1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/perf_event.h> 37 #include <linux/highmem.h> 38 #include <linux/spinlock.h> 39 #include <linux/key.h> 40 #include <linux/personality.h> 41 #include <linux/binfmts.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 #include <linux/compat.h> 59 60 #include <asm/uaccess.h> 61 #include <asm/mmu_context.h> 62 #include <asm/tlb.h> 63 64 #include <trace/events/task.h> 65 #include "internal.h" 66 67 #include <trace/events/sched.h> 68 69 int suid_dumpable = 0; 70 71 static LIST_HEAD(formats); 72 static DEFINE_RWLOCK(binfmt_lock); 73 74 void __register_binfmt(struct linux_binfmt * fmt, int insert) 75 { 76 BUG_ON(!fmt); 77 if (WARN_ON(!fmt->load_binary)) 78 return; 79 write_lock(&binfmt_lock); 80 insert ? list_add(&fmt->lh, &formats) : 81 list_add_tail(&fmt->lh, &formats); 82 write_unlock(&binfmt_lock); 83 } 84 85 EXPORT_SYMBOL(__register_binfmt); 86 87 void unregister_binfmt(struct linux_binfmt * fmt) 88 { 89 write_lock(&binfmt_lock); 90 list_del(&fmt->lh); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(unregister_binfmt); 95 96 static inline void put_binfmt(struct linux_binfmt * fmt) 97 { 98 module_put(fmt->module); 99 } 100 101 #ifdef CONFIG_USELIB 102 /* 103 * Note that a shared library must be both readable and executable due to 104 * security reasons. 105 * 106 * Also note that we take the address to load from from the file itself. 107 */ 108 SYSCALL_DEFINE1(uselib, const char __user *, library) 109 { 110 struct linux_binfmt *fmt; 111 struct file *file; 112 struct filename *tmp = getname(library); 113 int error = PTR_ERR(tmp); 114 static const struct open_flags uselib_flags = { 115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 117 .intent = LOOKUP_OPEN, 118 .lookup_flags = LOOKUP_FOLLOW, 119 }; 120 121 if (IS_ERR(tmp)) 122 goto out; 123 124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 125 putname(tmp); 126 error = PTR_ERR(file); 127 if (IS_ERR(file)) 128 goto out; 129 130 error = -EINVAL; 131 if (!S_ISREG(file_inode(file)->i_mode)) 132 goto exit; 133 134 error = -EACCES; 135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 136 goto exit; 137 138 fsnotify_open(file); 139 140 error = -ENOEXEC; 141 142 read_lock(&binfmt_lock); 143 list_for_each_entry(fmt, &formats, lh) { 144 if (!fmt->load_shlib) 145 continue; 146 if (!try_module_get(fmt->module)) 147 continue; 148 read_unlock(&binfmt_lock); 149 error = fmt->load_shlib(file); 150 read_lock(&binfmt_lock); 151 put_binfmt(fmt); 152 if (error != -ENOEXEC) 153 break; 154 } 155 read_unlock(&binfmt_lock); 156 exit: 157 fput(file); 158 out: 159 return error; 160 } 161 #endif /* #ifdef CONFIG_USELIB */ 162 163 #ifdef CONFIG_MMU 164 /* 165 * The nascent bprm->mm is not visible until exec_mmap() but it can 166 * use a lot of memory, account these pages in current->mm temporary 167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 168 * change the counter back via acct_arg_size(0). 169 */ 170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 171 { 172 struct mm_struct *mm = current->mm; 173 long diff = (long)(pages - bprm->vma_pages); 174 175 if (!mm || !diff) 176 return; 177 178 bprm->vma_pages = pages; 179 add_mm_counter(mm, MM_ANONPAGES, diff); 180 } 181 182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 183 int write) 184 { 185 struct page *page; 186 int ret; 187 188 #ifdef CONFIG_STACK_GROWSUP 189 if (write) { 190 ret = expand_downwards(bprm->vma, pos); 191 if (ret < 0) 192 return NULL; 193 } 194 #endif 195 ret = get_user_pages(current, bprm->mm, pos, 196 1, write, 1, &page, NULL); 197 if (ret <= 0) 198 return NULL; 199 200 if (write) { 201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 202 struct rlimit *rlim; 203 204 acct_arg_size(bprm, size / PAGE_SIZE); 205 206 /* 207 * We've historically supported up to 32 pages (ARG_MAX) 208 * of argument strings even with small stacks 209 */ 210 if (size <= ARG_MAX) 211 return page; 212 213 /* 214 * Limit to 1/4-th the stack size for the argv+env strings. 215 * This ensures that: 216 * - the remaining binfmt code will not run out of stack space, 217 * - the program will have a reasonable amount of stack left 218 * to work from. 219 */ 220 rlim = current->signal->rlim; 221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 222 put_page(page); 223 return NULL; 224 } 225 } 226 227 return page; 228 } 229 230 static void put_arg_page(struct page *page) 231 { 232 put_page(page); 233 } 234 235 static void free_arg_page(struct linux_binprm *bprm, int i) 236 { 237 } 238 239 static void free_arg_pages(struct linux_binprm *bprm) 240 { 241 } 242 243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 244 struct page *page) 245 { 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 247 } 248 249 static int __bprm_mm_init(struct linux_binprm *bprm) 250 { 251 int err; 252 struct vm_area_struct *vma = NULL; 253 struct mm_struct *mm = bprm->mm; 254 255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 256 if (!vma) 257 return -ENOMEM; 258 259 down_write(&mm->mmap_sem); 260 vma->vm_mm = mm; 261 262 /* 263 * Place the stack at the largest stack address the