1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/perf_event.h> 37 #include <linux/highmem.h> 38 #include <linux/spinlock.h> 39 #include <linux/key.h> 40 #include <linux/personality.h> 41 #include <linux/binfmts.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/proc_fs.h> 47 #include <linux/mount.h> 48 #include <linux/security.h> 49 #include <linux/syscalls.h> 50 #include <linux/tsacct_kern.h> 51 #include <linux/cn_proc.h> 52 #include <linux/audit.h> 53 #include <linux/tracehook.h> 54 #include <linux/kmod.h> 55 #include <linux/fsnotify.h> 56 #include <linux/fs_struct.h> 57 #include <linux/pipe_fs_i.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include "internal.h" 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 unsigned int core_pipe_limit; 67 int suid_dumpable = 0; 68 69 /* The maximal length of core_pattern is also specified in sysctl.c */ 70 71 static LIST_HEAD(formats); 72 static DEFINE_RWLOCK(binfmt_lock); 73 74 int __register_binfmt(struct linux_binfmt * fmt, int insert) 75 { 76 if (!fmt) 77 return -EINVAL; 78 write_lock(&binfmt_lock); 79 insert ? list_add(&fmt->lh, &formats) : 80 list_add_tail(&fmt->lh, &formats); 81 write_unlock(&binfmt_lock); 82 return 0; 83 } 84 85 EXPORT_SYMBOL(__register_binfmt); 86 87 void unregister_binfmt(struct linux_binfmt * fmt) 88 { 89 write_lock(&binfmt_lock); 90 list_del(&fmt->lh); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(unregister_binfmt); 95 96 static inline void put_binfmt(struct linux_binfmt * fmt) 97 { 98 module_put(fmt->module); 99 } 100 101 /* 102 * Note that a shared library must be both readable and executable due to 103 * security reasons. 104 * 105 * Also note that we take the address to load from from the file itself. 106 */ 107 SYSCALL_DEFINE1(uselib, const char __user *, library) 108 { 109 struct file *file; 110 char *tmp = getname(library); 111 int error = PTR_ERR(tmp); 112 113 if (IS_ERR(tmp)) 114 goto out; 115 116 file = do_filp_open(AT_FDCWD, tmp, 117 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 118 MAY_READ | MAY_EXEC | MAY_OPEN); 119 putname(tmp); 120 error = PTR_ERR(file); 121 if (IS_ERR(file)) 122 goto out; 123 124 error = -EINVAL; 125 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 126 goto exit; 127 128 error = -EACCES; 129 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 130 goto exit; 131 132 fsnotify_open(file->f_path.dentry); 133 134 error = -ENOEXEC; 135 if(file->f_op) { 136 struct linux_binfmt * fmt; 137 138 read_lock(&binfmt_lock); 139 list_for_each_entry(fmt, &formats, lh) { 140 if (!fmt->load_shlib) 141 continue; 142 if (!try_module_get(fmt->module)) 143 continue; 144 read_unlock(&binfmt_lock); 145 error = fmt->load_shlib(file); 146 read_lock(&binfmt_lock); 147 put_binfmt(fmt); 148 if (error != -ENOEXEC) 149 break; 150 } 151 read_unlock(&binfmt_lock); 152 } 153 exit: 154 fput(file); 155 out: 156 return error; 157 } 158 159 #ifdef CONFIG_MMU 160 161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 162 int write) 163 { 164 struct page *page; 165 int ret; 166 167 #ifdef CONFIG_STACK_GROWSUP 168 if (write) { 169 ret = expand_stack_downwards(bprm->vma, pos); 170 if (ret < 0) 171 return NULL; 172 } 173 #endif 174 ret = get_user_pages(current, bprm->mm, pos, 175 1, write, 1, &page, NULL); 176 if (ret <= 0) 177 return NULL; 178 179 if (write) { 180 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 181 struct rlimit *rlim; 182 183 /* 184 * We've historically supported up to 32 pages (ARG_MAX) 185 * of argument strings even with small stacks 186 */ 187 if (size <= ARG_MAX) 188 return page; 189 190 /* 191 * Limit to 1/4-th the stack size for the argv+env strings. 192 * This ensures that: 193 * - the remaining binfmt code will not run out of stack space, 194 * - the program will have a reasonable amount of stack left 195 * to work from. 196 */ 197 rlim = current->signal->rlim; 198 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 199 put_page(page); 200 return NULL; 201 } 202 } 203 204 return page; 205 } 206 207 static void put_arg_page(struct page *page) 208 { 209 put_page(page); 210 } 211 212 static void free_arg_page(struct linux_binprm *bprm, int i) 213 { 214 } 215 216 static void free_arg_pages(struct linux_binprm *bprm) 217 { 218 } 219 220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 221 struct page *page) 222 { 223 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 224 } 225 226 static int __bprm_mm_init(struct linux_binprm *bprm) 227 { 228 int err; 229 struct vm_area_struct *vma = NULL; 230 struct mm_struct *mm = bprm->mm; 231 232 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 233 if (!vma) 234 return -ENOMEM; 235 236 down_write(&mm->mmap_sem); 237 vma->vm_mm = mm; 238 239 /* 240 * Place the stack at the largest stack address the architecture 241 * supports. Later, we'll move this to an appropriate place. We don't 242 * use STACK_TOP because that can depend on attributes which aren't 243 * configured yet. 244 */ 245 vma->vm_end = STACK_TOP_MAX; 246 vma->vm_start = vma->vm_end - PAGE_SIZE; 247 vma->vm_flags = VM_STACK_FLAGS; 248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 249 err = insert_vm_struct(mm, vma); 250 if (err) 251 goto err; 252 253 mm->stack_vm = mm->total_vm = 1; 254 up_write(&mm->mmap_sem); 255 bprm->p = vma->vm_end - sizeof(void *); 256 return 0; 257 err: 258 up_write(&mm->mmap_sem); 259 bprm->vma = NULL; 260 kmem_cache_free(vm_area_cachep, vma); 261 return err; 262 } 263 264 static bool valid_arg_len(struct linux_binprm *bprm, long len) 265 { 266 return len <= MAX_ARG_STRLEN; 267 } 268 269 #else 270 271 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 272 int write) 273 { 274 struct page *page; 275 276 page = bprm->page[pos / PAGE_SIZE]; 277 if (!page && write) { 278 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 279 if (!page) 280 return NULL; 281 bprm->page[pos / PAGE_SIZE] = page; 282 } 283 284 return page; 285 } 286 287 static void put_arg_page(struct page *page) 288 { 289 } 290 291 static void free_arg_page(struct linux_binprm *bprm, int i) 292 { 293 if (bprm->page[i]) { 294 __free_page(bprm->page[i]); 295 bprm->page[i] = NULL; 296 } 297 } 298 299 static void free_arg_pages(struct linux_binprm *bprm) 300 { 301 int i; 302 303 for (i = 0; i < MAX_ARG_PAGES; i++) 304 free_arg_page(bprm, i); 305 } 306 307 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 308 struct page *page) 309 { 310 } 311 312 static int __bprm_mm_init(struct linux_binprm *bprm) 313 { 314 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 315 return 0; 316 } 317 318 static bool valid_arg_len(struct linux_binprm *bprm, long len) 319 { 320 return len <= bprm->p; 321 } 322 323 #endif /* CONFIG_MMU */ 324 325 /* 326 * Create a new mm_struct and populate it with a temporary stack 327 * vm_area_struct. We don't have enough context at this point to set the stack 328 * flags, permissions, and offset, so we use temporary values. We'll update 329 * them later in setup_arg_pages(). 