xref: /openbmc/linux/fs/exec.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 
57 #include <asm/uaccess.h>
58 #include <asm/mmu_context.h>
59 #include <asm/tlb.h>
60 #include "internal.h"
61 
62 int core_uses_pid;
63 char core_pattern[CORENAME_MAX_SIZE] = "core";
64 int suid_dumpable = 0;
65 
66 /* The maximal length of core_pattern is also specified in sysctl.c */
67 
68 static LIST_HEAD(formats);
69 static DEFINE_RWLOCK(binfmt_lock);
70 
71 int register_binfmt(struct linux_binfmt * fmt)
72 {
73 	if (!fmt)
74 		return -EINVAL;
75 	write_lock(&binfmt_lock);
76 	list_add(&fmt->lh, &formats);
77 	write_unlock(&binfmt_lock);
78 	return 0;
79 }
80 
81 EXPORT_SYMBOL(register_binfmt);
82 
83 void unregister_binfmt(struct linux_binfmt * fmt)
84 {
85 	write_lock(&binfmt_lock);
86 	list_del(&fmt->lh);
87 	write_unlock(&binfmt_lock);
88 }
89 
90 EXPORT_SYMBOL(unregister_binfmt);
91 
92 static inline void put_binfmt(struct linux_binfmt * fmt)
93 {
94 	module_put(fmt->module);
95 }
96 
97 /*
98  * Note that a shared library must be both readable and executable due to
99  * security reasons.
100  *
101  * Also note that we take the address to load from from the file itself.
102  */
103 SYSCALL_DEFINE1(uselib, const char __user *, library)
104 {
105 	struct file *file;
106 	struct nameidata nd;
107 	char *tmp = getname(library);
108 	int error = PTR_ERR(tmp);
109 
110 	if (!IS_ERR(tmp)) {
111 		error = path_lookup_open(AT_FDCWD, tmp,
112 					 LOOKUP_FOLLOW, &nd,
113 					 FMODE_READ|FMODE_EXEC);
114 		putname(tmp);
115 	}
116 	if (error)
117 		goto out;
118 
119 	error = -EINVAL;
120 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
121 		goto exit;
122 
123 	error = -EACCES;
124 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
125 		goto exit;
126 
127 	error = inode_permission(nd.path.dentry->d_inode,
128 				 MAY_READ | MAY_EXEC | MAY_OPEN);
129 	if (error)
130 		goto exit;
131 	error = ima_path_check(&nd.path, MAY_READ | MAY_EXEC | MAY_OPEN);
132 	if (error)
133 		goto exit;
134 
135 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
136 	error = PTR_ERR(file);
137 	if (IS_ERR(file))
138 		goto out;
139 
140 	fsnotify_open(file->f_path.dentry);
141 
142 	error = -ENOEXEC;
143 	if(file->f_op) {
144 		struct linux_binfmt * fmt;
145 
146 		read_lock(&binfmt_lock);
147 		list_for_each_entry(fmt, &formats, lh) {
148 			if (!fmt->load_shlib)
149 				continue;
150 			if (!try_module_get(fmt->module))
151 				continue;
152 			read_unlock(&binfmt_lock);
153 			error = fmt->load_shlib(file);
154 			read_lock(&binfmt_lock);
155 			put_binfmt(fmt);
156 			if (error != -ENOEXEC)
157 				break;
158 		}
159 		read_unlock(&binfmt_lock);
160 	}
161 	fput(file);
162 out:
163   	return error;
164 exit:
165 	release_open_intent(&nd);
166 	path_put(&nd.path);
167 	goto out;
168 }
169 
170 #ifdef CONFIG_MMU
171 
172 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
173 		int write)
174 {
175 	struct page *page;
176 	int ret;
177 
178 #ifdef CONFIG_STACK_GROWSUP
179 	if (write) {
180 		ret = expand_stack_downwards(bprm->vma, pos);
181 		if (ret < 0)
182 			return NULL;
183 	}
184 #endif
185 	ret = get_user_pages(current, bprm->mm, pos,
186 			1, write, 1, &page, NULL);
187 	if (ret <= 0)
188 		return NULL;
189 
190 	if (write) {
191 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
192 		struct rlimit *rlim;
193 
194 		/*
195 		 * We've historically supported up to 32 pages (ARG_MAX)
196 		 * of argument strings even with small stacks
197 		 */
198 		if (size <= ARG_MAX)
199 			return page;
200 
201 		/*
202 		 * Limit to 1/4-th the stack size for the argv+env strings.
203 		 * This ensures that:
204 		 *  - the remaining binfmt code will not run out of stack space,
205 		 *  - the program will have a reasonable amount of stack left
206 		 *    to work from.
207 		 */
208 		rlim = current->signal->rlim;
209 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
210 			put_page(page);
211 			return NULL;
212 		}
213 	}
214 
215 	return page;
216 }
217 
218 static void put_arg_page(struct page *page)
219 {
220 	put_page(page);
221 }
222 
223 static void free_arg_page(struct linux_binprm *bprm, int i)
224 {
225 }
226 
227 static void free_arg_pages(struct linux_binprm *bprm)
228 {
229 }
230 
231 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
232 		struct page *page)
233 {
234 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
235 }
236 
237 static int __bprm_mm_init(struct linux_binprm *bprm)
238 {
239 	int err;
240 	struct vm_area_struct *vma = NULL;
241 	struct mm_struct *mm = bprm->mm;
242 
243 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
244 	if (!vma)
245 		return -ENOMEM;
246 
247 	down_write(&mm->mmap_sem);
248 	vma->vm_mm = mm;
249 
250 	/*
251 	 * Place the stack at the largest stack address the architecture
252 	 * supports. Later, we'll move this to an appropriate place. We don't
253 	 * use STACK_TOP because that can depend on attributes which aren't
254 	 * configured yet.
255 	 */
256 	vma->vm_end = STACK_TOP_MAX;
257 	vma->vm_start = vma->vm_end - PAGE_SIZE;
258 	vma->vm_flags = VM_STACK_FLAGS;
259 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
260 	err = insert_vm_struct(mm, vma);
261 	if (err)
262 		goto err;
263 
264 	mm->stack_vm = mm->total_vm = 1;
265 	up_write(&mm->mmap_sem);
266 	bprm->p = vma->vm_end - sizeof(void *);
267 	return 0;
268 err:
269 	up_write(&mm->mmap_sem);
270 	bprm->vma = NULL;
271 	kmem_cache_free(vm_area_cachep, vma);
272 	return err;
273 }
274 
275 static bool valid_arg_len(struct linux_binprm *bprm, long len)
276 {
277 	return len <= MAX_ARG_STRLEN;
278 }
279 
280 #else
281 
282 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
283 		int write)
284 {
285 	struct page *page;
286 
287 	page = bprm->page[pos / PAGE_SIZE];
288 	if (!page && write) {
289 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
290 		if (!page)
291 			return NULL;
292 		bprm->page[pos / PAGE_SIZE] = page;
293 	}
294 
295 	return page;
296 }
297 
298 static void put_arg_page(struct page *page)
299 {
300 }
301 
302 static void free_arg_page(struct linux_binprm *bprm, int i)
303 {
304 	if (bprm->page[i]) {
305 		__free_page(bprm->page[i]);
306 		bprm->page[i] = NULL;
307 	}
308 }
309 
310 static void free_arg_pages(struct linux_binprm *bprm)
311 {
312 	int i;
313 
314 	for (i = 0; i < MAX_ARG_PAGES; i++)
315 		free_arg_page(bprm, i);
316 }
317 
318 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 		struct page *page)
320 {
321 }
322 
323 static int __bprm_mm_init(struct linux_binprm *bprm)
324 {
325 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
326 	return 0;
327 }
328 
329 static bool valid_arg_len(struct linux_binprm *bprm, long len)
330 {
331 	return len <= bprm->p;
332 }
333 
334 #endif /* CONFIG_MMU */
335 
336 /*
337  * Create a new mm_struct and populate it with a temporary stack
338  * vm_area_struct.  We don't have enough context at this point to set the stack
339  * flags, permissions, and offset, so we use temporary values.  We'll update
340  * them later in setup_arg_pages().