architecture 264 * supports. Later, we'll move this to an appropriate place. We don't 265 * use STACK_TOP because that can depend on attributes which aren't 266 * configured yet. 267 */ 268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 269 vma->vm_end = STACK_TOP_MAX; 270 vma->vm_start = vma->vm_end - PAGE_SIZE; 271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 273 INIT_LIST_HEAD(&vma->anon_vma_chain); 274 275 err = insert_vm_struct(mm, vma); 276 if (err) 277 goto err; 278 279 mm->stack_vm = mm->total_vm = 1; 280 up_write(&mm->mmap_sem); 281 bprm->p = vma->vm_end - sizeof(void *); 282 return 0; 283 err: 284 up_write(&mm->mmap_sem); 285 bprm->vma = NULL; 286 kmem_cache_free(vm_area_cachep, vma); 287 return err; 288 } 289 290 static bool valid_arg_len(struct linux_binprm *bprm, long len) 291 { 292 return len <= MAX_ARG_STRLEN; 293 } 294 295 #else 296 297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 298 { 299 } 300 301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 302 int write) 303 { 304 struct page *page; 305 306 page = bprm->page[pos / PAGE_SIZE]; 307 if (!page && write) { 308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 309 if (!page) 310 return NULL; 311 bprm->page[pos / PAGE_SIZE] = page; 312 } 313 314 return page; 315 } 316 317 static void put_arg_page(struct page *page) 318 { 319 } 320 321 static void free_arg_page(struct linux_binprm *bprm, int i) 322 { 323 if (bprm->page[i]) { 324 __free_page(bprm->page[i]); 325 bprm->page[i] = NULL; 326 } 327 } 328 329 static void free_arg_pages(struct linux_binprm *bprm) 330 { 331 int i; 332 333 for (i = 0; i < MAX_ARG_PAGES; i++) 334 free_arg_page(bprm, i); 335 } 336 337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 338 struct page *page) 339 { 340 } 341 342 static int __bprm_mm_init(struct linux_binprm *bprm) 343 { 344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 345 return 0; 346 } 347 348 static bool valid_arg_len(struct linux_binprm *bprm, long len) 349 { 350 return len <= bprm->p; 351 } 352 353 #endif /* CONFIG_MMU */ 354 355 /* 356 * Create a new mm_struct and populate it with a temporary stack 357 * vm_area_struct. We don't have enough context at this point to set the stack 358 * flags, permissions, and offset, so we use temporary values. We'll update 359 * them later in setup_arg_pages(). 360 */ 361 static int bprm_mm_init(struct linux_binprm *bprm) 362 { 363 int err; 364 struct mm_struct *mm = NULL; 365 366 bprm->mm = mm = mm_alloc(); 367 err = -ENOMEM; 368 if (!mm) 369 goto err; 370 371 err = init_new_context(current, mm); 372 if (err) 373 goto err; 374 375 err = __bprm_mm_init(bprm); 376 if (err) 377 goto err; 378 379 return 0; 380 381 err: 382 if (mm) { 383 bprm->mm = NULL; 384 mmdrop(mm); 385 } 386 387 return err; 388 } 389 390 struct user_arg_ptr { 391 #ifdef CONFIG_COMPAT 392 bool is_compat; 393 #endif 394 union { 395 const char __user *const __user *native; 396 #ifdef CONFIG_COMPAT 397 const compat_uptr_t __user *compat; 398 #endif 399 } ptr; 400 }; 401 402 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 403 { 404 const char __user *native; 405 406 #ifdef CONFIG_COMPAT 407 if (unlikely(argv.is_compat)) { 408 compat_uptr_t compat; 409 410 if (get_user(compat, argv.ptr.compat + nr)) 411 return ERR_PTR(-EFAULT); 412 413 return compat_ptr(compat); 414 } 415 #endif 416 417 if (get_user(native, argv.ptr.native + nr)) 418 return ERR_PTR(-EFAULT); 419 420 return native; 421 } 422 423 /* 424 * count() counts the number of strings in array ARGV. 425 */ 426 static int count(struct user_arg_ptr argv, int max) 427 { 428 int i = 0; 429 430 if (argv.ptr.native != NULL) { 431 for (;;) { 432 const char __user *p = get_user_arg_ptr(argv, i); 433 434 if (!p) 435 break; 436 437 if (IS_ERR(p)) 438 return -EFAULT; 439 440 if (i >= max) 441 return -E2BIG; 442 ++i; 443 444 if (fatal_signal_pending(current)) 445 return -ERESTARTNOHAND; 446 cond_resched(); 447 } 448 } 449 return i; 450 } 451 452 /* 453 * 'copy_strings()' copies argument/environment strings from the old 454 * processes's memory to the new process's stack. The call to get_user_pages() 455 * ensures the destination page is created and not swapped out. 456 */ 457 static int copy_strings(int argc, struct user_arg_ptr argv, 458 struct linux_binprm *bprm) 459 { 460 struct page *kmapped_page = NULL; 461 char *kaddr = NULL; 462 unsigned long kpos = 0; 463 int ret; 464 465 while (argc-- > 0) { 466 const char __user *str; 467 int len; 468 unsigned long pos; 469 470 ret = -EFAULT; 471 str = get_user_arg_ptr(argv, argc); 472 if (IS_ERR(str)) 473 goto out; 474 475 len = strnlen_user(str, MAX_ARG_STRLEN); 476 if (!len) 477 goto out; 478 479 ret = -E2BIG; 480 if (!valid_arg_len(bprm, len)) 481 goto out; 482 483 /* We're going to work our way backwords. */ 484 pos = bprm->p; 485 str += len; 486 bprm->p -= len; 487 488 while (len > 0) { 489 int offset, bytes_to_copy; 490 491 if (fatal_signal_pending(current)) { 492 ret = -ERESTARTNOHAND; 493 goto out; 494 } 495 cond_resched(); 496 497 offset = pos % PAGE_SIZE; 498 if (offset == 0) 499 offset = PAGE_SIZE; 500 501 bytes_to_copy = offset; 