xref: /openbmc/linux/fs/exec.c (revision a36954f5)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 int suid_dumpable = 0;
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	BUG_ON(!fmt);
83 	if (WARN_ON(!fmt->load_binary))
84 		return;
85 	write_lock(&binfmt_lock);
86 	insert ? list_add(&fmt->lh, &formats) :
87 		 list_add_tail(&fmt->lh, &formats);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 bool path_noexec(const struct path *path)
108 {
109 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112 
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 	struct linux_binfmt *fmt;
123 	struct file *file;
124 	struct filename *tmp = getname(library);
125 	int error = PTR_ERR(tmp);
126 	static const struct open_flags uselib_flags = {
127 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 		.acc_mode = MAY_READ | MAY_EXEC,
129 		.intent = LOOKUP_OPEN,
130 		.lookup_flags = LOOKUP_FOLLOW,
131 	};
132 
133 	if (IS_ERR(tmp))
134 		goto out;
135 
136 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 	putname(tmp);
138 	error = PTR_ERR(file);
139 	if (IS_ERR(file))
140 		goto out;
141 
142 	error = -EINVAL;
143 	if (!S_ISREG(file_inode(file)->i_mode))
144 		goto exit;
145 
146 	error = -EACCES;
147 	if (path_noexec(&file->f_path))
148 		goto exit;
149 
150 	fsnotify_open(file);
151 
152 	error = -ENOEXEC;
153 
154 	read_lock(&binfmt_lock);
155 	list_for_each_entry(fmt, &formats, lh) {
156 		if (!fmt->load_shlib)
157 			continue;
158 		if (!try_module_get(fmt->module))
159 			continue;
160 		read_unlock(&binfmt_lock);
161 		error = fmt->load_shlib(file);
162 		read_lock(&binfmt_lock);
163 		put_binfmt(fmt);
164 		if (error != -ENOEXEC)
165 			break;
166 	}
167 	read_unlock(&binfmt_lock);
168 exit:
169 	fput(file);
170 out:
171   	return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174 
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 	struct mm_struct *mm = current->mm;
185 	long diff = (long)(pages - bprm->vma_pages);
186 
187 	if (!mm || !diff)
188 		return;
189 
190 	bprm->vma_pages = pages;
191 	add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193 
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 		int write)
196 {
197 	struct page *page;
198 	int ret;
199 	unsigned int gup_flags = FOLL_FORCE;
200 
201 #ifdef CONFIG_STACK_GROWSUP
202 	if (write) {
203 		ret = expand_downwards(bprm->vma, pos);
204 		if (ret < 0)
205 			return NULL;
206 	}
207 #endif
208 
209 	if (write)
210 		gup_flags |= FOLL_WRITE;
211 
212 	/*
213 	 * We are doing an exec().  'current' is the process
214 	 * doing the exec and bprm->mm is the new process's mm.
215 	 */
216 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 			&page, NULL, NULL);
218 	if (ret <= 0)
219 		return NULL;
220 
221 	if (write) {
222 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 		struct rlimit *rlim;
224 
225 		acct_arg_size(bprm, size / PAGE_SIZE);
226 
227 		/*
228 		 * We've historically supported up to 32 pages (ARG_MAX)
229 		 * of argument strings even with small stacks
230 		 */
231 		if (size <= ARG_MAX)
232 			return page;
233 
234 		/*
235 		 * Limit to 1/4-th the stack size for the argv+env strings.
236 		 * This ensures that:
237 		 *  - the remaining binfmt code will not run out of stack space,
238 		 *  - the program will have a reasonable amount of stack left
239 		 *    to work from.
240 		 */
241 		rlim = current->signal->rlim;
242 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
243 			put_page(page);
244 			return NULL;
245 		}
246 	}
247 
248 	return page;
249 }
250 
251 static void put_arg_page(struct page *page)
252 {
253 	put_page(page);
254 }
255 
256 static void free_arg_pages(struct linux_binprm *bprm)
257 {
258 }
259 
260 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
261 		struct page *page)
262 {
263 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
264 }
265 
266 static int __bprm_mm_init(struct linux_binprm *bprm)
267 {
268 	int err;
269 	struct vm_area_struct *vma = NULL;
270 	struct mm_struct *mm = bprm->mm;
271 
272 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
273 	if (!vma)
274 		return -ENOMEM;
275 
276 	if (down_write_killable(&mm->mmap_sem)) {
277 		err = -EINTR;
278 		goto err_free;
279 	}
280 	vma->vm_mm = mm;
281 
282 	/*
283 	 * Place the stack at the largest stack address the architecture
284 	 * supports. Later, we'll move this to an appropriate place. We don't
285 	 * use STACK_TOP because that can depend on attributes which aren't
286 	 * configured yet.
