)) {
416 		compat_uptr_t compat;
417 
418 		if (get_user(compat, argv.ptr.compat + nr))
419 			return ERR_PTR(-EFAULT);
420 
421 		return compat_ptr(compat);
422 	}
423 #endif
424 
425 	if (get_user(native, argv.ptr.native + nr))
426 		return ERR_PTR(-EFAULT);
427 
428 	return native;
429 }
430 
431 /*
432  * count() counts the number of strings in array ARGV.
433  */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436 	int i = 0;
437 
438 	if (argv.ptr.native != NULL) {
439 		for (;;) {
440 			const char __user *p = get_user_arg_ptr(argv, i);
441 
442 			if (!p)
443 				break;
444 
445 			if (IS_ERR(p))
446 				return -EFAULT;
447 
448 			if (i >= max)
449 				return -E2BIG;
450 			++i;
451 
452 			if (fatal_signal_pending(current))
453 				return -ERESTARTNOHAND;
454 			cond_resched();
455 		}
456 	}
457 	return i;
458 }
459 
460 /*
461  * 'copy_strings()' copies argument/environment strings from the old
462  * processes's memory to the new process's stack.  The call to get_user_pages()
463  * ensures the destination page is created and not swapped out.
464  */
465 static int copy_strings(int argc, struct user_arg_ptr argv,
466 			struct linux_binprm *bprm)
467 {
468 	struct page *kmapped_page = NULL;
469 	char *kaddr = NULL;
470 	unsigned long kpos = 0;
471 	int ret;
472 
473 	while (argc-- > 0) {
474 		const char __user *str;
475 		int len;
476 		unsigned long pos;
477 
478 		ret = -EFAULT;
479 		str = get_user_arg_ptr(argv, argc);
480 		if (IS_ERR(str))
481 			goto out;
482 
483 		len = strnlen_user(str, MAX_ARG_STRLEN);
484 		if (!len)
485 			goto out;
486 
487 		ret = -E2BIG;
488 		if (!valid_arg_len(bprm, len))
489 			goto out;
490 
491 		/* We're going to work our way backwords. */
492 		pos = bprm->p;
493 		str += len;
494 		bprm->p -= len;
495 
496 		while (len > 0) {
497 			int offset, bytes_to_copy;
498 
499 			if (fatal_signal_pending(current)) {
500 				ret = -ERESTARTNOHAND;
501 				goto out;
502 			}
503 			cond_resched();
504 
505 			offset = pos % PAGE_SIZE;
506 			if (offset == 0)
507 				offset = PAGE_SIZE;
508 
509 			bytes_to_copy = offset;
510 			if (bytes_to_copy > len)
511 				bytes_to_copy = len;
512 
513 			offset -= bytes_to_copy;
514 			pos -= bytes_to_copy;
515 			str -= bytes_to_copy;
516 			len -= bytes_to_copy;
517 
518 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519 				struct page *page;
520 
521 				page = get_arg_page(bprm, pos, 1);
522 				if (!page) {
523 					ret = -E2BIG;
524 					goto out;
525 				}
526 
527 				if (kmapped_page) {
528 					flush_kernel_dcache_page(kmapped_page);
529 					kunmap(kmapped_page);
530 					put_arg_page(kmapped_page);
531 				}
532 				kmapped_page = page;
533 				kaddr = kmap(kmapped_page);
534 				kpos = pos & PAGE_MASK;
535 				flush_arg_page(bprm, kpos, kmapped_page);
536 			}
537 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538 				ret = -EFAULT;
539 				goto out;
540 			}
541 		}
542 	}
543 	ret = 0;
544 out:
545 	if (kmapped_page) {
546 		flush_kernel_dcache_page(kmapped_page);
547 		kunmap(kmapped_page);
548 		put_arg_page(kmapped_page);
549 	}
550 	return ret;
551 }
552 
553 /*
554  * Like copy_strings, but get argv and its values from kernel memory.
555  */
556 int copy_strings_kernel(int argc, const char *const *__argv,
557 			struct linux_binprm *bprm)
558 {
559 	int r;
560 	mm_segment_t oldfs = get_fs();
561 	struct user_arg_ptr argv = {
562 		.ptr.native = (const char __user *const  __user *)__argv,
563 	};
564 
565 	set_fs(KERNEL_DS);
566 	r = copy_strings(argc, argv, bprm);
567 	set_fs(oldfs);
568 
569 	return r;
570 }
571 EXPORT_SYMBOL(copy_strings_kernel);
572 
573 #ifdef CONFIG_MMU
574 
575 /*
576  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
577  * the binfmt code determines where the new stack should reside, we shift it to
578  * its final location.  The process proceeds as follows:
579  *
580  * 1) Use shift to calculate the new vma endpoints.
581  * 2) Extend vma to cover both the old and new ranges.  This ensures the
582  *    arguments passed to subsequent functions are consistent.
583  * 3) Move vma's page tables to the new range.
584  * 4) Free up any cleared pgd range.
585  * 5) Shrink the vma to cover only the new range.
586  */
587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588 {
589 	struct mm_struct *mm = vma->vm_mm;
590 	unsigned long old_start = vma->vm_start;
591 	unsigned long old_end = vma->vm_end;
592 	unsigned long length = old_end - old_start;
593 	unsigned long new_start = old_start - shift;
594 	unsigned long new_end = old_end - shift;
595 	struct mmu_gather tlb;
596 
597 	BUG_ON(new_start > new_end);
598 
599 	/*
600 	 * ensure there are no vmas between where we want to go
601 	 * and where we are
602 	 */
603 	if (vma != find_vma(mm, new_start))
604 		return -EFAULT;
605 
606 	/*
607 	 * cover the whole range: [new_start, old_end)
608 	 */
609 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610 		return -ENOMEM;
611 
612 	/*
613 	 * move the page tables downwards, on failure we rely on
614 	 * process cleanup to remove whatever mess we made.