502 if (bytes_to_copy > len) 503 bytes_to_copy = len; 504 505 offset -= bytes_to_copy; 506 pos -= bytes_to_copy; 507 str -= bytes_to_copy; 508 len -= bytes_to_copy; 509 510 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 511 struct page *page; 512 513 page = get_arg_page(bprm, pos, 1); 514 if (!page) { 515 ret = -E2BIG; 516 goto out; 517 } 518 519 if (kmapped_page) { 520 flush_kernel_dcache_page(kmapped_page); 521 kunmap(kmapped_page); 522 put_arg_page(kmapped_page); 523 } 524 kmapped_page = page; 525 kaddr = kmap(kmapped_page); 526 kpos = pos & PAGE_MASK; 527 flush_arg_page(bprm, kpos, kmapped_page); 528 } 529 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 530 ret = -EFAULT; 531 goto out; 532 } 533 } 534 } 535 ret = 0; 536 out: 537 if (kmapped_page) { 538 flush_kernel_dcache_page(kmapped_page); 539 kunmap(kmapped_page); 540 put_arg_page(kmapped_page); 541 } 542 return ret; 543 } 544 545 /* 546 * Like copy_strings, but get argv and its values from kernel memory. 547 */ 548 int copy_strings_kernel(int argc, const char *const *__argv, 549 struct linux_binprm *bprm) 550 { 551 int r; 552 mm_segment_t oldfs = get_fs(); 553 struct user_arg_ptr argv = { 554 .ptr.native = (const char __user *const __user *)__argv, 555 }; 556 557 set_fs(KERNEL_DS); 558 r = copy_strings(argc, argv, bprm); 559 set_fs(oldfs); 560 561 return r; 562 } 563 EXPORT_SYMBOL(copy_strings_kernel); 564 565 #ifdef CONFIG_MMU 566 567 /* 568 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 569 * the binfmt code determines where the new stack should reside, we shift it to 570 * its final location. The process proceeds as follows: 571 * 572 * 1) Use shift to calculate the new vma endpoints. 573 * 2) Extend vma to cover both the old and new ranges. This ensures the 574 * arguments passed to subsequent functions are consistent. 575 * 3) Move vma's page tables to the new range. 576 * 4) Free up any cleared pgd range. 577 * 5) Shrink the vma to cover only the new range. 578 */ 579 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 580 { 581 struct mm_struct *mm = vma->vm_mm; 582 unsigned long old_start = vma->vm_start; 583 unsigned long old_end = vma->vm_end; 584 unsigned long length = old_end - old_start; 585 unsigned long new_start = old_start - shift; 586 unsigned long new_end = old_end - shift; 587 struct mmu_gather tlb; 588 589 BUG_ON(new_start > new_end); 590 591 /* 592 * ensure there are no vmas between where we want to go 593 * and where we are 594 */ 595 if (vma != find_vma(mm, new_start)) 596 return -EFAULT; 597 598 /* 599 * cover the whole range: [new_start, old_end) 600 */ 601 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 602 return -ENOMEM; 603 604 /* 605 * move the page tables downwards, on failure we rely on 606 * process cleanup to remove whatever mess we made. 607 */ 608 if (length != move_page_tables(vma, old_start, 609 vma, new_start, length, false)) 610 return -ENOMEM; 611 612 lru_add_drain(); 613 tlb_gather_mmu(&tlb, mm, old_start, old_end); 614 if (new_end > old_start) { 615 /* 616 * when the old and new regions overlap clear from new_end. 617 */ 618 free_pgd_range(&tlb, new_end, old_end, new_end, 619 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 620 } else { 621 /* 622 * otherwise, clean from old_start; this is done to not touch 623 * the address space in [new_end, old_start) some architectures 624 * have constraints on va-space that make this illegal (IA64) - 625 * for the others its just a little faster. 626 */ 627 free_pgd_range(&tlb, old_start, old_end, new_end, 628 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 629 } 630 tlb_finish_mmu(&tlb, old_start, old_end); 631 632 /* 633 * Shrink the vma to just the new range. Always succeeds. 634 */ 635 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 636 637 return 0; 638 } 639 640 /* 641 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 642 * the stack is optionally relocated, and some extra space is added. 643 */ 644 int setup_arg_pages(struct linux_binprm *bprm, 645 unsigned long stack_top, 646 int executable_stack) 647 { 648 unsigned long ret; 649 unsigned long stack_shift; 650 struct mm_struct *mm = current->mm; 651 struct vm_area_struct *vma = bprm->vma; 652 struct vm_area_struct *prev = NULL; 653 unsigned long vm_flags; 654 unsigned long stack_base; 655 unsigned long stack_size; 656 unsigned long stack_expand; 657 unsigned long rlim_stack; 658 659 #ifdef CONFIG_STACK_GROWSUP 660 /* Limit stack size to 1GB */ 661 stack_base = rlimit_max(RLIMIT_STACK); 662 if (stack_base > (1 << 30)) 663 stack_base = 1 << 30; 664 665 /* Make sure we didn't let the argument array grow too large. */ 666 if (vma->vm_end - vma->vm_start > stack_base) 667 return -ENOMEM; 668 669 stack_base = PAGE_ALIGN(stack_top - stack_base); 670 671 stack_shift = vma->vm_start - stack_base; 672 mm->arg_start = bprm->p - stack_shift; 673 bprm->p = vma->vm_end - stack_shift; 674 #else 675 stack_top = arch_align_stack(stack_top); 676 stack_top = PAGE_ALIGN(stack_top); 677 678 if (unlikely(stack_top < mmap_min_addr) || 679 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 680 return -ENOMEM; 681 682 stack_shift = vma->vm_end - stack_top; 683 684 bprm->p -= stack_shift; 685 mm->arg_start = bprm->p; 686 #endif 687 688 if (bprm->loader) 689 bprm->loader -= stack_shift; 690 bprm->exec -= stack_shift; 691 692 down_write(&mm->mmap_sem); 693 vm_flags = VM_STACK_FLAGS; 694 695 /* 696 * Adjust stack execute permissions; explicitly enable for 697 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 698 * (arch default) otherwise. 