xref: /openbmc/linux/fs/exec.c (revision b6dcefde)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	if (!fmt)
77 		return -EINVAL;
78 	write_lock(&binfmt_lock);
79 	insert ? list_add(&fmt->lh, &formats) :
80 		 list_add_tail(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 	return 0;
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109 	struct file *file;
110 	char *tmp = getname(library);
111 	int error = PTR_ERR(tmp);
112 
113 	if (IS_ERR(tmp))
114 		goto out;
115 
116 	file = do_filp_open(AT_FDCWD, tmp,
117 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 				MAY_READ | MAY_EXEC | MAY_OPEN);
119 	putname(tmp);
120 	error = PTR_ERR(file);
121 	if (IS_ERR(file))
122 		goto out;
123 
124 	error = -EINVAL;
125 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 		goto exit;
127 
128 	error = -EACCES;
129 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 		goto exit;
131 
132 	fsnotify_open(file->f_path.dentry);
133 
134 	error = -ENOEXEC;
135 	if(file->f_op) {
136 		struct linux_binfmt * fmt;
137 
138 		read_lock(&binfmt_lock);
139 		list_for_each_entry(fmt, &formats, lh) {
140 			if (!fmt->load_shlib)
141 				continue;
142 			if (!try_module_get(fmt->module))
143 				continue;
144 			read_unlock(&binfmt_lock);
145 			error = fmt->load_shlib(file);
146 			read_lock(&binfmt_lock);
147 			put_binfmt(fmt);
148 			if (error != -ENOEXEC)
149 				break;
150 		}
151 		read_unlock(&binfmt_lock);
152 	}
153 exit:
154 	fput(file);
155 out:
156   	return error;
157 }
158 
159 #ifdef CONFIG_MMU
160 
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 		int write)
163 {
164 	struct page *page;
165 	int ret;
166 
167 #ifdef CONFIG_STACK_GROWSUP
168 	if (write) {
169 		ret = expand_stack_downwards(bprm->vma, pos);
170 		if (ret < 0)
171 			return NULL;
172 	}
173 #endif
174 	ret = get_user_pages(current, bprm->mm, pos,
175 			1, write, 1, &page, NULL);
176 	if (ret <= 0)
177 		return NULL;
178 
179 	if (write) {
180 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 		struct rlimit *rlim;
182 
183 		/*
184 		 * We've historically supported up to 32 pages (ARG_MAX)
185 		 * of argument strings even with small stacks
186 		 */
187 		if (size <= ARG_MAX)
188 			return page;
189 
190 		/*
191 		 * Limit to 1/4-th the stack size for the argv+env strings.
192 		 * This ensures that:
193 		 *  - the remaining binfmt code will not run out of stack space,
194 		 *  - the program will have a reasonable amount of stack left
195 		 *    to work from.
196 		 */
197 		rlim = current->signal->rlim;
198 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
199 			put_page(page);
200 			return NULL;
201 		}
202 	}
203 
204 	return page;
205 }
206 
207 static void put_arg_page(struct page *page)
208 {
209 	put_page(page);
210 }
211 
212 static void free_arg_page(struct linux_binprm *bprm, int i)
213 {
214 }
215 
216 static void free_arg_pages(struct linux_binprm *bprm)
217 {
218 }
219 
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 		struct page *page)
222 {
223 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
224 }
225 
226 static int __bprm_mm_init(struct linux_binprm *bprm)
227 {
228 	int err;
229 	struct vm_area_struct *vma = NULL;
230 	struct mm_struct *mm = bprm->mm;
231 
232 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 	if (!vma)
234 		return -ENOMEM;
235 
236 	down_write(&mm->mmap_sem);
237 	vma->vm_mm = mm;
238 
239 	/*
240 	 * Place the stack at the largest stack address the architecture
241 	 * supports. Later, we'll move this to an appropriate place. We don't
242 	 * use STACK_TOP because that can depend on attributes which aren't
243 	 * configured yet.
244 	 */
245 	vma->vm_end = STACK_TOP_MAX;
246 	vma->vm_start = vma->vm_end - PAGE_SIZE;
247 	vma->vm_flags = VM_STACK_FLAGS;
248 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 	err = insert_vm_struct(mm, vma);
250 	if (err)
251 		goto err;
252 
253 	mm->stack_vm = mm->total_vm = 1;
254 	up_write(&mm->mmap_sem);
255 	bprm->p = vma->vm_end - sizeof(void *);
256 	return 0;
257 err:
258 	up_write(&mm->mmap_sem);
259 	bprm->vma = NULL;
260 	kmem_cache_free(vm_area_cachep, vma);
261 	return err;
262 }
263 
264 static bool valid_arg_len(struct linux_binprm *bprm, long len)
265 {
266 	return len <= MAX_ARG_STRLEN;
267 }
268 
269 #else
270 
271 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
272 		int write)
273 {
274 	struct page *page;
275 
276 	page = bprm->page[pos / PAGE_SIZE];
277 	if (!page && write) {
278 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
279 		if (!page)
280 			return NULL;
281 		bprm->page[pos / PAGE_SIZE] = page;
282 	}
283 
284 	return page;
285 }
286 
287 static void put_arg_page(struct page *page)
288 {
289 }
290 
291 static void free_arg_page(struct linux_binprm *bprm, int i)
292 {
293 	if (bprm->page[i]) {
294 		__free_page(bprm->page[i]);
295 		bprm->page[i] = NULL;
296 	}
297 }
298 
299 static void free_arg_pages(struct linux_binprm *bprm)
300 {
301 	int i;
302 
303 	for (i = 0; i < MAX_ARG_PAGES; i++)
304 		free_arg_page(bprm, i);
305 }
306 
307 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
308 		struct page *page)
309 {
310 }
311 
312 static int __bprm_mm_init(struct linux_binprm *bprm)
313 {
314 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
315 	return 0;
316 }
317 
318 static bool valid_arg_len(struct linux_binprm *bprm, long len)
319 {
320 	return len <= bprm->p;
321 }
322 
323 #endif /* CONFIG_MMU */
324 
325 /*
326  * Create a new mm_struct and populate it with a temporary stack
327  * vm_area_struct.  We don't have enough context at this point to set the stack
328  * flags, permissions, and offset, so we use temporary values.  We'll update
329  * them later in setup_arg_pages().
330  */
331 int bprm_mm_init(struct linux_binprm *bprm)
332 {
333 	int err;
334 	struct mm_struct *mm = NULL;
335 
336 	bprm->mm = mm = mm_alloc();
337 	err = -ENOMEM;
338 	if (!mm)
339 		goto err;
340 
341 	err = init_new_context(current, mm);
342 	if (err)
343 		goto err;
344 
345 	err = __bprm_mm_init(bprm);
346 	if (err)
347 		goto err;
348 
349 	return 0;
350 
351 err:
352 	if (mm) {
353 		bprm->mm = NULL;
354 		mmdrop(mm);
355 	}
356 
357 	return err;
358 }
359 
360 /*
361  * count() counts the number of strings in array ARGV.
362  */
363 static int count(char __user * __user * argv, int max)
364 {
365 	int i = 0;
366 
367 	if (argv != NULL) {
368 		for (;;) {
369 			char __user * p;
370 
371 			if (get_user(p, argv))
372 				return -EFAULT;
373 			if (!p)
374 				break;
375 			argv++;
376 			if (i++ >= max)
377 				return -E2BIG;
378 			cond_resched();
379 		}
380 	}
381 	return i;
382 }
383 
384 /*
385  * 'copy_strings()' copies argument/environment strings from the old
386  * processes's memory to the new process's stack.  The call to get_user_pages()
387  * ensures the destination page is created and not swapped out.