615 	 */
616 	if (length != move_page_tables(vma, old_start,
617 				       vma, new_start, length, false))
618 		return -ENOMEM;
619 
620 	lru_add_drain();
621 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
622 	if (new_end > old_start) {
623 		/*
624 		 * when the old and new regions overlap clear from new_end.
625 		 */
626 		free_pgd_range(&tlb, new_end, old_end, new_end,
627 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628 	} else {
629 		/*
630 		 * otherwise, clean from old_start; this is done to not touch
631 		 * the address space in [new_end, old_start) some architectures
632 		 * have constraints on va-space that make this illegal (IA64) -
633 		 * for the others its just a little faster.
634 		 */
635 		free_pgd_range(&tlb, old_start, old_end, new_end,
636 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 	}
638 	tlb_finish_mmu(&tlb, old_start, old_end);
639 
640 	/*
641 	 * Shrink the vma to just the new range.  Always succeeds.
642 	 */
643 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644 
645 	return 0;
646 }
647 
648 /*
649  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650  * the stack is optionally relocated, and some extra space is added.
651  */
652 int setup_arg_pages(struct linux_binprm *bprm,
653 		    unsigned long stack_top,
654 		    int executable_stack)
655 {
656 	unsigned long ret;
657 	unsigned long stack_shift;
658 	struct mm_struct *mm = current->mm;
659 	struct vm_area_struct *vma = bprm->vma;
660 	struct vm_area_struct *prev = NULL;
661 	unsigned long vm_flags;
662 	unsigned long stack_base;
663 	unsigned long stack_size;
664 	unsigned long stack_expand;
665 	unsigned long rlim_stack;
666 
667 #ifdef CONFIG_STACK_GROWSUP
668 	/* Limit stack size */
669 	stack_base = rlimit_max(RLIMIT_STACK);
670 	if (stack_base > STACK_SIZE_MAX)
671 		stack_base = STACK_SIZE_MAX;
672 
673 	/* Add space for stack randomization. */
674 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
675 
676 	/* Make sure we didn't let the argument array grow too large. */
677 	if (vma->vm_end - vma->vm_start > stack_base)
678 		return -ENOMEM;
679 
680 	stack_base = PAGE_ALIGN(stack_top - stack_base);
681 
682 	stack_shift = vma->vm_start - stack_base;
683 	mm->arg_start = bprm->p - stack_shift;
684 	bprm->p = vma->vm_end - stack_shift;
685 #else
686 	stack_top = arch_align_stack(stack_top);
687 	stack_top = PAGE_ALIGN(stack_top);
688 
689 	if (unlikely(stack_top < mmap_min_addr) ||
690 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 		return -ENOMEM;
692 
693 	stack_shift = vma->vm_end - stack_top;
694 
695 	bprm->p -= stack_shift;
696 	mm->arg_start = bprm->p;
697 #endif
698 
699 	if (bprm->loader)
700 		bprm->loader -= stack_shift;
701 	bprm->exec -= stack_shift;
702 
703 	if (down_write_killable(&mm->mmap_sem))
704 		return -EINTR;
705 
706 	vm_flags = VM_STACK_FLAGS;
707 
708 	/*
709 	 * Adjust stack execute permissions; explicitly enable for
710 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
711 	 * (arch default) otherwise.
712 	 */
713 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
714 		vm_flags |= VM_EXEC;
715 	else if (executable_stack == EXSTACK_DISABLE_X)
716 		vm_flags &= ~VM_EXEC;
717 	vm_flags |= mm->def_flags;
718 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
719 
720 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
721 			vm_flags);
722 	if (ret)
723 		goto out_unlock;
724 	BUG_ON(prev != vma);
725 
726 	/* Move stack pages down in memory. */
727 	if (stack_shift) {
728 		ret = shift_arg_pages(vma, stack_shift);
729 		if (ret)
730 			goto out_unlock;
731 	}
732 
733 	/* mprotect_fixup is overkill to remove the temporary stack flags */
734 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
735 
736 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
737 	stack_size = vma->vm_end - vma->vm_start;
738 	/*
739 	 * Align this down to a page boundary as expand_stack
740 	 * will align it up.
741 	 */
742 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
743 #ifdef CONFIG_STACK_GROWSUP
744 	if (stack_size + stack_expand > rlim_stack)
745 		stack_base = vma->vm_start + rlim_stack;
746 	else
747 		stack_base = vma->vm_end + stack_expand;
748 #else
749 	if (stack_size + stack_expand > rlim_stack)
750 		stack_base = vma->vm_end - rlim_stack;
751 	else
752 		stack_base = vma->vm_start - stack_expand;
753 #endif
754 	current->mm->start_stack = bprm->p;
755 	ret = expand_stack(vma, stack_base);
756 	if (ret)
757 		ret = -EFAULT;
758 
759 out_unlock:
760 	up_write(&mm->mmap_sem);
761 	return ret;
762 }
763 EXPORT_SYMBOL(setup_arg_pages);
764 
765 #else
766 
767 /*
768  * Transfer the program arguments and environment from the holding pages
769  * onto the stack. The provided stack pointer is adjusted accordingly.