699 */ 700 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 701 vm_flags |= VM_EXEC; 702 else if (executable_stack == EXSTACK_DISABLE_X) 703 vm_flags &= ~VM_EXEC; 704 vm_flags |= mm->def_flags; 705 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 706 707 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 708 vm_flags); 709 if (ret) 710 goto out_unlock; 711 BUG_ON(prev != vma); 712 713 /* Move stack pages down in memory. */ 714 if (stack_shift) { 715 ret = shift_arg_pages(vma, stack_shift); 716 if (ret) 717 goto out_unlock; 718 } 719 720 /* mprotect_fixup is overkill to remove the temporary stack flags */ 721 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 722 723 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 724 stack_size = vma->vm_end - vma->vm_start; 725 /* 726 * Align this down to a page boundary as expand_stack 727 * will align it up. 728 */ 729 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 730 #ifdef CONFIG_STACK_GROWSUP 731 if (stack_size + stack_expand > rlim_stack) 732 stack_base = vma->vm_start + rlim_stack; 733 else 734 stack_base = vma->vm_end + stack_expand; 735 #else 736 if (stack_size + stack_expand > rlim_stack) 737 stack_base = vma->vm_end - rlim_stack; 738 else 739 stack_base = vma->vm_start - stack_expand; 740 #endif 741 current->mm->start_stack = bprm->p; 742 ret = expand_stack(vma, stack_base); 743 if (ret) 744 ret = -EFAULT; 745 746 out_unlock: 747 up_write(&mm->mmap_sem); 748 return ret; 749 } 750 EXPORT_SYMBOL(setup_arg_pages); 751 752 #endif /* CONFIG_MMU */ 753 754 static struct file *do_open_exec(struct filename *name) 755 { 756 struct file *file; 757 int err; 758 static const struct open_flags open_exec_flags = { 759 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 760 .acc_mode = MAY_EXEC | MAY_OPEN, 761 .intent = LOOKUP_OPEN, 762 .lookup_flags = LOOKUP_FOLLOW, 763 }; 764 765 file = do_filp_open(AT_FDCWD, name, &open_exec_flags); 766 if (IS_ERR(file)) 767 goto out; 768 769 err = -EACCES; 770 if (!S_ISREG(file_inode(file)->i_mode)) 771 goto exit; 772 773 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 774 goto exit; 775 776 fsnotify_open(file); 777 778 err = deny_write_access(file); 779 if (err) 780 goto exit; 781 782 out: 783 return file; 784 785 exit: 786 fput(file); 787 return ERR_PTR(err); 788 } 789 790 struct file *open_exec(const char *name) 791 { 792 struct filename tmp = { .name = name }; 793 return do_open_exec(&tmp); 794 } 795 EXPORT_SYMBOL(open_exec); 796 797 int kernel_read(struct file *file, loff_t offset, 798 char *addr, unsigned long count) 799 { 800 mm_segment_t old_fs; 801 loff_t pos = offset; 802 int result; 803 804 old_fs = get_fs(); 805 set_fs(get_ds()); 806 /* The cast to a user pointer is valid due to the set_fs() */ 807 result = vfs_read(file, (void __user *)addr, count, &pos); 808 set_fs(old_fs); 809 return result; 810 } 811 812 EXPORT_SYMBOL(kernel_read); 813 814 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 815 { 816 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 817 if (res > 0) 818 flush_icache_range(addr, addr + len); 819 return res; 820 } 821 EXPORT_SYMBOL(read_code); 822 823 static int exec_mmap(struct mm_struct *mm) 824 { 825 struct task_struct *tsk; 826 struct mm_struct *old_mm, *active_mm; 827 828 /* Notify parent that we're no longer interested in the old VM */ 829 tsk = current; 830 old_mm = current->mm; 831 mm_release(tsk, old_mm); 832 833 if (old_mm) { 834 sync_mm_rss(old_mm); 835 /* 836 * Make sure that if there is a core dump in progress 837 * for the old mm, we get out and die instead of going 838 * through with the exec. We must hold mmap_sem around 839 * checking core_state and changing tsk->mm. 840 */ 841 down_read(&old_mm->mmap_sem); 842 if (unlikely(old_mm->core_state)) { 843 up_read(&old_mm->mmap_sem); 844 return -EINTR; 845 } 846 } 847 task_lock(tsk); 848 active_mm = tsk->active_mm; 849 tsk->mm = mm; 850 tsk->active_mm = mm; 851 activate_mm(active_mm, mm); 852 tsk->mm->vmacache_seqnum = 0; 853 vmacache_flush(tsk); 854 task_unlock(tsk); 855 if (old_mm) { 856 up_read(&old_mm->mmap_sem); 857 BUG_ON(active_mm != old_mm); 858 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 859 mm_update_next_owner(old_mm); 860 mmput(old_mm); 861 return 0; 862 } 863 mmdrop(active_mm); 864 return 0; 865 } 866 867 /* 868 * This function makes sure the current process has its own signal table, 869 * so that flush_signal_handlers can later reset the handlers without 870 * disturbing other processes. (Other processes might share the signal 871 * table via the CLONE_SIGHAND option to clone().) 