1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/ima.h> 49 #include <linux/syscalls.h> 50 #include <linux/tsacct_kern.h> 51 #include <linux/cn_proc.h> 52 #include <linux/audit.h> 53 #include <linux/tracehook.h> 54 #include <linux/kmod.h> 55 #include <linux/fsnotify.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/mmu_context.h> 59 #include <asm/tlb.h> 60 #include "internal.h" 61 62 int core_uses_pid; 63 char core_pattern[CORENAME_MAX_SIZE] = "core"; 64 int suid_dumpable = 0; 65 66 /* The maximal length of core_pattern is also specified in sysctl.c */ 67 68 static LIST_HEAD(formats); 69 static DEFINE_RWLOCK(binfmt_lock); 70 71 int register_binfmt(struct linux_binfmt * fmt) 72 { 73 if (!fmt) 74 return -EINVAL; 75 write_lock(&binfmt_lock); 76 list_add(&fmt->lh, &formats); 77 write_unlock(&binfmt_lock); 78 return 0; 79 } 80 81 EXPORT_SYMBOL(register_binfmt); 82 83 void unregister_binfmt(struct linux_binfmt * fmt) 84 { 85 write_lock(&binfmt_lock); 86 list_del(&fmt->lh); 87 write_unlock(&binfmt_lock); 88 } 89 90 EXPORT_SYMBOL(unregister_binfmt); 91 92 static inline void put_binfmt(struct linux_binfmt * fmt) 93 { 94 module_put(fmt->module); 95 } 96 97 /* 98 * Note that a shared library must be both readable and executable due to 99 * security reasons. 100 * 101 * Also note that we take the address to load from from the file itself. 102 */ 103 SYSCALL_DEFINE1(uselib, const char __user *, library) 104 { 105 struct file *file; 106 struct nameidata nd; 107 char *tmp = getname(library); 108 int error = PTR_ERR(tmp); 109 110 if (!IS_ERR(tmp)) { 111 error = path_lookup_open(AT_FDCWD, tmp, 112 LOOKUP_FOLLOW, &nd, 113 FMODE_READ|FMODE_EXEC); 114 putname(tmp); 115 } 116 if (error) 117 goto out; 118 119 error = -EINVAL; 120 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 121 goto exit; 122 123 error = -EACCES; 124 if (nd.path.mnt->mnt_flags & MNT_NOEXEC) 125 goto exit; 126 127 error = inode_permission(nd.path.dentry->d_inode, 128 MAY_READ | MAY_EXEC | MAY_OPEN); 129 if (error) 130 goto exit; 131 error = ima_path_check(&nd.path, MAY_READ | MAY_EXEC | MAY_OPEN); 132 if (error) 133 goto exit; 134 135 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 136 error = PTR_ERR(file); 137 if (IS_ERR(file)) 138 goto out; 139 140 fsnotify_open(file->f_path.dentry); 141 142 error = -ENOEXEC; 143 if(file->f_op) { 144 struct linux_binfmt * fmt; 145 146 read_lock(&binfmt_lock); 147 list_for_each_entry(fmt, &formats, lh) { 148 if (!fmt->load_shlib) 149 continue; 150 if (!try_module_get(fmt->module)) 151 continue; 152 read_unlock(&binfmt_lock); 153 error = fmt->load_shlib(file); 154 read_lock(&binfmt_lock); 155 put_binfmt(fmt); 156 if (error != -ENOEXEC) 157 break; 158 } 159 read_unlock(&binfmt_lock); 160 } 161 fput(file); 162 out: 163 return error; 164 exit: 165 release_open_intent(&nd); 166 path_put(&nd.path); 167 goto out; 168 } 169 170 #ifdef CONFIG_MMU 171 172 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 173 int write) 174 { 175 struct page *page; 176 int ret; 177 178 #ifdef CONFIG_STACK_GROWSUP 179 if (write) { 180 ret = expand_stack_downwards(bprm->vma, pos); 181 if (ret < 0) 182 return NULL; 183 } 184 #endif 185 ret = get_user_pages(current, bprm->mm, pos, 186 1, write, 1, &page, NULL); 187 if (ret <= 0) 188 return NULL; 189 190 if (write) { 191 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 192 struct rlimit *rlim; 193 194 /* 195 * We've historically supported up to 32 pages (ARG_MAX) 196 * of argument strings even with small stacks 197 */ 198 if (size <= ARG_MAX) 199 return page; 200 201 /* 202 * Limit to 1/4-th the stack size for the argv+env strings. 203 * This ensures that: 204 * - the remaining binfmt code will not run out of stack space, 205 * - the program will have a reasonable amount of stack left 206 * to work from. 207 */ 208 rlim = current->signal->rlim; 209 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 210 put_page(page); 211 return NULL; 212 } 213 } 214 215 return page; 216 } 217 218 static void put_arg_page(struct page *page) 219 { 220 put_page(page); 221 } 222 223 static void free_arg_page(struct linux_binprm *bprm, int i) 224 { 225 } 226 227 static void free_arg_pages(struct linux_binprm *bprm) 228 { 229 } 230 231 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 232 struct page *page) 233 { 234 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 235 } 236 237 static int __bprm_mm_init(struct linux_binprm *bprm) 238 { 239 int err; 240 struct vm_area_struct *vma = NULL; 241 struct mm_struct *mm = bprm->mm; 242 243 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 244 if (!vma) 245 return -ENOMEM; 246 247 down_write(&mm->mmap_sem); 248 vma->vm_mm = mm; 249 250 /* 251 * Place the stack at the largest stack address the architecture 252 * supports. Later, we'll move this to an appropriate place. We don't 253 * use STACK_TOP because that can depend on attributes which aren't 254 * configured yet. 255 */ 256 vma->vm_end = STACK_TOP_MAX; 257 vma->vm_start = vma->vm_end - PAGE_SIZE; 258 vma->vm_flags = VM_STACK_FLAGS; 259 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 260 err = insert_vm_struct(mm, vma); 261 if (err) 262 goto err; 263 264 mm->stack_vm = mm->total_vm = 1; 265 up_write(&mm->mmap_sem); 266 bprm->p = vma->vm_end - sizeof(void *); 267 return 0; 268 err: 269 up_write(&mm->mmap_sem); 270 bprm->vma = NULL; 271 kmem_cache_free(vm_area_cachep, vma); 272 return err; 273 } 274 275 static bool valid_arg_len(struct linux_binprm *bprm, long len) 276 { 277 return len <= MAX_ARG_STRLEN; 278 } 279 280 #else 281 282 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 283 int write) 284 { 285 struct page *page; 286 287 page = bprm->page[pos / PAGE_SIZE]; 288 if (!page && write) { 289 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 290 if (!page) 291 return NULL; 292 bprm->page[pos / PAGE_SIZE] = page; 293 } 294 295 return page; 296 } 297 298 static void