341  */
342 int bprm_mm_init(struct linux_binprm *bprm)
343 {
344 	int err;
345 	struct mm_struct *mm = NULL;
346 
347 	bprm->mm = mm = mm_alloc();
348 	err = -ENOMEM;
349 	if (!mm)
350 		goto err;
351 
352 	err = init_new_context(current, mm);
353 	if (err)
354 		goto err;
355 
356 	err = __bprm_mm_init(bprm);
357 	if (err)
358 		goto err;
359 
360 	return 0;
361 
362 err:
363 	if (mm) {
364 		bprm->mm = NULL;
365 		mmdrop(mm);
366 	}
367 
368 	return err;
369 }
370 
371 /*
372  * count() counts the number of strings in array ARGV.
373  */
374 static int count(char __user * __user * argv, int max)
375 {
376 	int i = 0;
377 
378 	if (argv != NULL) {
379 		for (;;) {
380 			char __user * p;
381 
382 			if (get_user(p, argv))
383 				return -EFAULT;
384 			if (!p)
385 				break;
386 			argv++;
387 			if (i++ >= max)
388 				return -E2BIG;
389 			cond_resched();
390 		}
391 	}
392 	return i;
393 }
394 
395 /*
396  * 'copy_strings()' copies argument/environment strings from the old
397  * processes's memory to the new process's stack.  The call to get_user_pages()
398  * ensures the destination page is created and not swapped out.
399  */
400 static int copy_strings(int argc, char __user * __user * argv,
401 			struct linux_binprm *bprm)
402 {
403 	struct page *kmapped_page = NULL;
404 	char *kaddr = NULL;
405 	unsigned long kpos = 0;
406 	int ret;
407 
408 	while (argc-- > 0) {
409 		char __user *str;
410 		int len;
411 		unsigned long pos;
412 
413 		if (get_user(str, argv+argc) ||
414 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
415 			ret = -EFAULT;
416 			goto out;
417 		}
418 
419 		if (!valid_arg_len(bprm, len)) {
420 			ret = -E2BIG;
421 			goto out;
422 		}
423 
424 		/* We're going to work our way backwords. */
425 		pos = bprm->p;
426 		str += len;
427 		bprm->p -= len;
428 
429 		while (len > 0) {
430 			int offset, bytes_to_copy;
431 
432 			offset = pos % PAGE_SIZE;
433 			if (offset == 0)
434 				offset = PAGE_SIZE;
435 
436 			bytes_to_copy = offset;
437 			if (bytes_to_copy > len)
438 				bytes_to_copy = len;
439 
440 			offset -= bytes_to_copy;
441 			pos -= bytes_to_copy;
442 			str -= bytes_to_copy;
443 			len -= bytes_to_copy;
444 
445 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
446 				struct page *page;
447 
448 				page = get_arg_page(bprm, pos, 1);
449 				if (!page) {
450 					ret = -E2BIG;
451 					goto out;
452 				}
453 
454 				if (kmapped_page) {
455 					flush_kernel_dcache_page(kmapped_page);
456 					kunmap(kmapped_page);
457 					put_arg_page(kmapped_page);
458 				}
459 				kmapped_page = page;
460 				kaddr = kmap(kmapped_page);
461 				kpos = pos & PAGE_MASK;
462 				flush_arg_page(bprm, kpos, kmapped_page);
463 			}
464 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
465 				ret = -EFAULT;
466 				goto out;
467 			}
468 		}
469 	}
470 	ret = 0;
471 out:
472 	if (kmapped_page) {
473 		flush_kernel_dcache_page(kmapped_page);
474 		kunmap(kmapped_page);
475 		put_arg_page(kmapped_page);
476 	}
477 	return ret;
478 }
479 
480 /*
481  * Like copy_strings, but get argv and its values from kernel memory.
482  */
483 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
484 {
485 	int r;
486 	mm_segment_t oldfs = get_fs();
487 	set_fs(KERNEL_DS);
488 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
489 	set_fs(oldfs);
490 	return r;
491 }
492 EXPORT_SYMBOL(copy_strings_kernel);
493 
494 #ifdef CONFIG_MMU
495 
496 /*
497  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
498  * the binfmt code determines where the new stack should reside, we shift it to
499  * its final location.  The process proceeds as follows:
500  *
501  * 1) Use shift to calculate the new vma endpoints.
502  * 2) Extend vma to cover both the old and new ranges.  This ensures the
503  *    arguments passed to subsequent functions are consistent.
504  * 3) Move vma's page tables to the new range.
505  * 4) Free up any cleared pgd range.
506  * 5) Shrink the vma to cover only the new range.
507  */
508 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
509 {
510 	struct mm_struct *mm = vma->vm_mm;
511 	unsigned long old_start = vma->vm_start;
512 	unsigned long old_end = vma->vm_end;
513 	unsigned long length = old_end - old_start;
514 	unsigned long new_start = old_start - shift;
515 	unsigned long new_end = old_end - shift;
516 	struct mmu_gather *tlb;
517 
518 	BUG_ON(new_start > new_end);
519 
520 	/*
521 	 * ensure there are no vmas between where we want to go
522 	 * and where we are
523 	 */
524 	if (vma != find_vma(mm, new_start))
525 		return -EFAULT;
526 
527 	/*
528 	 * cover the whole range: [new_start, old_end)
529 	 */
530 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
531 
532 	/*
533 	 * move the page tables downwards, on failure we rely on
534 	 * process cleanup to remove whatever mess we made.
535 	 */
536 	if (length != move_page_tables(vma, old_start,
537 				       vma, new_start, length))
538 		return -ENOMEM;
539 
540 	lru_add_drain();
541 	tlb = tlb_gather_mmu(mm, 0);
542 	if (new_end > old_start) {
543 		/*
544 		 * when the old and new regions overlap clear from new_end.
545 		 */
546 		free_pgd_range(tlb, new_end, old_end, new_end,
547 			vma->vm_next ? vma->vm_next->vm_start : 0);
548 	} else {
549 		/*
550 		 * otherwise, clean from old_start; this is done to not touch
551 		 * the address space in [new_end, old_start) some architectures
552 		 * have constraints on va-space that make this illegal (IA64) -
553 		 * for the others its just a little faster.