872 */ 873 static int de_thread(struct task_struct *tsk) 874 { 875 struct signal_struct *sig = tsk->signal; 876 struct sighand_struct *oldsighand = tsk->sighand; 877 spinlock_t *lock = &oldsighand->siglock; 878 879 if (thread_group_empty(tsk)) 880 goto no_thread_group; 881 882 /* 883 * Kill all other threads in the thread group. 884 */ 885 spin_lock_irq(lock); 886 if (signal_group_exit(sig)) { 887 /* 888 * Another group action in progress, just 889 * return so that the signal is processed. 890 */ 891 spin_unlock_irq(lock); 892 return -EAGAIN; 893 } 894 895 sig->group_exit_task = tsk; 896 sig->notify_count = zap_other_threads(tsk); 897 if (!thread_group_leader(tsk)) 898 sig->notify_count--; 899 900 while (sig->notify_count) { 901 __set_current_state(TASK_KILLABLE); 902 spin_unlock_irq(lock); 903 schedule(); 904 if (unlikely(__fatal_signal_pending(tsk))) 905 goto killed; 906 spin_lock_irq(lock); 907 } 908 spin_unlock_irq(lock); 909 910 /* 911 * At this point all other threads have exited, all we have to 912 * do is to wait for the thread group leader to become inactive, 913 * and to assume its PID: 914 */ 915 if (!thread_group_leader(tsk)) { 916 struct task_struct *leader = tsk->group_leader; 917 918 sig->notify_count = -1; /* for exit_notify() */ 919 for (;;) { 920 threadgroup_change_begin(tsk); 921 write_lock_irq(&tasklist_lock); 922 if (likely(leader->exit_state)) 923 break; 924 __set_current_state(TASK_KILLABLE); 925 write_unlock_irq(&tasklist_lock); 926 threadgroup_change_end(tsk); 927 schedule(); 928 if (unlikely(__fatal_signal_pending(tsk))) 929 goto killed; 930 } 931 932 /* 933 * The only record we have of the real-time age of a 934 * process, regardless of execs it's done, is start_time. 935 * All the past CPU time is accumulated in signal_struct 936 * from sister threads now dead. But in this non-leader 937 * exec, nothing survives from the original leader thread, 938 * whose birth marks the true age of this process now. 939 * When we take on its identity by switching to its PID, we 940 * also take its birthdate (always earlier than our own). 941 */ 942 tsk->start_time = leader->start_time; 943 tsk->real_start_time = leader->real_start_time; 944 945 BUG_ON(!same_thread_group(leader, tsk)); 946 BUG_ON(has_group_leader_pid(tsk)); 947 /* 948 * An exec() starts a new thread group with the 949 * TGID of the previous thread group. Rehash the 950 * two threads with a switched PID, and release 951 * the former thread group leader: 952 */ 953 954 /* Become a process group leader with the old leader's pid. 955 * The old leader becomes a thread of the this thread group. 956 * Note: The old leader also uses this pid until release_task 957 * is called. Odd but simple and correct. 958 */ 959 tsk->pid = leader->pid; 960 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 961 transfer_pid(leader, tsk, PIDTYPE_PGID); 962 transfer_pid(leader, tsk, PIDTYPE_SID); 963 964 list_replace_rcu(&leader->tasks, &tsk->tasks); 965 list_replace_init(&leader->sibling, &tsk->sibling); 966 967 tsk->group_leader = tsk; 968 leader->group_leader = tsk; 969 970 tsk->exit_signal = SIGCHLD; 971 leader->exit_signal = -1; 972 973 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 974 leader->exit_state = EXIT_DEAD; 975 976 /* 977 * We are going to release_task()->ptrace_unlink() silently, 978 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 979 * the tracer wont't block again waiting for this thread. 980 */ 981 if (unlikely(leader->ptrace)) 982 __wake_up_parent(leader, leader->parent); 983 write_unlock_irq(&tasklist_lock); 984 threadgroup_change_end(tsk); 985 986 release_task(leader); 987 } 988 989 sig->group_exit_task = NULL; 990 sig->notify_count = 0; 991 992 no_thread_group: 993 /* we have changed execution domain */ 994 tsk->exit_signal = SIGCHLD; 995 996 exit_itimers(sig); 997 flush_itimer_signals(); 998 999 if (atomic_read(&oldsighand->count) != 1) { 1000 struct sighand_struct *newsighand; 1001 /* 1002 * This ->sighand is shared with the CLONE_SIGHAND 1003 * but not CLONE_THREAD task, switch to the new one. 1004 */ 1005 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1006 if (!newsighand) 1007 return -ENOMEM; 1008 1009 atomic_set(&newsighand->count, 1); 1010 memcpy(newsighand->action, oldsighand->action, 1011 sizeof(newsighand->action)); 1012 1013 write_lock_irq(&tasklist_lock); 1014 spin_lock(&oldsighand->siglock); 1015 rcu_assign_pointer(tsk->sighand, newsighand); 1016 spin_unlock(&oldsighand->siglock); 1017 write_unlock_irq(&tasklist_lock); 1018 1019 __cleanup_sighand(oldsighand); 1020 } 1021 1022 BUG_ON(!thread_group_leader(tsk)); 1023 return 0; 1024 1025 killed: 1026 /* protects against exit_notify() and __exit_signal() */ 1027 read_lock(&tasklist_lock); 1028 sig->group_exit_task = NULL; 1029 sig->notify_count = 0; 1030 read_unlock(&tasklist_lock); 1031 return -EAGAIN; 1032 } 1033 1034 char *get_task_comm(char *buf, struct task_struct *tsk) 1035 { 1036 /* buf must be at least sizeof(tsk->comm) in size */ 1037 task_lock(tsk); 1038 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1039 task_unlock(tsk); 1040 return buf; 1041 } 1042 EXPORT_SYMBOL_GPL(get_task_comm); 1043 1044 /* 1045 * These functions flushes out all traces of the currently running executable 1046 * so that a new one can be started 1047 */ 1048 1049 void set_task_comm(struct task_struct *tsk, const char *buf) 1050 { 1051 task_lock(tsk); 1052 trace_task_rename(tsk, buf); 1053 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1054 task_unlock(tsk); 1055 perf_event_comm(tsk); 1056 } 1057 1058 int flush_old_exec(struct linux_binprm * bprm) 1059 { 1060 int retval; 1061 1062 /* 1063 * Make sure we have a private signal table and that 1064 * we are unassociated from the previous thread group. 