put_arg_page(struct page *page) 299 { 300 } 301 302 static void free_arg_page(struct linux_binprm *bprm, int i) 303 { 304 if (bprm->page[i]) { 305 __free_page(bprm->page[i]); 306 bprm->page[i] = NULL; 307 } 308 } 309 310 static void free_arg_pages(struct linux_binprm *bprm) 311 { 312 int i; 313 314 for (i = 0; i < MAX_ARG_PAGES; i++) 315 free_arg_page(bprm, i); 316 } 317 318 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 319 struct page *page) 320 { 321 } 322 323 static int __bprm_mm_init(struct linux_binprm *bprm) 324 { 325 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 326 return 0; 327 } 328 329 static bool valid_arg_len(struct linux_binprm *bprm, long len) 330 { 331 return len <= bprm->p; 332 } 333 334 #endif /* CONFIG_MMU */ 335 336 /* 337 * Create a new mm_struct and populate it with a temporary stack 338 * vm_area_struct. We don't have enough context at this point to set the stack 339 * flags, permissions, and offset, so we use temporary values. We'll update 340 * them later in setup_arg_pages(). 341 */ 342 int bprm_mm_init(struct linux_binprm *bprm) 343 { 344 int err; 345 struct mm_struct *mm = NULL; 346 347 bprm->mm = mm = mm_alloc(); 348 err = -ENOMEM; 349 if (!mm) 350 goto err; 351 352 err = init_new_context(current, mm); 353 if (err) 354 goto err; 355 356 err = __bprm_mm_init(bprm); 357 if (err) 358 goto err; 359 360 return 0; 361 362 err: 363 if (mm) { 364 bprm->mm = NULL; 365 mmdrop(mm); 366 } 367 368 return err; 369 } 370 371 /* 372 * count() counts the number of strings in array ARGV. 373 */ 374 static int count(char __user * __user * argv, int max) 375 { 376 int i = 0; 377 378 if (argv != NULL) { 379 for (;;) { 380 char __user * p; 381 382 if (get_user(p, argv)) 383 return -EFAULT; 384 if (!p) 385 break; 386 argv++; 387 if (i++ >= max) 388 return -E2BIG; 389 cond_resched(); 390 } 391 } 392 return i; 393 } 394 395 /* 396 * 'copy_strings()' copies argument/environment strings from the old 397 * processes's memory to the new process's stack. The call to get_user_pages() 398 * ensures the destination page is created and not swapped out. 399 */ 400 static int copy_strings(int argc, char __user * __user * argv, 401 struct linux_binprm *bprm) 402 { 403 struct page *kmapped_page = NULL; 404 char *kaddr = NULL; 405 unsigned long kpos = 0; 406 int ret; 407 408 while (argc-- > 0) { 409 char __user *str; 410 int len; 411 unsigned long pos; 412 413 if (get_user(str, argv+argc) || 414 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 415 ret = -EFAULT; 416 goto out; 417 } 418 419 if (!valid_arg_len(bprm, len)) { 420 ret = -E2BIG; 421 goto out; 422 } 423 424 /* We're going to work our way backwords. */ 425 pos = bprm->p; 426 str += len; 427 bprm->p -= len; 428 429 while (len > 0) { 430 int offset, bytes_to_copy; 431 432 offset = pos % PAGE_SIZE; 433 if (offset == 0) 434 offset = PAGE_SIZE; 435 436 bytes_to_copy = offset; 437 if (bytes_to_copy > len) 438 bytes_to_copy = len; 439 440 offset -= bytes_to_copy; 441 pos -= bytes_to_copy; 442 str -= bytes_to_copy; 443 len -= bytes_to_copy; 444 445 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 446 struct page *page; 447 448 page = get_arg_page(bprm, pos, 1); 449 if (!page) { 450 ret = -E2BIG; 451 goto out; 452 } 453 454 if (kmapped_page) { 455 flush_kernel_dcache_page(kmapped_page); 456 kunmap(kmapped_page); 457 put_arg_page(kmapped_page); 458 } 459 kmapped_page = page; 460 kaddr = kmap(kmapped_page); 461 kpos = pos & PAGE_MASK; 462 flush_arg_page(bprm, kpos, kmapped_page); 463 } 464 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 465 ret = -EFAULT; 466 goto out; 467 } 468 } 469 } 470 ret = 0; 471 out: 472 if (kmapped_page) { 473 flush_kernel_dcache_page(kmapped_page); 474 kunmap(kmapped_page); 475 put_arg_page(kmapped_page); 476 } 477 return ret; 478 } 479 480 /* 481 * Like copy_strings, but get argv and its values from kernel memory. 482 */ 483 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 484 { 485 int r; 486 mm_segment_t oldfs = get_fs(); 487 set_fs(KERNEL_DS); 488 r = copy_strings(argc, (char __user * __user *)argv, bprm); 489 set_fs(oldfs); 490 return r; 491 } 492 EXPORT_SYMBOL(copy_strings_kernel); 493 494 #ifdef CONFIG_MMU 495 496 /* 497 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 498 * the binfmt code determines where the new stack should reside, we shift it to 499 * its final location. The process proceeds as follows: 500 * 501 * 1) Use shift to calculate the new vma endpoints. 502 * 2) Extend vma to cover both the old and new ranges. This ensures the 503 * arguments passed to subsequent functions are consistent. 504 * 3) Move vma's page tables to the new range. 505 * 4) Free up any cleared pgd range. 506 * 5) Shrink the vma to cover only the new range. 507 */ 508 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 509 { 510 struct mm_struct *mm = vma->vm_mm; 511 unsigned long old_start = vma->vm_start; 512 unsigned long old_end = vma->vm_end; 513 unsigned long length = old_end - old_start; 514 unsigned long new_start = old_start - shift; 515 unsigned long new_end = old_end - shift; 516 struct mmu_gather *tlb; 517 518 BUG_ON(new_start > new_end); 519 520 /* 521 * ensure there are no vmas between where we want to go 522 * and where we are 523 */ 524 if (vma != find_vma(mm, new_start)) 525 return -EFAULT; 526 527 /* 528 * cover the whole range: [new_start, old_end) 529 */ 530 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 531 532 /* 533 * move the page tables downwards, on failure we rely on 534 * process cleanup to remove whatever mess we made. 535 */ 536 if (length != move_page_tables(vma, old_start, 537 vma, new_start, length)) 538 return -ENOMEM; 539 540 lru_add_drain(); 541 tlb = tlb_gather_mmu(mm, 0); 542 if (new_end > old_start) { 543 /* 544 * when the old and new regions overlap clear from new_end. 545 */ 546 free_pgd_range(tlb, new_end, old_end, new_end, 547 vma->vm_next ? vma->vm_next->vm_start : 0); 548 } else { 549 /* 550 * otherwise, clean from old_start; this is done to not touch 551 * the address space in [new_end, old_start) some architectures 552 * have constraints on va-space that make this illegal (IA64) - 553 * for the others its just a little faster. 