554 		 */
555 		free_pgd_range(tlb, old_start, old_end, new_end,
556 			vma->vm_next ? vma->vm_next->vm_start : 0);
557 	}
558 	tlb_finish_mmu(tlb, new_end, old_end);
559 
560 	/*
561 	 * shrink the vma to just the new range.
562 	 */
563 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
564 
565 	return 0;
566 }
567 
568 #define EXTRA_STACK_VM_PAGES	20	/* random */
569 
570 /*
571  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
572  * the stack is optionally relocated, and some extra space is added.
573  */
574 int setup_arg_pages(struct linux_binprm *bprm,
575 		    unsigned long stack_top,
576 		    int executable_stack)
577 {
578 	unsigned long ret;
579 	unsigned long stack_shift;
580 	struct mm_struct *mm = current->mm;
581 	struct vm_area_struct *vma = bprm->vma;
582 	struct vm_area_struct *prev = NULL;
583 	unsigned long vm_flags;
584 	unsigned long stack_base;
585 
586 #ifdef CONFIG_STACK_GROWSUP
587 	/* Limit stack size to 1GB */
588 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
589 	if (stack_base > (1 << 30))
590 		stack_base = 1 << 30;
591 
592 	/* Make sure we didn't let the argument array grow too large. */
593 	if (vma->vm_end - vma->vm_start > stack_base)
594 		return -ENOMEM;
595 
596 	stack_base = PAGE_ALIGN(stack_top - stack_base);
597 
598 	stack_shift = vma->vm_start - stack_base;
599 	mm->arg_start = bprm->p - stack_shift;
600 	bprm->p = vma->vm_end - stack_shift;
601 #else
602 	stack_top = arch_align_stack(stack_top);
603 	stack_top = PAGE_ALIGN(stack_top);
604 	stack_shift = vma->vm_end - stack_top;
605 
606 	bprm->p -= stack_shift;
607 	mm->arg_start = bprm->p;
608 #endif
609 
610 	if (bprm->loader)
611 		bprm->loader -= stack_shift;
612 	bprm->exec -= stack_shift;
613 
614 	down_write(&mm->mmap_sem);
615 	vm_flags = VM_STACK_FLAGS;
616 
617 	/*
618 	 * Adjust stack execute permissions; explicitly enable for
619 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
620 	 * (arch default) otherwise.
621 	 */
622 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
623 		vm_flags |= VM_EXEC;
624 	else if (executable_stack == EXSTACK_DISABLE_X)
625 		vm_flags &= ~VM_EXEC;
626 	vm_flags |= mm->def_flags;
627 
628 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
629 			vm_flags);
630 	if (ret)
631 		goto out_unlock;
632 	BUG_ON(prev != vma);
633 
634 	/* Move stack pages down in memory. */
635 	if (stack_shift) {
636 		ret = shift_arg_pages(vma, stack_shift);
637 		if (ret) {
638 			up_write(&mm->mmap_sem);
639 			return ret;
640 		}
641 	}
642 
643 #ifdef CONFIG_STACK_GROWSUP
644 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
645 #else
646 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
647 #endif
648 	ret = expand_stack(vma, stack_base);
649 	if (ret)
650 		ret = -EFAULT;
651 
652 out_unlock:
653 	up_write(&mm->mmap_sem);
654 	return 0;
655 }
656 EXPORT_SYMBOL(setup_arg_pages);
657 
658 #endif /* CONFIG_MMU */
659 
660 struct file *open_exec(const char *name)
661 {
662 	struct nameidata nd;
663 	struct file *file;
664 	int err;
665 
666 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
667 				FMODE_READ|FMODE_EXEC);
668 	if (err)
669 		goto out;
670 
671 	err = -EACCES;
672 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
673 		goto out_path_put;
674 
675 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
676 		goto out_path_put;
677 
678 	err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
679 	if (err)
680 		goto out_path_put;
681 	err = ima_path_check(&nd.path, MAY_EXEC | MAY_OPEN);
682 	if (err)
683 		goto out_path_put;
684 
685 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
686 	if (IS_ERR(file))
687 		return file;
688 
689 	fsnotify_open(file->f_path.dentry);
690 
691 	err = deny_write_access(file);
692 	if (err) {
693 		fput(file);
694 		goto out;
695 	}
696 
697 	return file;
698 
699  out_path_put:
700 	release_open_intent(&nd);
701 	path_put(&nd.path);
702  out:
703 	return ERR_PTR(err);
704 }
705 EXPORT_SYMBOL(open_exec);
706 
707 int kernel_read(struct file *file, unsigned long offset,
708 	char *addr, unsigned long count)
709 {
710 	mm_segment_t old_fs;
711 	loff_t pos = offset;
712 	int result;
713 
714 	old_fs = get_fs();
715 	set_fs(get_ds());
716 	/* The cast to a user pointer is valid due to the set_fs() */
717 	result = vfs_read(file, (void __user *)addr, count, &pos);
718 	set_fs(old_fs);
719 	return result;
720 }
721 
722 EXPORT_SYMBOL(kernel_read);
723 
724 static int exec_mmap(struct mm_struct *mm)
725 {
726 	struct task_struct *tsk;
727 	struct mm_struct * old_mm, *active_mm;
728 
729 	/* Notify parent that we're no longer interested in the old VM */
730 	tsk = current;
731 	old_mm = current->mm;
732 	mm_release(tsk, old_mm);
733 
734 	if (old_mm) {
735 		/*
736 		 * Make sure that if there is a core dump in progress
737 		 * for the old mm, we get out and die instead of going
738 		 * through with the exec.  We must hold mmap_sem around
739 		 * checking core_state and changing tsk->mm.
740 		 */
741 		down_read(&old_mm->mmap_sem);
742 		if (unlikely(old_mm->core_state)) {
743 			up_read(&old_mm->mmap_sem);
744 			return -EINTR;
745 		}
746 	}
747 	task_lock(tsk);
748 	active_mm = tsk->active_mm;
749 	tsk->mm = mm;
750 	tsk->active_mm = mm;
751 	activate_mm(active_mm, mm);
752 	task_unlock(tsk);
753 	arch_pick_mmap_layout(mm);
754 	if (old_mm) {
755 		up_read(&old_mm->mmap_sem);
756 		BUG_ON(active_mm != old_mm);
757 		mm_update_next_owner(old_mm);
758 		mmput(old_mm);
759 		return 0;
760 	}
761 	mmdrop(active_mm);
762 	return 0;
763 }
764 
765 /*
766  * This function makes sure the current process has its own signal table,
767  * so that flush_signal_handlers can later reset the handlers without
768  * disturbing other processes.  (Other processes might share the signal
769  * table via the CLONE_SIGHAND option to clone().)
770  */
771 static int de_thread(struct task_struct *tsk)
772 {
773 	struct signal_struct *sig = tsk->signal;
774 	struct sighand_struct *oldsighand = tsk->sighand;
775 	spinlock_t *lock = &oldsighand->siglock;
776 	int count;
777 
778 	if (thread_group_empty(tsk))
779 		goto no_thread_group;
780 
781 	/*
782 	 * Kill all other threads in the thread group.