1065 */ 1066 retval = de_thread(current); 1067 if (retval) 1068 goto out; 1069 1070 set_mm_exe_file(bprm->mm, bprm->file); 1071 /* 1072 * Release all of the old mmap stuff 1073 */ 1074 acct_arg_size(bprm, 0); 1075 retval = exec_mmap(bprm->mm); 1076 if (retval) 1077 goto out; 1078 1079 bprm->mm = NULL; /* We're using it now */ 1080 1081 set_fs(USER_DS); 1082 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1083 PF_NOFREEZE | PF_NO_SETAFFINITY); 1084 flush_thread(); 1085 current->personality &= ~bprm->per_clear; 1086 1087 return 0; 1088 1089 out: 1090 return retval; 1091 } 1092 EXPORT_SYMBOL(flush_old_exec); 1093 1094 void would_dump(struct linux_binprm *bprm, struct file *file) 1095 { 1096 if (inode_permission(file_inode(file), MAY_READ) < 0) 1097 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1098 } 1099 EXPORT_SYMBOL(would_dump); 1100 1101 void setup_new_exec(struct linux_binprm * bprm) 1102 { 1103 arch_pick_mmap_layout(current->mm); 1104 1105 /* This is the point of no return */ 1106 current->sas_ss_sp = current->sas_ss_size = 0; 1107 1108 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1109 set_dumpable(current->mm, SUID_DUMP_USER); 1110 else 1111 set_dumpable(current->mm, suid_dumpable); 1112 1113 set_task_comm(current, kbasename(bprm->filename)); 1114 1115 /* Set the new mm task size. We have to do that late because it may 1116 * depend on TIF_32BIT which is only updated in flush_thread() on 1117 * some architectures like powerpc 1118 */ 1119 current->mm->task_size = TASK_SIZE; 1120 1121 /* install the new credentials */ 1122 if (!uid_eq(bprm->cred->uid, current_euid()) || 1123 !gid_eq(bprm->cred->gid, current_egid())) { 1124 current->pdeath_signal = 0; 1125 } else { 1126 would_dump(bprm, bprm->file); 1127 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1128 set_dumpable(current->mm, suid_dumpable); 1129 } 1130 1131 /* An exec changes our domain. We are no longer part of the thread 1132 group */ 1133 current->self_exec_id++; 1134 flush_signal_handlers(current, 0); 1135 do_close_on_exec(current->files); 1136 } 1137 EXPORT_SYMBOL(setup_new_exec); 1138 1139 /* 1140 * Prepare credentials and lock ->cred_guard_mutex. 1141 * install_exec_creds() commits the new creds and drops the lock. 1142 * Or, if exec fails before, free_bprm() should release ->cred and 1143 * and unlock. 1144 */ 1145 int prepare_bprm_creds(struct linux_binprm *bprm) 1146 { 1147 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1148 return -ERESTARTNOINTR; 1149 1150 bprm->cred = prepare_exec_creds(); 1151 if (likely(bprm->cred)) 1152 return 0; 1153 1154 mutex_unlock(¤t->signal->cred_guard_mutex); 1155 return -ENOMEM; 1156 } 1157 1158 static void free_bprm(struct linux_binprm *bprm) 1159 { 1160 free_arg_pages(bprm); 1161 if (bprm->cred) { 1162 mutex_unlock(¤t->signal->cred_guard_mutex); 1163 abort_creds(bprm->cred); 1164 } 1165 if (bprm->file) { 1166 allow_write_access(bprm->file); 1167 fput(bprm->file); 1168 } 1169 /* If a binfmt changed the interp, free it. */ 1170 if (bprm->interp != bprm->filename) 1171 kfree(bprm->interp); 1172 kfree(bprm); 1173 } 1174 1175 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1176 { 1177 /* If a binfmt changed the interp, free it first. */ 1178 if (bprm->interp != bprm->filename) 1179 kfree(bprm->interp); 1180 bprm->interp = kstrdup(interp, GFP_KERNEL); 1181 if (!bprm->interp) 1182 return -ENOMEM; 1183 return 0; 1184 } 1185 EXPORT_SYMBOL(bprm_change_interp); 1186 1187 /* 1188 * install the new credentials for this executable 1189 */ 1190 void install_exec_creds(struct linux_binprm *bprm) 1191 { 1192 security_bprm_committing_creds(bprm); 1193 1194 commit_creds(bprm->cred); 1195 bprm->cred = NULL; 1196 1197 /* 1198 * Disable monitoring for regular users 1199 * when executing setuid binaries. Must 1200 * wait until new credentials are committed 1201 * by commit_creds() above 1202 */ 1203 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1204 perf_event_exit_task(current); 1205 /* 1206 * cred_guard_mutex must be held at least to this point to prevent 1207 * ptrace_attach() from altering our determination of the task's 1208 * credentials; any time after this it may be unlocked. 