287 	 */
288 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
289 	vma->vm_end = STACK_TOP_MAX;
290 	vma->vm_start = vma->vm_end - PAGE_SIZE;
291 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
292 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
293 	INIT_LIST_HEAD(&vma->anon_vma_chain);
294 
295 	err = insert_vm_struct(mm, vma);
296 	if (err)
297 		goto err;
298 
299 	mm->stack_vm = mm->total_vm = 1;
300 	arch_bprm_mm_init(mm, vma);
301 	up_write(&mm->mmap_sem);
302 	bprm->p = vma->vm_end - sizeof(void *);
303 	return 0;
304 err:
305 	up_write(&mm->mmap_sem);
306 err_free:
307 	bprm->vma = NULL;
308 	kmem_cache_free(vm_area_cachep, vma);
309 	return err;
310 }
311 
312 static bool valid_arg_len(struct linux_binprm *bprm, long len)
313 {
314 	return len <= MAX_ARG_STRLEN;
315 }
316 
317 #else
318 
319 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
320 {
321 }
322 
323 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
324 		int write)
325 {
326 	struct page *page;
327 
328 	page = bprm->page[pos / PAGE_SIZE];
329 	if (!page && write) {
330 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
331 		if (!page)
332 			return NULL;
333 		bprm->page[pos / PAGE_SIZE] = page;
334 	}
335 
336 	return page;
337 }
338 
339 static void put_arg_page(struct page *page)
340 {
341 }
342 
343 static void free_arg_page(struct linux_binprm *bprm, int i)
344 {
345 	if (bprm->page[i]) {
346 		__free_page(bprm->page[i]);
347 		bprm->page[i] = NULL;
348 	}
349 }
350 
351 static void free_arg_pages(struct linux_binprm *bprm)
352 {
353 	int i;
354 
355 	for (i = 0; i < MAX_ARG_PAGES; i++)
356 		free_arg_page(bprm, i);
357 }
358 
359 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
360 		struct page *page)
361 {
362 }
363 
364 static int __bprm_mm_init(struct linux_binprm *bprm)
365 {
366 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
367 	return 0;
368 }
369 
370 static bool valid_arg_len(struct linux_binprm *bprm, long len)
371 {
372 	return len <= bprm->p;
373 }
374 
375 #endif /* CONFIG_MMU */
376 
377 /*
378  * Create a new mm_struct and populate it with a temporary stack
379  * vm_area_struct.  We don't have enough context at this point to set the stack
380  * flags, permissions, and offset, so we use temporary values.  We'll update
381  * them later in setup_arg_pages().
382  */
383 static int bprm_mm_init(struct linux_binprm *bprm)
384 {
385 	int err;
386 	struct mm_struct *mm = NULL;
387 
388 	bprm->mm = mm = mm_alloc();
389 	err = -ENOMEM;
390 	if (!mm)
391 		goto err;
392 
393 	err = __bprm_mm_init(bprm);
394 	if (err)
395 		goto err;
396 
397 	return 0;
398 
399 err:
400 	if (mm) {
401 		bprm->mm = NULL;
402 		mmdrop(mm);
403 	}
404 
405 	return err;
406 }
407 
408 struct user_arg_ptr {
409 #ifdef CONFIG_COMPAT
410 	bool is_compat;
411 #endif
412 	union {
413 		const char __user *const __user *native;
414 #ifdef CONFIG_COMPAT
415 		const compat_uptr_t __user *compat;
416 #endif
417 	} ptr;
418 };
419 
420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
421 {
422 	const char __user *native;
423 
424 #ifdef CONFIG_COMPAT
425 	if (unlikely(argv.is_compat)) {
426 		compat_uptr_t compat;
427 
428 		if (get_user(compat, argv.ptr.compat + nr))
429 			return ERR_PTR(-EFAULT);
430 
431 		return compat_ptr(compat);
432 	}
433 #endif
434 
435 	if (get_user(native, argv.ptr.native + nr))
436 		return ERR_PTR(-EFAULT);
437 
438 	return native;
439 }
440 
441 /*
442  * count() counts the number of strings in array ARGV.