388  */
389 static int copy_strings(int argc, char __user * __user * argv,
390 			struct linux_binprm *bprm)
391 {
392 	struct page *kmapped_page = NULL;
393 	char *kaddr = NULL;
394 	unsigned long kpos = 0;
395 	int ret;
396 
397 	while (argc-- > 0) {
398 		char __user *str;
399 		int len;
400 		unsigned long pos;
401 
402 		if (get_user(str, argv+argc) ||
403 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
404 			ret = -EFAULT;
405 			goto out;
406 		}
407 
408 		if (!valid_arg_len(bprm, len)) {
409 			ret = -E2BIG;
410 			goto out;
411 		}
412 
413 		/* We're going to work our way backwords. */
414 		pos = bprm->p;
415 		str += len;
416 		bprm->p -= len;
417 
418 		while (len > 0) {
419 			int offset, bytes_to_copy;
420 
421 			offset = pos % PAGE_SIZE;
422 			if (offset == 0)
423 				offset = PAGE_SIZE;
424 
425 			bytes_to_copy = offset;
426 			if (bytes_to_copy > len)
427 				bytes_to_copy = len;
428 
429 			offset -= bytes_to_copy;
430 			pos -= bytes_to_copy;
431 			str -= bytes_to_copy;
432 			len -= bytes_to_copy;
433 
434 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
435 				struct page *page;
436 
437 				page = get_arg_page(bprm, pos, 1);
438 				if (!page) {
439 					ret = -E2BIG;
440 					goto out;
441 				}
442 
443 				if (kmapped_page) {
444 					flush_kernel_dcache_page(kmapped_page);
445 					kunmap(kmapped_page);
446 					put_arg_page(kmapped_page);
447 				}
448 				kmapped_page = page;
449 				kaddr = kmap(kmapped_page);
450 				kpos = pos & PAGE_MASK;
451 				flush_arg_page(bprm, kpos, kmapped_page);
452 			}
453 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
454 				ret = -EFAULT;
455 				goto out;
456 			}
457 		}
458 	}
459 	ret = 0;
460 out:
461 	if (kmapped_page) {
462 		flush_kernel_dcache_page(kmapped_page);
463 		kunmap(kmapped_page);
464 		put_arg_page(kmapped_page);
465 	}
466 	return ret;
467 }
468 
469 /*
470  * Like copy_strings, but get argv and its values from kernel memory.
471  */
472 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
473 {
474 	int r;
475 	mm_segment_t oldfs = get_fs();
476 	set_fs(KERNEL_DS);
477 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
478 	set_fs(oldfs);
479 	return r;
480 }
481 EXPORT_SYMBOL(copy_strings_kernel);
482 
483 #ifdef CONFIG_MMU
484 
485 /*
486  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
487  * the binfmt code determines where the new stack should reside, we shift it to
488  * its final location.  The process proceeds as follows:
489  *
490  * 1) Use shift to calculate the new vma endpoints.
491  * 2) Extend vma to cover both the old and new ranges.  This ensures the
492  *    arguments passed to subsequent functions are consistent.
493  * 3) Move vma's page tables to the new range.
494  * 4) Free up any cleared pgd range.
495  * 5) Shrink the vma to cover only the new range.
496  */
497 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
498 {
499 	struct mm_struct *mm = vma->vm_mm;
500 	unsigned long old_start = vma->vm_start;
501 	unsigned long old_end = vma->vm_end;
502 	unsigned long length = old_end - old_start;
503 	unsigned long new_start = old_start - shift;
504 	unsigned long new_end = old_end - shift;
505 	struct mmu_gather *tlb;
506 
507 	BUG_ON(new_start > new_end);
508 
509 	/*
510 	 * ensure there are no vmas between where we want to go
511 	 * and where we are
512 	 */
513 	if (vma != find_vma(mm, new_start))
514 		return -EFAULT;
515 
516 	/*
517 	 * cover the whole range: [new_start, old_end)
518 	 */
519 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
520 
521 	/*
522 	 * move the page tables downwards, on failure we rely on
523 	 * process cleanup to remove whatever mess we made.
524 	 */
525 	if (length != move_page_tables(vma, old_start,
526 				       vma, new_start, length))
527 		return -ENOMEM;
528 
529 	lru_add_drain();
530 	tlb = tlb_gather_mmu(mm, 0);
531 	if (new_end > old_start) {
532 		/*
533 		 * when the old and new regions overlap clear from new_end.
534 		 */
535 		free_pgd_range(tlb, new_end, old_end, new_end,
536 			vma->vm_next ? vma->vm_next->vm_start : 0);
537 	} else {
538 		/*
539 		 * otherwise, clean from old_start; this is done to not touch
540 		 * the address space in [new_end, old_start) some architectures
541 		 * have constraints on va-space that make this illegal (IA64) -
542 		 * for the others its just a little faster.
543 		 */
544 		free_pgd_range(tlb, old_start, old_end, new_end,
545 			vma->vm_next ? vma->vm_next->vm_start : 0);
546 	}
547 	tlb_finish_mmu(tlb, new_end, old_end);
548 
549 	/*
550 	 * shrink the vma to just the new range.
551 	 */
552 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
553 
554 	return 0;
555 }
556 
557 #define EXTRA_STACK_VM_PAGES	20	/* random */
558 
559 /*
560  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
561  * the stack is optionally relocated, and some extra space is added.
562  */
563 int setup_arg_pages(struct linux_binprm *bprm,
564 		    unsigned long stack_top,
565 		    int executable_stack)
566 {
567 	unsigned long ret;
568 	unsigned long stack_shift;
569 	struct mm_struct *mm = current->mm;
570 	struct vm_area_struct *vma = bprm->vma;
571 	struct vm_area_struct *prev = NULL;
572 	unsigned long vm_flags;
573 	unsigned long stack_base;
574 	unsigned long stack_size;
575 	unsigned long stack_expand;
576 	unsigned long rlim_stack;
577 
578 #ifdef CONFIG_STACK_GROWSUP
579 	/* Limit stack size to 1GB */
580 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
581 	if (stack_base > (1 << 30))
582 		stack_base = 1 << 30;
583 
584 	/* Make sure we didn't let the argument array grow too large. */
585 	if (vma->vm_end - vma->vm_start > stack_base)
586 		return -ENOMEM;
587 
588 	stack_base = PAGE_ALIGN(stack_top - stack_base);
589 
590 	stack_shift = vma->vm_start - stack_base;
591 	mm->arg_start = bprm->p - stack_shift;
592 	bprm->p = vma->vm_end - stack_shift;
593 #else
594 	stack_top = arch_align_stack(stack_top);
595 	stack_top = PAGE_ALIGN(stack_top);
596 	stack_shift = vma->vm_end - stack_top;
597 
598 	bprm->p -= stack_shift;
599 	mm->arg_start = bprm->p;
600 #endif
601 
602 	if (bprm->loader)
603 		bprm->loader -= stack_shift;
604 	bprm->exec -= stack_shift;
605 
606 	down_write(&mm->mmap_sem);
607 	vm_flags = VM_STACK_FLAGS;
608 
609 	/*
610 	 * Adjust stack execute permissions; explicitly enable for
611 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
612 	 * (arch default) otherwise.