783 	 */
784 	spin_lock_irq(lock);
785 	if (signal_group_exit(sig)) {
786 		/*
787 		 * Another group action in progress, just
788 		 * return so that the signal is processed.
789 		 */
790 		spin_unlock_irq(lock);
791 		return -EAGAIN;
792 	}
793 	sig->group_exit_task = tsk;
794 	zap_other_threads(tsk);
795 
796 	/* Account for the thread group leader hanging around: */
797 	count = thread_group_leader(tsk) ? 1 : 2;
798 	sig->notify_count = count;
799 	while (atomic_read(&sig->count) > count) {
800 		__set_current_state(TASK_UNINTERRUPTIBLE);
801 		spin_unlock_irq(lock);
802 		schedule();
803 		spin_lock_irq(lock);
804 	}
805 	spin_unlock_irq(lock);
806 
807 	/*
808 	 * At this point all other threads have exited, all we have to
809 	 * do is to wait for the thread group leader to become inactive,
810 	 * and to assume its PID:
811 	 */
812 	if (!thread_group_leader(tsk)) {
813 		struct task_struct *leader = tsk->group_leader;
814 
815 		sig->notify_count = -1;	/* for exit_notify() */
816 		for (;;) {
817 			write_lock_irq(&tasklist_lock);
818 			if (likely(leader->exit_state))
819 				break;
820 			__set_current_state(TASK_UNINTERRUPTIBLE);
821 			write_unlock_irq(&tasklist_lock);
822 			schedule();
823 		}
824 
825 		/*
826 		 * The only record we have of the real-time age of a
827 		 * process, regardless of execs it's done, is start_time.
828 		 * All the past CPU time is accumulated in signal_struct
829 		 * from sister threads now dead.  But in this non-leader
830 		 * exec, nothing survives from the original leader thread,
831 		 * whose birth marks the true age of this process now.
832 		 * When we take on its identity by switching to its PID, we
833 		 * also take its birthdate (always earlier than our own).
834 		 */
835 		tsk->start_time = leader->start_time;
836 
837 		BUG_ON(!same_thread_group(leader, tsk));
838 		BUG_ON(has_group_leader_pid(tsk));
839 		/*
840 		 * An exec() starts a new thread group with the
841 		 * TGID of the previous thread group. Rehash the
842 		 * two threads with a switched PID, and release
843 		 * the former thread group leader:
844 		 */
845 
846 		/* Become a process group leader with the old leader's pid.
847 		 * The old leader becomes a thread of the this thread group.
848 		 * Note: The old leader also uses this pid until release_task
849 		 *       is called.  Odd but simple and correct.
850 		 */
851 		detach_pid(tsk, PIDTYPE_PID);
852 		tsk->pid = leader->pid;
853 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
854 		transfer_pid(leader, tsk, PIDTYPE_PGID);
855 		transfer_pid(leader, tsk, PIDTYPE_SID);
856 		list_replace_rcu(&leader->tasks, &tsk->tasks);
857 
858 		tsk->group_leader = tsk;
859 		leader->group_leader = tsk;
860 
861 		tsk->exit_signal = SIGCHLD;
862 
863 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
864 		leader->exit_state = EXIT_DEAD;
865 		write_unlock_irq(&tasklist_lock);
866 
867 		release_task(leader);
868 	}
869 
870 	sig->group_exit_task = NULL;
871 	sig->notify_count = 0;
872 
873 no_thread_group:
874 	exit_itimers(sig);
875 	flush_itimer_signals();
876 
877 	if (atomic_read(&oldsighand->count) != 1) {
878 		struct sighand_struct *newsighand;
879 		/*
880 		 * This ->sighand is shared with the CLONE_SIGHAND
881 		 * but not CLONE_THREAD task, switch to the new one.
882 		 */
883 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
884 		if (!newsighand)
885 			return -ENOMEM;
886 
887 		atomic_set(&newsighand->count, 1);
888 		memcpy(newsighand->action, oldsighand->action,
889 		       sizeof(newsighand->action));
890 
891 		write_lock_irq(&tasklist_lock);
892 		spin_lock(&oldsighand->siglock);
893 		rcu_assign_pointer(tsk->sighand, newsighand);
894 		spin_unlock(&oldsighand->siglock);
895 		write_unlock_irq(&tasklist_lock);
896 
897 		__cleanup_sighand(oldsighand);
898 	}
899 
900 	BUG_ON(!thread_group_leader(tsk));
901 	return 0;
902 }
903 
904 /*
905  * These functions flushes out all traces of the currently running executable
906  * so that a new one can be started
907  */
908 static void flush_old_files(struct files_struct * files)
909 {
910 	long j = -1;
911 	struct fdtable *fdt;
912 
913 	spin_lock(&files->file_lock);
914 	for (;;) {
915 		unsigned long set, i;
916 
917 		j++;
918 		i = j * __NFDBITS;
919 		fdt = files_fdtable(files);
920 		if (i >= fdt->max_fds)
921 			break;
922 		set = fdt->close_on_exec->fds_bits[j];
923 		if (!set)
924 			continue;
925 		fdt->close_on_exec->fds_bits[j] = 0;
926 		spin_unlock(&files->file_lock);
927 		for ( ; set ; i++,set >>= 1) {
928 			if (set & 1) {
929 				sys_close(i);
930 			}
931 		}
932 		spin_lock(&files->file_lock);
933 
934 	}
935 	spin_unlock(&files->file_lock);
936 }
937 
938 char *get_task_comm(char *buf, struct task_struct *tsk)
939 {
940 	/* buf must be at least sizeof(tsk->comm) in size */
941 	task_lock(tsk);
942 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
943 	task_unlock(tsk);
944 	return buf;
945 }
946 
947 void set_task_comm(struct task_struct *tsk, char *buf)
948 {
949 	task_lock(tsk);
950 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
951 	task_unlock(tsk);
952 }
953 
954 int flush_old_exec(struct linux_binprm * bprm)
955 {
956 	char * name;
957 	int i, ch, retval;
958 	char tcomm[sizeof(current->comm)];
959 
960 	/*
961 	 * Make sure we have a private signal table and that
962 	 * we are unassociated from the previous thread group.