443  */
444 static int count(struct user_arg_ptr argv, int max)
445 {
446 	int i = 0;
447 
448 	if (argv.ptr.native != NULL) {
449 		for (;;) {
450 			const char __user *p = get_user_arg_ptr(argv, i);
451 
452 			if (!p)
453 				break;
454 
455 			if (IS_ERR(p))
456 				return -EFAULT;
457 
458 			if (i >= max)
459 				return -E2BIG;
460 			++i;
461 
462 			if (fatal_signal_pending(current))
463 				return -ERESTARTNOHAND;
464 			cond_resched();
465 		}
466 	}
467 	return i;
468 }
469 
470 /*
471  * 'copy_strings()' copies argument/environment strings from the old
472  * processes's memory to the new process's stack.  The call to get_user_pages()
473  * ensures the destination page is created and not swapped out.
474  */
475 static int copy_strings(int argc, struct user_arg_ptr argv,
476 			struct linux_binprm *bprm)
477 {
478 	struct page *kmapped_page = NULL;
479 	char *kaddr = NULL;
480 	unsigned long kpos = 0;
481 	int ret;
482 
483 	while (argc-- > 0) {
484 		const char __user *str;
485 		int len;
486 		unsigned long pos;
487 
488 		ret = -EFAULT;
489 		str = get_user_arg_ptr(argv, argc);
490 		if (IS_ERR(str))
491 			goto out;
492 
493 		len = strnlen_user(str, MAX_ARG_STRLEN);
494 		if (!len)
495 			goto out;
496 
497 		ret = -E2BIG;
498 		if (!valid_arg_len(bprm, len))
499 			goto out;
500 
501 		/* We're going to work our way backwords. */
502 		pos = bprm->p;
503 		str += len;
504 		bprm->p -= len;
505 
506 		while (len > 0) {
507 			int offset, bytes_to_copy;
508 
509 			if (fatal_signal_pending(current)) {
510 				ret = -ERESTARTNOHAND;
511 				goto out;
512 			}
513 			cond_resched();
514 
515 			offset = pos % PAGE_SIZE;
516 			if (offset == 0)
517 				offset = PAGE_SIZE;
518 
519 			bytes_to_copy = offset;
520 			if (bytes_to_copy > len)
521 				bytes_to_copy = len;
522 
523 			offset -= bytes_to_copy;
524 			pos -= bytes_to_copy;
525 			str -= bytes_to_copy;
526 			len -= bytes_to_copy;
527 
528 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
529 				struct page *page;
530 
531 				page = get_arg_page(bprm, pos, 1);
532 				if (!page) {
533 					ret = -E2BIG;
534 					goto out;
535 				}
536 
537 				if (kmapped_page) {
538 					flush_kernel_dcache_page(kmapped_page);
539 					kunmap(kmapped_page);
540 					put_arg_page(kmapped_page);
541 				}
542 				kmapped_page = page;
543 				kaddr = kmap(kmapped_page);
544 				kpos = pos & PAGE_MASK;
545 				flush_arg_page(bprm, kpos, kmapped_page);
546 			}
547 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
548 				ret = -EFAULT;
549 				goto out;
550 			}
551 		}
552 	}
553 	ret = 0;
554 out:
555 	if (kmapped_page) {
556 		flush_kernel_dcache_page(kmapped_page);
557 		kunmap(kmapped_page);
558 		put_arg_page(kmapped_page);
559 	}
560 	return ret;
561 }
562 
563 /*
564  * Like copy_strings, but get argv and its values from kernel memory.
565  */
566 int copy_strings_kernel(int argc, const char *const *__argv,
567 			struct linux_binprm *bprm)
568 {
569 	int r;
570 	mm_segment_t oldfs = get_fs();
571 	struct user_arg_ptr argv = {
572 		.ptr.native = (const char __user *const  __user *)__argv,
573 	};
574 
575 	set_fs(KERNEL_DS);
576 	r = copy_strings(argc, argv, bprm);
577 	set_fs(oldfs);
578 
579 	return r;
580 }
581 EXPORT_SYMBOL(copy_strings_kernel);
582 
583 #ifdef CONFIG_MMU
584 
585 /*
586  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
587  * the binfmt code determines where the new stack should reside, we shift it to
588  * its final location.  The process proceeds as follows:
589  *
590  * 1) Use shift to calculate the new vma endpoints.
591  * 2) Extend vma to cover both the old and new ranges.  This ensures the
592  *    arguments passed to subsequent functions are consistent.
593  * 3) Move vma's page tables to the new range.
594  * 4) Free up any cleared pgd range.
595  * 5) Shrink the vma to cover only the new range.