613 	 */
614 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
615 		vm_flags |= VM_EXEC;
616 	else if (executable_stack == EXSTACK_DISABLE_X)
617 		vm_flags &= ~VM_EXEC;
618 	vm_flags |= mm->def_flags;
619 
620 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
621 			vm_flags);
622 	if (ret)
623 		goto out_unlock;
624 	BUG_ON(prev != vma);
625 
626 	/* Move stack pages down in memory. */
627 	if (stack_shift) {
628 		ret = shift_arg_pages(vma, stack_shift);
629 		if (ret)
630 			goto out_unlock;
631 	}
632 
633 	stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
634 	stack_size = vma->vm_end - vma->vm_start;
635 	/*
636 	 * Align this down to a page boundary as expand_stack
637 	 * will align it up.
638 	 */
639 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
640 #ifdef CONFIG_STACK_GROWSUP
641 	if (stack_size + stack_expand > rlim_stack)
642 		stack_base = vma->vm_start + rlim_stack;
643 	else
644 		stack_base = vma->vm_end + stack_expand;
645 #else
646 	if (stack_size + stack_expand > rlim_stack)
647 		stack_base = vma->vm_end - rlim_stack;
648 	else
649 		stack_base = vma->vm_start - stack_expand;
650 #endif
651 	ret = expand_stack(vma, stack_base);
652 	if (ret)
653 		ret = -EFAULT;
654 
655 out_unlock:
656 	up_write(&mm->mmap_sem);
657 	return ret;
658 }
659 EXPORT_SYMBOL(setup_arg_pages);
660 
661 #endif /* CONFIG_MMU */
662 
663 struct file *open_exec(const char *name)
664 {
665 	struct file *file;
666 	int err;
667 
668 	file = do_filp_open(AT_FDCWD, name,
669 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
670 				MAY_EXEC | MAY_OPEN);
671 	if (IS_ERR(file))
672 		goto out;
673 
674 	err = -EACCES;
675 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
676 		goto exit;
677 
678 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
679 		goto exit;
680 
681 	fsnotify_open(file->f_path.dentry);
682 
683 	err = deny_write_access(file);
684 	if (err)
685 		goto exit;
686 
687 out:
688 	return file;
689 
690 exit:
691 	fput(file);
692 	return ERR_PTR(err);
693 }
694 EXPORT_SYMBOL(open_exec);
695 
696 int kernel_read(struct file *file, loff_t offset,
697 		char *addr, unsigned long count)
698 {
699 	mm_segment_t old_fs;
700 	loff_t pos = offset;
701 	int result;
702 
703 	old_fs = get_fs();
704 	set_fs(get_ds());
705 	/* The cast to a user pointer is valid due to the set_fs() */
706 	result = vfs_read(file, (void __user *)addr, count, &pos);
707 	set_fs(old_fs);
708 	return result;
709 }
710 
711 EXPORT_SYMBOL(kernel_read);
712 
713 static int exec_mmap(struct mm_struct *mm)
714 {
715 	struct task_struct *tsk;
716 	struct mm_struct * old_mm, *active_mm;
717 
718 	/* Notify parent that we're no longer interested in the old VM */
719 	tsk = current;
720 	old_mm = current->mm;
721 	mm_release(tsk, old_mm);
722 
723 	if (old_mm) {
724 		/*
725 		 * Make sure that if there is a core dump in progress
726 		 * for the old mm, we get out and die instead of going
727 		 * through with the exec.  We must hold mmap_sem around
728 		 * checking core_state and changing tsk->mm.
729 		 */
730 		down_read(&old_mm->mmap_sem);
731 		if (unlikely(old_mm->core_state)) {
732 			up_read(&old_mm->mmap_sem);
733 			return -EINTR;
734 		}
735 	}
736 	task_lock(tsk);
737 	active_mm = tsk->active_mm;
738 	tsk->mm = mm;
739 	tsk->active_mm = mm;
740 	activate_mm(active_mm, mm);
741 	task_unlock(tsk);
742 	arch_pick_mmap_layout(mm);
743 	if (old_mm) {
744 		up_read(&old_mm->mmap_sem);
745 		BUG_ON(active_mm != old_mm);
746 		mm_update_next_owner(old_mm);
747 		mmput(old_mm);
748 		return 0;
749 	}
750 	mmdrop(active_mm);
751 	return 0;
752 }
753 
754 /*
755  * This function makes sure the current process has its own signal table,
756  * so that flush_signal_handlers can later reset the handlers without
757  * disturbing other processes.  (Other processes might share the signal
758  * table via the CLONE_SIGHAND option to clone().)
759  */
760 static int de_thread(struct task_struct *tsk)
761 {
762 	struct signal_struct *sig = tsk->signal;
763 	struct sighand_struct *oldsighand = tsk->sighand;
764 	spinlock_t *lock = &oldsighand->siglock;
765 	int count;
766 
767 	if (thread_group_empty(tsk))
768 		goto no_thread_group;
769 
770 	/*
771 	 * Kill all other threads in the thread group.
772 	 */
773 	spin_lock_irq(lock);
774 	if (signal_group_exit(sig)) {
775 		/*
776 		 * Another group action in progress, just
777 		 * return so that the signal is processed.
778 		 */
779 		spin_unlock_irq(lock);
780 		return -EAGAIN;
781 	}
782 	sig->group_exit_task = tsk;
783 	zap_other_threads(tsk);
784 
785 	/* Account for the thread group leader hanging around: */
786 	count = thread_group_leader(tsk) ? 1 : 2;
787 	sig->notify_count = count;
788 	while (atomic_read(&sig->count) > count) {
789 		__set_current_state(TASK_UNINTERRUPTIBLE);
790 		spin_unlock_irq(lock);
791 		schedule();
792 		spin_lock_irq(lock);
793 	}
794 	spin_unlock_irq(lock);
795 
796 	/*
797 	 * At this point all other threads have exited, all we have to
798 	 * do is to wait for the thread group leader to become inactive,
799 	 * and to assume its PID:
800 	 */
801 	if (!thread_group_leader(tsk)) {
802 		struct task_struct *leader = tsk->group_leader;
803 
804 		sig->notify_count = -1;	/* for exit_notify() */
805 		for (;;) {
806 			write_lock_irq(&tasklist_lock);
807 			if (likely(leader->exit_state))
808 				break;
809 			__set_current_state(TASK_UNINTERRUPTIBLE);
810 			write_unlock_irq(&tasklist_lock);
811 			schedule();
812 		}
813 
814 		/*
815 		 * The only record we have of the real-time age of a
816 		 * process, regardless of execs it's done, is start_time.
817 		 * All the past CPU time is accumulated in signal_struct
818 		 * from sister threads now dead.  But in this non-leader
819 		 * exec, nothing survives from the original leader thread,
820 		 * whose birth marks the true age of this process now.
821 		 * When we take on its identity by switching to its PID, we
822 		 * also take its birthdate (always earlier than our own).
823 		 */
824 		tsk->start_time = leader->start_time;
825 
826 		BUG_ON(!same_thread_group(leader, tsk));
827 		BUG_ON(has_group_leader_pid(tsk));
828 		/*
829 		 * An exec() starts a new thread group with the
830 		 * TGID of the previous thread group. Rehash the
831 		 * two threads with a switched PID, and release
832 		 * the former thread group leader:
833 		 */
834 
835 		/* Become a process group leader with the old leader's pid.