770  */
771 int transfer_args_to_stack(struct linux_binprm *bprm,
772 			   unsigned long *sp_location)
773 {
774 	unsigned long index, stop, sp;
775 	int ret = 0;
776 
777 	stop = bprm->p >> PAGE_SHIFT;
778 	sp = *sp_location;
779 
780 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
781 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
782 		char *src = kmap(bprm->page[index]) + offset;
783 		sp -= PAGE_SIZE - offset;
784 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
785 			ret = -EFAULT;
786 		kunmap(bprm->page[index]);
787 		if (ret)
788 			goto out;
789 	}
790 
791 	*sp_location = sp;
792 
793 out:
794 	return ret;
795 }
796 EXPORT_SYMBOL(transfer_args_to_stack);
797 
798 #endif /* CONFIG_MMU */
799 
800 static struct file *do_open_execat(int fd, struct filename *name, int flags)
801 {
802 	struct file *file;
803 	int err;
804 	struct open_flags open_exec_flags = {
805 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
806 		.acc_mode = MAY_EXEC,
807 		.intent = LOOKUP_OPEN,
808 		.lookup_flags = LOOKUP_FOLLOW,
809 	};
810 
811 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
812 		return ERR_PTR(-EINVAL);
813 	if (flags & AT_SYMLINK_NOFOLLOW)
814 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
815 	if (flags & AT_EMPTY_PATH)
816 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
817 
818 	file = do_filp_open(fd, name, &open_exec_flags);
819 	if (IS_ERR(file))
820 		goto out;
821 
822 	err = -EACCES;
823 	if (!S_ISREG(file_inode(file)->i_mode))
824 		goto exit;
825 
826 	if (path_noexec(&file->f_path))
827 		goto exit;
828 
829 	err = deny_write_access(file);
830 	if (err)
831 		goto exit;
832 
833 	if (name->name[0] != '\0')
834 		fsnotify_open(file);
835 
836 out:
837 	return file;
838 
839 exit:
840 	fput(file);
841 	return ERR_PTR(err);
842 }
843 
844 struct file *open_exec(const char *name)
845 {
846 	struct filename *filename = getname_kernel(name);
847 	struct file *f = ERR_CAST(filename);
848 
849 	if (!IS_ERR(filename)) {
850 		f = do_open_execat(AT_FDCWD, filename, 0);
851 		putname(filename);
852 	}
853 	return f;
854 }
855 EXPORT_SYMBOL(open_exec);
856 
857 int kernel_read(struct file *file, loff_t offset,
858 		char *addr, unsigned long count)
859 {
860 	mm_segment_t old_fs;
861 	loff_t pos = offset;
862 	int result;
863 
864 	old_fs = get_fs();
865 	set_fs(get_ds());
866 	/* The cast to a user pointer is valid due to the set_fs() */
867 	result = vfs_read(file, (void __user *)addr, count, &pos);
868 	set_fs(old_fs);
869 	return result;
870 }
871 
872 EXPORT_SYMBOL(kernel_read);
873 
874 int kernel_read_file(struct file *file, void **buf, loff_t *size,
875 		     loff_t max_size, enum kernel_read_file_id id)
876 {
877 	loff_t i_size, pos;
878 	ssize_t bytes = 0;
879 	int ret;
880 
881 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
882 		return -EINVAL;
883 
884 	ret = security_kernel_read_file(file, id);
885 	if (ret)
886 		return ret;
887 
888 	ret = deny_write_access(file);
889 	if (ret)
890 		return ret;
891 
892 	i_size = i_size_read(file_inode(file));
893 	if (max_size > 0 && i_size > max_size) {
894 		ret = -EFBIG;
895 		goto out;
896 	}
897 	if (i_size <= 0) {
898 		ret = -EINVAL;
899 		goto out;
900 	}
901 
902 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
903 		*buf = vmalloc(i_size);
904 	if (!*buf) {
905 		ret = -ENOMEM;
906 		goto out;
907 	}
908 
909 	pos = 0;
910 	while (pos < i_size) {
911 		bytes = kernel_read(file, pos, (char *)(*buf) + pos,
912 				    i_size - pos);
913 		if (bytes < 0) {
914 			ret = bytes;
915 			goto out;
916 		}
917 
918 		if (bytes == 0)
919 			break;
920 		pos += bytes;
921 	}
922 
923 	if (pos != i_size) {
924 		ret = -EIO;
925 		goto out_free;
926 	}
927 
928 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
929 	if (!ret)
930 		*size = pos;
931 
932 out_free:
933 	if (ret < 0) {
934 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
935 			vfree(*buf);
936 			*buf = NULL;
937 		}
938 	}
939 
940 out:
941 	allow_write_access(file);
942 	return ret;
943 }
944 EXPORT_SYMBOL_GPL(kernel_read_file);
945 
946 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
947 			       loff_t max_size, enum kernel_read_file_id id)
948 {
949 	struct file *file;
950 	int ret;
951 
952 	if (!path || !*path)
953 		return -EINVAL;
954 
955 	file = filp_open(path, O_RDONLY, 0);
956 	if (IS_ERR(file))
957 		return PTR_ERR(file);
958 
959 	ret = kernel_read_file(file, buf, size, max_size, id);
960 	fput(file);
961 	return ret;
962 }
963 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
964 
965 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
966 			     enum kernel_read_file_id id)
967 {
968 	struct fd f = fdget(fd);
969 	int ret = -EBADF;
970 
971 	if (!f.file)
972 		goto out;
973 
974 	ret = kernel_read_file(f.file, buf, size, max_size, id);
975 out:
976 	fdput(f);
977 	return ret;
978 }
979 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
980 
981 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
982 {
983 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
984 	if (res > 0)
985 		flush_icache_range(addr, addr + len);
986 	return res;
987 }
988 EXPORT_SYMBOL(read_code);
989 
990 static int exec_mmap(struct mm_struct *mm)
991 {
992 	struct task_struct *tsk;
993 	struct mm_struct *old_mm, *active_mm;
994 
995 	/* Notify parent that we're no longer interested in the old VM */
996 	tsk = current;
997 	old_mm = current->mm;
998 	mm_release(tsk, old_mm);
999 
1000 	if (old_mm) {
1001 		sync_mm_rss(old_mm);
1002 		/*
1003 		 * Make sure that if there is a core dump in progress
1004 		 * for the old mm, we get out and die instead of going
1005 		 * through with the exec.  We must hold mmap_sem around
1006 		 * checking core_state and changing tsk->mm.