596  */
597 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
598 {
599 	struct mm_struct *mm = vma->vm_mm;
600 	unsigned long old_start = vma->vm_start;
601 	unsigned long old_end = vma->vm_end;
602 	unsigned long length = old_end - old_start;
603 	unsigned long new_start = old_start - shift;
604 	unsigned long new_end = old_end - shift;
605 	struct mmu_gather tlb;
606 
607 	BUG_ON(new_start > new_end);
608 
609 	/*
610 	 * ensure there are no vmas between where we want to go
611 	 * and where we are
612 	 */
613 	if (vma != find_vma(mm, new_start))
614 		return -EFAULT;
615 
616 	/*
617 	 * cover the whole range: [new_start, old_end)
618 	 */
619 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
620 		return -ENOMEM;
621 
622 	/*
623 	 * move the page tables downwards, on failure we rely on
624 	 * process cleanup to remove whatever mess we made.
625 	 */
626 	if (length != move_page_tables(vma, old_start,
627 				       vma, new_start, length, false))
628 		return -ENOMEM;
629 
630 	lru_add_drain();
631 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
632 	if (new_end > old_start) {
633 		/*
634 		 * when the old and new regions overlap clear from new_end.
635 		 */
636 		free_pgd_range(&tlb, new_end, old_end, new_end,
637 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
638 	} else {
639 		/*
640 		 * otherwise, clean from old_start; this is done to not touch
641 		 * the address space in [new_end, old_start) some architectures
642 		 * have constraints on va-space that make this illegal (IA64) -
643 		 * for the others its just a little faster.
644 		 */
645 		free_pgd_range(&tlb, old_start, old_end, new_end,
646 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
647 	}
648 	tlb_finish_mmu(&tlb, old_start, old_end);
649 
650 	/*
651 	 * Shrink the vma to just the new range.  Always succeeds.
652 	 */
653 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
654 
655 	return 0;
656 }
657 
658 /*
659  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
660  * the stack is optionally relocated, and some extra space is added.
661  */
662 int setup_arg_pages(struct linux_binprm *bprm,
663 		    unsigned long stack_top,
664 		    int executable_stack)
665 {
666 	unsigned long ret;
667 	unsigned long stack_shift;
668 	struct mm_struct *mm = current->mm;
669 	struct vm_area_struct *vma = bprm->vma;
670 	struct vm_area_struct *prev = NULL;
671 	unsigned long vm_flags;
672 	unsigned long stack_base;
673 	unsigned long stack_size;
674 	unsigned long stack_expand;
675 	unsigned long rlim_stack;
676 
677 #ifdef CONFIG_STACK_GROWSUP
678 	/* Limit stack size */
679 	stack_base = rlimit_max(RLIMIT_STACK);
680 	if (stack_base > STACK_SIZE_MAX)
681 		stack_base = STACK_SIZE_MAX;
682 
683 	/* Add space for stack randomization. */
684 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
685 
686 	/* Make sure we didn't let the argument array grow too large. */
687 	if (vma->vm_end - vma->vm_start > stack_base)
688 		return -ENOMEM;
689 
690 	stack_base = PAGE_ALIGN(stack_top - stack_base);
691 
692 	stack_shift = vma->vm_start - stack_base;
693 	mm->arg_start = bprm->p - stack_shift;
694 	bprm->p = vma->vm_end - stack_shift;
695 #else
696 	stack_top = arch_align_stack(stack_top);
697 	stack_top = PAGE_ALIGN(stack_top);
698 
699 	if (unlikely(stack_top < mmap_min_addr) ||
700 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
701 		return -ENOMEM;
702 
703 	stack_shift = vma->vm_end - stack_top;
704 
705 	bprm->p -= stack_shift;
706 	mm->arg_start = bprm->p;
707 #endif
708 
709 	if (bprm->loader)
710 		bprm->loader -= stack_shift;
711 	bprm->exec -= stack_shift;
712 
713 	if (down_write_killable(&mm->mmap_sem))
714 		return -EINTR;
715 
716 	vm_flags = VM_STACK_FLAGS;
717 
718 	/*
719 	 * Adjust stack execute permissions; explicitly enable for
720 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
721 	 * (arch default) otherwise.
722 	 */
723 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
724 		vm_flags |= VM_EXEC;
725 	else if (executable_stack == EXSTACK_DISABLE_X)
726 		vm_flags &= ~VM_EXEC;
727 	vm_flags |= mm->def_flags;
728 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
729 
730 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
731 			vm_flags);
732 	if (ret)
733 		goto out_unlock;
734 	BUG_ON(prev != vma);
735 
736 	/* Move stack pages down in memory. */
737 	if (stack_shift) {
738 		ret = shift_arg_pages(vma, stack_shift);
739 		if (ret)
740 			goto out_unlock;
741 	}
742 
743 	/* mprotect_fixup is overkill to remove the temporary stack flags */
744 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
745 
746 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
747 	stack_size = vma->vm_end - vma->vm_start;
748 	/*
749 	 * Align this down to a page boundary as expand_stack
750 	 * will align it up.