554 */ 555 free_pgd_range(tlb, old_start, old_end, new_end, 556 vma->vm_next ? vma->vm_next->vm_start : 0); 557 } 558 tlb_finish_mmu(tlb, new_end, old_end); 559 560 /* 561 * shrink the vma to just the new range. 562 */ 563 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 564 565 return 0; 566 } 567 568 #define EXTRA_STACK_VM_PAGES 20 /* random */ 569 570 /* 571 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 572 * the stack is optionally relocated, and some extra space is added. 573 */ 574 int setup_arg_pages(struct linux_binprm *bprm, 575 unsigned long stack_top, 576 int executable_stack) 577 { 578 unsigned long ret; 579 unsigned long stack_shift; 580 struct mm_struct *mm = current->mm; 581 struct vm_area_struct *vma = bprm->vma; 582 struct vm_area_struct *prev = NULL; 583 unsigned long vm_flags; 584 unsigned long stack_base; 585 586 #ifdef CONFIG_STACK_GROWSUP 587 /* Limit stack size to 1GB */ 588 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 589 if (stack_base > (1 << 30)) 590 stack_base = 1 << 30; 591 592 /* Make sure we didn't let the argument array grow too large. */ 593 if (vma->vm_end - vma->vm_start > stack_base) 594 return -ENOMEM; 595 596 stack_base = PAGE_ALIGN(stack_top - stack_base); 597 598 stack_shift = vma->vm_start - stack_base; 599 mm->arg_start = bprm->p - stack_shift; 600 bprm->p = vma->vm_end - stack_shift; 601 #else 602 stack_top = arch_align_stack(stack_top); 603 stack_top = PAGE_ALIGN(stack_top); 604 stack_shift = vma->vm_end - stack_top; 605 606 bprm->p -= stack_shift; 607 mm->arg_start = bprm->p; 608 #endif 609 610 if (bprm->loader) 611 bprm->loader -= stack_shift; 612 bprm->exec -= stack_shift; 613 614 down_write(&mm->mmap_sem); 615 vm_flags = VM_STACK_FLAGS; 616 617 /* 618 * Adjust stack execute permissions; explicitly enable for 619 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 620 * (arch default) otherwise. 621 */ 622 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 623 vm_flags |= VM_EXEC; 624 else if (executable_stack == EXSTACK_DISABLE_X) 625 vm_flags &= ~VM_EXEC; 626 vm_flags |= mm->def_flags; 627 628 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 629 vm_flags); 630 if (ret) 631 goto out_unlock; 632 BUG_ON(prev != vma); 633 634 /* Move stack pages down in memory. */ 635 if (stack_shift) { 636 ret = shift_arg_pages(vma, stack_shift); 637 if (ret) { 638 up_write(&mm->mmap_sem); 639 return ret; 640 } 641 } 642 643 #ifdef CONFIG_STACK_GROWSUP 644 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 645 #else 646 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 647 #endif 648 ret = expand_stack(vma, stack_base); 649 if (ret) 650 ret = -EFAULT; 651 652 out_unlock: 653 up_write(&mm->mmap_sem); 654 return 0; 655 } 656 EXPORT_SYMBOL(setup_arg_pages); 657 658 #endif /* CONFIG_MMU */ 659 660 struct file *open_exec(const char *name) 661 { 662 struct nameidata nd; 663 struct file *file; 664 int err; 665 666 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, 667 FMODE_READ|FMODE_EXEC); 668 if (err) 669 goto out; 670 671 err = -EACCES; 672 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 673 goto out_path_put; 674 675 if (nd.path.mnt->mnt_flags & MNT_NOEXEC) 676 goto out_path_put; 677 678 err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN); 679 if (err) 680 goto out_path_put; 681 err = ima_path_check(&nd.path, MAY_EXEC | MAY_OPEN); 682 if (err) 683 goto out_path_put; 684 685 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 686 if (IS_ERR(file)) 687 return file; 688 689 fsnotify_open(file->f_path.dentry); 690 691 err = deny_write_access(file); 692 if (err) { 693 fput(file); 694 goto out; 695 } 696 697 return file; 698 699 out_path_put: 700 release_open_intent(&nd); 701 path_put(&nd.path); 702 out: 703 return ERR_PTR(err); 704 } 705 EXPORT_SYMBOL(open_exec); 706 707 int kernel_read(struct file *file, unsigned long offset, 708 char *addr, unsigned long count) 709 { 710 mm_segment_t old_fs; 711 loff_t pos = offset; 712 int result; 713 714 old_fs = get_fs(); 715 set_fs(get_ds()); 716 /* The cast to a user pointer is valid due to the set_fs() */ 717 result = vfs_read(file, (void __user *)addr, count, &pos); 718 set_fs(old_fs); 719 return result; 720 } 721 722 EXPORT_SYMBOL(kernel_read); 723 724 static int exec_mmap(struct mm_struct *mm) 725 { 726 struct task_struct *tsk; 727 struct mm_struct * old_mm, *active_mm; 728 729 /* Notify parent that we're no longer interested in the old VM */ 730 tsk = current; 731 old_mm = current->mm; 732 mm_release(tsk, old_mm); 733 734 if (old_mm) { 735 /* 736 * Make sure that if there is a core dump in progress 737 * for the old mm, we get out and die instead of going 738 * through with the exec. We must hold mmap_sem around 739 * checking core_state and changing tsk->mm. 740 */ 741 down_read(&old_mm->mmap_sem); 742 if (unlikely(old_mm->core_state)) { 743 up_read(&old_mm->mmap_sem); 744 return -EINTR; 745 } 746 } 747 task_lock(tsk); 748 active_mm = tsk->active_mm; 749 tsk->mm = mm; 750 tsk->active_mm = mm; 751 activate_mm(active_mm, mm); 752 task_unlock(tsk); 753 arch_pick_mmap_layout(mm); 754 if (old_mm) { 755 up_read(&old_mm->mmap_sem); 756 BUG_ON(active_mm != old_mm); 757 mm_update_next_owner(old_mm); 758 mmput(old_mm); 759 return 0; 760 } 761 mmdrop(active_mm); 762 return 0; 763 } 764 765 /* 766 * This function makes sure the current process has its own signal table, 767 * so that flush_signal_handlers can later reset the handlers without 768 * disturbing other processes. (Other processes might share the signal 769 * table via the CLONE_SIGHAND option to clone().) 