963 	 */
964 	retval = de_thread(current);
965 	if (retval)
966 		goto out;
967 
968 	set_mm_exe_file(bprm->mm, bprm->file);
969 
970 	/*
971 	 * Release all of the old mmap stuff
972 	 */
973 	retval = exec_mmap(bprm->mm);
974 	if (retval)
975 		goto out;
976 
977 	bprm->mm = NULL;		/* We're using it now */
978 
979 	/* This is the point of no return */
980 	current->sas_ss_sp = current->sas_ss_size = 0;
981 
982 	if (current_euid() == current_uid() && current_egid() == current_gid())
983 		set_dumpable(current->mm, 1);
984 	else
985 		set_dumpable(current->mm, suid_dumpable);
986 
987 	name = bprm->filename;
988 
989 	/* Copies the binary name from after last slash */
990 	for (i=0; (ch = *(name++)) != '\0';) {
991 		if (ch == '/')
992 			i = 0; /* overwrite what we wrote */
993 		else
994 			if (i < (sizeof(tcomm) - 1))
995 				tcomm[i++] = ch;
996 	}
997 	tcomm[i] = '\0';
998 	set_task_comm(current, tcomm);
999 
1000 	current->flags &= ~PF_RANDOMIZE;
1001 	flush_thread();
1002 
1003 	/* Set the new mm task size. We have to do that late because it may
1004 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1005 	 * some architectures like powerpc
1006 	 */
1007 	current->mm->task_size = TASK_SIZE;
1008 
1009 	/* install the new credentials */
1010 	if (bprm->cred->uid != current_euid() ||
1011 	    bprm->cred->gid != current_egid()) {
1012 		current->pdeath_signal = 0;
1013 	} else if (file_permission(bprm->file, MAY_READ) ||
1014 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1015 		set_dumpable(current->mm, suid_dumpable);
1016 	}
1017 
1018 	current->personality &= ~bprm->per_clear;
1019 
1020 	/* An exec changes our domain. We are no longer part of the thread
1021 	   group */
1022 
1023 	current->self_exec_id++;
1024 
1025 	flush_signal_handlers(current, 0);
1026 	flush_old_files(current->files);
1027 
1028 	return 0;
1029 
1030 out:
1031 	return retval;
1032 }
1033 
1034 EXPORT_SYMBOL(flush_old_exec);
1035 
1036 /*
1037  * install the new credentials for this executable
1038  */
1039 void install_exec_creds(struct linux_binprm *bprm)
1040 {
1041 	security_bprm_committing_creds(bprm);
1042 
1043 	commit_creds(bprm->cred);
1044 	bprm->cred = NULL;
1045 
1046 	/* cred_exec_mutex must be held at least to this point to prevent
1047 	 * ptrace_attach() from altering our determination of the task's
1048 	 * credentials; any time after this it may be unlocked */
1049 
1050 	security_bprm_committed_creds(bprm);
1051 }
1052 EXPORT_SYMBOL(install_exec_creds);
1053 
1054 /*
1055  * determine how safe it is to execute the proposed program
1056  * - the caller must hold current->cred_exec_mutex to protect against
1057  *   PTRACE_ATTACH
1058  */
1059 void check_unsafe_exec(struct linux_binprm *bprm)
1060 {
1061 	struct task_struct *p = current, *t;
1062 	unsigned long flags;
1063 	unsigned n_fs, n_sighand;
1064 
1065 	bprm->unsafe = tracehook_unsafe_exec(p);
1066 
1067 	n_fs = 1;
1068 	n_sighand = 1;
1069 	lock_task_sighand(p, &flags);
1070 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1071 		if (t->fs == p->fs)
1072 			n_fs++;
1073 		n_sighand++;
1074 	}
1075 
1076 	if (atomic_read(&p->fs->count) > n_fs ||
1077 	    atomic_read(&p->sighand->count) > n_sighand)
1078 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1079 
1080 	unlock_task_sighand(p, &flags);
1081 }
1082 
1083 /*
1084  * Fill the binprm structure from the inode.
1085  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1086  *
1087  * This may be called multiple times for binary chains (scripts for example).
1088  */
1089 int prepare_binprm(struct linux_binprm *bprm)
1090 {
1091 	umode_t mode;
1092 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1093 	int retval;
1094 
1095 	mode = inode->i_mode;
1096 	if (bprm->file->f_op == NULL)
1097 		return -EACCES;
1098 
1099 	/* clear any previous set[ug]id data from a previous binary */
1100 	bprm->cred->euid = current_euid();
1101 	bprm->cred->egid = current_egid();
1102 
1103 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1104 		/* Set-uid? */
1105 		if (mode & S_ISUID) {
1106 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1107 			bprm->cred->euid = inode->i_uid;
1108 		}
1109 
1110 		/* Set-gid? */
1111 		/*
1112 		 * If setgid is set but no group execute bit then this
1113 		 * is a candidate for mandatory locking, not a setgid
1114 		 * executable.
1115 		 */
1116 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1117 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1118 			bprm->cred->egid = inode->i_gid;
1119 		}
1120 	}
1121 
1122 	/* fill in binprm security blob */
1123 	retval = security_bprm_set_creds(bprm);
1124 	if (retval)
1125 		return retval;
1126 	bprm->cred_prepared = 1;
1127 
1128 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1129 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1130 }
1131 
1132 EXPORT_SYMBOL(prepare_binprm);
1133 
1134 /*
1135  * Arguments are '\0' separated strings found at the location bprm->p
1136  * points to; chop off the first by relocating brpm->p to right after
1137  * the first '\0' encountered.
1138  */
1139 int remove_arg_zero(struct linux_binprm *bprm)
1140 {
1141 	int ret = 0;
1142 	unsigned long offset;
1143 	char *kaddr;
1144 	struct page *page;
1145 
1146 	if (!bprm->argc)
1147 		return 0;
1148 
1149 	do {
1150 		offset = bprm->p & ~PAGE_MASK;
1151 		page = get_arg_page(bprm, bprm->p, 0);
1152 		if (!page) {
1153 			ret = -EFAULT;
1154 			goto out;
1155 		}
1156 		kaddr = kmap_atomic(page, KM_USER0);
1157 
1158 		for (; offset < PAGE_SIZE && kaddr[offset];
1159 				offset++, bprm->p++)
1160 			;
1161 
1162 		kunmap_atomic(kaddr, KM_USER0);
1163 		put_arg_page(page);
1164 
1165 		if (offset == PAGE_SIZE)
1166 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1167 	} while (offset == PAGE_SIZE);
1168 
1169 	bprm->p++;
1170 	bprm->argc--;
1171 	ret = 0;
1172 
1173 out:
1174 	return ret;
1175 }
1176 EXPORT_SYMBOL(remove_arg_zero);
1177 
1178 /*
1179  * cycle the list of binary formats handler, until one recognizes the image
1180  */
1181 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1182 {
1183 	unsigned int depth = bprm->recursion_depth;
1184 	int try,retval;
1185 	struct linux_binfmt *fmt;
1186 
1187 	retval = security_bprm_check(bprm);
1188 	if (retval)
1189 		return retval;
1190 	retval = ima_bprm_check(bprm);
1191 	if (retval)
1192 		return retval;
1193 
1194 	/* kernel module loader fixup */
1195 	/* so we don't try to load run modprobe in kernel space. */
1196 	set_fs(USER_DS);
1197 
1198 	retval = audit_bprm(bprm);
1199 	if (retval)
1200 		return retval;
1201 
1202 	retval = -ENOENT;
1203 	for (try=0; try<2; try++) {
1204 		read_lock(&binfmt_lock);
1205 		list_for_each_entry(fmt, &formats, lh) {
1206 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1207 			if (!fn)
1208 				continue;
1209 			if (!try_module_get(fmt->module))
1210 				continue;
1211 			read_unlock(&binfmt_lock);
1212 			retval = fn(bprm, regs);
1213 			/*
1214 			 * Restore the depth counter to its starting value
1215 			 * in this call, so we don't have to rely on every
1216 			 * load_binary function to restore it on return.