330 */ 331 int bprm_mm_init(struct linux_binprm *bprm) 332 { 333 int err; 334 struct mm_struct *mm = NULL; 335 336 bprm->mm = mm = mm_alloc(); 337 err = -ENOMEM; 338 if (!mm) 339 goto err; 340 341 err = init_new_context(current, mm); 342 if (err) 343 goto err; 344 345 err = __bprm_mm_init(bprm); 346 if (err) 347 goto err; 348 349 return 0; 350 351 err: 352 if (mm) { 353 bprm->mm = NULL; 354 mmdrop(mm); 355 } 356 357 return err; 358 } 359 360 /* 361 * count() counts the number of strings in array ARGV. 362 */ 363 static int count(char __user * __user * argv, int max) 364 { 365 int i = 0; 366 367 if (argv != NULL) { 368 for (;;) { 369 char __user * p; 370 371 if (get_user(p, argv)) 372 return -EFAULT; 373 if (!p) 374 break; 375 argv++; 376 if (i++ >= max) 377 return -E2BIG; 378 cond_resched(); 379 } 380 } 381 return i; 382 } 383 384 /* 385 * 'copy_strings()' copies argument/environment strings from the old 386 * processes's memory to the new process's stack. The call to get_user_pages() 387 * ensures the destination page is created and not swapped out. 388 */ 389 static int copy_strings(int argc, char __user * __user * argv, 390 struct linux_binprm *bprm) 391 { 392 struct page *kmapped_page = NULL; 393 char *kaddr = NULL; 394 unsigned long kpos = 0; 395 int ret; 396 397 while (argc-- > 0) { 398 char __user *str; 399 int len; 400 unsigned long pos; 401 402 if (get_user(str, argv+argc) || 403 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 404 ret = -EFAULT; 405 goto out; 406 } 407 408 if (!valid_arg_len(bprm, len)) { 409 ret = -E2BIG; 410 goto out; 411 } 412 413 /* We're going to work our way backwords. */ 414 pos = bprm->p; 415 str += len; 416 bprm->p -= len; 417 418 while (len > 0) { 419 int offset, bytes_to_copy; 420 421 offset = pos % PAGE_SIZE; 422 if (offset == 0) 423 offset = PAGE_SIZE; 424 425 bytes_to_copy = offset; 426 if (bytes_to_copy > len) 427 bytes_to_copy = len; 428 429 offset -= bytes_to_copy; 430 pos -= bytes_to_copy; 431 str -= bytes_to_copy; 432 len -= bytes_to_copy; 433 434 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 435 struct page *page; 436 437 page = get_arg_page(bprm, pos, 1); 438 if (!page) { 439 ret = -E2BIG; 440 goto out; 441 } 442 443 if (kmapped_page) { 444 flush_kernel_dcache_page(kmapped_page); 445 kunmap(kmapped_page); 446 put_arg_page(kmapped_page); 447 } 448 kmapped_page = page; 449 kaddr = kmap(kmapped_page); 450 kpos = pos & PAGE_MASK; 451 flush_arg_page(bprm, kpos, kmapped_page); 452 } 453 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 454 ret = -EFAULT; 455 goto out; 456 } 457 } 458 } 459 ret = 0; 460 out: 461 if (kmapped_page) { 462 flush_kernel_dcache_page(kmapped_page); 463 kunmap(kmapped_page); 464 put_arg_page(kmapped_page); 465 } 466 return ret; 467 } 468 469 /* 470 * Like copy_strings, but get argv and its values from kernel memory. 471 */ 472 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 473 { 474 int r; 475 mm_segment_t oldfs = get_fs(); 476 set_fs(KERNEL_DS); 477 r = copy_strings(argc, (char __user * __user *)argv, bprm); 478 set_fs(oldfs); 479 return r; 480 } 481 EXPORT_SYMBOL(copy_strings_kernel); 482 483 #ifdef CONFIG_MMU 484 485 /* 486 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 487 * the binfmt code determines where the new stack should reside, we shift it to 488 * its final location. The process proceeds as follows: 489 * 490 * 1) Use shift to calculate the new vma endpoints. 491 * 2) Extend vma to cover both the old and new ranges. This ensures the 492 * arguments passed to subsequent functions are consistent. 493 * 3) Move vma's page tables to the new range. 494 * 4) Free up any cleared pgd range. 495 * 5) Shrink the vma to cover only the new range. 496 */ 497 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 498 { 499 struct mm_struct *mm = vma->vm_mm; 500 unsigned long old_start = vma->vm_start; 501 unsigned long old_end = vma->vm_end; 502 unsigned long length = old_end - old_start; 503 unsigned long new_start = old_start - shift; 504 unsigned long new_end = old_end - shift; 505 struct mmu_gather *tlb; 506 507 BUG_ON(new_start > new_end); 508 509 /* 510 * ensure there are no vmas between where we want to go 511 * and where we are 512 */ 513 if (vma != find_vma(mm, new_start)) 514 return -EFAULT; 515 516 /* 517 * cover the whole range: [new_start, old_end) 518 */ 519 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 520 521 /* 522 * move the page tables downwards, on failure we rely on 523 * process cleanup to remove whatever mess we made. 524 */ 525 if (length != move_page_tables(vma, old_start, 526 vma, new_start, length)) 527 return -ENOMEM; 528 529 lru_add_drain(); 530 tlb = tlb_gather_mmu(mm, 0); 531 if (new_end > old_start) { 532 /* 533 * when the old and new regions overlap clear from new_end. 534 */ 535 free_pgd_range(tlb, new_end, old_end, new_end, 536 vma->vm_next ? vma->vm_next->vm_start : 0); 537 } else { 538 /* 539 * otherwise, clean from old_start; this is done to not touch 540 * the address space in [new_end, old_start) some architectures 541 * have constraints on va-space that make this illegal (IA64) - 542 * for the others its just a little faster. 543 */ 544 free_pgd_range(tlb, old_start, old_end, new_end, 545 vma->vm_next ? vma->vm_next->vm_start : 0); 546 } 547 tlb_finish_mmu(tlb, new_end, old_end); 548 549 /* 550 * shrink the vma to just the new range. 551 */ 552 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 553 554 return 0; 555 } 556 557 #define EXTRA_STACK_VM_PAGES 20 /* random */ 558 559 /* 560 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 561 * the stack is optionally relocated, and some extra space is added. 