770 */ 771 static int de_thread(struct task_struct *tsk) 772 { 773 struct signal_struct *sig = tsk->signal; 774 struct sighand_struct *oldsighand = tsk->sighand; 775 spinlock_t *lock = &oldsighand->siglock; 776 int count; 777 778 if (thread_group_empty(tsk)) 779 goto no_thread_group; 780 781 /* 782 * Kill all other threads in the thread group. 783 */ 784 spin_lock_irq(lock); 785 if (signal_group_exit(sig)) { 786 /* 787 * Another group action in progress, just 788 * return so that the signal is processed. 789 */ 790 spin_unlock_irq(lock); 791 return -EAGAIN; 792 } 793 sig->group_exit_task = tsk; 794 zap_other_threads(tsk); 795 796 /* Account for the thread group leader hanging around: */ 797 count = thread_group_leader(tsk) ? 1 : 2; 798 sig->notify_count = count; 799 while (atomic_read(&sig->count) > count) { 800 __set_current_state(TASK_UNINTERRUPTIBLE); 801 spin_unlock_irq(lock); 802 schedule(); 803 spin_lock_irq(lock); 804 } 805 spin_unlock_irq(lock); 806 807 /* 808 * At this point all other threads have exited, all we have to 809 * do is to wait for the thread group leader to become inactive, 810 * and to assume its PID: 811 */ 812 if (!thread_group_leader(tsk)) { 813 struct task_struct *leader = tsk->group_leader; 814 815 sig->notify_count = -1; /* for exit_notify() */ 816 for (;;) { 817 write_lock_irq(&tasklist_lock); 818 if (likely(leader->exit_state)) 819 break; 820 __set_current_state(TASK_UNINTERRUPTIBLE); 821 write_unlock_irq(&tasklist_lock); 822 schedule(); 823 } 824 825 /* 826 * The only record we have of the real-time age of a 827 * process, regardless of execs it's done, is start_time. 828 * All the past CPU time is accumulated in signal_struct 829 * from sister threads now dead. But in this non-leader 830 * exec, nothing survives from the original leader thread, 831 * whose birth marks the true age of this process now. 832 * When we take on its identity by switching to its PID, we 833 * also take its birthdate (always earlier than our own). 834 */ 835 tsk->start_time = leader->start_time; 836 837 BUG_ON(!same_thread_group(leader, tsk)); 838 BUG_ON(has_group_leader_pid(tsk)); 839 /* 840 * An exec() starts a new thread group with the 841 * TGID of the previous thread group. Rehash the 842 * two threads with a switched PID, and release 843 * the former thread group leader: 844 */ 845 846 /* Become a process group leader with the old leader's pid. 847 * The old leader becomes a thread of the this thread group. 848 * Note: The old leader also uses this pid until release_task 849 * is called. Odd but simple and correct. 850 */ 851 detach_pid(tsk, PIDTYPE_PID); 852 tsk->pid = leader->pid; 853 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 854 transfer_pid(leader, tsk, PIDTYPE_PGID); 855 transfer_pid(leader, tsk, PIDTYPE_SID); 856 list_replace_rcu(&leader->tasks, &tsk->tasks); 857 858 tsk->group_leader = tsk; 859 leader->group_leader = tsk; 860 861 tsk->exit_signal = SIGCHLD; 862 863 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 864 leader->exit_state = EXIT_DEAD; 865 write_unlock_irq(&tasklist_lock); 866 867 release_task(leader); 868 } 869 870 sig->group_exit_task = NULL; 871 sig->notify_count = 0; 872 873 no_thread_group: 874 exit_itimers(sig); 875 flush_itimer_signals(); 876 877 if (atomic_read(&oldsighand->count) != 1) { 878 struct sighand_struct *newsighand; 879 /* 880 * This ->sighand is shared with the CLONE_SIGHAND 881 * but not CLONE_THREAD task, switch to the new one. 882 */ 883 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 884 if (!newsighand) 885 return -ENOMEM; 886 887 atomic_set(&newsighand->count, 1); 888 memcpy(newsighand->action, oldsighand->action, 889 sizeof(newsighand->action)); 890 891 write_lock_irq(&tasklist_lock); 892 spin_lock(&oldsighand->siglock); 893 rcu_assign_pointer(tsk->sighand, newsighand); 894 spin_unlock(&oldsighand->siglock); 895 write_unlock_irq(&tasklist_lock); 896 897 __cleanup_sighand(oldsighand); 898 } 899 900 BUG_ON(!thread_group_leader(tsk)); 901 return 0; 902 } 903 904 /* 905 * These functions flushes out all traces of the currently running executable 906 * so that a new one can be started 907 */ 908 static void flush_old_files(struct files_struct * files) 909 { 910 long j = -1; 911 struct fdtable *fdt; 912 913 spin_lock(&files->file_lock); 914 for (;;) { 915 unsigned long set, i; 916 917 j++; 918 i = j * __NFDBITS; 919 fdt = files_fdtable(files); 920 if (i >= fdt->max_fds) 921 break; 922 set = fdt->close_on_exec->fds_bits[j]; 923 if (!set) 924 continue; 925 fdt->close_on_exec->fds_bits[j] = 0; 926 spin_unlock(&files->file_lock); 927 for ( ; set ; i++,set >>= 1) { 928 if (set & 1) { 929 sys_close(i); 930 } 931 } 932 spin_lock(&files->file_lock); 933 934 } 935 spin_unlock(&files->file_lock); 936 } 937 938 char *get_task_comm(char *buf, struct task_struct *tsk) 939 { 940 /* buf must be at least sizeof(tsk->comm) in size */ 941 task_lock(tsk); 942 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 943 task_unlock(tsk); 944 return buf; 945 } 946 947 void set_task_comm(struct task_struct *tsk, char *buf) 948 { 949 task_lock(tsk); 950 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 951 task_unlock(tsk); 952 } 953 954 int flush_old_exec(struct linux_binprm * bprm) 955 { 956 char * name; 957 int i, ch, retval; 958 char tcomm[sizeof(current->comm)]; 959 960 /* 961 * Make sure we have a private signal table and that 962 * we are unassociated from the previous thread group. 