836 		 * The old leader becomes a thread of the this thread group.
837 		 * Note: The old leader also uses this pid until release_task
838 		 *       is called.  Odd but simple and correct.
839 		 */
840 		detach_pid(tsk, PIDTYPE_PID);
841 		tsk->pid = leader->pid;
842 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
843 		transfer_pid(leader, tsk, PIDTYPE_PGID);
844 		transfer_pid(leader, tsk, PIDTYPE_SID);
845 
846 		list_replace_rcu(&leader->tasks, &tsk->tasks);
847 		list_replace_init(&leader->sibling, &tsk->sibling);
848 
849 		tsk->group_leader = tsk;
850 		leader->group_leader = tsk;
851 
852 		tsk->exit_signal = SIGCHLD;
853 
854 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
855 		leader->exit_state = EXIT_DEAD;
856 		write_unlock_irq(&tasklist_lock);
857 
858 		release_task(leader);
859 	}
860 
861 	sig->group_exit_task = NULL;
862 	sig->notify_count = 0;
863 
864 no_thread_group:
865 	if (current->mm)
866 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
867 
868 	exit_itimers(sig);
869 	flush_itimer_signals();
870 
871 	if (atomic_read(&oldsighand->count) != 1) {
872 		struct sighand_struct *newsighand;
873 		/*
874 		 * This ->sighand is shared with the CLONE_SIGHAND
875 		 * but not CLONE_THREAD task, switch to the new one.
876 		 */
877 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
878 		if (!newsighand)
879 			return -ENOMEM;
880 
881 		atomic_set(&newsighand->count, 1);
882 		memcpy(newsighand->action, oldsighand->action,
883 		       sizeof(newsighand->action));
884 
885 		write_lock_irq(&tasklist_lock);
886 		spin_lock(&oldsighand->siglock);
887 		rcu_assign_pointer(tsk->sighand, newsighand);
888 		spin_unlock(&oldsighand->siglock);
889 		write_unlock_irq(&tasklist_lock);
890 
891 		__cleanup_sighand(oldsighand);
892 	}
893 
894 	BUG_ON(!thread_group_leader(tsk));
895 	return 0;
896 }
897 
898 /*
899  * These functions flushes out all traces of the currently running executable
900  * so that a new one can be started
901  */
902 static void flush_old_files(struct files_struct * files)
903 {
904 	long j = -1;
905 	struct fdtable *fdt;
906 
907 	spin_lock(&files->file_lock);
908 	for (;;) {
909 		unsigned long set, i;
910 
911 		j++;
912 		i = j * __NFDBITS;
913 		fdt = files_fdtable(files);
914 		if (i >= fdt->max_fds)
915 			break;
916 		set = fdt->close_on_exec->fds_bits[j];
917 		if (!set)
918 			continue;
919 		fdt->close_on_exec->fds_bits[j] = 0;
920 		spin_unlock(&files->file_lock);
921 		for ( ; set ; i++,set >>= 1) {
922 			if (set & 1) {
923 				sys_close(i);
924 			}
925 		}
926 		spin_lock(&files->file_lock);
927 
928 	}
929 	spin_unlock(&files->file_lock);
930 }
931 
932 char *get_task_comm(char *buf, struct task_struct *tsk)
933 {
934 	/* buf must be at least sizeof(tsk->comm) in size */
935 	task_lock(tsk);
936 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
937 	task_unlock(tsk);
938 	return buf;
939 }
940 
941 void set_task_comm(struct task_struct *tsk, char *buf)
942 {
943 	task_lock(tsk);
944 
945 	/*
946 	 * Threads may access current->comm without holding
947 	 * the task lock, so write the string carefully.
948 	 * Readers without a lock may see incomplete new
949 	 * names but are safe from non-terminating string reads.
950 	 */
951 	memset(tsk->comm, 0, TASK_COMM_LEN);
952 	wmb();
953 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
954 	task_unlock(tsk);
955 	perf_event_comm(tsk);
956 }
957 
958 int flush_old_exec(struct linux_binprm * bprm)
959 {
960 	int retval;
961 
962 	/*
963 	 * Make sure we have a private signal table and that
964 	 * we are unassociated from the previous thread group.
965 	 */
966 	retval = de_thread(current);
967 	if (retval)
968 		goto out;
969 
970 	set_mm_exe_file(bprm->mm, bprm->file);
971 
972 	/*
973 	 * Release all of the old mmap stuff
974 	 */
975 	retval = exec_mmap(bprm->mm);
976 	if (retval)
977 		goto out;
978 
979 	bprm->mm = NULL;		/* We're using it now */
980 
981 	current->flags &= ~PF_RANDOMIZE;
982 	flush_thread();
983 	current->personality &= ~bprm->per_clear;
984 
985 	return 0;
986 
987 out:
988 	return retval;
989 }
990 EXPORT_SYMBOL(flush_old_exec);
991 
992 void setup_new_exec(struct linux_binprm * bprm)
993 {
994 	int i, ch;
995 	char * name;
996 	char tcomm[sizeof(current->comm)];
997 
998 	arch_pick_mmap_layout(current->mm);
999 
1000 	/* This is the point of no return */
1001 	current->sas_ss_sp = current->sas_ss_size = 0;
1002 
1003 	if (current_euid() == current_uid() && current_egid() == current_gid())
1004 		set_dumpable(current->mm, 1);
1005 	else
1006 		set_dumpable(current->mm, suid_dumpable);
1007 
1008 	name = bprm->filename;
1009 
1010 	/* Copies the binary name from after last slash */
1011 	for (i=0; (ch = *(name++)) != '\0';) {
1012 		if (ch == '/')
1013 			i = 0; /* overwrite what we wrote */
1014 		else
1015 			if (i < (sizeof(tcomm) - 1))
1016 				tcomm[i++] = ch;
1017 	}
1018 	tcomm[i] = '\0';
1019 	set_task_comm(current, tcomm);
1020 
1021 	/* Set the new mm task size. We have to do that late because it may
1022 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1023 	 * some architectures like powerpc
1024 	 */
1025 	current->mm->task_size = TASK_SIZE;
1026 
1027 	/* install the new credentials */
1028 	if (bprm->cred->uid != current_euid() ||
1029 	    bprm->cred->gid != current_egid()) {
1030 		current->pdeath_signal = 0;
1031 	} else if (file_permission(bprm->file, MAY_READ) ||
1032 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1033 		set_dumpable(current->mm, suid_dumpable);
1034 	}
1035 
1036 	/*
1037 	 * Flush performance counters when crossing a
1038 	 * security domain:
1039 	 */
1040 	if (!get_dumpable(current->mm))
1041 		perf_event_exit_task(current);
1042 
1043 	/* An exec changes our domain. We are no longer part of the thread
1044 	   group */
1045 
1046 	current->self_exec_id++;
1047 
1048 	flush_signal_handlers(current, 0);
1049 	flush_old_files(current->files);
1050 }
1051 EXPORT_SYMBOL(setup_new_exec);
1052 
1053 /*
1054  * Prepare credentials and lock ->cred_guard_mutex.
1055  * install_exec_creds() commits the new creds and drops the lock.
1056  * Or, if exec fails before, free_bprm() should release ->cred and
1057  * and unlock.