1209 */ 1210 security_bprm_committed_creds(bprm); 1211 mutex_unlock(¤t->signal->cred_guard_mutex); 1212 } 1213 EXPORT_SYMBOL(install_exec_creds); 1214 1215 /* 1216 * determine how safe it is to execute the proposed program 1217 * - the caller must hold ->cred_guard_mutex to protect against 1218 * PTRACE_ATTACH 1219 */ 1220 static void check_unsafe_exec(struct linux_binprm *bprm) 1221 { 1222 struct task_struct *p = current, *t; 1223 unsigned n_fs; 1224 1225 if (p->ptrace) { 1226 if (p->ptrace & PT_PTRACE_CAP) 1227 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1228 else 1229 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1230 } 1231 1232 /* 1233 * This isn't strictly necessary, but it makes it harder for LSMs to 1234 * mess up. 1235 */ 1236 if (current->no_new_privs) 1237 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1238 1239 t = p; 1240 n_fs = 1; 1241 spin_lock(&p->fs->lock); 1242 rcu_read_lock(); 1243 while_each_thread(p, t) { 1244 if (t->fs == p->fs) 1245 n_fs++; 1246 } 1247 rcu_read_unlock(); 1248 1249 if (p->fs->users > n_fs) 1250 bprm->unsafe |= LSM_UNSAFE_SHARE; 1251 else 1252 p->fs->in_exec = 1; 1253 spin_unlock(&p->fs->lock); 1254 } 1255 1256 /* 1257 * Fill the binprm structure from the inode. 1258 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1259 * 1260 * This may be called multiple times for binary chains (scripts for example). 1261 */ 1262 int prepare_binprm(struct linux_binprm *bprm) 1263 { 1264 struct inode *inode = file_inode(bprm->file); 1265 umode_t mode = inode->i_mode; 1266 int retval; 1267 1268 1269 /* clear any previous set[ug]id data from a previous binary */ 1270 bprm->cred->euid = current_euid(); 1271 bprm->cred->egid = current_egid(); 1272 1273 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) && 1274 !current->no_new_privs && 1275 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) && 1276 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) { 1277 /* Set-uid? */ 1278 if (mode & S_ISUID) { 1279 bprm->per_clear |= PER_CLEAR_ON_SETID; 1280 bprm->cred->euid = inode->i_uid; 1281 } 1282 1283 /* Set-gid? */ 1284 /* 1285 * If setgid is set but no group execute bit then this 1286 * is a candidate for mandatory locking, not a setgid 1287 * executable. 1288 */ 1289 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1290 bprm->per_clear |= PER_CLEAR_ON_SETID; 1291 bprm->cred->egid = inode->i_gid; 1292 } 1293 } 1294 1295 /* fill in binprm security blob */ 1296 retval = security_bprm_set_creds(bprm); 1297 if (retval) 1298 return retval; 1299 bprm->cred_prepared = 1; 1300 1301 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1302 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1303 } 1304 1305 EXPORT_SYMBOL(prepare_binprm); 1306 1307 /* 1308 * Arguments are '\0' separated strings found at the location bprm->p 1309 * points to; chop off the first by relocating brpm->p to right after 1310 * the first '\0' encountered. 1311 */ 1312 int remove_arg_zero(struct linux_binprm *bprm) 1313 { 1314 int ret = 0; 1315 unsigned long offset; 1316 char *kaddr; 1317 struct page *page; 1318 1319 if (!bprm->argc) 1320 return 0; 1321 1322 do { 1323 offset = bprm->p & ~PAGE_MASK; 1324 page = get_arg_page(bprm, bprm->p, 0); 1325 if (!page) { 1326 ret = -EFAULT; 1327 goto out; 1328 } 1329 kaddr = kmap_atomic(page); 1330 1331 for (; offset < PAGE_SIZE && kaddr[offset]; 1332 offset++, bprm->p++) 1333 ; 1334 1335 kunmap_atomic(kaddr); 1336 put_arg_page(page); 1337 1338 if (offset == PAGE_SIZE) 1339 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1340 } while (offset == PAGE_SIZE); 1341 1342 bprm->p++; 1343 bprm->argc--; 1344 ret = 0; 1345 1346 out: 1347 return ret; 1348 } 1349 EXPORT_SYMBOL(remove_arg_zero); 1350 1351 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1352 /* 1353 * cycle the list of binary formats handler, until one recognizes the image 1354 */ 1355 int search_binary_handler(struct linux_binprm *bprm) 1356 { 1357 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1358 struct linux_binfmt *fmt; 1359 int retval; 1360 1361 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1362 if (bprm->recursion_depth > 5) 1363 return -ELOOP; 1364 1365 retval = security_bprm_check(bprm); 1366 if (retval) 1367 return retval; 1368 1369 retval = -ENOENT; 1370 retry: 1371 read_lock(&binfmt_lock); 1372 list_for_each_entry(fmt, &formats, lh) { 1373 if (!try_module_get(fmt->module)) 1374 continue; 1375 read_unlock(&binfmt_lock); 1376 bprm->recursion_depth++; 1377 retval = fmt->load_binary(bprm); 1378 bprm->recursion_depth--; 1379 if (retval >= 0 || retval != -ENOEXEC || 1380 bprm->mm == NULL || bprm->file == NULL) { 1381 put_binfmt(fmt); 1382 return retval; 1383 } 1384 read_lock(&binfmt_lock); 1385 put_binfmt(fmt); 1386 } 1387 read_unlock(&binfmt_lock); 1388 1389 if (need_retry && retval == -ENOEXEC) { 1390 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1391 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1392 return retval; 1393 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1394 return retval; 1395 need_retry = false; 1396 goto retry; 1397 } 1398 1399 return retval; 1400 } 1401 EXPORT_SYMBOL(search_binary_handler); 1402 1403 static int exec_binprm(struct linux_binprm *bprm) 1404 { 1405 pid_t old_pid, old_vpid; 1406 int ret; 1407 1408 /* Need to fetch pid before load_binary changes it */ 1409 old_pid = current->pid; 1410 rcu_read_lock(); 1411 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1412 rcu_read_unlock(); 1413 1414 ret = search_binary_handler(bprm); 1415 if (ret >= 0) { 1416 audit_bprm(bprm); 1417 trace_sched_process_exec(current, old_pid, bprm); 1418 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1419 proc_exec_connector(current); 1420 } 1421 1422 return ret; 1423 } 1424 1425 /* 1426 * sys_execve() executes a new program. 