963 */ 964 retval = de_thread(current); 965 if (retval) 966 goto out; 967 968 set_mm_exe_file(bprm->mm, bprm->file); 969 970 /* 971 * Release all of the old mmap stuff 972 */ 973 retval = exec_mmap(bprm->mm); 974 if (retval) 975 goto out; 976 977 bprm->mm = NULL; /* We're using it now */ 978 979 /* This is the point of no return */ 980 current->sas_ss_sp = current->sas_ss_size = 0; 981 982 if (current_euid() == current_uid() && current_egid() == current_gid()) 983 set_dumpable(current->mm, 1); 984 else 985 set_dumpable(current->mm, suid_dumpable); 986 987 name = bprm->filename; 988 989 /* Copies the binary name from after last slash */ 990 for (i=0; (ch = *(name++)) != '\0';) { 991 if (ch == '/') 992 i = 0; /* overwrite what we wrote */ 993 else 994 if (i < (sizeof(tcomm) - 1)) 995 tcomm[i++] = ch; 996 } 997 tcomm[i] = '\0'; 998 set_task_comm(current, tcomm); 999 1000 current->flags &= ~PF_RANDOMIZE; 1001 flush_thread(); 1002 1003 /* Set the new mm task size. We have to do that late because it may 1004 * depend on TIF_32BIT which is only updated in flush_thread() on 1005 * some architectures like powerpc 1006 */ 1007 current->mm->task_size = TASK_SIZE; 1008 1009 /* install the new credentials */ 1010 if (bprm->cred->uid != current_euid() || 1011 bprm->cred->gid != current_egid()) { 1012 current->pdeath_signal = 0; 1013 } else if (file_permission(bprm->file, MAY_READ) || 1014 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 1015 set_dumpable(current->mm, suid_dumpable); 1016 } 1017 1018 current->personality &= ~bprm->per_clear; 1019 1020 /* An exec changes our domain. We are no longer part of the thread 1021 group */ 1022 1023 current->self_exec_id++; 1024 1025 flush_signal_handlers(current, 0); 1026 flush_old_files(current->files); 1027 1028 return 0; 1029 1030 out: 1031 return retval; 1032 } 1033 1034 EXPORT_SYMBOL(flush_old_exec); 1035 1036 /* 1037 * install the new credentials for this executable 1038 */ 1039 void install_exec_creds(struct linux_binprm *bprm) 1040 { 1041 security_bprm_committing_creds(bprm); 1042 1043 commit_creds(bprm->cred); 1044 bprm->cred = NULL; 1045 1046 /* cred_exec_mutex must be held at least to this point to prevent 1047 * ptrace_attach() from altering our determination of the task's 1048 * credentials; any time after this it may be unlocked */ 1049 1050 security_bprm_committed_creds(bprm); 1051 } 1052 EXPORT_SYMBOL(install_exec_creds); 1053 1054 /* 1055 * determine how safe it is to execute the proposed program 1056 * - the caller must hold current->cred_exec_mutex to protect against 1057 * PTRACE_ATTACH 1058 */ 1059 void check_unsafe_exec(struct linux_binprm *bprm) 1060 { 1061 struct task_struct *p = current, *t; 1062 unsigned long flags; 1063 unsigned n_fs, n_sighand; 1064 1065 bprm->unsafe = tracehook_unsafe_exec(p); 1066 1067 n_fs = 1; 1068 n_sighand = 1; 1069 lock_task_sighand(p, &flags); 1070 for (t = next_thread(p); t != p; t = next_thread(t)) { 1071 if (t->fs == p->fs) 1072 n_fs++; 1073 n_sighand++; 1074 } 1075 1076 if (atomic_read(&p->fs->count) > n_fs || 1077 atomic_read(&p->sighand->count) > n_sighand) 1078 bprm->unsafe |= LSM_UNSAFE_SHARE; 1079 1080 unlock_task_sighand(p, &flags); 1081 } 1082 1083 /* 1084 * Fill the binprm structure from the inode. 1085 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1086 * 1087 * This may be called multiple times for binary chains (scripts for example). 1088 */ 1089 int prepare_binprm(struct linux_binprm *bprm) 1090 { 1091 umode_t mode; 1092 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1093 int retval; 1094 1095 mode = inode->i_mode; 1096 if (bprm->file->f_op == NULL) 1097 return -EACCES; 1098 1099 /* clear any previous set[ug]id data from a previous binary */ 1100 bprm->cred->euid = current_euid(); 1101 bprm->cred->egid = current_egid(); 1102 1103 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1104 /* Set-uid? */ 1105 if (mode & S_ISUID) { 1106 bprm->per_clear |= PER_CLEAR_ON_SETID; 1107 bprm->cred->euid = inode->i_uid; 1108 } 1109 1110 /* Set-gid? */ 1111 /* 1112 * If setgid is set but no group execute bit then this 1113 * is a candidate for mandatory locking, not a setgid 1114 * executable. 1115 */ 1116 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1117 bprm->per_clear |= PER_CLEAR_ON_SETID; 1118 bprm->cred->egid = inode->i_gid; 1119 } 1120 } 1121 1122 /* fill in binprm security blob */ 1123 retval = security_bprm_set_creds(bprm); 1124 if (retval) 1125 return retval; 1126 bprm->cred_prepared = 1; 1127 1128 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1129 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1130 } 1131 1132 EXPORT_SYMBOL(prepare_binprm); 1133 1134 /* 1135 * Arguments are '\0' separated strings found at the location bprm->p 1136 * points to; chop off the first by relocating brpm->p to right after 1137 * the first '\0' encountered. 1138 */ 1139 int remove_arg_zero(struct linux_binprm *bprm) 1140 { 1141 int ret = 0; 1142 unsigned long offset; 1143 char *kaddr; 1144 struct page *page; 1145 1146 if (!bprm->argc) 1147 return 0; 1148 1149 do { 1150 offset = bprm->p & ~PAGE_MASK; 1151 page = get_arg_page(bprm, bprm->p, 0); 1152 if (!page) { 1153 ret = -EFAULT; 1154 goto out; 1155 } 1156 kaddr = kmap_atomic(page, KM_USER0); 1157 1158 for (; offset < PAGE_SIZE && kaddr[offset]; 1159 offset++, bprm->p++) 1160 ; 1161 1162 kunmap_atomic(kaddr, KM_USER0); 1163 put_arg_page(page); 1164 1165 if (offset == PAGE_SIZE) 1166 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1167 } while (offset == PAGE_SIZE); 1168 1169 bprm->p++; 1170 bprm->argc--; 1171 ret = 0; 1172 1173 out: 1174 return ret; 1175 } 1176 EXPORT_SYMBOL(remove_arg_zero); 1177 1178 /* 1179 * cycle the list of binary formats handler, until one recognizes the image 1180 */ 1181 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1182 { 1183 unsigned int depth = bprm->recursion_depth; 1184 int try,retval; 1185 struct linux_binfmt *fmt; 1186 1187 retval = security_bprm_check(bprm); 1188 if (retval) 1189 return retval; 1190 retval = ima_bprm_check(bprm); 1191 if (retval) 1192 return retval; 1193 1194 /* kernel module loader fixup */ 1195 /* so we don't try to load run modprobe in kernel space. */ 1196 set_fs(USER_DS); 1197 1198 retval = audit_bprm(bprm); 1199 if (retval) 1200 return retval; 1201 1202 retval = -ENOENT; 1203 for (try=0; try<2; try++) { 1204 read_lock(&binfmt_lock); 1205 list_for_each_entry(fmt, &formats, lh) { 1206 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1207 if (!fn) 1208 continue; 1209 if (!try_module_get(fmt->module)) 1210 continue; 1211 read_unlock(&binfmt_lock); 1212 retval = fn(bprm, regs); 1213 /* 1214 * Restore the depth counter to its starting value 1215 * in this call, so we don't have to rely on every 1216 * load_binary function to restore it on return. 