1217 			 */
1218 			bprm->recursion_depth = depth;
1219 			if (retval >= 0) {
1220 				if (depth == 0)
1221 					tracehook_report_exec(fmt, bprm, regs);
1222 				put_binfmt(fmt);
1223 				allow_write_access(bprm->file);
1224 				if (bprm->file)
1225 					fput(bprm->file);
1226 				bprm->file = NULL;
1227 				current->did_exec = 1;
1228 				proc_exec_connector(current);
1229 				return retval;
1230 			}
1231 			read_lock(&binfmt_lock);
1232 			put_binfmt(fmt);
1233 			if (retval != -ENOEXEC || bprm->mm == NULL)
1234 				break;
1235 			if (!bprm->file) {
1236 				read_unlock(&binfmt_lock);
1237 				return retval;
1238 			}
1239 		}
1240 		read_unlock(&binfmt_lock);
1241 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1242 			break;
1243 #ifdef CONFIG_MODULES
1244 		} else {
1245 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1246 			if (printable(bprm->buf[0]) &&
1247 			    printable(bprm->buf[1]) &&
1248 			    printable(bprm->buf[2]) &&
1249 			    printable(bprm->buf[3]))
1250 				break; /* -ENOEXEC */
1251 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1252 #endif
1253 		}
1254 	}
1255 	return retval;
1256 }
1257 
1258 EXPORT_SYMBOL(search_binary_handler);
1259 
1260 void free_bprm(struct linux_binprm *bprm)
1261 {
1262 	free_arg_pages(bprm);
1263 	if (bprm->cred)
1264 		abort_creds(bprm->cred);
1265 	kfree(bprm);
1266 }
1267 
1268 /*
1269  * sys_execve() executes a new program.
1270  */
1271 int do_execve(char * filename,
1272 	char __user *__user *argv,
1273 	char __user *__user *envp,
1274 	struct pt_regs * regs)
1275 {
1276 	struct linux_binprm *bprm;
1277 	struct file *file;
1278 	struct files_struct *displaced;
1279 	int retval;
1280 
1281 	retval = unshare_files(&displaced);
1282 	if (retval)
1283 		goto out_ret;
1284 
1285 	retval = -ENOMEM;
1286 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1287 	if (!bprm)
1288 		goto out_files;
1289 
1290 	retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1291 	if (retval < 0)
1292 		goto out_free;
1293 	current->in_execve = 1;
1294 
1295 	retval = -ENOMEM;
1296 	bprm->cred = prepare_exec_creds();
1297 	if (!bprm->cred)
1298 		goto out_unlock;
1299 	check_unsafe_exec(bprm);
1300 
1301 	file = open_exec(filename);
1302 	retval = PTR_ERR(file);
1303 	if (IS_ERR(file))
1304 		goto out_unlock;
1305 
1306 	sched_exec();
1307 
1308 	bprm->file = file;
1309 	bprm->filename = filename;
1310 	bprm->interp = filename;
1311 
1312 	retval = bprm_mm_init(bprm);
1313 	if (retval)
1314 		goto out_file;
1315 
1316 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1317 	if ((retval = bprm->argc) < 0)
1318 		goto out;
1319 
1320 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1321 	if ((retval = bprm->envc) < 0)
1322 		goto out;
1323 
1324 	retval = prepare_binprm(bprm);
1325 	if (retval < 0)
1326 		goto out;
1327 
1328 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1329 	if (retval < 0)
1330 		goto out;
1331 
1332 	bprm->exec = bprm->p;
1333 	retval = copy_strings(bprm->envc, envp, bprm);
1334 	if (retval < 0)
1335 		goto out;
1336 
1337 	retval = copy_strings(bprm->argc, argv, bprm);
1338 	if (retval < 0)
1339 		goto out;
1340 
1341 	current->flags &= ~PF_KTHREAD;
1342 	retval = search_binary_handler(bprm,regs);
1343 	if (retval < 0)
1344 		goto out;
1345 
1346 	/* execve succeeded */
1347 	current->in_execve = 0;
1348 	mutex_unlock(&current->cred_exec_mutex);
1349 	acct_update_integrals(current);
1350 	free_bprm(bprm);
1351 	if (displaced)
1352 		put_files_struct(displaced);
1353 	return retval;
1354 
1355 out:
1356 	if (bprm->mm)
1357 		mmput (bprm->mm);
1358 
1359 out_file:
1360 	if (bprm->file) {
1361 		allow_write_access(bprm->file);
1362 		fput(bprm->file);
1363 	}
1364 
1365 out_unlock:
1366 	current->in_execve = 0;
1367 	mutex_unlock(&current->cred_exec_mutex);
1368 
1369 out_free:
1370 	free_bprm(bprm);
1371 
1372 out_files:
1373 	if (displaced)
1374 		reset_files_struct(displaced);
1375 out_ret:
1376 	return retval;
1377 }
1378 
1379 int set_binfmt(struct linux_binfmt *new)
1380 {
1381 	struct linux_binfmt *old = current->binfmt;
1382 
1383 	if (new) {
1384 		if (!try_module_get(new->module))
1385 			return -1;
1386 	}
1387 	current->binfmt = new;
1388 	if (old)
1389 		module_put(old->module);
1390 	return 0;
1391 }
1392 
1393 EXPORT_SYMBOL(set_binfmt);
1394 
1395 /* format_corename will inspect the pattern parameter, and output a
1396  * name into corename, which must have space for at least
1397  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1398  */
1399 static int format_corename(char *corename, long signr)
1400 {
1401 	const struct cred *cred = current_cred();
1402 	const char *pat_ptr = core_pattern;
1403 	int ispipe = (*pat_ptr == '|');
1404 	char *out_ptr = corename;
1405 	char *const out_end = corename + CORENAME_MAX_SIZE;
1406 	int rc;
1407 	int pid_in_pattern = 0;
1408 
1409 	/* Repeat as long as we have more pattern to process and more output
1410 	   space */
1411 	while (*pat_ptr) {
1412 		if (*pat_ptr != '%') {
1413 			if (out_ptr == out_end)
1414 				goto out;
1415 			*out_ptr++ = *pat_ptr++;
1416 		} else {
1417 			switch (*++pat_ptr) {
1418 			case 0:
1419 				goto out;
1420 			/* Double percent, output one percent */
1421 			case '%':
1422 				if (out_ptr == out_end)
1423 					goto out;
1424 				*out_ptr++ = '%';
1425 				break;
1426 			/* pid */
1427 			case 'p':
1428 				pid_in_pattern = 1;
1429 				rc = snprintf(out_ptr, out_end - out_ptr,
1430 					      "%d", task_tgid_vnr(current));
1431 				if (rc > out_end - out_ptr)
1432 					goto out;
1433 				out_ptr += rc;
1434 				break;
1435 			/* uid */
1436 			case 'u':
1437 				rc = snprintf(out_ptr, out_end - out_ptr,
1438 					      "%d", cred->uid);
1439 				if (rc > out_end - out_ptr)
1440 					goto out;
1441 				out_ptr += rc;
1442 				break;
1443 			/* gid */
1444 			case 'g':
1445 				rc = snprintf(out_ptr, out_end - out_ptr,
1446 					      "%d", cred->gid);
1447 				if (rc > out_end - out_ptr)
1448 					goto out;
1449 				out_ptr += rc;
1450 				break;
1451 			/* signal that caused the coredump */
1452 			case 's':