1007 		 */
1008 		down_read(&old_mm->mmap_sem);
1009 		if (unlikely(old_mm->core_state)) {
1010 			up_read(&old_mm->mmap_sem);
1011 			return -EINTR;
1012 		}
1013 	}
1014 	task_lock(tsk);
1015 	active_mm = tsk->active_mm;
1016 	tsk->mm = mm;
1017 	tsk->active_mm = mm;
1018 	activate_mm(active_mm, mm);
1019 	tsk->mm->vmacache_seqnum = 0;
1020 	vmacache_flush(tsk);
1021 	task_unlock(tsk);
1022 	if (old_mm) {
1023 		up_read(&old_mm->mmap_sem);
1024 		BUG_ON(active_mm != old_mm);
1025 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1026 		mm_update_next_owner(old_mm);
1027 		mmput(old_mm);
1028 		return 0;
1029 	}
1030 	mmdrop(active_mm);
1031 	return 0;
1032 }
1033 
1034 /*
1035  * This function makes sure the current process has its own signal table,
1036  * so that flush_signal_handlers can later reset the handlers without
1037  * disturbing other processes.  (Other processes might share the signal
1038  * table via the CLONE_SIGHAND option to clone().)
1039  */
1040 static int de_thread(struct task_struct *tsk)
1041 {
1042 	struct signal_struct *sig = tsk->signal;
1043 	struct sighand_struct *oldsighand = tsk->sighand;
1044 	spinlock_t *lock = &oldsighand->siglock;
1045 
1046 	if (thread_group_empty(tsk))
1047 		goto no_thread_group;
1048 
1049 	/*
1050 	 * Kill all other threads in the thread group.
1051 	 */
1052 	spin_lock_irq(lock);
1053 	if (signal_group_exit(sig)) {
1054 		/*
1055 		 * Another group action in progress, just
1056 		 * return so that the signal is processed.
1057 		 */
1058 		spin_unlock_irq(lock);
1059 		return -EAGAIN;
1060 	}
1061 
1062 	sig->group_exit_task = tsk;
1063 	sig->notify_count = zap_other_threads(tsk);
1064 	if (!thread_group_leader(tsk))
1065 		sig->notify_count--;
1066 
1067 	while (sig->notify_count) {
1068 		__set_current_state(TASK_KILLABLE);
1069 		spin_unlock_irq(lock);
1070 		schedule();
1071 		if (unlikely(__fatal_signal_pending(tsk)))
1072 			goto killed;
1073 		spin_lock_irq(lock);
1074 	}
1075 	spin_unlock_irq(lock);
1076 
1077 	/*
1078 	 * At this point all other threads have exited, all we have to
1079 	 * do is to wait for the thread group leader to become inactive,
1080 	 * and to assume its PID:
1081 	 */
1082 	if (!thread_group_leader(tsk)) {
1083 		struct task_struct *leader = tsk->group_leader;
1084 
1085 		for (;;) {
1086 			threadgroup_change_begin(tsk);
1087 			write_lock_irq(&tasklist_lock);
1088 			/*
1089 			 * Do this under tasklist_lock to ensure that
1090 			 * exit_notify() can't miss ->group_exit_task
1091 			 */
1092 			sig->notify_count = -1;
1093 			if (likely(leader->exit_state))
1094 				break;
1095 			__set_current_state(TASK_KILLABLE);
1096 			write_unlock_irq(&tasklist_lock);
1097 			threadgroup_change_end(tsk);
1098 			schedule();
1099 			if (unlikely(__fatal_signal_pending(tsk)))
1100 				goto killed;
1101 		}
1102 
1103 		/*
1104 		 * The only record we have of the real-time age of a
1105 		 * process, regardless of execs it's done, is start_time.
1106 		 * All the past CPU time is accumulated in signal_struct
1107 		 * from sister threads now dead.  But in this non-leader
1108 		 * exec, nothing survives from the original leader thread,
1109 		 * whose birth marks the true age of this process now.
1110 		 * When we take on its identity by switching to its PID, we
1111 		 * also take its birthdate (always earlier than our own).
1112 		 */
1113 		tsk->start_time = leader->start_time;
1114 		tsk->real_start_time = leader->real_start_time;
1115 
1116 		BUG_ON(!same_thread_group(leader, tsk));
1117 		BUG_ON(has_group_leader_pid(tsk));
1118 		/*
1119 		 * An exec() starts a new thread group with the
1120 		 * TGID of the previous thread group. Rehash the
1121 		 * two threads with a switched PID, and release
1122 		 * the former thread group leader:
1123 		 */
1124 
1125 		/* Become a process group leader with the old leader's pid.
1126 		 * The old leader becomes a thread of the this thread group.
1127 		 * Note: The old leader also uses this pid until release_task
1128 		 *       is called.  Odd but simple and correct.
1129 		 */
1130 		tsk->pid = leader->pid;
1131 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1132 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1133 		transfer_pid(leader, tsk, PIDTYPE_SID);
1134 
1135 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1136 		list_replace_init(&leader->sibling, &tsk->sibling);
1137 
1138 		tsk->group_leader = tsk;
1139 		leader->group_leader = tsk;
1140 
1141 		tsk->exit_signal = SIGCHLD;
1142 		leader->exit_signal = -1;
1143 
1144 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1145 		leader->exit_state = EXIT_DEAD;
1146 
1147 		/*
1148 		 * We are going to release_task()->ptrace_unlink() silently,
1149 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1150 		 * the tracer wont't block again waiting for this thread.