1058  */
1059 int prepare_bprm_creds(struct linux_binprm *bprm)
1060 {
1061 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1062 		return -ERESTARTNOINTR;
1063 
1064 	bprm->cred = prepare_exec_creds();
1065 	if (likely(bprm->cred))
1066 		return 0;
1067 
1068 	mutex_unlock(&current->cred_guard_mutex);
1069 	return -ENOMEM;
1070 }
1071 
1072 void free_bprm(struct linux_binprm *bprm)
1073 {
1074 	free_arg_pages(bprm);
1075 	if (bprm->cred) {
1076 		mutex_unlock(&current->cred_guard_mutex);
1077 		abort_creds(bprm->cred);
1078 	}
1079 	kfree(bprm);
1080 }
1081 
1082 /*
1083  * install the new credentials for this executable
1084  */
1085 void install_exec_creds(struct linux_binprm *bprm)
1086 {
1087 	security_bprm_committing_creds(bprm);
1088 
1089 	commit_creds(bprm->cred);
1090 	bprm->cred = NULL;
1091 	/*
1092 	 * cred_guard_mutex must be held at least to this point to prevent
1093 	 * ptrace_attach() from altering our determination of the task's
1094 	 * credentials; any time after this it may be unlocked.
1095 	 */
1096 	security_bprm_committed_creds(bprm);
1097 	mutex_unlock(&current->cred_guard_mutex);
1098 }
1099 EXPORT_SYMBOL(install_exec_creds);
1100 
1101 /*
1102  * determine how safe it is to execute the proposed program
1103  * - the caller must hold current->cred_guard_mutex to protect against
1104  *   PTRACE_ATTACH
1105  */
1106 int check_unsafe_exec(struct linux_binprm *bprm)
1107 {
1108 	struct task_struct *p = current, *t;
1109 	unsigned n_fs;
1110 	int res = 0;
1111 
1112 	bprm->unsafe = tracehook_unsafe_exec(p);
1113 
1114 	n_fs = 1;
1115 	write_lock(&p->fs->lock);
1116 	rcu_read_lock();
1117 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1118 		if (t->fs == p->fs)
1119 			n_fs++;
1120 	}
1121 	rcu_read_unlock();
1122 
1123 	if (p->fs->users > n_fs) {
1124 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1125 	} else {
1126 		res = -EAGAIN;
1127 		if (!p->fs->in_exec) {
1128 			p->fs->in_exec = 1;
1129 			res = 1;
1130 		}
1131 	}
1132 	write_unlock(&p->fs->lock);
1133 
1134 	return res;
1135 }
1136 
1137 /*
1138  * Fill the binprm structure from the inode.
1139  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1140  *
1141  * This may be called multiple times for binary chains (scripts for example).
1142  */
1143 int prepare_binprm(struct linux_binprm *bprm)
1144 {
1145 	umode_t mode;
1146 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1147 	int retval;
1148 
1149 	mode = inode->i_mode;
1150 	if (bprm->file->f_op == NULL)
1151 		return -EACCES;
1152 
1153 	/* clear any previous set[ug]id data from a previous binary */
1154 	bprm->cred->euid = current_euid();
1155 	bprm->cred->egid = current_egid();
1156 
1157 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1158 		/* Set-uid? */
1159 		if (mode & S_ISUID) {
1160 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1161 			bprm->cred->euid = inode->i_uid;
1162 		}
1163 
1164 		/* Set-gid? */
1165 		/*
1166 		 * If setgid is set but no group execute bit then this
1167 		 * is a candidate for mandatory locking, not a setgid
1168 		 * executable.
1169 		 */
1170 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1171 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1172 			bprm->cred->egid = inode->i_gid;
1173 		}
1174 	}
1175 
1176 	/* fill in binprm security blob */
1177 	retval = security_bprm_set_creds(bprm);
1178 	if (retval)
1179 		return retval;
1180 	bprm->cred_prepared = 1;
1181 
1182 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1183 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1184 }
1185 
1186 EXPORT_SYMBOL(prepare_binprm);
1187 
1188 /*
1189  * Arguments are '\0' separated strings found at the location bprm->p
1190  * points to; chop off the first by relocating brpm->p to right after
1191  * the first '\0' encountered.
1192  */
1193 int remove_arg_zero(struct linux_binprm *bprm)
1194 {
1195 	int ret = 0;
1196 	unsigned long offset;
1197 	char *kaddr;
1198 	struct page *page;
1199 
1200 	if (!bprm->argc)
1201 		return 0;
1202 
1203 	do {
1204 		offset = bprm->p & ~PAGE_MASK;
1205 		page = get_arg_page(bprm, bprm->p, 0);
1206 		if (!page) {
1207 			ret = -EFAULT;
1208 			goto out;
1209 		}
1210 		kaddr = kmap_atomic(page, KM_USER0);
1211 
1212 		for (; offset < PAGE_SIZE && kaddr[offset];
1213 				offset++, bprm->p++)
1214 			;
1215 
1216 		kunmap_atomic(kaddr, KM_USER0);
1217 		put_arg_page(page);
1218 
1219 		if (offset == PAGE_SIZE)
1220 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1221 	} while (offset == PAGE_SIZE);
1222 
1223 	bprm->p++;
1224 	bprm->argc--;
1225 	ret = 0;
1226 
1227 out:
1228 	return ret;
1229 }
1230 EXPORT_SYMBOL(remove_arg_zero);
1231 
1232 /*
1233  * cycle the list of binary formats handler, until one recognizes the image
1234  */
1235 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1236 {
1237 	unsigned int depth = bprm->recursion_depth;
1238 	int try,retval;
1239 	struct linux_binfmt *fmt;
1240 
1241 	retval = security_bprm_check(bprm);
1242 	if (retval)
1243 		return retval;
1244 
1245 	/* kernel module loader fixup */
1246 	/* so we don't try to load run modprobe in kernel space. */
1247 	set_fs(USER_DS);
1248 
1249 	retval = audit_bprm(bprm);
1250 	if (retval)
1251 		return retval;
1252 
1253 	retval = -ENOENT;
1254 	for (try=0; try<2; try++) {
1255 		read_lock(&binfmt_lock);
1256 		list_for_each_entry(fmt, &formats, lh) {
1257 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1258 			if (!fn)
1259 				continue;
1260 			if (!try_module_get(fmt->module))
1261 				continue;
1262 			read_unlock(&binfmt_lock);
1263 			retval = fn(bprm, regs);
1264 			/*
1265 			 * Restore the depth counter to its starting value
1266 			 * in this call, so we don't have to rely on every
1267 			 * load_binary function to restore it on return.
1268 			 */
1269 			bprm->recursion_depth = depth;
1270 			if (retval >= 0) {
1271 				if (depth == 0)
1272 					tracehook_report_exec(fmt, bprm, regs);
1273 				put_binfmt(fmt);
1274 				allow_write_access(bprm->file);
1275 				if (bprm->file)
1276 					fput(bprm->file);
1277 				bprm->file = NULL;
1278 				current->did_exec = 1;
1279 				proc_exec_connector(current);
1280 				return retval;
1281 			}
1282 			read_lock(&binfmt_lock);
1283 			put_binfmt(fmt);
1284 			if (retval != -ENOEXEC || bprm->mm == NULL)
1285 				break;
1286 			if (!bprm->file) {
1287 				read_unlock(&binfmt_lock);
1288 				return retval;
1289 			}
1290 		}
1291 		read_unlock(&binfmt_lock);
1292 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1293 			break;
1294 #ifdef CONFIG_MODULES
1295 		} else {
1296 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1297 			if (printable(bprm->buf[0]) &&
1298 			    printable(bprm->buf[1]) &&
1299 			    printable(bprm->buf[2]) &&
1300 			    printable(bprm->buf[3]))
1301 				break; /* -ENOEXEC */
1302 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1303 #endif
1304 		}
1305 	}
1306 	return retval;
1307 }
1308 
1309 EXPORT_SYMBOL(search_binary_handler);
1310 
1311 /*
1312  * sys_execve() executes a new program.