1453 				rc = snprintf(out_ptr, out_end - out_ptr,
1454 					      "%ld", signr);
1455 				if (rc > out_end - out_ptr)
1456 					goto out;
1457 				out_ptr += rc;
1458 				break;
1459 			/* UNIX time of coredump */
1460 			case 't': {
1461 				struct timeval tv;
1462 				do_gettimeofday(&tv);
1463 				rc = snprintf(out_ptr, out_end - out_ptr,
1464 					      "%lu", tv.tv_sec);
1465 				if (rc > out_end - out_ptr)
1466 					goto out;
1467 				out_ptr += rc;
1468 				break;
1469 			}
1470 			/* hostname */
1471 			case 'h':
1472 				down_read(&uts_sem);
1473 				rc = snprintf(out_ptr, out_end - out_ptr,
1474 					      "%s", utsname()->nodename);
1475 				up_read(&uts_sem);
1476 				if (rc > out_end - out_ptr)
1477 					goto out;
1478 				out_ptr += rc;
1479 				break;
1480 			/* executable */
1481 			case 'e':
1482 				rc = snprintf(out_ptr, out_end - out_ptr,
1483 					      "%s", current->comm);
1484 				if (rc > out_end - out_ptr)
1485 					goto out;
1486 				out_ptr += rc;
1487 				break;
1488 			/* core limit size */
1489 			case 'c':
1490 				rc = snprintf(out_ptr, out_end - out_ptr,
1491 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1492 				if (rc > out_end - out_ptr)
1493 					goto out;
1494 				out_ptr += rc;
1495 				break;
1496 			default:
1497 				break;
1498 			}
1499 			++pat_ptr;
1500 		}
1501 	}
1502 	/* Backward compatibility with core_uses_pid:
1503 	 *
1504 	 * If core_pattern does not include a %p (as is the default)
1505 	 * and core_uses_pid is set, then .%pid will be appended to
1506 	 * the filename. Do not do this for piped commands. */
1507 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1508 		rc = snprintf(out_ptr, out_end - out_ptr,
1509 			      ".%d", task_tgid_vnr(current));
1510 		if (rc > out_end - out_ptr)
1511 			goto out;
1512 		out_ptr += rc;
1513 	}
1514 out:
1515 	*out_ptr = 0;
1516 	return ispipe;
1517 }
1518 
1519 static int zap_process(struct task_struct *start)
1520 {
1521 	struct task_struct *t;
1522 	int nr = 0;
1523 
1524 	start->signal->flags = SIGNAL_GROUP_EXIT;
1525 	start->signal->group_stop_count = 0;
1526 
1527 	t = start;
1528 	do {
1529 		if (t != current && t->mm) {
1530 			sigaddset(&t->pending.signal, SIGKILL);
1531 			signal_wake_up(t, 1);
1532 			nr++;
1533 		}
1534 	} while_each_thread(start, t);
1535 
1536 	return nr;
1537 }
1538 
1539 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1540 				struct core_state *core_state, int exit_code)
1541 {
1542 	struct task_struct *g, *p;
1543 	unsigned long flags;
1544 	int nr = -EAGAIN;
1545 
1546 	spin_lock_irq(&tsk->sighand->siglock);
1547 	if (!signal_group_exit(tsk->signal)) {
1548 		mm->core_state = core_state;
1549 		tsk->signal->group_exit_code = exit_code;
1550 		nr = zap_process(tsk);
1551 	}
1552 	spin_unlock_irq(&tsk->sighand->siglock);
1553 	if (unlikely(nr < 0))
1554 		return nr;
1555 
1556 	if (atomic_read(&mm->mm_users) == nr + 1)
1557 		goto done;
1558 	/*
1559 	 * We should find and kill all tasks which use this mm, and we should
1560 	 * count them correctly into ->nr_threads. We don't take tasklist
1561 	 * lock, but this is safe wrt:
1562 	 *
1563 	 * fork:
1564 	 *	None of sub-threads can fork after zap_process(leader). All
1565 	 *	processes which were created before this point should be
1566 	 *	visible to zap_threads() because copy_process() adds the new
1567 	 *	process to the tail of init_task.tasks list, and lock/unlock
1568 	 *	of ->siglock provides a memory barrier.
1569 	 *
1570 	 * do_exit:
1571 	 *	The caller holds mm->mmap_sem. This means that the task which
1572 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1573 	 *	its ->mm.
1574 	 *
1575 	 * de_thread:
1576 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1577 	 *	we must see either old or new leader, this does not matter.
1578 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1579 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1580 	 *	it can't fail.
1581 	 *
1582 	 *	Note also that "g" can be the old leader with ->mm == NULL
1583 	 *	and already unhashed and thus removed from ->thread_group.
1584 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1585 	 *	clear the ->next pointer, we will find the new leader via
1586 	 *	next_thread().
1587 	 */
1588 	rcu_read_lock();
1589 	for_each_process(g) {
1590 		if (g == tsk->group_leader)
1591 			continue;
1592 		if (g->flags & PF_KTHREAD)
1593 			continue;
1594 		p = g;
1595 		do {
1596 			if (p->mm) {
1597 				if (unlikely(p->mm == mm)) {
1598 					lock_task_sighand(p, &flags);
1599 					nr += zap_process(p);
1600 					unlock_task_sighand(p, &flags);
1601 				}
1602 				break;
1603 			}
1604 		} while_each_thread(g, p);
1605 	}
1606 	rcu_read_unlock();
1607 done:
1608 	atomic_set(&core_state->nr_threads, nr);
1609 	return nr;
1610 }
1611 
1612 static int coredump_wait(int exit_code, struct core_state *core_state)
1613 {
1614 	struct task_struct *tsk = current;
1615 	struct mm_struct *mm = tsk->mm;
1616 	struct completion *vfork_done;
1617 	int core_waiters;
1618 
1619 	init_completion(&core_state->startup);
1620 	core_state->dumper.task = tsk;
1621 	core_state->dumper.next = NULL;
1622 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1623 	up_write(&mm->mmap_sem);
1624 
1625 	if (unlikely(core_waiters < 0))
1626 		goto fail;
1627 
1628 	/*
1629 	 * Make sure nobody is waiting for us to release the VM,
1630 	 * otherwise we can deadlock when we wait on each other
1631 	 */
1632 	vfork_done = tsk->vfork_done;
1633 	if (vfork_done) {
1634 		tsk->vfork_done = NULL;
1635 		complete(vfork_done);
1636 	}
1637 
1638 	if (core_waiters)
1639 		wait_for_completion(&core_state->startup);
1640 fail:
1641 	return core_waiters;
1642 }
1643 
1644 static void coredump_finish(struct mm_struct *mm)
1645 {
1646 	struct core_thread *curr, *next;
1647 	struct task_struct *task;
1648 
1649 	next = mm->core_state->dumper.next;
1650 	while ((curr = next) != NULL) {
1651 		next = curr->next;
1652 		task = curr->task;
1653 		/*
1654 		 * see exit_mm(), curr->task must not see
1655 		 * ->task == NULL before we read ->next.