1151 		 */
1152 		if (unlikely(leader->ptrace))
1153 			__wake_up_parent(leader, leader->parent);
1154 		write_unlock_irq(&tasklist_lock);
1155 		threadgroup_change_end(tsk);
1156 
1157 		release_task(leader);
1158 	}
1159 
1160 	sig->group_exit_task = NULL;
1161 	sig->notify_count = 0;
1162 
1163 no_thread_group:
1164 	/* we have changed execution domain */
1165 	tsk->exit_signal = SIGCHLD;
1166 
1167 	exit_itimers(sig);
1168 	flush_itimer_signals();
1169 
1170 	if (atomic_read(&oldsighand->count) != 1) {
1171 		struct sighand_struct *newsighand;
1172 		/*
1173 		 * This ->sighand is shared with the CLONE_SIGHAND
1174 		 * but not CLONE_THREAD task, switch to the new one.
1175 		 */
1176 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1177 		if (!newsighand)
1178 			return -ENOMEM;
1179 
1180 		atomic_set(&newsighand->count, 1);
1181 		memcpy(newsighand->action, oldsighand->action,
1182 		       sizeof(newsighand->action));
1183 
1184 		write_lock_irq(&tasklist_lock);
1185 		spin_lock(&oldsighand->siglock);
1186 		rcu_assign_pointer(tsk->sighand, newsighand);
1187 		spin_unlock(&oldsighand->siglock);
1188 		write_unlock_irq(&tasklist_lock);
1189 
1190 		__cleanup_sighand(oldsighand);
1191 	}
1192 
1193 	BUG_ON(!thread_group_leader(tsk));
1194 	return 0;
1195 
1196 killed:
1197 	/* protects against exit_notify() and __exit_signal() */
1198 	read_lock(&tasklist_lock);
1199 	sig->group_exit_task = NULL;
1200 	sig->notify_count = 0;
1201 	read_unlock(&tasklist_lock);
1202 	return -EAGAIN;
1203 }
1204 
1205 char *get_task_comm(char *buf, struct task_struct *tsk)
1206 {
1207 	/* buf must be at least sizeof(tsk->comm) in size */
1208 	task_lock(tsk);
1209 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1210 	task_unlock(tsk);
1211 	return buf;
1212 }
1213 EXPORT_SYMBOL_GPL(get_task_comm);
1214 
1215 /*
1216  * These functions flushes out all traces of the currently running executable
1217  * so that a new one can be started
1218  */
1219 
1220 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1221 {
1222 	task_lock(tsk);
1223 	trace_task_rename(tsk, buf);
1224 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1225 	task_unlock(tsk);
1226 	perf_event_comm(tsk, exec);
1227 }
1228 
1229 int flush_old_exec(struct linux_binprm * bprm)
1230 {
1231 	int retval;
1232 
1233 	/*
1234 	 * Make sure we have a private signal table and that
1235 	 * we are unassociated from the previous thread group.
1236 	 */
1237 	retval = de_thread(current);
1238 	if (retval)
1239 		goto out;
1240 
1241 	/*
1242 	 * Must be called _before_ exec_mmap() as bprm->mm is
1243 	 * not visibile until then. This also enables the update
1244 	 * to be lockless.
1245 	 */
1246 	set_mm_exe_file(bprm->mm, bprm->file);
1247 
1248 	/*
1249 	 * Release all of the old mmap stuff
1250 	 */
1251 	acct_arg_size(bprm, 0);
1252 	retval = exec_mmap(bprm->mm);
1253 	if (retval)
1254 		goto out;
1255 
1256 	bprm->mm = NULL;		/* We're using it now */
1257 
1258 	set_fs(USER_DS);
1259 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1260 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1261 	flush_thread();
1262 	current->personality &= ~bprm->per_clear;
1263 
1264 	return 0;
1265 
1266 out:
1267 	return retval;
1268 }
1269 EXPORT_SYMBOL(flush_old_exec);
1270 
1271 void would_dump(struct linux_binprm *bprm, struct file *file)
1272 {
1273 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1274 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1275 }
1276 EXPORT_SYMBOL(would_dump);
1277 
1278 void setup_new_exec(struct linux_binprm * bprm)
1279 {
1280 	arch_pick_mmap_layout(current->mm);
1281 
1282 	/* This is the point of no return */
1283 	current->sas_ss_sp = current->sas_ss_size = 0;
1284 
1285 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1286 		set_dumpable(current->mm, SUID_DUMP_USER);
1287 	else
1288 		set_dumpable(current->mm, suid_dumpable);
1289 
1290 	perf_event_exec();
1291 	__set_task_comm(current, kbasename(bprm->filename), true);
1292 
1293 	/* Set the new mm task size. We have to do that late because it may
1294 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1295 	 * some architectures like powerpc
1296 	 */
1297 	current->mm->task_size = TASK_SIZE;
1298 
1299 	/* install the new credentials */
1300 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1301 	    !gid_eq(bprm->cred->gid, current_egid())) {
1302 		current->pdeath_signal = 0;
1303 	} else {
1304 		would_dump(bprm, bprm->file);
1305 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1306 			set_dumpable(current->mm, suid_dumpable);
1307 	}
1308 
1309 	/* An exec changes our domain. We are no longer part of the thread
1310 	   group */
1311 	current->self_exec_id++;
1312 	flush_signal_handlers(current, 0);
1313 	do_close_on_exec(current->files);
1314 }
1315 EXPORT_SYMBOL(setup_new_exec);
1316 
1317 /*
1318  * Prepare credentials and lock ->cred_guard_mutex.
1319  * install_exec_creds() commits the new creds and drops the lock.
1320  * Or, if exec fails before, free_bprm() should release ->cred and
1321  * and unlock.