1313  */
1314 int do_execve(char * filename,
1315 	char __user *__user *argv,
1316 	char __user *__user *envp,
1317 	struct pt_regs * regs)
1318 {
1319 	struct linux_binprm *bprm;
1320 	struct file *file;
1321 	struct files_struct *displaced;
1322 	bool clear_in_exec;
1323 	int retval;
1324 
1325 	retval = unshare_files(&displaced);
1326 	if (retval)
1327 		goto out_ret;
1328 
1329 	retval = -ENOMEM;
1330 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1331 	if (!bprm)
1332 		goto out_files;
1333 
1334 	retval = prepare_bprm_creds(bprm);
1335 	if (retval)
1336 		goto out_free;
1337 
1338 	retval = check_unsafe_exec(bprm);
1339 	if (retval < 0)
1340 		goto out_free;
1341 	clear_in_exec = retval;
1342 	current->in_execve = 1;
1343 
1344 	file = open_exec(filename);
1345 	retval = PTR_ERR(file);
1346 	if (IS_ERR(file))
1347 		goto out_unmark;
1348 
1349 	sched_exec();
1350 
1351 	bprm->file = file;
1352 	bprm->filename = filename;
1353 	bprm->interp = filename;
1354 
1355 	retval = bprm_mm_init(bprm);
1356 	if (retval)
1357 		goto out_file;
1358 
1359 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1360 	if ((retval = bprm->argc) < 0)
1361 		goto out;
1362 
1363 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1364 	if ((retval = bprm->envc) < 0)
1365 		goto out;
1366 
1367 	retval = prepare_binprm(bprm);
1368 	if (retval < 0)
1369 		goto out;
1370 
1371 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1372 	if (retval < 0)
1373 		goto out;
1374 
1375 	bprm->exec = bprm->p;
1376 	retval = copy_strings(bprm->envc, envp, bprm);
1377 	if (retval < 0)
1378 		goto out;
1379 
1380 	retval = copy_strings(bprm->argc, argv, bprm);
1381 	if (retval < 0)
1382 		goto out;
1383 
1384 	current->flags &= ~PF_KTHREAD;
1385 	retval = search_binary_handler(bprm,regs);
1386 	if (retval < 0)
1387 		goto out;
1388 
1389 	current->stack_start = current->mm->start_stack;
1390 
1391 	/* execve succeeded */
1392 	current->fs->in_exec = 0;
1393 	current->in_execve = 0;
1394 	acct_update_integrals(current);
1395 	free_bprm(bprm);
1396 	if (displaced)
1397 		put_files_struct(displaced);
1398 	return retval;
1399 
1400 out:
1401 	if (bprm->mm)
1402 		mmput (bprm->mm);
1403 
1404 out_file:
1405 	if (bprm->file) {
1406 		allow_write_access(bprm->file);
1407 		fput(bprm->file);
1408 	}
1409 
1410 out_unmark:
1411 	if (clear_in_exec)
1412 		current->fs->in_exec = 0;
1413 	current->in_execve = 0;
1414 
1415 out_free:
1416 	free_bprm(bprm);
1417 
1418 out_files:
1419 	if (displaced)
1420 		reset_files_struct(displaced);
1421 out_ret:
1422 	return retval;
1423 }
1424 
1425 void set_binfmt(struct linux_binfmt *new)
1426 {
1427 	struct mm_struct *mm = current->mm;
1428 
1429 	if (mm->binfmt)
1430 		module_put(mm->binfmt->module);
1431 
1432 	mm->binfmt = new;
1433 	if (new)
1434 		__module_get(new->module);
1435 }
1436 
1437 EXPORT_SYMBOL(set_binfmt);
1438 
1439 /* format_corename will inspect the pattern parameter, and output a
1440  * name into corename, which must have space for at least
1441  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1442  */
1443 static int format_corename(char *corename, long signr)
1444 {
1445 	const struct cred *cred = current_cred();
1446 	const char *pat_ptr = core_pattern;
1447 	int ispipe = (*pat_ptr == '|');
1448 	char *out_ptr = corename;
1449 	char *const out_end = corename + CORENAME_MAX_SIZE;
1450 	int rc;
1451 	int pid_in_pattern = 0;
1452 
1453 	/* Repeat as long as we have more pattern to process and more output
1454 	   space */
1455 	while (*pat_ptr) {
1456 		if (*pat_ptr != '%') {
1457 			if (out_ptr == out_end)
1458 				goto out;
1459 			*out_ptr++ = *pat_ptr++;
1460 		} else {
1461 			switch (*++pat_ptr) {
1462 			case 0:
1463 				goto out;
1464 			/* Double percent, output one percent */
1465 			case '%':
1466 				if (out_ptr == out_end)
1467 					goto out;
1468 				*out_ptr++ = '%';
1469 				break;
1470 			/* pid */
1471 			case 'p':
1472 				pid_in_pattern = 1;
1473 				rc = snprintf(out_ptr, out_end - out_ptr,
1474 					      "%d", task_tgid_vnr(current));
1475 				if (rc > out_end - out_ptr)
1476 					goto out;
1477 				out_ptr += rc;
1478 				break;
1479 			/* uid */
1480 			case 'u':
1481 				rc = snprintf(out_ptr, out_end - out_ptr,
1482 					      "%d", cred->uid);
1483 				if (rc > out_end - out_ptr)
1484 					goto out;
1485 				out_ptr += rc;
1486 				break;
1487 			/* gid */
1488 			case 'g':
1489 				rc = snprintf(out_ptr, out_end - out_ptr,
1490 					      "%d", cred->gid);
1491 				if (rc > out_end - out_ptr)
1492 					goto out;
1493 				out_ptr += rc;
1494 				break;
1495 			/* signal that caused the coredump */
1496 			case 's':
1497 				rc = snprintf(out_ptr, out_end - out_ptr,
1498 					      "%ld", signr);
1499 				if (rc > out_end - out_ptr)
1500 					goto out;
1501 				out_ptr += rc;
1502 				break;
1503 			/* UNIX time of coredump */
1504 			case 't': {
1505 				struct timeval tv;
1506 				do_gettimeofday(&tv);
1507 				rc = snprintf(out_ptr, out_end - out_ptr,
1508 					      "%lu", tv.tv_sec);
1509 				if (rc > out_end - out_ptr)
1510 					goto out;
1511 				out_ptr += rc;
1512 				break;
1513 			}
1514 			/* hostname */
1515 			case 'h':
1516 				down_read(&uts_sem);
1517 				rc = snprintf(out_ptr, out_end - out_ptr,
1518 					      "%s", utsname()->nodename);
1519 				up_read(&uts_sem);
1520 				if (rc > out_end - out_ptr)
1521 					goto out;
1522 				out_ptr += rc;
1523 				break;
1524 			/* executable */
1525 			case 'e':
1526 				rc = snprintf(out_ptr, out_end - out_ptr,
1527 					      "%s", current->comm);
1528 				if (rc > out_end - out_ptr)
1529 					goto out;
1530 				out_ptr += rc;
1531 				break;
1532 			/* core limit size */
1533 			case 'c':
1534 				rc = snprintf(out_ptr, out_end - out_ptr,
1535 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1536 				if (rc > out_end - out_ptr)