1656 		 */
1657 		smp_mb();
1658 		curr->task = NULL;
1659 		wake_up_process(task);
1660 	}
1661 
1662 	mm->core_state = NULL;
1663 }
1664 
1665 /*
1666  * set_dumpable converts traditional three-value dumpable to two flags and
1667  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1668  * these bits are not changed atomically.  So get_dumpable can observe the
1669  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1670  * return either old dumpable or new one by paying attention to the order of
1671  * modifying the bits.
1672  *
1673  * dumpable |   mm->flags (binary)
1674  * old  new | initial interim  final
1675  * ---------+-----------------------
1676  *  0    1  |   00      01      01
1677  *  0    2  |   00      10(*)   11
1678  *  1    0  |   01      00      00
1679  *  1    2  |   01      11      11
1680  *  2    0  |   11      10(*)   00
1681  *  2    1  |   11      11      01
1682  *
1683  * (*) get_dumpable regards interim value of 10 as 11.
1684  */
1685 void set_dumpable(struct mm_struct *mm, int value)
1686 {
1687 	switch (value) {
1688 	case 0:
1689 		clear_bit(MMF_DUMPABLE, &mm->flags);
1690 		smp_wmb();
1691 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1692 		break;
1693 	case 1:
1694 		set_bit(MMF_DUMPABLE, &mm->flags);
1695 		smp_wmb();
1696 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1697 		break;
1698 	case 2:
1699 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1700 		smp_wmb();
1701 		set_bit(MMF_DUMPABLE, &mm->flags);
1702 		break;
1703 	}
1704 }
1705 
1706 int get_dumpable(struct mm_struct *mm)
1707 {
1708 	int ret;
1709 
1710 	ret = mm->flags & 0x3;
1711 	return (ret >= 2) ? 2 : ret;
1712 }
1713 
1714 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1715 {
1716 	struct core_state core_state;
1717 	char corename[CORENAME_MAX_SIZE + 1];
1718 	struct mm_struct *mm = current->mm;
1719 	struct linux_binfmt * binfmt;
1720 	struct inode * inode;
1721 	struct file * file;
1722 	const struct cred *old_cred;
1723 	struct cred *cred;
1724 	int retval = 0;
1725 	int flag = 0;
1726 	int ispipe = 0;
1727 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1728 	char **helper_argv = NULL;
1729 	int helper_argc = 0;
1730 	char *delimit;
1731 
1732 	audit_core_dumps(signr);
1733 
1734 	binfmt = current->binfmt;
1735 	if (!binfmt || !binfmt->core_dump)
1736 		goto fail;
1737 
1738 	cred = prepare_creds();
1739 	if (!cred) {
1740 		retval = -ENOMEM;
1741 		goto fail;
1742 	}
1743 
1744 	down_write(&mm->mmap_sem);
1745 	/*
1746 	 * If another thread got here first, or we are not dumpable, bail out.
1747 	 */
1748 	if (mm->core_state || !get_dumpable(mm)) {
1749 		up_write(&mm->mmap_sem);
1750 		put_cred(cred);
1751 		goto fail;
1752 	}
1753 
1754 	/*
1755 	 *	We cannot trust fsuid as being the "true" uid of the
1756 	 *	process nor do we know its entire history. We only know it
1757 	 *	was tainted so we dump it as root in mode 2.
1758 	 */
1759 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1760 		flag = O_EXCL;		/* Stop rewrite attacks */
1761 		cred->fsuid = 0;	/* Dump root private */
1762 	}
1763 
1764 	retval = coredump_wait(exit_code, &core_state);
1765 	if (retval < 0) {
1766 		put_cred(cred);
1767 		goto fail;
1768 	}
1769 
1770 	old_cred = override_creds(cred);
1771 
1772 	/*
1773 	 * Clear any false indication of pending signals that might
1774 	 * be seen by the filesystem code called to write the core file.
1775 	 */
1776 	clear_thread_flag(TIF_SIGPENDING);
1777 
1778 	/*
1779 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1780 	 * uses lock_kernel()
1781 	 */
1782  	lock_kernel();
1783 	ispipe = format_corename(corename, signr);
1784 	unlock_kernel();
1785 	/*
1786 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1787 	 * to a pipe.  Since we're not writing directly to the filesystem
1788 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1789 	 * created unless the pipe reader choses to write out the core file
1790 	 * at which point file size limits and permissions will be imposed
1791 	 * as it does with any other process
1792 	 */
1793 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1794 		goto fail_unlock;
1795 
1796  	if (ispipe) {
1797 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1798 		if (!helper_argv) {
1799 			printk(KERN_WARNING "%s failed to allocate memory\n",
1800 			       __func__);
1801 			goto fail_unlock;
1802 		}
1803 		/* Terminate the string before the first option */
1804 		delimit = strchr(corename, ' ');
1805 		if (delimit)
1806 			*delimit = '\0';
1807 		delimit = strrchr(helper_argv[0], '/');
1808 		if (delimit)
1809 			delimit++;
1810 		else
1811 			delimit = helper_argv[0];
1812 		if (!strcmp(delimit, current->comm)) {
1813 			printk(KERN_NOTICE "Recursive core dump detected, "
1814 					"aborting\n");
1815 			goto fail_unlock;
1816 		}
1817 
1818 		core_limit = RLIM_INFINITY;
1819 
1820 		/* SIGPIPE can happen, but it's just never processed */
1821  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1822 				&file)) {
1823  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1824 			       corename);
1825  			goto fail_unlock;
1826  		}
1827  	} else
1828  		file = filp_open(corename,
1829 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1830 				 0600);
1831 	if (IS_ERR(file))
1832 		goto fail_unlock;
1833 	inode = file->f_path.dentry->d_inode;
1834 	if (inode->i_nlink > 1)
1835 		goto close_fail;	/* multiple links - don't dump */
1836 	if (!ispipe && d_unhashed(file->f_path.dentry))
1837 		goto close_fail;
1838 
1839 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1840 	   but keep the previous behaviour for now. */
1841 	if (!ispipe && !S_ISREG(inode->i_mode))
1842 		goto close_fail;
1843 	/*
1844 	 * Dont allow local users get cute and trick others to coredump
1845 	 * into their pre-created files:
1846 	 */
1847 	if (inode->i_uid != current_fsuid())
1848 		goto close_fail;
1849 	if (!file->f_op)
1850 		goto close_fail;
1851 	if (!file->f_op->write)
1852 		goto close_fail;
1853 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1854 		goto close_fail;
1855 
1856 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1857 
1858 	if (retval)
1859 		current->signal->group_exit_code |= 0x80;
1860 close_fail:
1861 	filp_close(file, NULL);
1862 fail_unlock:
1863 	if (helper_argv)
1864 		argv_free(helper_argv);
1865 
1866 	revert_creds(old_cred);
1867 	put_cred(cred);
1868 	coredump_finish(mm);
1869 fail:
1870 	return;
1871 }
1872