1322  */
1323 int prepare_bprm_creds(struct linux_binprm *bprm)
1324 {
1325 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1326 		return -ERESTARTNOINTR;
1327 
1328 	bprm->cred = prepare_exec_creds();
1329 	if (likely(bprm->cred))
1330 		return 0;
1331 
1332 	mutex_unlock(&current->signal->cred_guard_mutex);
1333 	return -ENOMEM;
1334 }
1335 
1336 static void free_bprm(struct linux_binprm *bprm)
1337 {
1338 	free_arg_pages(bprm);
1339 	if (bprm->cred) {
1340 		mutex_unlock(&current->signal->cred_guard_mutex);
1341 		abort_creds(bprm->cred);
1342 	}
1343 	if (bprm->file) {
1344 		allow_write_access(bprm->file);
1345 		fput(bprm->file);
1346 	}
1347 	/* If a binfmt changed the interp, free it. */
1348 	if (bprm->interp != bprm->filename)
1349 		kfree(bprm->interp);
1350 	kfree(bprm);
1351 }
1352 
1353 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1354 {
1355 	/* If a binfmt changed the interp, free it first. */
1356 	if (bprm->interp != bprm->filename)
1357 		kfree(bprm->interp);
1358 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1359 	if (!bprm->interp)
1360 		return -ENOMEM;
1361 	return 0;
1362 }
1363 EXPORT_SYMBOL(bprm_change_interp);
1364 
1365 /*
1366  * install the new credentials for this executable
1367  */
1368 void install_exec_creds(struct linux_binprm *bprm)
1369 {
1370 	security_bprm_committing_creds(bprm);
1371 
1372 	commit_creds(bprm->cred);
1373 	bprm->cred = NULL;
1374 
1375 	/*
1376 	 * Disable monitoring for regular users
1377 	 * when executing setuid binaries. Must
1378 	 * wait until new credentials are committed
1379 	 * by commit_creds() above
1380 	 */
1381 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1382 		perf_event_exit_task(current);
1383 	/*
1384 	 * cred_guard_mutex must be held at least to this point to prevent
1385 	 * ptrace_attach() from altering our determination of the task's
1386 	 * credentials; any time after this it may be unlocked.
1387 	 */
1388 	security_bprm_committed_creds(bprm);
1389 	mutex_unlock(&current->signal->cred_guard_mutex);
1390 }
1391 EXPORT_SYMBOL(install_exec_creds);
1392 
1393 /*
1394  * determine how safe it is to execute the proposed program
1395  * - the caller must hold ->cred_guard_mutex to protect against
1396  *   PTRACE_ATTACH or seccomp thread-sync
1397  */
1398 static void check_unsafe_exec(struct linux_binprm *bprm)
1399 {
1400 	struct task_struct *p = current, *t;
1401 	unsigned n_fs;
1402 
1403 	if (p->ptrace) {
1404 		if (p->ptrace & PT_PTRACE_CAP)
1405 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1406 		else
1407 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1408 	}
1409 
1410 	/*
1411 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1412 	 * mess up.
1413 	 */
1414 	if (task_no_new_privs(current))
1415 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1416 
1417 	t = p;
1418 	n_fs = 1;
1419 	spin_lock(&p->fs->lock);
1420 	rcu_read_lock();
1421 	while_each_thread(p, t) {
1422 		if (t->fs == p->fs)
1423 			n_fs++;
1424 	}
1425 	rcu_read_unlock();
1426 
1427 	if (p->fs->users > n_fs)
1428 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1429 	else
1430 		p->fs->in_exec = 1;
1431 	spin_unlock(&p->fs->lock);
1432 }
1433 
1434 static void bprm_fill_uid(struct linux_binprm *bprm)
1435 {
1436 	struct inode *inode;
1437 	unsigned int mode;
1438 	kuid_t uid;
1439 	kgid_t gid;
1440 
1441 	/*
1442 	 * Since this can be called multiple times (via prepare_binprm),
1443 	 * we must clear any previous work done when setting set[ug]id
1444 	 * bits from any earlier bprm->file uses (for example when run
1445 	 * first for a setuid script then again for its interpreter).
1446 	 */
1447 	bprm->cred->euid = current_euid();
1448 	bprm->cred->egid = current_egid();
1449 
1450 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1451 		return;
1452 
1453 	if (task_no_new_privs(current))
1454 		return;
1455 
1456 	inode = file_inode(bprm->file);
1457 	mode = READ_ONCE(inode->i_mode);
1458 	if (!(mode & (S_ISUID|S_ISGID)))
1459 		return;
1460 
1461 	/* Be careful if suid/sgid is set */
1462 	inode_lock(inode);
1463 
1464 	/* reload atomically mode/uid/gid now that lock held */
1465 	mode = inode->i_mode;
1466 	uid = inode->i_uid;
1467 	gid = inode->i_gid;
1468 	inode_unlock(inode);
1469 
1470 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1471 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1472 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1473 		return;
1474 
1475 	if (mode & S_ISUID) {
1476 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1477 		bprm->cred->euid = uid;
1478 	}
1479 
1480 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1481 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1482 		bprm->cred->egid = gid;
1483 	}
1484 }
1485 
1486 /*
1487  * Fill the binprm structure from the inode.
1488  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1489  *
1490  * This may be called multiple times for binary chains (scripts for example).
1491  */
1492 int prepare_binprm(struct linux_binprm *bprm)
1493 {
1494 	int retval;
1495 
1496 	bprm_fill_uid(bprm);
1497 
1498 	/* fill in binprm security blob */
1499 	retval = security_bprm_set_creds(bprm);
1500 	if (retval)
1501 		return retval;
1502 	bprm->cred_prepared = 1;
1503 
1504 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1505 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1506 }
1507 
1508 EXPORT_SYMBOL(prepare_binprm);
1509 
1510 /*
1511  * Arguments are '\0' separated strings found at the location bprm->p
1512  * points to; chop off the first by relocating brpm->p to right after
1513  * the first '\0' encountered.