562 */ 563 int setup_arg_pages(struct linux_binprm *bprm, 564 unsigned long stack_top, 565 int executable_stack) 566 { 567 unsigned long ret; 568 unsigned long stack_shift; 569 struct mm_struct *mm = current->mm; 570 struct vm_area_struct *vma = bprm->vma; 571 struct vm_area_struct *prev = NULL; 572 unsigned long vm_flags; 573 unsigned long stack_base; 574 unsigned long stack_size; 575 unsigned long stack_expand; 576 unsigned long rlim_stack; 577 578 #ifdef CONFIG_STACK_GROWSUP 579 /* Limit stack size to 1GB */ 580 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 581 if (stack_base > (1 << 30)) 582 stack_base = 1 << 30; 583 584 /* Make sure we didn't let the argument array grow too large. */ 585 if (vma->vm_end - vma->vm_start > stack_base) 586 return -ENOMEM; 587 588 stack_base = PAGE_ALIGN(stack_top - stack_base); 589 590 stack_shift = vma->vm_start - stack_base; 591 mm->arg_start = bprm->p - stack_shift; 592 bprm->p = vma->vm_end - stack_shift; 593 #else 594 stack_top = arch_align_stack(stack_top); 595 stack_top = PAGE_ALIGN(stack_top); 596 stack_shift = vma->vm_end - stack_top; 597 598 bprm->p -= stack_shift; 599 mm->arg_start = bprm->p; 600 #endif 601 602 if (bprm->loader) 603 bprm->loader -= stack_shift; 604 bprm->exec -= stack_shift; 605 606 down_write(&mm->mmap_sem); 607 vm_flags = VM_STACK_FLAGS; 608 609 /* 610 * Adjust stack execute permissions; explicitly enable for 611 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 612 * (arch default) otherwise. 613 */ 614 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 615 vm_flags |= VM_EXEC; 616 else if (executable_stack == EXSTACK_DISABLE_X) 617 vm_flags &= ~VM_EXEC; 618 vm_flags |= mm->def_flags; 619 620 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 621 vm_flags); 622 if (ret) 623 goto out_unlock; 624 BUG_ON(prev != vma); 625 626 /* Move stack pages down in memory. */ 627 if (stack_shift) { 628 ret = shift_arg_pages(vma, stack_shift); 629 if (ret) 630 goto out_unlock; 631 } 632 633 stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE; 634 stack_size = vma->vm_end - vma->vm_start; 635 /* 636 * Align this down to a page boundary as expand_stack 637 * will align it up. 638 */ 639 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 640 #ifdef CONFIG_STACK_GROWSUP 641 if (stack_size + stack_expand > rlim_stack) 642 stack_base = vma->vm_start + rlim_stack; 643 else 644 stack_base = vma->vm_end + stack_expand; 645 #else 646 if (stack_size + stack_expand > rlim_stack) 647 stack_base = vma->vm_end - rlim_stack; 648 else 649 stack_base = vma->vm_start - stack_expand; 650 #endif 651 ret = expand_stack(vma, stack_base); 652 if (ret) 653 ret = -EFAULT; 654 655 out_unlock: 656 up_write(&mm->mmap_sem); 657 return ret; 658 } 659 EXPORT_SYMBOL(setup_arg_pages); 660 661 #endif /* CONFIG_MMU */ 662 663 struct file *open_exec(const char *name) 664 { 665 struct file *file; 666 int err; 667 668 file = do_filp_open(AT_FDCWD, name, 669 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 670 MAY_EXEC | MAY_OPEN); 671 if (IS_ERR(file)) 672 goto out; 673 674 err = -EACCES; 675 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 676 goto exit; 677 678 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 679 goto exit; 680 681 fsnotify_open(file->f_path.dentry); 682 683 err = deny_write_access(file); 684 if (err) 685 goto exit; 686 687 out: 688 return file; 689 690 exit: 691 fput(file); 692 return ERR_PTR(err); 693 } 694 EXPORT_SYMBOL(open_exec); 695 696 int kernel_read(struct file *file, loff_t offset, 697 char *addr, unsigned long count) 698 { 699 mm_segment_t old_fs; 700 loff_t pos = offset; 701 int result; 702 703 old_fs = get_fs(); 704 set_fs(get_ds()); 705 /* The cast to a user pointer is valid due to the set_fs() */ 706 result = vfs_read(file, (void __user *)addr, count, &pos); 707 set_fs(old_fs); 708 return result; 709 } 710 711 EXPORT_SYMBOL(kernel_read); 712 713 static int exec_mmap(struct mm_struct *mm) 714 { 715 struct task_struct *tsk; 716 struct mm_struct * old_mm, *active_mm; 717 718 /* Notify parent that we're no longer interested in the old VM */ 719 tsk = current; 720 old_mm = current->mm; 721 mm_release(tsk, old_mm); 722 723 if (old_mm) { 724 /* 725 * Make sure that if there is a core dump in progress 726 * for the old mm, we get out and die instead of going 727 * through with the exec. We must hold mmap_sem around 728 * checking core_state and changing tsk->mm. 729 */ 730 down_read(&old_mm->mmap_sem); 731 if (unlikely(old_mm->core_state)) { 732 up_read(&old_mm->mmap_sem); 733 return -EINTR; 734 } 735 } 736 task_lock(tsk); 737 active_mm = tsk->active_mm; 738 tsk->mm = mm; 739 tsk->active_mm = mm; 740 activate_mm(active_mm, mm); 741 task_unlock(tsk); 742 arch_pick_mmap_layout(mm); 743 if (old_mm) { 744 up_read(&old_mm->mmap_sem); 745 BUG_ON(active_mm != old_mm); 746 mm_update_next_owner(old_mm); 747 mmput(old_mm); 748 return 0; 749 } 750 mmdrop(active_mm); 751 return 0; 752 } 753 754 /* 755 * This function makes sure the current process has its own signal table, 756 * so that flush_signal_handlers can later reset the handlers without 757 * disturbing other processes. (Other processes might share the signal 758 * table via the CLONE_SIGHAND option to clone().) 759 */ 760 static int de_thread(struct task_struct *tsk) 761 { 762 struct signal_struct *sig = tsk->signal; 763 struct sighand_struct *oldsighand = tsk->sighand; 764 spinlock_t *lock = &oldsighand->siglock; 765 int count; 766 767 if (thread_group_empty(tsk)) 768 goto no_thread_group; 769 770 /* 771 * Kill all other threads in the thread group. 772 */ 773 spin_lock_irq(lock); 774 if (signal_group_exit(sig)) { 775 /* 776 * Another group action in progress, just 777 * return so that the signal is processed. 778 */ 779 spin_unlock_irq(lock); 780 return -EAGAIN; 781 } 782 sig->group_exit_task = tsk; 783 zap_other_threads(tsk); 784 785 /* Account for the thread group leader hanging around: */ 786 count = thread_group_leader(tsk) ? 