1217 */ 1218 bprm->recursion_depth = depth; 1219 if (retval >= 0) { 1220 if (depth == 0) 1221 tracehook_report_exec(fmt, bprm, regs); 1222 put_binfmt(fmt); 1223 allow_write_access(bprm->file); 1224 if (bprm->file) 1225 fput(bprm->file); 1226 bprm->file = NULL; 1227 current->did_exec = 1; 1228 proc_exec_connector(current); 1229 return retval; 1230 } 1231 read_lock(&binfmt_lock); 1232 put_binfmt(fmt); 1233 if (retval != -ENOEXEC || bprm->mm == NULL) 1234 break; 1235 if (!bprm->file) { 1236 read_unlock(&binfmt_lock); 1237 return retval; 1238 } 1239 } 1240 read_unlock(&binfmt_lock); 1241 if (retval != -ENOEXEC || bprm->mm == NULL) { 1242 break; 1243 #ifdef CONFIG_MODULES 1244 } else { 1245 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1246 if (printable(bprm->buf[0]) && 1247 printable(bprm->buf[1]) && 1248 printable(bprm->buf[2]) && 1249 printable(bprm->buf[3])) 1250 break; /* -ENOEXEC */ 1251 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1252 #endif 1253 } 1254 } 1255 return retval; 1256 } 1257 1258 EXPORT_SYMBOL(search_binary_handler); 1259 1260 void free_bprm(struct linux_binprm *bprm) 1261 { 1262 free_arg_pages(bprm); 1263 if (bprm->cred) 1264 abort_creds(bprm->cred); 1265 kfree(bprm); 1266 } 1267 1268 /* 1269 * sys_execve() executes a new program. 1270 */ 1271 int do_execve(char * filename, 1272 char __user *__user *argv, 1273 char __user *__user *envp, 1274 struct pt_regs * regs) 1275 { 1276 struct linux_binprm *bprm; 1277 struct file *file; 1278 struct files_struct *displaced; 1279 int retval; 1280 1281 retval = unshare_files(&displaced); 1282 if (retval) 1283 goto out_ret; 1284 1285 retval = -ENOMEM; 1286 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1287 if (!bprm) 1288 goto out_files; 1289 1290 retval = mutex_lock_interruptible(¤t->cred_exec_mutex); 1291 if (retval < 0) 1292 goto out_free; 1293 current->in_execve = 1; 1294 1295 retval = -ENOMEM; 1296 bprm->cred = prepare_exec_creds(); 1297 if (!bprm->cred) 1298 goto out_unlock; 1299 check_unsafe_exec(bprm); 1300 1301 file = open_exec(filename); 1302 retval = PTR_ERR(file); 1303 if (IS_ERR(file)) 1304 goto out_unlock; 1305 1306 sched_exec(); 1307 1308 bprm->file = file; 1309 bprm->filename = filename; 1310 bprm->interp = filename; 1311 1312 retval = bprm_mm_init(bprm); 1313 if (retval) 1314 goto out_file; 1315 1316 bprm->argc = count(argv, MAX_ARG_STRINGS); 1317 if ((retval = bprm->argc) < 0) 1318 goto out; 1319 1320 bprm->envc = count(envp, MAX_ARG_STRINGS); 1321 if ((retval = bprm->envc) < 0) 1322 goto out; 1323 1324 retval = prepare_binprm(bprm); 1325 if (retval < 0) 1326 goto out; 1327 1328 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1329 if (retval < 0) 1330 goto out; 1331 1332 bprm->exec = bprm->p; 1333 retval = copy_strings(bprm->envc, envp, bprm); 1334 if (retval < 0) 1335 goto out; 1336 1337 retval = copy_strings(bprm->argc, argv, bprm); 1338 if (retval < 0) 1339 goto out; 1340 1341 current->flags &= ~PF_KTHREAD; 1342 retval = search_binary_handler(bprm,regs); 1343 if (retval < 0) 1344 goto out; 1345 1346 /* execve succeeded */ 1347 current->in_execve = 0; 1348 mutex_unlock(¤t->cred_exec_mutex); 1349 acct_update_integrals(current); 1350 free_bprm(bprm); 1351 if (displaced) 1352 put_files_struct(displaced); 1353 return retval; 1354 1355 out: 1356 if (bprm->mm) 1357 mmput (bprm->mm); 1358 1359 out_file: 1360 if (bprm->file) { 1361 allow_write_access(bprm->file); 1362 fput(bprm->file); 1363 } 1364 1365 out_unlock: 1366 current->in_execve = 0; 1367 mutex_unlock(¤t->cred_exec_mutex); 1368 1369 out_free: 1370 free_bprm(bprm); 1371 1372 out_files: 1373 if (displaced) 1374 reset_files_struct(displaced); 1375 out_ret: 1376 return retval; 1377 } 1378 1379 int set_binfmt(struct linux_binfmt *new) 1380 { 1381 struct linux_binfmt *old = current->binfmt; 1382 1383 if (new) { 1384 if (!try_module_get(new->module)) 1385 return -1; 1386 } 1387 current->binfmt = new; 1388 if (old) 1389 module_put(old->module); 1390 return 0; 1391 } 1392 1393 EXPORT_SYMBOL(set_binfmt); 1394 1395 /* format_corename will inspect the pattern parameter, and output a 1396 * name into corename, which must have space for at least 1397 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1398 */ 1399 static int format_corename(char *corename, long signr) 1400 { 1401 const struct cred *cred = current_cred(); 1402 const char *pat_ptr = core_pattern; 1403 int ispipe = (*pat_ptr == '|'); 1404 char *out_ptr = corename; 1405 char *const out_end = corename + CORENAME_MAX_SIZE; 1406 int rc; 1407 int pid_in_pattern = 0; 1408 1409 /* Repeat as long as we have more pattern to process and more output 1410 space */ 1411 while (*pat_ptr) { 1412 if (*pat_ptr != '%') { 1413 if (out_ptr == out_end) 1414 goto out; 1415 *out_ptr++ = *pat_ptr++; 1416 } else { 1417 switch (*++pat_ptr) { 1418 case 0: 1419 goto out; 1420 /* Double percent, output one percent */ 1421 case '%': 1422 if (out_ptr == out_end) 1423 goto out; 1424 *out_ptr++ = '%'; 1425 break; 1426 /* pid */ 1427 case 'p': 1428 pid_in_pattern = 1; 1429 rc = snprintf(out_ptr, out_end - out_ptr, 1430 "%d", task_tgid_vnr(current)); 1431 if (rc > out_end - out_ptr) 1432 goto out; 1433 out_ptr += rc; 1434 break; 1435 /* uid */ 1436 case 'u': 1437 rc = snprintf(out_ptr, out_end - out_ptr, 1438 "%d", cred->uid); 1439 if (rc > out_end - out_ptr) 1440 goto out; 1441 out_ptr += rc; 1442 break; 1443 /* gid */ 1444 case 'g': 1445 rc = snprintf(out_ptr, out_end - out_ptr, 1446 "%d", cred->gid); 1447 if (rc > out_end - out_ptr) 1448 goto out; 1449 out_ptr += rc; 1450 