751 	 */
752 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
753 #ifdef CONFIG_STACK_GROWSUP
754 	if (stack_size + stack_expand > rlim_stack)
755 		stack_base = vma->vm_start + rlim_stack;
756 	else
757 		stack_base = vma->vm_end + stack_expand;
758 #else
759 	if (stack_size + stack_expand > rlim_stack)
760 		stack_base = vma->vm_end - rlim_stack;
761 	else
762 		stack_base = vma->vm_start - stack_expand;
763 #endif
764 	current->mm->start_stack = bprm->p;
765 	ret = expand_stack(vma, stack_base);
766 	if (ret)
767 		ret = -EFAULT;
768 
769 out_unlock:
770 	up_write(&mm->mmap_sem);
771 	return ret;
772 }
773 EXPORT_SYMBOL(setup_arg_pages);
774 
775 #else
776 
777 /*
778  * Transfer the program arguments and environment from the holding pages
779  * onto the stack. The provided stack pointer is adjusted accordingly.
780  */
781 int transfer_args_to_stack(struct linux_binprm *bprm,
782 			   unsigned long *sp_location)
783 {
784 	unsigned long index, stop, sp;
785 	int ret = 0;
786 
787 	stop = bprm->p >> PAGE_SHIFT;
788 	sp = *sp_location;
789 
790 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
791 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
792 		char *src = kmap(bprm->page[index]) + offset;
793 		sp -= PAGE_SIZE - offset;
794 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
795 			ret = -EFAULT;
796 		kunmap(bprm->page[index]);
797 		if (ret)
798 			goto out;
799 	}
800 
801 	*sp_location = sp;
802 
803 out:
804 	return ret;
805 }
806 EXPORT_SYMBOL(transfer_args_to_stack);
807 
808 #endif /* CONFIG_MMU */
809 
810 static struct file *do_open_execat(int fd, struct filename *name, int flags)
811 {
812 	struct file *file;
813 	int err;
814 	struct open_flags open_exec_flags = {
815 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
816 		.acc_mode = MAY_EXEC,
817 		.intent = LOOKUP_OPEN,
818 		.lookup_flags = LOOKUP_FOLLOW,
819 	};
820 
821 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
822 		return ERR_PTR(-EINVAL);
823 	if (flags & AT_SYMLINK_NOFOLLOW)
824 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
825 	if (flags & AT_EMPTY_PATH)
826 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
827 
828 	file = do_filp_open(fd, name, &open_exec_flags);
829 	if (IS_ERR(file))
830 		goto out;
831 
832 	err = -EACCES;
833 	if (!S_ISREG(file_inode(file)->i_mode))
834 		goto exit;
835 
836 	if (path_noexec(&file->f_path))
837 		goto exit;
838 
839 	err = deny_write_access(file);
840 	if (err)
841 		goto exit;
842 
843 	if (name->name[0] != '\0')
844 		fsnotify_open(file);
845 
846 out:
847 	return file;
848 
849 exit:
850 	fput(file);
851 	return ERR_PTR(err);
852 }
853 
854 struct file *open_exec(const char *name)
855 {
856 	struct filename *filename = getname_kernel(name);
857 	struct file *f = ERR_CAST(filename);
858 
859 	if (!IS_ERR(filename)) {
860 		f = do_open_execat(AT_FDCWD, filename, 0);
861 		putname(filename);
862 	}
863 	return f;
864 }
865 EXPORT_SYMBOL(open_exec);
866 
867 int kernel_read(struct file *file, loff_t offset,
868 		char *addr, unsigned long count)
869 {
870 	mm_segment_t old_fs;
871 	loff_t pos = offset;
872 	int result;
873 
874 	old_fs = get_fs();
875 	set_fs(get_ds());
876 	/* The cast to a user pointer is valid due to the set_fs() */
877 	result = vfs_read(file, (void __user *)addr, count, &pos);
878 	set_fs(old_fs);
879 	return result;
880 }
881 
882 EXPORT_SYMBOL(kernel_read);
883 
884 int kernel_read_file(struct file *file, void **buf, loff_t *size,
885 		     loff_t max_size, enum kernel_read_file_id id)
886 {
887 	loff_t i_size, pos;
888 	ssize_t bytes = 0;
889 	int ret;
890 
891 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
892 		return -EINVAL;
893 
894 	ret = security_kernel_read_file(file, id);
895 	if (ret)
896 		return ret;
897 
898 	ret = deny_write_access(file);
899 	if (ret)
900 		return ret;
901 
902 	i_size = i_size_read(file_inode(file));
903 	if (max_size > 0 && i_size > max_size) {
904 		ret = -EFBIG;