1 : 2; 787 sig->notify_count = count; 788 while (atomic_read(&sig->count) > count) { 789 __set_current_state(TASK_UNINTERRUPTIBLE); 790 spin_unlock_irq(lock); 791 schedule(); 792 spin_lock_irq(lock); 793 } 794 spin_unlock_irq(lock); 795 796 /* 797 * At this point all other threads have exited, all we have to 798 * do is to wait for the thread group leader to become inactive, 799 * and to assume its PID: 800 */ 801 if (!thread_group_leader(tsk)) { 802 struct task_struct *leader = tsk->group_leader; 803 804 sig->notify_count = -1; /* for exit_notify() */ 805 for (;;) { 806 write_lock_irq(&tasklist_lock); 807 if (likely(leader->exit_state)) 808 break; 809 __set_current_state(TASK_UNINTERRUPTIBLE); 810 write_unlock_irq(&tasklist_lock); 811 schedule(); 812 } 813 814 /* 815 * The only record we have of the real-time age of a 816 * process, regardless of execs it's done, is start_time. 817 * All the past CPU time is accumulated in signal_struct 818 * from sister threads now dead. But in this non-leader 819 * exec, nothing survives from the original leader thread, 820 * whose birth marks the true age of this process now. 821 * When we take on its identity by switching to its PID, we 822 * also take its birthdate (always earlier than our own). 823 */ 824 tsk->start_time = leader->start_time; 825 826 BUG_ON(!same_thread_group(leader, tsk)); 827 BUG_ON(has_group_leader_pid(tsk)); 828 /* 829 * An exec() starts a new thread group with the 830 * TGID of the previous thread group. Rehash the 831 * two threads with a switched PID, and release 832 * the former thread group leader: 833 */ 834 835 /* Become a process group leader with the old leader's pid. 836 * The old leader becomes a thread of the this thread group. 837 * Note: The old leader also uses this pid until release_task 838 * is called. Odd but simple and correct. 839 */ 840 detach_pid(tsk, PIDTYPE_PID); 841 tsk->pid = leader->pid; 842 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 843 transfer_pid(leader, tsk, PIDTYPE_PGID); 844 transfer_pid(leader, tsk, PIDTYPE_SID); 845 846 list_replace_rcu(&leader->tasks, &tsk->tasks); 847 list_replace_init(&leader->sibling, &tsk->sibling); 848 849 tsk->group_leader = tsk; 850 leader->group_leader = tsk; 851 852 tsk->exit_signal = SIGCHLD; 853 854 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 855 leader->exit_state = EXIT_DEAD; 856 write_unlock_irq(&tasklist_lock); 857 858 release_task(leader); 859 } 860 861 sig->group_exit_task = NULL; 862 sig->notify_count = 0; 863 864 no_thread_group: 865 if (current->mm) 866 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 867 868 exit_itimers(sig); 869 flush_itimer_signals(); 870 871 if (atomic_read(&oldsighand->count) != 1) { 872 struct sighand_struct *newsighand; 873 /* 874 * This ->sighand is shared with the CLONE_SIGHAND 875 * but not CLONE_THREAD task, switch to the new one. 876 */ 877 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 878 if (!newsighand) 879 return -ENOMEM; 880 881 atomic_set(&newsighand->count, 1); 882 memcpy(newsighand->action, oldsighand->action, 883 sizeof(newsighand->action)); 884 885 write_lock_irq(&tasklist_lock); 886 spin_lock(&oldsighand->siglock); 887 rcu_assign_pointer(tsk->sighand, newsighand); 888 spin_unlock(&oldsighand->siglock); 889 write_unlock_irq(&tasklist_lock); 890 891 __cleanup_sighand(oldsighand); 892 } 893 894 BUG_ON(!thread_group_leader(tsk)); 895 return 0; 896 } 897 898 /* 899 * These functions flushes out all traces of the currently running executable 900 * so that a new one can be started 901 */ 902 static void flush_old_files(struct files_struct * files) 903 { 904 long j = -1; 905 struct fdtable *fdt; 906 907 spin_lock(&files->file_lock); 908 for (;;) { 909 unsigned long set, i; 910 911 j++; 912 i = j * __NFDBITS; 913 fdt = files_fdtable(files); 914 if (i >= fdt->max_fds) 915 break; 916 set = fdt->close_on_exec->fds_bits[j]; 917 if (!set) 918 continue; 919 fdt->close_on_exec->fds_bits[j] = 0; 920 spin_unlock(&files->file_lock); 921 for ( ; set ; i++,set >>= 1) { 922 if (set & 1) { 923 sys_close(i); 924 } 925 } 926 spin_lock(&files->file_lock); 927 928 } 929 spin_unlock(&files->file_lock); 930 } 931 932 char *get_task_comm(char *buf, struct task_struct *tsk) 933 { 934 /* buf must be at least sizeof(tsk->comm) in size */ 935 task_lock(tsk); 936 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 937 task_unlock(tsk); 938 return buf; 939 } 940 941 void set_task_comm(struct task_struct *tsk, char *buf) 942 { 943 task_lock(tsk); 944 945 /* 946 * Threads may access current->comm without holding 947 * the task lock, so write the string carefully. 948 * Readers without a lock may see incomplete new 949 * names but are safe from non-terminating string reads. 950 */ 951 memset(tsk->comm, 0, TASK_COMM_LEN); 952 wmb(); 953 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 954 task_unlock(tsk); 955 perf_event_comm(tsk); 956 } 957 958 int flush_old_exec(struct linux_binprm * bprm) 959 { 960 int retval; 961 962 /* 963 * Make sure we have a private signal table and that 964 * we are unassociated from the previous thread group. 965 */ 966 retval = de_thread(current); 967 if (retval) 968 goto out; 969 970 set_mm_exe_file(bprm->mm, bprm->file); 971 972 /* 973 * Release all of the old mmap stuff 974 */ 975 retval = exec_mmap(bprm->mm); 976 if (retval) 977 goto out; 978 979 bprm->mm = NULL; /* We're using it now */ 980 981 current->flags &= ~PF_RANDOMIZE; 982 flush_thread(); 983 current->personality &= ~bprm->per_clear; 984 985 return 0; 986 987 out: 988 return retval; 989 } 990 EXPORT_SYMBOL(flush_old_exec); 991 992 void setup_new_exec(struct linux_binprm * bprm) 993 { 994 int i, ch; 995 char * name; 996 char tcomm[sizeof(current->comm)]; 997 998 arch_pick_mmap_layout(current->mm); 999 1000 /* This is the point of no return */ 1001 current->sas_ss_sp = current->sas_ss_size = 0; 1002 1003 if (current_euid() == current_uid() && current_egid() == current_gid()) 1004 set_dumpable(current->mm, 1); 1005 else 1006 set_dumpable(current->mm, suid_dumpable); 1007 1008 name = bprm->filename; 1009 1010 /* Copies the binary name from after last slash */ 1011 for (i=0; (ch = *(name++)) != '\0';) { 1012 if (ch == '/') 1013 i = 0; /* overwrite what we wrote */ 1014 else 1015 if (i < (sizeof(tcomm) - 1)) 1016 tcomm[i++] = ch; 1017 } 1018 tcomm[i] = '\0'; 1019 set_task_comm(current, tcomm); 1020 1021 /* Set the new mm task size. We have to do that late because it may 1022 * depend on TIF_32BIT