break; 1451 /* signal that caused the coredump */ 1452 case 's': 1453 rc = snprintf(out_ptr, out_end - out_ptr, 1454 "%ld", signr); 1455 if (rc > out_end - out_ptr) 1456 goto out; 1457 out_ptr += rc; 1458 break; 1459 /* UNIX time of coredump */ 1460 case 't': { 1461 struct timeval tv; 1462 do_gettimeofday(&tv); 1463 rc = snprintf(out_ptr, out_end - out_ptr, 1464 "%lu", tv.tv_sec); 1465 if (rc > out_end - out_ptr) 1466 goto out; 1467 out_ptr += rc; 1468 break; 1469 } 1470 /* hostname */ 1471 case 'h': 1472 down_read(&uts_sem); 1473 rc = snprintf(out_ptr, out_end - out_ptr, 1474 "%s", utsname()->nodename); 1475 up_read(&uts_sem); 1476 if (rc > out_end - out_ptr) 1477 goto out; 1478 out_ptr += rc; 1479 break; 1480 /* executable */ 1481 case 'e': 1482 rc = snprintf(out_ptr, out_end - out_ptr, 1483 "%s", current->comm); 1484 if (rc > out_end - out_ptr) 1485 goto out; 1486 out_ptr += rc; 1487 break; 1488 /* core limit size */ 1489 case 'c': 1490 rc = snprintf(out_ptr, out_end - out_ptr, 1491 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1492 if (rc > out_end - out_ptr) 1493 goto out; 1494 out_ptr += rc; 1495 break; 1496 default: 1497 break; 1498 } 1499 ++pat_ptr; 1500 } 1501 } 1502 /* Backward compatibility with core_uses_pid: 1503 * 1504 * If core_pattern does not include a %p (as is the default) 1505 * and core_uses_pid is set, then .%pid will be appended to 1506 * the filename. Do not do this for piped commands. */ 1507 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1508 rc = snprintf(out_ptr, out_end - out_ptr, 1509 ".%d", task_tgid_vnr(current)); 1510 if (rc > out_end - out_ptr) 1511 goto out; 1512 out_ptr += rc; 1513 } 1514 out: 1515 *out_ptr = 0; 1516 return ispipe; 1517 } 1518 1519 static int zap_process(struct task_struct *start) 1520 { 1521 struct task_struct *t; 1522 int nr = 0; 1523 1524 start->signal->flags = SIGNAL_GROUP_EXIT; 1525 start->signal->group_stop_count = 0; 1526 1527 t = start; 1528 do { 1529 if (t != current && t->mm) { 1530 sigaddset(&t->pending.signal, SIGKILL); 1531 signal_wake_up(t, 1); 1532 nr++; 1533 } 1534 } while_each_thread(start, t); 1535 1536 return nr; 1537 } 1538 1539 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1540 struct core_state *core_state, int exit_code) 1541 { 1542 struct task_struct *g, *p; 1543 unsigned long flags; 1544 int nr = -EAGAIN; 1545 1546 spin_lock_irq(&tsk->sighand->siglock); 1547 if (!signal_group_exit(tsk->signal)) { 1548 mm->core_state = core_state; 1549 tsk->signal->group_exit_code = exit_code; 1550 nr = zap_process(tsk); 1551 } 1552 spin_unlock_irq(&tsk->sighand->siglock); 1553 if (unlikely(nr < 0)) 1554 return nr; 1555 1556 if (atomic_read(&mm->mm_users) == nr + 1) 1557 goto done; 1558 /* 1559 * We should find and kill all tasks which use this mm, and we should 1560 * count them correctly into ->nr_threads. We don't take tasklist 1561 * lock, but this is safe wrt: 1562 * 1563 * fork: 1564 * None of sub-threads can fork after zap_process(leader). All 1565 * processes which were created before this point should be 1566 * visible to zap_threads() because copy_process() adds the new 1567 * process to the tail of init_task.tasks list, and lock/unlock 1568 * of ->siglock provides a memory barrier. 1569 * 1570 * do_exit: 1571 * The caller holds mm->mmap_sem. This means that the task which 1572 * uses this mm can't pass exit_mm(), so it can't exit or clear 1573 * its ->mm. 1574 * 1575 * de_thread: 1576 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1577 * we must see either old or new leader, this does not matter. 1578 * However, it can change p->sighand, so lock_task_sighand(p) 1579 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1580 * it can't fail. 1581 * 1582 * Note also that "g" can be the old leader with ->mm == NULL 1583 * and already unhashed and thus removed from ->thread_group. 1584 * This is OK, __unhash_process()->list_del_rcu() does not 1585 * clear the ->next pointer, we will find the new leader via 1586 * next_thread(). 1587 */ 1588 rcu_read_lock(); 1589 for_each_process(g) { 1590 if (g == tsk->group_leader) 1591 continue; 1592 if (g->flags & PF_KTHREAD) 1593 continue; 1594 p = g; 1595 do { 1596 if (p->mm) { 1597 if (unlikely(p->mm == mm)) { 1598 lock_task_sighand(p, &flags); 1599 nr += zap_process(p); 1600 unlock_task_sighand(p, &flags); 1601 } 1602 break; 1603 } 1604 } while_each_thread(g, p); 1605 } 1606 rcu_read_unlock(); 1607 done: 1608 atomic_set(&core_state->nr_threads, nr); 1609 return nr; 1610 } 1611 1612 static int coredump_wait(int exit_code, struct core_state *core_state) 1613 { 1614 struct task_struct *tsk = current; 1615 struct mm_struct *mm = tsk->mm; 1616 struct completion *vfork_done; 1617 int core_waiters; 1618 1619 init_completion(&core_state->startup); 1620 core_state->dumper.task = tsk; 1621 core_state->dumper.next = NULL; 1622 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1623 up_write(&mm->mmap_sem); 1624 1625 if (unlikely(core_waiters < 0)) 1626 goto fail; 1627 1628 /* 1629 * Make sure nobody is waiting for us to release the VM, 1630 * otherwise we can deadlock when we wait on each other 1631 */ 1632 vfork_done = tsk->vfork_done; 1633 if (vfork_done) { 1634 tsk->vfork_done = NULL; 1635 complete(vfork_done); 1636 } 1637 1638 if (core_waiters) 1639 wait_for_completion(&core_state->startup); 1640 fail: 1641 return core_waiters; 1642 } 1643 1644 static void coredump_finish(struct mm_struct *mm) 1645 { 1646 struct core_thread *curr, *next; 1647 struct task_struct *task; 1648 1649 next = mm->core_state->dumper.next; 1650 while ((curr = next) != NULL) { 1651 next = curr->next; 1652 task = curr->task; 1653 /* 1654 * see exit_mm(), curr->task must not see 1655 * ->task == NULL before we read ->next. 1656 */ 1657 smp_mb(); 1658 curr->task = NULL; 1659 wake_up_process(task); 1660 } 1661 1662 mm->core_state = NULL; 1663 } 1664 1665 /* 1666 * set_dumpable converts traditional three-value dumpable to two flags and 1667 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1668 * these bits are not changed atomically. So get_dumpable can observe the 1669 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1670 * return either old dumpable or new one by paying attention to the order of 1671 * modifying the bits. 1672 * 1673 * dumpable | mm->flags (binary) 1674 * old new | initial interim final 1675 * ---------+----------------------- 1676 * 0 1 | 00 01 01 1677 * 0 2 | 00 10(*) 11 1678 * 1 0 | 01 00 00 1679 * 1 2 | 01 11 11 1680 * 2 0 | 11 10(*) 00 1681 * 2 1 | 11 11 01 1682 * 1683 * (*) get_dumpable regards interim value of 10 as 11. 