1427 */ 1428 static int do_execve_common(struct filename *filename, 1429 struct user_arg_ptr argv, 1430 struct user_arg_ptr envp) 1431 { 1432 struct linux_binprm *bprm; 1433 struct file *file; 1434 struct files_struct *displaced; 1435 int retval; 1436 1437 if (IS_ERR(filename)) 1438 return PTR_ERR(filename); 1439 1440 /* 1441 * We move the actual failure in case of RLIMIT_NPROC excess from 1442 * set*uid() to execve() because too many poorly written programs 1443 * don't check setuid() return code. Here we additionally recheck 1444 * whether NPROC limit is still exceeded. 1445 */ 1446 if ((current->flags & PF_NPROC_EXCEEDED) && 1447 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1448 retval = -EAGAIN; 1449 goto out_ret; 1450 } 1451 1452 /* We're below the limit (still or again), so we don't want to make 1453 * further execve() calls fail. */ 1454 current->flags &= ~PF_NPROC_EXCEEDED; 1455 1456 retval = unshare_files(&displaced); 1457 if (retval) 1458 goto out_ret; 1459 1460 retval = -ENOMEM; 1461 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1462 if (!bprm) 1463 goto out_files; 1464 1465 retval = prepare_bprm_creds(bprm); 1466 if (retval) 1467 goto out_free; 1468 1469 check_unsafe_exec(bprm); 1470 current->in_execve = 1; 1471 1472 file = do_open_exec(filename); 1473 retval = PTR_ERR(file); 1474 if (IS_ERR(file)) 1475 goto out_unmark; 1476 1477 sched_exec(); 1478 1479 bprm->file = file; 1480 bprm->filename = bprm->interp = filename->name; 1481 1482 retval = bprm_mm_init(bprm); 1483 if (retval) 1484 goto out_unmark; 1485 1486 bprm->argc = count(argv, MAX_ARG_STRINGS); 1487 if ((retval = bprm->argc) < 0) 1488 goto out; 1489 1490 bprm->envc = count(envp, MAX_ARG_STRINGS); 1491 if ((retval = bprm->envc) < 0) 1492 goto out; 1493 1494 retval = prepare_binprm(bprm); 1495 if (retval < 0) 1496 goto out; 1497 1498 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1499 if (retval < 0) 1500 goto out; 1501 1502 bprm->exec = bprm->p; 1503 retval = copy_strings(bprm->envc, envp, bprm); 1504 if (retval < 0) 1505 goto out; 1506 1507 retval = copy_strings(bprm->argc, argv, bprm); 1508 if (retval < 0) 1509 goto out; 1510 1511 retval = exec_binprm(bprm); 1512 if (retval < 0) 1513 goto out; 1514 1515 /* execve succeeded */ 1516 current->fs->in_exec = 0; 1517 current->in_execve = 0; 1518 acct_update_integrals(current); 1519 task_numa_free(current); 1520 free_bprm(bprm); 1521 putname(filename); 1522 if (displaced) 1523 put_files_struct(displaced); 1524 return retval; 1525 1526 out: 1527 if (bprm->mm) { 1528 acct_arg_size(bprm, 0); 1529 mmput(bprm->mm); 1530 } 1531 1532 out_unmark: 1533 current->fs->in_exec = 0; 1534 current->in_execve = 0; 1535 1536 out_free: 1537 free_bprm(bprm); 1538 1539 out_files: 1540 if (displaced) 1541 reset_files_struct(displaced); 1542 out_ret: 1543 putname(filename); 1544 return retval; 1545 } 1546 1547 int do_execve(struct filename *filename, 1548 const char __user *const __user *__argv, 1549 const char __user *const __user *__envp) 1550 { 1551 struct user_arg_ptr argv = { .ptr.native = __argv }; 1552 struct user_arg_ptr envp = { .ptr.native = __envp }; 1553 return do_execve_common(filename, argv, envp); 1554 } 1555 1556 #ifdef CONFIG_COMPAT 1557 static int compat_do_execve(struct filename *filename, 1558 const compat_uptr_t __user *__argv, 1559 const compat_uptr_t __user *__envp) 1560 { 1561 struct user_arg_ptr argv = { 1562 .is_compat = true, 1563 .ptr.compat = __argv, 1564 }; 1565 struct user_arg_ptr envp = { 1566 .is_compat = true, 1567 .ptr.compat = __envp, 1568 }; 1569 return do_execve_common(filename, argv, envp); 1570 } 1571 #endif 1572 1573 void set_binfmt(struct linux_binfmt *new) 1574 { 1575 struct mm_struct *mm = current->mm; 1576 1577 if (mm->binfmt) 1578 module_put(mm->binfmt->module); 1579 1580 mm->binfmt = new; 1581 if (new) 1582 __module_get(new->module); 1583 } 1584 EXPORT_SYMBOL(set_binfmt); 1585 1586 /* 1587 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1588 */ 1589 void set_dumpable(struct mm_struct *mm, int value) 1590 { 1591 unsigned long old, new; 1592 1593 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1594 return; 1595 1596 do { 1597 old = ACCESS_ONCE(mm->flags); 1598 new = (old & ~MMF_DUMPABLE_MASK) | value; 1599 } while (cmpxchg(&mm->flags, old, new) != old); 1600 } 1601 1602 SYSCALL_DEFINE3(execve, 1603 const char __user *, filename, 1604 const char __user *const __user *, argv, 1605 const char __user *const __user *, envp) 1606 { 1607 return do_execve(getname(filename), argv, envp); 1608 } 1609 #ifdef CONFIG_COMPAT 1610 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1611 const compat_uptr_t __user *, argv, 1612 const compat_uptr_t __user *, envp) 1613 { 1614 return compat_do_execve(getname(filename), argv, envp); 1615 } 1616 #endif 1617