which is only updated in flush_thread() on 1023 * some architectures like powerpc 1024 */ 1025 current->mm->task_size = TASK_SIZE; 1026 1027 /* install the new credentials */ 1028 if (bprm->cred->uid != current_euid() || 1029 bprm->cred->gid != current_egid()) { 1030 current->pdeath_signal = 0; 1031 } else if (file_permission(bprm->file, MAY_READ) || 1032 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 1033 set_dumpable(current->mm, suid_dumpable); 1034 } 1035 1036 /* 1037 * Flush performance counters when crossing a 1038 * security domain: 1039 */ 1040 if (!get_dumpable(current->mm)) 1041 perf_event_exit_task(current); 1042 1043 /* An exec changes our domain. We are no longer part of the thread 1044 group */ 1045 1046 current->self_exec_id++; 1047 1048 flush_signal_handlers(current, 0); 1049 flush_old_files(current->files); 1050 } 1051 EXPORT_SYMBOL(setup_new_exec); 1052 1053 /* 1054 * Prepare credentials and lock ->cred_guard_mutex. 1055 * install_exec_creds() commits the new creds and drops the lock. 1056 * Or, if exec fails before, free_bprm() should release ->cred and 1057 * and unlock. 1058 */ 1059 int prepare_bprm_creds(struct linux_binprm *bprm) 1060 { 1061 if (mutex_lock_interruptible(¤t->cred_guard_mutex)) 1062 return -ERESTARTNOINTR; 1063 1064 bprm->cred = prepare_exec_creds(); 1065 if (likely(bprm->cred)) 1066 return 0; 1067 1068 mutex_unlock(¤t->cred_guard_mutex); 1069 return -ENOMEM; 1070 } 1071 1072 void free_bprm(struct linux_binprm *bprm) 1073 { 1074 free_arg_pages(bprm); 1075 if (bprm->cred) { 1076 mutex_unlock(¤t->cred_guard_mutex); 1077 abort_creds(bprm->cred); 1078 } 1079 kfree(bprm); 1080 } 1081 1082 /* 1083 * install the new credentials for this executable 1084 */ 1085 void install_exec_creds(struct linux_binprm *bprm) 1086 { 1087 security_bprm_committing_creds(bprm); 1088 1089 commit_creds(bprm->cred); 1090 bprm->cred = NULL; 1091 /* 1092 * cred_guard_mutex must be held at least to this point to prevent 1093 * ptrace_attach() from altering our determination of the task's 1094 * credentials; any time after this it may be unlocked. 1095 */ 1096 security_bprm_committed_creds(bprm); 1097 mutex_unlock(¤t->cred_guard_mutex); 1098 } 1099 EXPORT_SYMBOL(install_exec_creds); 1100 1101 /* 1102 * determine how safe it is to execute the proposed program 1103 * - the caller must hold current->cred_guard_mutex to protect against 1104 * PTRACE_ATTACH 1105 */ 1106 int check_unsafe_exec(struct linux_binprm *bprm) 1107 { 1108 struct task_struct *p = current, *t; 1109 unsigned n_fs; 1110 int res = 0; 1111 1112 bprm->unsafe = tracehook_unsafe_exec(p); 1113 1114 n_fs = 1; 1115 write_lock(&p->fs->lock); 1116 rcu_read_lock(); 1117 for (t = next_thread(p); t != p; t = next_thread(t)) { 1118 if (t->fs == p->fs) 1119 n_fs++; 1120 } 1121 rcu_read_unlock(); 1122 1123 if (p->fs->users > n_fs) { 1124 bprm->unsafe |= LSM_UNSAFE_SHARE; 1125 } else { 1126 res = -EAGAIN; 1127 if (!p->fs->in_exec) { 1128 p->fs->in_exec = 1; 1129 res = 1; 1130 } 1131 } 1132 write_unlock(&p->fs->lock); 1133 1134 return res; 1135 } 1136 1137 /* 1138 * Fill the binprm structure from the inode. 1139 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1140 * 1141 * This may be called multiple times for binary chains (scripts for example). 1142 */ 1143 int prepare_binprm(struct linux_binprm *bprm) 1144 { 1145 umode_t mode; 1146 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1147 int retval; 1148 1149 mode = inode->i_mode; 1150 if (bprm->file->f_op == NULL) 1151 return -EACCES; 1152 1153 /* clear any previous set[ug]id data from a previous binary */ 1154 bprm->cred->euid = current_euid(); 1155 bprm->cred->egid = current_egid(); 1156 1157 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1158 /* Set-uid? */ 1159 if (mode & S_ISUID) { 1160 bprm->per_clear |= PER_CLEAR_ON_SETID; 1161 bprm->cred->euid = inode->i_uid; 1162 } 1163 1164 /* Set-gid? */ 1165 /* 1166 * If setgid is set but no group execute bit then this 1167 * is a candidate for mandatory locking, not a setgid 1168 * executable. 1169 */ 1170 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1171 bprm->per_clear |= PER_CLEAR_ON_SETID; 1172 bprm->cred->egid = inode->i_gid; 1173 } 1174 } 1175 1176 /* fill in binprm security blob */ 1177 retval = security_bprm_set_creds(bprm); 1178 if (retval) 1179 return retval; 1180 bprm->cred_prepared = 1; 1181 1182 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1183 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1184 } 1185 1186 EXPORT_SYMBOL(prepare_binprm); 1187 1188 /* 1189 * Arguments are '\0' separated strings found at the location bprm->p 1190 * points to; chop off the first by relocating brpm->p to right after 1191 * the first '\0' encountered. 1192 */ 1193 int remove_arg_zero(struct linux_binprm *bprm) 1194 { 1195 int ret = 0; 1196 unsigned long offset; 1197 char *kaddr; 1198 struct page *page; 1199 1200 if (!bprm->argc) 1201 return 0; 1202 1203 do { 1204 offset = bprm->p & ~PAGE_MASK; 1205 page = get_arg_page(bprm, bprm->p, 0); 1206 if (!page) { 1207 ret = -EFAULT; 1208 goto out; 1209 } 1210 kaddr = kmap_atomic(page, KM_USER0); 1211 1212 for (; offset < PAGE_SIZE && kaddr[offset]; 1213 offset++, bprm->p++) 1214 ; 1215 1216 kunmap_atomic(kaddr, KM_USER0); 1217 put_arg_page(page); 1218 1219 if (offset == PAGE_SIZE) 1220 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1221 } while (offset == PAGE_SIZE); 1222 1223 bprm->p++; 1224 bprm->argc--; 1225 ret = 0; 1226 1227 out: 1228 return ret; 1229 } 1230 EXPORT_SYMBOL(remove_arg_zero); 1231 1232 /* 1233 * cycle the list of binary formats handler, until one recognizes the image 1234 */ 1235 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1236 { 1237 unsigned int depth = bprm->recursion_depth; 1238 int try,retval; 1239 struct linux_binfmt *fmt; 1240 1241 retval = security_bprm_check(bprm); 1242 if (retval) 1243 return retval; 1244 1245 /* kernel module loader fixup */ 1246 /* so we don't try to load run modprobe in kernel space. */ 1247 set_fs(USER_DS); 1248 1249 retval = audit_bprm(bprm); 1250 if (retval) 1251 return retval; 1252 1253 retval = -ENOENT; 1254 for (try=0; try<2; try++) { 1255 read_lock(&binfmt_lock); 1256 list_for_each_entry(fmt, &formats, lh) { 1257 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1258 if (!fn) 1259 continue; 1260 if (!try_module_get(fmt->module)) 1261 continue; 1262 read_unlock(&binfmt_lock); 1263 retval = fn(bprm, regs); 1264 /* 1265 * Restore the depth counter to its starting value 1266 * in this call, so we don't have to rely on every 1267 * load_binary function to restore it on return. 