1684 */ 1685 void set_dumpable(struct mm_struct *mm, int value) 1686 { 1687 switch (value) { 1688 case 0: 1689 clear_bit(MMF_DUMPABLE, &mm->flags); 1690 smp_wmb(); 1691 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1692 break; 1693 case 1: 1694 set_bit(MMF_DUMPABLE, &mm->flags); 1695 smp_wmb(); 1696 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1697 break; 1698 case 2: 1699 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1700 smp_wmb(); 1701 set_bit(MMF_DUMPABLE, &mm->flags); 1702 break; 1703 } 1704 } 1705 1706 int get_dumpable(struct mm_struct *mm) 1707 { 1708 int ret; 1709 1710 ret = mm->flags & 0x3; 1711 return (ret >= 2) ? 2 : ret; 1712 } 1713 1714 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1715 { 1716 struct core_state core_state; 1717 char corename[CORENAME_MAX_SIZE + 1]; 1718 struct mm_struct *mm = current->mm; 1719 struct linux_binfmt * binfmt; 1720 struct inode * inode; 1721 struct file * file; 1722 const struct cred *old_cred; 1723 struct cred *cred; 1724 int retval = 0; 1725 int flag = 0; 1726 int ispipe = 0; 1727 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1728 char **helper_argv = NULL; 1729 int helper_argc = 0; 1730 char *delimit; 1731 1732 audit_core_dumps(signr); 1733 1734 binfmt = current->binfmt; 1735 if (!binfmt || !binfmt->core_dump) 1736 goto fail; 1737 1738 cred = prepare_creds(); 1739 if (!cred) { 1740 retval = -ENOMEM; 1741 goto fail; 1742 } 1743 1744 down_write(&mm->mmap_sem); 1745 /* 1746 * If another thread got here first, or we are not dumpable, bail out. 1747 */ 1748 if (mm->core_state || !get_dumpable(mm)) { 1749 up_write(&mm->mmap_sem); 1750 put_cred(cred); 1751 goto fail; 1752 } 1753 1754 /* 1755 * We cannot trust fsuid as being the "true" uid of the 1756 * process nor do we know its entire history. We only know it 1757 * was tainted so we dump it as root in mode 2. 1758 */ 1759 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1760 flag = O_EXCL; /* Stop rewrite attacks */ 1761 cred->fsuid = 0; /* Dump root private */ 1762 } 1763 1764 retval = coredump_wait(exit_code, &core_state); 1765 if (retval < 0) { 1766 put_cred(cred); 1767 goto fail; 1768 } 1769 1770 old_cred = override_creds(cred); 1771 1772 /* 1773 * Clear any false indication of pending signals that might 1774 * be seen by the filesystem code called to write the core file. 1775 */ 1776 clear_thread_flag(TIF_SIGPENDING); 1777 1778 /* 1779 * lock_kernel() because format_corename() is controlled by sysctl, which 1780 * uses lock_kernel() 1781 */ 1782 lock_kernel(); 1783 ispipe = format_corename(corename, signr); 1784 unlock_kernel(); 1785 /* 1786 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1787 * to a pipe. Since we're not writing directly to the filesystem 1788 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1789 * created unless the pipe reader choses to write out the core file 1790 * at which point file size limits and permissions will be imposed 1791 * as it does with any other process 1792 */ 1793 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1794 goto fail_unlock; 1795 1796 if (ispipe) { 1797 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1798 if (!helper_argv) { 1799 printk(KERN_WARNING "%s failed to allocate memory\n", 1800 __func__); 1801 goto fail_unlock; 1802 } 1803 /* Terminate the string before the first option */ 1804 delimit = strchr(corename, ' '); 1805 if (delimit) 1806 *delimit = '\0'; 1807 delimit = strrchr(helper_argv[0], '/'); 1808 if (delimit) 1809 delimit++; 1810 else 1811 delimit = helper_argv[0]; 1812 if (!strcmp(delimit, current->comm)) { 1813 printk(KERN_NOTICE "Recursive core dump detected, " 1814 "aborting\n"); 1815 goto fail_unlock; 1816 } 1817 1818 core_limit = RLIM_INFINITY; 1819 1820 /* SIGPIPE can happen, but it's just never processed */ 1821 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1822 &file)) { 1823 printk(KERN_INFO "Core dump to %s pipe failed\n", 1824 corename); 1825 goto fail_unlock; 1826 } 1827 } else 1828 file = filp_open(corename, 1829 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1830 0600); 1831 if (IS_ERR(file)) 1832 goto fail_unlock; 1833 inode = file->f_path.dentry->d_inode; 1834 if (inode->i_nlink > 1) 1835 goto close_fail; /* multiple links - don't dump */ 1836 if (!ispipe && d_unhashed(file->f_path.dentry)) 1837 goto close_fail; 1838 1839 /* AK: actually i see no reason to not allow this for named pipes etc., 1840 but keep the previous behaviour for now. */ 1841 if (!ispipe && !S_ISREG(inode->i_mode)) 1842 goto close_fail; 1843 /* 1844 * Dont allow local users get cute and trick others to coredump 1845 * into their pre-created files: 1846 */ 1847 if (inode->i_uid != current_fsuid()) 1848 goto close_fail; 1849 if (!file->f_op) 1850 goto close_fail; 1851 if (!file->f_op->write) 1852 goto close_fail; 1853 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1854 goto close_fail; 1855 1856 retval = binfmt->core_dump(signr, regs, file, core_limit); 1857 1858 if (retval) 1859 current->signal->group_exit_code |= 0x80; 1860 close_fail: 1861 filp_close(file, NULL); 1862 fail_unlock: 1863 if (helper_argv) 1864 argv_free(helper_argv); 1865 1866 revert_creds(old_cred); 1867 put_cred(cred); 1868 coredump_finish(mm); 1869 fail: 1870 return; 1871 } 1872