1537 					goto out;
1538 				out_ptr += rc;
1539 				break;
1540 			default:
1541 				break;
1542 			}
1543 			++pat_ptr;
1544 		}
1545 	}
1546 	/* Backward compatibility with core_uses_pid:
1547 	 *
1548 	 * If core_pattern does not include a %p (as is the default)
1549 	 * and core_uses_pid is set, then .%pid will be appended to
1550 	 * the filename. Do not do this for piped commands. */
1551 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1552 		rc = snprintf(out_ptr, out_end - out_ptr,
1553 			      ".%d", task_tgid_vnr(current));
1554 		if (rc > out_end - out_ptr)
1555 			goto out;
1556 		out_ptr += rc;
1557 	}
1558 out:
1559 	*out_ptr = 0;
1560 	return ispipe;
1561 }
1562 
1563 static int zap_process(struct task_struct *start)
1564 {
1565 	struct task_struct *t;
1566 	int nr = 0;
1567 
1568 	start->signal->flags = SIGNAL_GROUP_EXIT;
1569 	start->signal->group_stop_count = 0;
1570 
1571 	t = start;
1572 	do {
1573 		if (t != current && t->mm) {
1574 			sigaddset(&t->pending.signal, SIGKILL);
1575 			signal_wake_up(t, 1);
1576 			nr++;
1577 		}
1578 	} while_each_thread(start, t);
1579 
1580 	return nr;
1581 }
1582 
1583 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1584 				struct core_state *core_state, int exit_code)
1585 {
1586 	struct task_struct *g, *p;
1587 	unsigned long flags;
1588 	int nr = -EAGAIN;
1589 
1590 	spin_lock_irq(&tsk->sighand->siglock);
1591 	if (!signal_group_exit(tsk->signal)) {
1592 		mm->core_state = core_state;
1593 		tsk->signal->group_exit_code = exit_code;
1594 		nr = zap_process(tsk);
1595 	}
1596 	spin_unlock_irq(&tsk->sighand->siglock);
1597 	if (unlikely(nr < 0))
1598 		return nr;
1599 
1600 	if (atomic_read(&mm->mm_users) == nr + 1)
1601 		goto done;
1602 	/*
1603 	 * We should find and kill all tasks which use this mm, and we should
1604 	 * count them correctly into ->nr_threads. We don't take tasklist
1605 	 * lock, but this is safe wrt:
1606 	 *
1607 	 * fork:
1608 	 *	None of sub-threads can fork after zap_process(leader). All
1609 	 *	processes which were created before this point should be
1610 	 *	visible to zap_threads() because copy_process() adds the new
1611 	 *	process to the tail of init_task.tasks list, and lock/unlock
1612 	 *	of ->siglock provides a memory barrier.
1613 	 *
1614 	 * do_exit:
1615 	 *	The caller holds mm->mmap_sem. This means that the task which
1616 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1617 	 *	its ->mm.
1618 	 *
1619 	 * de_thread:
1620 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1621 	 *	we must see either old or new leader, this does not matter.
1622 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1623 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1624 	 *	it can't fail.
1625 	 *
1626 	 *	Note also that "g" can be the old leader with ->mm == NULL
1627 	 *	and already unhashed and thus removed from ->thread_group.
1628 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1629 	 *	clear the ->next pointer, we will find the new leader via
1630 	 *	next_thread().
1631 	 */
1632 	rcu_read_lock();
1633 	for_each_process(g) {
1634 		if (g == tsk->group_leader)
1635 			continue;
1636 		if (g->flags & PF_KTHREAD)
1637 			continue;
1638 		p = g;
1639 		do {
1640 			if (p->mm) {
1641 				if (unlikely(p->mm == mm)) {
1642 					lock_task_sighand(p, &flags);
1643 					nr += zap_process(p);
1644 					unlock_task_sighand(p, &flags);
1645 				}
1646 				break;
1647 			}
1648 		} while_each_thread(g, p);
1649 	}
1650 	rcu_read_unlock();
1651 done:
1652 	atomic_set(&core_state->nr_threads, nr);
1653 	return nr;
1654 }
1655 
1656 static int coredump_wait(int exit_code, struct core_state *core_state)
1657 {
1658 	struct task_struct *tsk = current;
1659 	struct mm_struct *mm = tsk->mm;
1660 	struct completion *vfork_done;
1661 	int core_waiters;
1662 
1663 	init_completion(&core_state->startup);
1664 	core_state->dumper.task = tsk;
1665 	core_state->dumper.next = NULL;
1666 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1667 	up_write(&mm->mmap_sem);
1668 
1669 	if (unlikely(core_waiters < 0))
1670 		goto fail;
1671 
1672 	/*
1673 	 * Make sure nobody is waiting for us to release the VM,
1674 	 * otherwise we can deadlock when we wait on each other
1675 	 */
1676 	vfork_done = tsk->vfork_done;
1677 	if (vfork_done) {
1678 		tsk->vfork_done = NULL;
1679 		complete(vfork_done);
1680 	}
1681 
1682 	if (core_waiters)
1683 		wait_for_completion(&core_state->startup);
1684 fail:
1685 	return core_waiters;
1686 }
1687 
1688 static void coredump_finish(struct mm_struct *mm)
1689 {
1690 	struct core_thread *curr, *next;
1691 	struct task_struct *task;
1692 
1693 	next = mm->core_state->dumper.next;
1694 	while ((curr = next) != NULL) {
1695 		next = curr->next;
1696 		task = curr->task;
1697 		/*
1698 		 * see exit_mm(), curr->task must not see
1699 		 * ->task == NULL before we read ->next.
1700 		 */
1701 		smp_mb();
1702 		curr->task = NULL;
1703 		wake_up_process(task);
1704 	}
1705 
1706 	mm->core_state = NULL;
1707 }
1708 
1709 /*
1710  * set_dumpable converts traditional three-value dumpable to two flags and
1711  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1712  * these bits are not changed atomically.  So get_dumpable can observe the
1713  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1714  * return either old dumpable or new one by paying attention to the order of
1715  * modifying the bits.
1716  *
1717  * dumpable |   mm->flags (binary)
1718  * old  new | initial interim  final
1719  * ---------+-----------------------
1720  *  0    1  |   00      01      01
1721  *  0    2  |   00      10(*)   11
1722  *  1    0  |   01      00      00
1723  *  1    2  |   01      11      11
1724  *  2    0  |   11      10(*)   00
1725  *  2    1  |   11      11      01
1726  *
1727  * (*) get_dumpable regards interim value of 10 as 11.