1268 */ 1269 bprm->recursion_depth = depth; 1270 if (retval >= 0) { 1271 if (depth == 0) 1272 tracehook_report_exec(fmt, bprm, regs); 1273 put_binfmt(fmt); 1274 allow_write_access(bprm->file); 1275 if (bprm->file) 1276 fput(bprm->file); 1277 bprm->file = NULL; 1278 current->did_exec = 1; 1279 proc_exec_connector(current); 1280 return retval; 1281 } 1282 read_lock(&binfmt_lock); 1283 put_binfmt(fmt); 1284 if (retval != -ENOEXEC || bprm->mm == NULL) 1285 break; 1286 if (!bprm->file) { 1287 read_unlock(&binfmt_lock); 1288 return retval; 1289 } 1290 } 1291 read_unlock(&binfmt_lock); 1292 if (retval != -ENOEXEC || bprm->mm == NULL) { 1293 break; 1294 #ifdef CONFIG_MODULES 1295 } else { 1296 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1297 if (printable(bprm->buf[0]) && 1298 printable(bprm->buf[1]) && 1299 printable(bprm->buf[2]) && 1300 printable(bprm->buf[3])) 1301 break; /* -ENOEXEC */ 1302 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1303 #endif 1304 } 1305 } 1306 return retval; 1307 } 1308 1309 EXPORT_SYMBOL(search_binary_handler); 1310 1311 /* 1312 * sys_execve() executes a new program. 1313 */ 1314 int do_execve(char * filename, 1315 char __user *__user *argv, 1316 char __user *__user *envp, 1317 struct pt_regs * regs) 1318 { 1319 struct linux_binprm *bprm; 1320 struct file *file; 1321 struct files_struct *displaced; 1322 bool clear_in_exec; 1323 int retval; 1324 1325 retval = unshare_files(&displaced); 1326 if (retval) 1327 goto out_ret; 1328 1329 retval = -ENOMEM; 1330 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1331 if (!bprm) 1332 goto out_files; 1333 1334 retval = prepare_bprm_creds(bprm); 1335 if (retval) 1336 goto out_free; 1337 1338 retval = check_unsafe_exec(bprm); 1339 if (retval < 0) 1340 goto out_free; 1341 clear_in_exec = retval; 1342 current->in_execve = 1; 1343 1344 file = open_exec(filename); 1345 retval = PTR_ERR(file); 1346 if (IS_ERR(file)) 1347 goto out_unmark; 1348 1349 sched_exec(); 1350 1351 bprm->file = file; 1352 bprm->filename = filename; 1353 bprm->interp = filename; 1354 1355 retval = bprm_mm_init(bprm); 1356 if (retval) 1357 goto out_file; 1358 1359 bprm->argc = count(argv, MAX_ARG_STRINGS); 1360 if ((retval = bprm->argc) < 0) 1361 goto out; 1362 1363 bprm->envc = count(envp, MAX_ARG_STRINGS); 1364 if ((retval = bprm->envc) < 0) 1365 goto out; 1366 1367 retval = prepare_binprm(bprm); 1368 if (retval < 0) 1369 goto out; 1370 1371 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1372 if (retval < 0) 1373 goto out; 1374 1375 bprm->exec = bprm->p; 1376 retval = copy_strings(bprm->envc, envp, bprm); 1377 if (retval < 0) 1378 goto out; 1379 1380 retval = copy_strings(bprm->argc, argv, bprm); 1381 if (retval < 0) 1382 goto out; 1383 1384 current->flags &= ~PF_KTHREAD; 1385 retval = search_binary_handler(bprm,regs); 1386 if (retval < 0) 1387 goto out; 1388 1389 current->stack_start = current->mm->start_stack; 1390 1391 /* execve succeeded */ 1392 current->fs->in_exec = 0; 1393 current->in_execve = 0; 1394 acct_update_integrals(current); 1395 free_bprm(bprm); 1396 if (displaced) 1397 put_files_struct(displaced); 1398 return retval; 1399 1400 out: 1401 if (bprm->mm) 1402 mmput (bprm->mm); 1403 1404 out_file: 1405 if (bprm->file) { 1406 allow_write_access(bprm->file); 1407 fput(bprm->file); 1408 } 1409 1410 out_unmark: 1411 if (clear_in_exec) 1412 current->fs->in_exec = 0; 1413 current->in_execve = 0; 1414 1415 out_free: 1416 free_bprm(bprm); 1417 1418 out_files: 1419 if (displaced) 1420 reset_files_struct(displaced); 1421 out_ret: 1422 return retval; 1423 } 1424 1425 void set_binfmt(struct linux_binfmt *new) 1426 { 1427 struct mm_struct *mm = current->mm; 1428 1429 if (mm->binfmt) 1430 module_put(mm->binfmt->module); 1431 1432 mm->binfmt = new; 1433 if (new) 1434 __module_get(new->module); 1435 } 1436 1437 EXPORT_SYMBOL(set_binfmt); 1438 1439 /* format_corename will inspect the pattern parameter, and output a 1440 * name into corename, which must have space for at least 1441 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1442 */ 1443 static int format_corename(char *corename, long signr) 1444 { 1445 const struct cred *cred = current_cred(); 1446 const char *pat_ptr = core_pattern; 1447 int ispipe = (*pat_ptr == '|'); 1448 char *out_ptr = corename; 1449 char *const out_end = corename + CORENAME_MAX_SIZE; 1450 int rc; 1451 int pid_in_pattern = 0; 1452 1453 /* Repeat as long as we have more pattern to process and more output 1454 space */ 1455 while (*pat_ptr) { 1456 if (*pat_ptr != '%') { 1457 if (out_ptr == out_end) 1458 goto out; 1459 *out_ptr++ = *pat_ptr++; 1460 } else { 1461 switch (*++pat_ptr) { 1462 case 0: 1463 goto out; 1464 /* Double percent, output one percent */ 1465 case '%': 1466 if (out_ptr == out_end) 1467 goto out; 1468 *out_ptr++ = '%'; 1469 break; 1470 /* pid */ 1471 case 'p': 1472 pid_in_pattern = 1; 1473 rc = snprintf(out_ptr, out_end - out_ptr, 1474 "%d", task_tgid_vnr(current)); 1475 if (rc > out_end - out_ptr) 1476 goto out; 1477 out_ptr += rc; 1478 break; 1479 /* uid */ 1480 case 'u': 1481 rc = snprintf(out_ptr, out_end - out_ptr, 1482 "%d", cred->uid); 1483 if (rc > out_end - out_ptr) 1484 goto out; 1485 out_ptr += rc; 1486 break; 1487 /* gid */ 1488 case 'g': 1489 rc = snprintf(out_ptr, out_end - out_ptr, 1490 "%d", cred->gid); 1491 if (rc > out_end - out_ptr) 1492 goto out; 1493 out_ptr += rc; 1494 break; 1495 /* signal that caused the coredump */ 1496 case 's': 1497 rc = snprintf(out_ptr, out_end - out_ptr, 1498 "%ld", signr); 1499 if (rc > out_end - out_ptr) 1500 goto out; 1501 out_ptr += rc; 1502 break; 1503 /* UNIX time of coredump */ 1504 case 't': { 1505 struct timeval tv; 1506 do_gettimeofday(&tv); 1507 rc = snprintf(out_ptr, out_end - out_ptr, 1508 "%lu", tv.tv_sec); 1509 if (rc > out_end - out_ptr) 1510 goto out; 1511 out_ptr += rc; 1512 break; 1513 } 1514 /* hostname */ 1515 case 'h': 1516 down_read(&uts_sem); 1517 rc = snprintf(out_ptr, out_end - out_ptr, 1518 "%s", utsname()->nodename); 1519 up_read(&uts_sem); 1520 if (rc > out_end - out_ptr) 1521 goto out; 1522 out_ptr += rc; 1523 break; 1524 /* executable */ 1525 case 'e': 1526 rc = snprintf(out_ptr, out_end - out_ptr, 1527 "%s", current->comm); 1528 if (rc > out_end - out_ptr) 1529 goto out; 1530 out_ptr += rc; 1531 break; 1532 /* core limit size */ 1533 case 'c': 1534 rc = snprintf(out_ptr, out_end - out_ptr, 1535 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1536 if (rc > out_end - out_ptr) 1537 goto out; 1538 out_ptr += rc; 1539 break; 1540 default: 1541 break; 1542 } 1543 ++pat_ptr; 1544 } 1545 } 1546 /* Backward compatibility with core_uses_pid: 1547 * 1548 * If core_pattern does not include a %p (as is the default) 1549 * and core_uses_pid is set, then .