1514  */
1515 int remove_arg_zero(struct linux_binprm *bprm)
1516 {
1517 	int ret = 0;
1518 	unsigned long offset;
1519 	char *kaddr;
1520 	struct page *page;
1521 
1522 	if (!bprm->argc)
1523 		return 0;
1524 
1525 	do {
1526 		offset = bprm->p & ~PAGE_MASK;
1527 		page = get_arg_page(bprm, bprm->p, 0);
1528 		if (!page) {
1529 			ret = -EFAULT;
1530 			goto out;
1531 		}
1532 		kaddr = kmap_atomic(page);
1533 
1534 		for (; offset < PAGE_SIZE && kaddr[offset];
1535 				offset++, bprm->p++)
1536 			;
1537 
1538 		kunmap_atomic(kaddr);
1539 		put_arg_page(page);
1540 	} while (offset == PAGE_SIZE);
1541 
1542 	bprm->p++;
1543 	bprm->argc--;
1544 	ret = 0;
1545 
1546 out:
1547 	return ret;
1548 }
1549 EXPORT_SYMBOL(remove_arg_zero);
1550 
1551 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1552 /*
1553  * cycle the list of binary formats handler, until one recognizes the image
1554  */
1555 int search_binary_handler(struct linux_binprm *bprm)
1556 {
1557 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1558 	struct linux_binfmt *fmt;
1559 	int retval;
1560 
1561 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1562 	if (bprm->recursion_depth > 5)
1563 		return -ELOOP;
1564 
1565 	retval = security_bprm_check(bprm);
1566 	if (retval)
1567 		return retval;
1568 
1569 	retval = -ENOENT;
1570  retry:
1571 	read_lock(&binfmt_lock);
1572 	list_for_each_entry(fmt, &formats, lh) {
1573 		if (!try_module_get(fmt->module))
1574 			continue;
1575 		read_unlock(&binfmt_lock);
1576 		bprm->recursion_depth++;
1577 		retval = fmt->load_binary(bprm);
1578 		read_lock(&binfmt_lock);
1579 		put_binfmt(fmt);
1580 		bprm->recursion_depth--;
1581 		if (retval < 0 && !bprm->mm) {
1582 			/* we got to flush_old_exec() and failed after it */
1583 			read_unlock(&binfmt_lock);
1584 			force_sigsegv(SIGSEGV, current);
1585 			return retval;
1586 		}
1587 		if (retval != -ENOEXEC || !bprm->file) {
1588 			read_unlock(&binfmt_lock);
1589 			return retval;
1590 		}
1591 	}
1592 	read_unlock(&binfmt_lock);
1593 
1594 	if (need_retry) {
1595 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1596 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1597 			return retval;
1598 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1599 			return retval;
1600 		need_retry = false;
1601 		goto retry;
1602 	}
1603 
1604 	return retval;
1605 }
1606 EXPORT_SYMBOL(search_binary_handler);
1607 
1608 static int exec_binprm(struct linux_binprm *bprm)
1609 {
1610 	pid_t old_pid, old_vpid;
1611 	int ret;
1612 
1613 	/* Need to fetch pid before load_binary changes it */
1614 	old_pid = current->pid;
1615 	rcu_read_lock();
1616 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1617 	rcu_read_unlock();
1618 
1619 	ret = search_binary_handler(bprm);
1620 	if (ret >= 0) {
1621 		audit_bprm(bprm);
1622 		trace_sched_process_exec(current, old_pid, bprm);
1623 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1624 		proc_exec_connector(current);
1625 	}
1626 
1627 	return ret;
1628 }
1629 
1630 /*
1631  * sys_execve() executes a new program.
1632  */
1633 static int do_execveat_common(int fd, struct filename *filename,
1634 			      struct user_arg_ptr argv,
1635 			      struct user_arg_ptr envp,
1636 			      int flags)
1637 {
1638 	char *pathbuf = NULL;
1639 	struct linux_binprm *bprm;
1640 	struct file *file;
1641 	struct files_struct *displaced;
1642 	int retval;
1643 
1644 	if (IS_ERR(filename))
1645 		return PTR_ERR(filename);
1646 
1647 	/*
1648 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1649 	 * set*uid() to execve() because too many poorly written programs
1650 	 * don't check setuid() return code.  Here we additionally recheck
1651 	 * whether NPROC limit is still exceeded.
1652 	 */
1653 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1654 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1655 		retval = -EAGAIN;
1656 		goto out_ret;
1657 	}
1658 
1659 	/* We're below the limit (still or again), so we don't want to make
1660 	 * further execve() calls fail. */
1661 	current->flags &= ~PF_NPROC_EXCEEDED;
1662 
1663 	retval = unshare_files(&displaced);
1664 	if (retval)
1665 		goto out_ret;
1666 
1667 	retval = -ENOMEM;
1668 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1669 	if (!bprm)
1670 		goto out_files;
1671 
1672 	retval = prepare_bprm_creds(bprm);
1673 	if (retval)
1674 		goto out_free;
1675 
1676 	check_unsafe_exec(bprm);
1677 	current->in_execve = 1;
1678 
1679 	file = do_open_execat(fd, filename, flags);
1680 	retval = PTR_ERR(file);
1681 	if (IS_ERR(file))
1682 		goto out_unmark;
1683 
1684 	sched_exec();
1685 
1686 	bprm->file = file;
1687 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1688 		bprm->filename = filename->name;
1689 	} else {
1690 		if (filename->name[0] == '\0')
1691 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1692 		else
1693 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1694 					    fd, filename->name);
1695 		if (!pathbuf) {
1696 			retval = -ENOMEM;
1697 			goto out_unmark;
1698 		}
1699 		/*
1700 		 * Record that a name derived from an O_CLOEXEC fd will be
1701 		 * inaccessible after exec. Relies on having exclusive access to
1702 		 * current->files (due to unshare_files above).