1728  */
1729 void set_dumpable(struct mm_struct *mm, int value)
1730 {
1731 	switch (value) {
1732 	case 0:
1733 		clear_bit(MMF_DUMPABLE, &mm->flags);
1734 		smp_wmb();
1735 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1736 		break;
1737 	case 1:
1738 		set_bit(MMF_DUMPABLE, &mm->flags);
1739 		smp_wmb();
1740 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1741 		break;
1742 	case 2:
1743 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1744 		smp_wmb();
1745 		set_bit(MMF_DUMPABLE, &mm->flags);
1746 		break;
1747 	}
1748 }
1749 
1750 int get_dumpable(struct mm_struct *mm)
1751 {
1752 	int ret;
1753 
1754 	ret = mm->flags & 0x3;
1755 	return (ret >= 2) ? 2 : ret;
1756 }
1757 
1758 static void wait_for_dump_helpers(struct file *file)
1759 {
1760 	struct pipe_inode_info *pipe;
1761 
1762 	pipe = file->f_path.dentry->d_inode->i_pipe;
1763 
1764 	pipe_lock(pipe);
1765 	pipe->readers++;
1766 	pipe->writers--;
1767 
1768 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1769 		wake_up_interruptible_sync(&pipe->wait);
1770 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1771 		pipe_wait(pipe);
1772 	}
1773 
1774 	pipe->readers--;
1775 	pipe->writers++;
1776 	pipe_unlock(pipe);
1777 
1778 }
1779 
1780 
1781 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1782 {
1783 	struct core_state core_state;
1784 	char corename[CORENAME_MAX_SIZE + 1];
1785 	struct mm_struct *mm = current->mm;
1786 	struct linux_binfmt * binfmt;
1787 	struct inode * inode;
1788 	const struct cred *old_cred;
1789 	struct cred *cred;
1790 	int retval = 0;
1791 	int flag = 0;
1792 	int ispipe = 0;
1793 	char **helper_argv = NULL;
1794 	int helper_argc = 0;
1795 	int dump_count = 0;
1796 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1797 	struct coredump_params cprm = {
1798 		.signr = signr,
1799 		.regs = regs,
1800 		.limit = current->signal->rlim[RLIMIT_CORE].rlim_cur,
1801 	};
1802 
1803 	audit_core_dumps(signr);
1804 
1805 	binfmt = mm->binfmt;
1806 	if (!binfmt || !binfmt->core_dump)
1807 		goto fail;
1808 
1809 	cred = prepare_creds();
1810 	if (!cred) {
1811 		retval = -ENOMEM;
1812 		goto fail;
1813 	}
1814 
1815 	down_write(&mm->mmap_sem);
1816 	/*
1817 	 * If another thread got here first, or we are not dumpable, bail out.
1818 	 */
1819 	if (mm->core_state || !get_dumpable(mm)) {
1820 		up_write(&mm->mmap_sem);
1821 		put_cred(cred);
1822 		goto fail;
1823 	}
1824 
1825 	/*
1826 	 *	We cannot trust fsuid as being the "true" uid of the
1827 	 *	process nor do we know its entire history. We only know it
1828 	 *	was tainted so we dump it as root in mode 2.
1829 	 */
1830 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1831 		flag = O_EXCL;		/* Stop rewrite attacks */
1832 		cred->fsuid = 0;	/* Dump root private */
1833 	}
1834 
1835 	retval = coredump_wait(exit_code, &core_state);
1836 	if (retval < 0) {
1837 		put_cred(cred);
1838 		goto fail;
1839 	}
1840 
1841 	old_cred = override_creds(cred);
1842 
1843 	/*
1844 	 * Clear any false indication of pending signals that might
1845 	 * be seen by the filesystem code called to write the core file.
1846 	 */
1847 	clear_thread_flag(TIF_SIGPENDING);
1848 
1849 	/*
1850 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1851 	 * uses lock_kernel()
1852 	 */
1853  	lock_kernel();
1854 	ispipe = format_corename(corename, signr);
1855 	unlock_kernel();
1856 
1857 	if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
1858 		goto fail_unlock;
1859 
1860  	if (ispipe) {
1861 		if (cprm.limit == 0) {
1862 			/*
1863 			 * Normally core limits are irrelevant to pipes, since
1864 			 * we're not writing to the file system, but we use
1865 			 * cprm.limit of 0 here as a speacial value. Any
1866 			 * non-zero limit gets set to RLIM_INFINITY below, but
1867 			 * a limit of 0 skips the dump.  This is a consistent
1868 			 * way to catch recursive crashes.  We can still crash
1869 			 * if the core_pattern binary sets RLIM_CORE =  !0
1870 			 * but it runs as root, and can do lots of stupid things
1871 			 * Note that we use task_tgid_vnr here to grab the pid
1872 			 * of the process group leader.  That way we get the
1873 			 * right pid if a thread in a multi-threaded
1874 			 * core_pattern process dies.
1875 			 */
1876 			printk(KERN_WARNING
1877 				"Process %d(%s) has RLIMIT_CORE set to 0\n",
1878 				task_tgid_vnr(current), current->comm);
1879 			printk(KERN_WARNING "Aborting core\n");
1880 			goto fail_unlock;
1881 		}
1882 
1883 		dump_count = atomic_inc_return(&core_dump_count);
1884 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1885 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1886 			       task_tgid_vnr(current), current->comm);
1887 			printk(KERN_WARNING "Skipping core dump\n");
1888 			goto fail_dropcount;
1889 		}
1890 
1891 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1892 		if (!helper_argv) {
1893 			printk(KERN_WARNING "%s failed to allocate memory\n",
1894 			       __func__);
1895 			goto fail_dropcount;
1896 		}
1897 
1898 		cprm.limit = RLIM_INFINITY;
1899 
1900 		/* SIGPIPE can happen, but it's just never processed */
1901 		if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1902 				&cprm.file)) {
1903  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1904 			       corename);
1905 			goto fail_dropcount;
1906  		}
1907  	} else
1908 		cprm.file = filp_open(corename,
1909 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1910 				 0600);
1911 	if (IS_ERR(cprm.file))
1912 		goto fail_dropcount;
1913 	inode = cprm.file->f_path.dentry->d_inode;
1914 	if (inode->i_nlink > 1)
1915 		goto close_fail;	/* multiple links - don't dump */
1916 	if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
1917 		goto close_fail;
1918 
1919 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1920 	   but keep the previous behaviour for now. */
1921 	if (!ispipe && !S_ISREG(inode->i_mode))
1922 		goto close_fail;
1923 	/*
1924 	 * Dont allow local users get cute and trick others to coredump
1925 	 * into their pre-created files:
1926 	 */
1927 	if (inode->i_uid != current_fsuid())
1928 		goto close_fail;
1929 	if (!cprm.file->f_op)
1930 		goto close_fail;
1931 	if (!cprm.file->f_op->write)
1932 		goto close_fail;
1933 	if (!ispipe &&
1934 	    do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
1935 		goto close_fail;
1936 
1937 	retval = binfmt->core_dump(&cprm);
1938 
1939 	if (retval)
1940 		current->signal->group_exit_code |= 0x80;
1941 close_fail:
1942 	if (ispipe && core_pipe_limit)
1943 		wait_for_dump_helpers(cprm.file);
1944 	filp_close(cprm.file, NULL);
1945 fail_dropcount:
1946 	if (dump_count)
1947 		atomic_dec(&core_dump_count);
1948 fail_unlock:
1949 	if (helper_argv)
1950 		argv_free(helper_argv);
1951 
1952 	revert_creds(old_cred);
1953 	put_cred(cred);
1954 	coredump_finish(mm);
1955 fail:
1956 	return;
1957 }
1958