%pid will be appended to 1550 * the filename. Do not do this for piped commands. */ 1551 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1552 rc = snprintf(out_ptr, out_end - out_ptr, 1553 ".%d", task_tgid_vnr(current)); 1554 if (rc > out_end - out_ptr) 1555 goto out; 1556 out_ptr += rc; 1557 } 1558 out: 1559 *out_ptr = 0; 1560 return ispipe; 1561 } 1562 1563 static int zap_process(struct task_struct *start) 1564 { 1565 struct task_struct *t; 1566 int nr = 0; 1567 1568 start->signal->flags = SIGNAL_GROUP_EXIT; 1569 start->signal->group_stop_count = 0; 1570 1571 t = start; 1572 do { 1573 if (t != current && t->mm) { 1574 sigaddset(&t->pending.signal, SIGKILL); 1575 signal_wake_up(t, 1); 1576 nr++; 1577 } 1578 } while_each_thread(start, t); 1579 1580 return nr; 1581 } 1582 1583 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1584 struct core_state *core_state, int exit_code) 1585 { 1586 struct task_struct *g, *p; 1587 unsigned long flags; 1588 int nr = -EAGAIN; 1589 1590 spin_lock_irq(&tsk->sighand->siglock); 1591 if (!signal_group_exit(tsk->signal)) { 1592 mm->core_state = core_state; 1593 tsk->signal->group_exit_code = exit_code; 1594 nr = zap_process(tsk); 1595 } 1596 spin_unlock_irq(&tsk->sighand->siglock); 1597 if (unlikely(nr < 0)) 1598 return nr; 1599 1600 if (atomic_read(&mm->mm_users) == nr + 1) 1601 goto done; 1602 /* 1603 * We should find and kill all tasks which use this mm, and we should 1604 * count them correctly into ->nr_threads. We don't take tasklist 1605 * lock, but this is safe wrt: 1606 * 1607 * fork: 1608 * None of sub-threads can fork after zap_process(leader). All 1609 * processes which were created before this point should be 1610 * visible to zap_threads() because copy_process() adds the new 1611 * process to the tail of init_task.tasks list, and lock/unlock 1612 * of ->siglock provides a memory barrier. 1613 * 1614 * do_exit: 1615 * The caller holds mm->mmap_sem. This means that the task which 1616 * uses this mm can't pass exit_mm(), so it can't exit or clear 1617 * its ->mm. 1618 * 1619 * de_thread: 1620 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1621 * we must see either old or new leader, this does not matter. 1622 * However, it can change p->sighand, so lock_task_sighand(p) 1623 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1624 * it can't fail. 1625 * 1626 * Note also that "g" can be the old leader with ->mm == NULL 1627 * and already unhashed and thus removed from ->thread_group. 1628 * This is OK, __unhash_process()->list_del_rcu() does not 1629 * clear the ->next pointer, we will find the new leader via 1630 * next_thread(). 1631 */ 1632 rcu_read_lock(); 1633 for_each_process(g) { 1634 if (g == tsk->group_leader) 1635 continue; 1636 if (g->flags & PF_KTHREAD) 1637 continue; 1638 p = g; 1639 do { 1640 if (p->mm) { 1641 if (unlikely(p->mm == mm)) { 1642 lock_task_sighand(p, &flags); 1643 nr += zap_process(p); 1644 unlock_task_sighand(p, &flags); 1645 } 1646 break; 1647 } 1648 } while_each_thread(g, p); 1649 } 1650 rcu_read_unlock(); 1651 done: 1652 atomic_set(&core_state->nr_threads, nr); 1653 return nr; 1654 } 1655 1656 static int coredump_wait(int exit_code, struct core_state *core_state) 1657 { 1658 struct task_struct *tsk = current; 1659 struct mm_struct *mm = tsk->mm; 1660 struct completion *vfork_done; 1661 int core_waiters; 1662 1663 init_completion(&core_state->startup); 1664 core_state->dumper.task = tsk; 1665 core_state->dumper.next = NULL; 1666 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1667 up_write(&mm->mmap_sem); 1668 1669 if (unlikely(core_waiters < 0)) 1670 goto fail; 1671 1672 /* 1673 * Make sure nobody is waiting for us to release the VM, 1674 * otherwise we can deadlock when we wait on each other 1675 */ 1676 vfork_done = tsk->vfork_done; 1677 if (vfork_done) { 1678 tsk->vfork_done = NULL; 1679 complete(vfork_done); 1680 } 1681 1682 if (core_waiters) 1683 wait_for_completion(&core_state->startup); 1684 fail: 1685 return core_waiters; 1686 } 1687 1688 static void coredump_finish(struct mm_struct *mm) 1689 { 1690 struct core_thread *curr, *next; 1691 struct task_struct *task; 1692 1693 next = mm->core_state->dumper.next; 1694 while ((curr = next) != NULL) { 1695 next = curr->next; 1696 task = curr->task; 1697 /* 1698 * see exit_mm(), curr->task must not see 1699 * ->task == NULL before we read ->next. 1700 */ 1701 smp_mb(); 1702 curr->task = NULL; 1703 wake_up_process(task); 1704 } 1705 1706 mm->core_state = NULL; 1707 } 1708 1709 /* 1710 * set_dumpable converts traditional three-value dumpable to two flags and 1711 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1712 * these bits are not changed atomically. So get_dumpable can observe the 1713 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1714 * return either old dumpable or new one by paying attention to the order of 1715 * modifying the bits. 1716 * 1717 * dumpable | mm->flags (binary) 1718 * old new | initial interim final 1719 * ---------+----------------------- 1720 * 0 1 | 00 01 01 1721 * 0 2 | 00 10(*) 11 1722 * 1 0 | 01 00 00 1723 * 1 2 | 01 11 11 1724 * 2 0 | 11 10(*) 00 1725 * 2 1 | 11 11 01 1726 * 1727 * (*) get_dumpable regards interim value of 10 as 11. 