905 		goto out;
906 	}
907 	if (i_size <= 0) {
908 		ret = -EINVAL;
909 		goto out;
910 	}
911 
912 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
913 		*buf = vmalloc(i_size);
914 	if (!*buf) {
915 		ret = -ENOMEM;
916 		goto out;
917 	}
918 
919 	pos = 0;
920 	while (pos < i_size) {
921 		bytes = kernel_read(file, pos, (char *)(*buf) + pos,
922 				    i_size - pos);
923 		if (bytes < 0) {
924 			ret = bytes;
925 			goto out;
926 		}
927 
928 		if (bytes == 0)
929 			break;
930 		pos += bytes;
931 	}
932 
933 	if (pos != i_size) {
934 		ret = -EIO;
935 		goto out_free;
936 	}
937 
938 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
939 	if (!ret)
940 		*size = pos;
941 
942 out_free:
943 	if (ret < 0) {
944 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
945 			vfree(*buf);
946 			*buf = NULL;
947 		}
948 	}
949 
950 out:
951 	allow_write_access(file);
952 	return ret;
953 }
954 EXPORT_SYMBOL_GPL(kernel_read_file);
955 
956 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
957 			       loff_t max_size, enum kernel_read_file_id id)
958 {
959 	struct file *file;
960 	int ret;
961 
962 	if (!path || !*path)
963 		return -EINVAL;
964 
965 	file = filp_open(path, O_RDONLY, 0);
966 	if (IS_ERR(file))
967 		return PTR_ERR(file);
968 
969 	ret = kernel_read_file(file, buf, size, max_size, id);
970 	fput(file);
971 	return ret;
972 }
973 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
974 
975 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
976 			     enum kernel_read_file_id id)
977 {
978 	struct fd f = fdget(fd);
979 	int ret = -EBADF;
980 
981 	if (!f.file)
982 		goto out;
983 
984 	ret = kernel_read_file(f.file, buf, size, max_size, id);
985 out:
986 	fdput(f);
987 	return ret;
988 }
989 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
990 
991 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
992 {
993 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
994 	if (res > 0)
995 		flush_icache_range(addr, addr + len);
996 	return res;
997 }
998 EXPORT_SYMBOL(read_code);
999 
1000 static int exec_mmap(struct mm_struct *mm)
1001 {
1002 	struct task_struct *tsk;
1003 	struct mm_struct *old_mm, *active_mm;
1004 
1005 	/* Notify parent that we're no longer interested in the old VM */
1006 	tsk = current;
1007 	old_mm = current->mm;
1008 	mm_release(tsk, old_mm);
1009 
1010 	if (old_mm) {
1011 		sync_mm_rss(old_mm);
1012 		/*
1013 		 * Make sure that if there is a core dump in progress
1014 		 * for the old mm, we get out and die instead of going
1015 		 * through with the exec.  We must hold mmap_sem around
1016 		 * checking core_state and changing tsk->mm.
1017 		 */
1018 		down_read(&old_mm->mmap_sem);
1019 		if (unlikely(old_mm->core_state)) {
1020 			up_read(&old_mm->mmap_sem);
1021 			return -EINTR;
1022 		}
1023 	}
1024 	task_lock(tsk);
1025 	active_mm = tsk->active_mm;
1026 	tsk->mm = mm;
1027 	tsk->active_mm = mm;
1028 	activate_mm(active_mm, mm);
1029 	tsk->mm->vmacache_seqnum = 0;
1030 	vmacache_flush(tsk);
1031 	task_unlock(tsk);
1032 	if (old_mm) {
1033 		up_read(&old_mm->mmap_sem);
1034 		BUG_ON(active_mm != old_mm);
1035 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1036 		mm_update_next_owner(old_mm);
1037 		mmput(old_mm);
1038 		return 0;
1039 	}
1040 	mmdrop(active_mm);
1041 	return 0;
1042 }
1043 
1044 /*
1045  * This function makes sure the current process has its own signal table,
1046  * so that flush_signal_handlers can later reset the handlers without
1047  * disturbing other processes.  (Other processes might share the signal
1048  * table via the CLONE_SIGHAND option to clone().)
1049  */
1050 static int de_thread(struct task_struct *tsk)
1051 {
1052 	struct signal_struct *sig = tsk->signal;
1053 	struct sighand_struct *oldsighand = tsk->sighand;
1054 	spinlock_t *lock = &oldsighand->siglock;
1055 
1056 	if (thread_group_empty(tsk))
1057 		goto no_thread_group;
1058 
1059 	/*
1060 	 * Kill all other threads in the thread group.