1703 		 */
1704 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1705 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1706 		bprm->filename = pathbuf;
1707 	}
1708 	bprm->interp = bprm->filename;
1709 
1710 	retval = bprm_mm_init(bprm);
1711 	if (retval)
1712 		goto out_unmark;
1713 
1714 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1715 	if ((retval = bprm->argc) < 0)
1716 		goto out;
1717 
1718 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1719 	if ((retval = bprm->envc) < 0)
1720 		goto out;
1721 
1722 	retval = prepare_binprm(bprm);
1723 	if (retval < 0)
1724 		goto out;
1725 
1726 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1727 	if (retval < 0)
1728 		goto out;
1729 
1730 	bprm->exec = bprm->p;
1731 	retval = copy_strings(bprm->envc, envp, bprm);
1732 	if (retval < 0)
1733 		goto out;
1734 
1735 	retval = copy_strings(bprm->argc, argv, bprm);
1736 	if (retval < 0)
1737 		goto out;
1738 
1739 	retval = exec_binprm(bprm);
1740 	if (retval < 0)
1741 		goto out;
1742 
1743 	/* execve succeeded */
1744 	current->fs->in_exec = 0;
1745 	current->in_execve = 0;
1746 	acct_update_integrals(current);
1747 	task_numa_free(current);
1748 	free_bprm(bprm);
1749 	kfree(pathbuf);
1750 	putname(filename);
1751 	if (displaced)
1752 		put_files_struct(displaced);
1753 	return retval;
1754 
1755 out:
1756 	if (bprm->mm) {
1757 		acct_arg_size(bprm, 0);
1758 		mmput(bprm->mm);
1759 	}
1760 
1761 out_unmark:
1762 	current->fs->in_exec = 0;
1763 	current->in_execve = 0;
1764 
1765 out_free:
1766 	free_bprm(bprm);
1767 	kfree(pathbuf);
1768 
1769 out_files:
1770 	if (displaced)
1771 		reset_files_struct(displaced);
1772 out_ret:
1773 	putname(filename);
1774 	return retval;
1775 }
1776 
1777 int do_execve(struct filename *filename,
1778 	const char __user *const __user *__argv,
1779 	const char __user *const __user *__envp)
1780 {
1781 	struct user_arg_ptr argv = { .ptr.native = __argv };
1782 	struct user_arg_ptr envp = { .ptr.native = __envp };
1783 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1784 }
1785 
1786 int do_execveat(int fd, struct filename *filename,
1787 		const char __user *const __user *__argv,
1788 		const char __user *const __user *__envp,
1789 		int flags)
1790 {
1791 	struct user_arg_ptr argv = { .ptr.native = __argv };
1792 	struct user_arg_ptr envp = { .ptr.native = __envp };
1793 
1794 	return do_execveat_common(fd, filename, argv, envp, flags);
1795 }
1796 
1797 #ifdef CONFIG_COMPAT
1798 static int compat_do_execve(struct filename *filename,
1799 	const compat_uptr_t __user *__argv,
1800 	const compat_uptr_t __user *__envp)
1801 {
1802 	struct user_arg_ptr argv = {
1803 		.is_compat = true,
1804 		.ptr.compat = __argv,
1805 	};
1806 	struct user_arg_ptr envp = {
1807 		.is_compat = true,
1808 		.ptr.compat = __envp,
1809 	};
1810 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1811 }
1812 
1813 static int compat_do_execveat(int fd, struct filename *filename,
1814 			      const compat_uptr_t __user *__argv,
1815 			      const compat_uptr_t __user *__envp,
1816 			      int flags)
1817 {
1818 	struct user_arg_ptr argv = {
1819 		.is_compat = true,
1820 		.ptr.compat = __argv,
1821 	};
1822 	struct user_arg_ptr envp = {
1823 		.is_compat = true,
1824 		.ptr.compat = __envp,
1825 	};
1826 	return do_execveat_common(fd, filename, argv, envp, flags);
1827 }
1828 #endif
1829 
1830 void set_binfmt(struct linux_binfmt *new)
1831 {
1832 	struct mm_struct *mm = current->mm;
1833 
1834 	if (mm->binfmt)
1835 		module_put(mm->binfmt->module);
1836 
1837 	mm->binfmt = new;
1838 	if (new)
1839 		__module_get(new->module);
1840 }
1841 EXPORT_SYMBOL(set_binfmt);
1842 
1843 /*
1844  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1845  */
1846 void set_dumpable(struct mm_struct *mm, int value)
1847 {
1848 	unsigned long old, new;
1849 
1850 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1851 		return;
1852 
1853 	do {
1854 		old = ACCESS_ONCE(mm->flags);
1855 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1856 	} while (cmpxchg(&mm->flags, old, new) != old);
1857 }
1858 
1859 SYSCALL_DEFINE3(execve,
1860 		const char __user *, filename,
1861 		const char __user *const __user *, argv,
1862 		const char __user *const __user *, envp)
1863 {
1864 	return do_execve(getname(filename), argv, envp);
1865 }
1866 
1867 SYSCALL_DEFINE5(execveat,
1868 		int, fd, const char __user *, filename,
1869 		const char __user *const __user *, argv,
1870 		const char __user *const __user *, envp,
1871 		int, flags)
1872 {
1873 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1874 
1875 	return do_execveat(fd,
1876 			   getname_flags(filename, lookup_flags, NULL),
1877 			   argv, envp, flags);
1878 }
1879 
1880 #ifdef CONFIG_COMPAT
1881 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1882 	const compat_uptr_t __user *, argv,
1883 	const compat_uptr_t __user *, envp)
1884 {
1885 	return compat_do_execve(getname(filename), argv, envp);
1886 }
1887 
1888 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1889 		       const char __user *, filename,
1890 		       const compat_uptr_t __user *, argv,
1891 		       const compat_uptr_t __user *, envp,
1892 		       int,  flags)
1893 {
1894 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1895 
1896 	return compat_do_execveat(fd,
1897 				  getname_flags(filename, lookup_flags, NULL),
1898 				  argv, envp, flags);
1899 }
1900 #endif
1901