1728 */ 1729 void set_dumpable(struct mm_struct *mm, int value) 1730 { 1731 switch (value) { 1732 case 0: 1733 clear_bit(MMF_DUMPABLE, &mm->flags); 1734 smp_wmb(); 1735 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1736 break; 1737 case 1: 1738 set_bit(MMF_DUMPABLE, &mm->flags); 1739 smp_wmb(); 1740 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1741 break; 1742 case 2: 1743 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1744 smp_wmb(); 1745 set_bit(MMF_DUMPABLE, &mm->flags); 1746 break; 1747 } 1748 } 1749 1750 int get_dumpable(struct mm_struct *mm) 1751 { 1752 int ret; 1753 1754 ret = mm->flags & 0x3; 1755 return (ret >= 2) ? 2 : ret; 1756 } 1757 1758 static void wait_for_dump_helpers(struct file *file) 1759 { 1760 struct pipe_inode_info *pipe; 1761 1762 pipe = file->f_path.dentry->d_inode->i_pipe; 1763 1764 pipe_lock(pipe); 1765 pipe->readers++; 1766 pipe->writers--; 1767 1768 while ((pipe->readers > 1) && (!signal_pending(current))) { 1769 wake_up_interruptible_sync(&pipe->wait); 1770 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 1771 pipe_wait(pipe); 1772 } 1773 1774 pipe->readers--; 1775 pipe->writers++; 1776 pipe_unlock(pipe); 1777 1778 } 1779 1780 1781 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1782 { 1783 struct core_state core_state; 1784 char corename[CORENAME_MAX_SIZE + 1]; 1785 struct mm_struct *mm = current->mm; 1786 struct linux_binfmt * binfmt; 1787 struct inode * inode; 1788 const struct cred *old_cred; 1789 struct cred *cred; 1790 int retval = 0; 1791 int flag = 0; 1792 int ispipe = 0; 1793 char **helper_argv = NULL; 1794 int helper_argc = 0; 1795 int dump_count = 0; 1796 static atomic_t core_dump_count = ATOMIC_INIT(0); 1797 struct coredump_params cprm = { 1798 .signr = signr, 1799 .regs = regs, 1800 .limit = current->signal->rlim[RLIMIT_CORE].rlim_cur, 1801 }; 1802 1803 audit_core_dumps(signr); 1804 1805 binfmt = mm->binfmt; 1806 if (!binfmt || !binfmt->core_dump) 1807 goto fail; 1808 1809 cred = prepare_creds(); 1810 if (!cred) { 1811 retval = -ENOMEM; 1812 goto fail; 1813 } 1814 1815 down_write(&mm->mmap_sem); 1816 /* 1817 * If another thread got here first, or we are not dumpable, bail out. 1818 */ 1819 if (mm->core_state || !get_dumpable(mm)) { 1820 up_write(&mm->mmap_sem); 1821 put_cred(cred); 1822 goto fail; 1823 } 1824 1825 /* 1826 * We cannot trust fsuid as being the "true" uid of the 1827 * process nor do we know its entire history. We only know it 1828 * was tainted so we dump it as root in mode 2. 1829 */ 1830 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1831 flag = O_EXCL; /* Stop rewrite attacks */ 1832 cred->fsuid = 0; /* Dump root private */ 1833 } 1834 1835 retval = coredump_wait(exit_code, &core_state); 1836 if (retval < 0) { 1837 put_cred(cred); 1838 goto fail; 1839 } 1840 1841 old_cred = override_creds(cred); 1842 1843 /* 1844 * Clear any false indication of pending signals that might 1845 * be seen by the filesystem code called to write the core file. 1846 */ 1847 clear_thread_flag(TIF_SIGPENDING); 1848 1849 /* 1850 * lock_kernel() because format_corename() is controlled by sysctl, which 1851 * uses lock_kernel() 1852 */ 1853 lock_kernel(); 1854 ispipe = format_corename(corename, signr); 1855 unlock_kernel(); 1856 1857 if ((!ispipe) && (cprm.limit < binfmt->min_coredump)) 1858 goto fail_unlock; 1859 1860 if (ispipe) { 1861 if (cprm.limit == 0) { 1862 /* 1863 * Normally core limits are irrelevant to pipes, since 1864 * we're not writing to the file system, but we use 1865 * cprm.limit of 0 here as a speacial value. Any 1866 * non-zero limit gets set to RLIM_INFINITY below, but 1867 * a limit of 0 skips the dump. This is a consistent 1868 * way to catch recursive crashes. We can still crash 1869 * if the core_pattern binary sets RLIM_CORE = !0 1870 * but it runs as root, and can do lots of stupid things 1871 * Note that we use task_tgid_vnr here to grab the pid 1872 * of the process group leader. That way we get the 1873 * right pid if a thread in a multi-threaded 1874 * core_pattern process dies. 1875 */ 1876 printk(KERN_WARNING 1877 "Process %d(%s) has RLIMIT_CORE set to 0\n", 1878 task_tgid_vnr(current), current->comm); 1879 printk(KERN_WARNING "Aborting core\n"); 1880 goto fail_unlock; 1881 } 1882 1883 dump_count = atomic_inc_return(&core_dump_count); 1884 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 1885 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 1886 task_tgid_vnr(current), current->comm); 1887 printk(KERN_WARNING "Skipping core dump\n"); 1888 goto fail_dropcount; 1889 } 1890 1891 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1892 if (!helper_argv) { 1893 printk(KERN_WARNING "%s failed to allocate memory\n", 1894 __func__); 1895 goto fail_dropcount; 1896 } 1897 1898 cprm.limit = RLIM_INFINITY; 1899 1900 /* SIGPIPE can happen, but it's just never processed */ 1901 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL, 1902 &cprm.file)) { 1903 printk(KERN_INFO "Core dump to %s pipe failed\n", 1904 corename); 1905 goto fail_dropcount; 1906 } 1907 } else 1908 cprm.file = filp_open(corename, 1909 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1910 0600); 1911 if (IS_ERR(cprm.file)) 1912 goto fail_dropcount; 1913 inode = cprm.file->f_path.dentry->d_inode; 1914 if (inode->i_nlink > 1) 1915 goto close_fail; /* multiple links - don't dump */ 1916 if (!ispipe && d_unhashed(cprm.file->f_path.dentry)) 1917 goto close_fail; 1918 1919 /* AK: actually i see no reason to not allow this for named pipes etc., 1920 but keep the previous behaviour for now. */ 1921 if (!ispipe && !S_ISREG(inode->i_mode)) 1922 goto close_fail; 1923 /* 1924 * Dont allow local users get cute and trick others to coredump 1925 * into their pre-created files: 1926 */ 1927 if (inode->i_uid != current_fsuid()) 1928 goto close_fail; 1929 if (!cprm.file->f_op) 1930 goto close_fail; 1931 if (!cprm.file->f_op->write) 1932 goto close_fail; 1933 if (!ispipe && 1934 do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0) 1935 goto close_fail; 1936 1937 retval = binfmt->core_dump(&cprm); 1938 1939 if (retval) 1940 current->signal->group_exit_code |= 0x80; 1941 close_fail: 1942 if (ispipe && core_pipe_limit) 1943 wait_for_dump_helpers(cprm.file); 1944 filp_close(cprm.file, NULL); 1945 fail_dropcount: 1946 if (dump_count) 1947 atomic_dec(&core_dump_count); 1948 fail_unlock: 1949 if (helper_argv) 1950 argv_free(helper_argv); 1951 1952 revert_creds(old_cred); 1953 put_cred(cred); 1954 coredump_finish(mm); 1955 fail: 1956 return; 1957 } 1958