1061 	 */
1062 	spin_lock_irq(lock);
1063 	if (signal_group_exit(sig)) {
1064 		/*
1065 		 * Another group action in progress, just
1066 		 * return so that the signal is processed.
1067 		 */
1068 		spin_unlock_irq(lock);
1069 		return -EAGAIN;
1070 	}
1071 
1072 	sig->group_exit_task = tsk;
1073 	sig->notify_count = zap_other_threads(tsk);
1074 	if (!thread_group_leader(tsk))
1075 		sig->notify_count--;
1076 
1077 	while (sig->notify_count) {
1078 		__set_current_state(TASK_KILLABLE);
1079 		spin_unlock_irq(lock);
1080 		schedule();
1081 		if (unlikely(__fatal_signal_pending(tsk)))
1082 			goto killed;
1083 		spin_lock_irq(lock);
1084 	}
1085 	spin_unlock_irq(lock);
1086 
1087 	/*
1088 	 * At this point all other threads have exited, all we have to
1089 	 * do is to wait for the thread group leader to become inactive,
1090 	 * and to assume its PID:
1091 	 */
1092 	if (!thread_group_leader(tsk)) {
1093 		struct task_struct *leader = tsk->group_leader;
1094 
1095 		for (;;) {
1096 			cgroup_threadgroup_change_begin(tsk);
1097 			write_lock_irq(&tasklist_lock);
1098 			/*
1099 			 * Do this under tasklist_lock to ensure that
1100 			 * exit_notify() can't miss ->group_exit_task
1101 			 */
1102 			sig->notify_count = -1;
1103 			if (likely(leader->exit_state))
1104 				break;
1105 			__set_current_state(TASK_KILLABLE);
1106 			write_unlock_irq(&tasklist_lock);
1107 			cgroup_threadgroup_change_end(tsk);
1108 			schedule();
1109 			if (unlikely(__fatal_signal_pending(tsk)))
1110 				goto killed;
1111 		}
1112 
1113 		/*
1114 		 * The only record we have of the real-time age of a
1115 		 * process, regardless of execs it's done, is start_time.
1116 		 * All the past CPU time is accumulated in signal_struct
1117 		 * from sister threads now dead.  But in this non-leader
1118 		 * exec, nothing survives from the original leader thread,
1119 		 * whose birth marks the true age of this process now.
1120 		 * When we take on its identity by switching to its PID, we
1121 		 * also take its birthdate (always earlier than our own).
1122 		 */
1123 		tsk->start_time = leader->start_time;
1124 		tsk->real_start_time = leader->real_start_time;
1125 
1126 		BUG_ON(!same_thread_group(leader, tsk));
1127 		BUG_ON(has_group_leader_pid(tsk));
1128 		/*
1129 		 * An exec() starts a new thread group with the
1130 		 * TGID of the previous thread group. Rehash the
1131 		 * two threads with a switched PID, and release
1132 		 * the former thread group leader:
1133 		 */
1134 
1135 		/* Become a process group leader with the old leader's pid.
1136 		 * The old leader becomes a thread of the this thread group.
1137 		 * Note: The old leader also uses this pid until release_task
1138 		 *       is called.  Odd but simple and correct.
1139 		 */
1140 		tsk->pid = leader->pid;
1141 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1142 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1143 		transfer_pid(leader, tsk, PIDTYPE_SID);
1144 
1145 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1146 		list_replace_init(&leader->sibling, &tsk->sibling);
1147 
1148 		tsk->group_leader = tsk;
1149 		leader->group_leader = tsk;
1150 
1151 		tsk->exit_signal = SIGCHLD;
1152 		leader->exit_signal = -1;
1153 
1154 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1155 		leader->exit_state = EXIT_DEAD;
1156 
1157 		/*
1158 		 * We are going to release_task()->ptrace_unlink() silently,
1159 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1160 		 * the tracer wont't block again waiting for this thread.
1161 		 */
1162 		if (unlikely(leader->ptrace))
1163 			__wake_up_parent(leader, leader->parent);
1164 		write_unlock_irq(&tasklist_lock);
1165 		cgroup_threadgroup_change_end(tsk);
1166 
1167 		release_task(leader);
1168 	}
1169 
1170 	sig->group_exit_task = NULL;
1171 	sig->notify_count = 0;
1172 
1173 no_thread_group:
1174 	/* we have changed execution domain */
1175 	tsk->exit_signal = SIGCHLD;
1176 
1177 #ifdef CONFIG_POSIX_TIMERS
1178 	exit_itimers(sig);
1179 	flush_itimer_signals();
1180 #endif
1181 
1182 	if (atomic_read(&oldsighand->count) != 1) {
1183 		struct sighand_struct *newsighand;
1184 		/*
1185 		 * This ->sighand is shared with the CLONE_SIGHAND
1186 		 * but not CLONE_THREAD task, switch to the new one.
1187 		 */
1188 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1189 		if (!newsighand)
1190 			return -ENOMEM;
1191 
1192 		atomic_set(&newsighand->count, 1);
1193 		memcpy(newsighand->action, oldsighand->action,
1194 		       sizeof(newsighand->action));
1195 
1196 		write_lock_irq(&tasklist_lock);
1197 		spin_lock(&oldsighand->siglock);
1198 		rcu_assign_pointer(tsk->sighand, newsighand);
1199 		spin_unlock(&oldsighand->siglock);
1200 		write_unlock_irq(&tasklist_lock);
1201 
1202 		__cleanup_sighand(oldsighand);
1203 	}
1204 
1205 	BUG_ON(!thread_group_leader(tsk));
1206 	return 0;
1207 
1208 killed:
1209 	/* protects against exit_notify() and __exit_signal() */
1210 	read_lock(&tasklist_lock);
1211 	sig->group_exit_task = NULL;
1212 	sig->notify_count = 0;
1213 	read_unlock(&tasklist_lock);
1214 	return -EAGAIN;
1215 }
1216 
1217 char *get_task_comm(char *buf, struct task_struct *tsk)
1218 {
1219 	/* buf must be at least sizeof(tsk->comm) in size */
1220 	task_lock(tsk);
1221 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1222 	task_unlock(tsk);
1223 	return buf;
1224 }
1225 EXPORT_SYMBOL_GPL(get_task_comm);
1226 
1227 /*
1228  * These functions flushes out all traces of the currently running executable
1229  * so that a new one can be started
1230  */
1231 
1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1233 {
1234 	task_lock(tsk);
1235 	trace_task_rename(tsk, buf);
1236 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1237 	task_unlock(tsk);
1238 	perf_event_comm(tsk, exec);
1239 }
1240 
1241 int flush_old_exec(struct linux_binprm * bprm)
1242 {
1243 	int retval;
1244 
1245 	/*
1246 	 * Make sure we have a private signal table and that
1247 	 * we are unassociated from the previous thread group.
1248 	 */
1249 	retval = de_thread(current);
1250 	if (retval)
1251 		goto out;
1252 
1253 	/*
1254 	 * Must be called _before_ exec_mmap() as bprm->mm is
1255 	 * not visibile until then. This also enables the update
1256 	 * to be lockless.
1257 	 */
1258 	set_mm_exe_file(bprm->mm, bprm->file);
1259 
1260 	/*
1261 	 * Release all of the old mmap stuff
1262 	 */
1263 	acct_arg_size(bprm, 0);
1264 	retval = exec_mmap(bprm->mm);
1265 	if (retval)
1266 		goto out;
1267 
1268 	bprm->mm = NULL;		/* We're using it now */
1269 
1270 	set_fs(USER_DS);
1271 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1272 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1273 	flush_thread();
1274 	current->personality &= ~bprm->per_clear;
1275 
1276 	/*
1277 	 * We have to apply CLOEXEC before we change whether the process is
1278 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1279 	 * trying to access the should-be-closed file descriptors of a process
1280 	 * undergoing exec(2).
1281 	 */
1282 	do_close_on_exec(current->files);
1283 	return 0;
1284 
1285 out:
1286 	return retval;
1287 }
1288 EXPORT_SYMBOL(flush_old_exec);
1289 
1290 void would_dump(struct linux_binprm *bprm, struct file *file)
1291 {
1292 	struct inode *inode = file_inode(file);
1293 	if (inode_permission(inode, MAY_READ) < 0) {
1294 		struct user_namespace *old, *user_ns;
1295 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1296 
1297 		/* Ensure mm->user_ns contains the executable */
1298 		user_ns = old = bprm->mm->user_ns;
1299 		while ((user_ns != &init_user_ns) &&
1300 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1301 			user_ns = user_ns->parent;
1302 
1303 		if (old != user_ns) {
1304 			bprm->mm->user_ns = get_user_ns(user_ns);
1305 			put_user_ns(old);
1306 		}
1307 	}
1308 }
1309 EXPORT_SYMBOL(would_dump);
1310 
1311 void setup_new_exec(struct linux_binprm * bprm)
1312 {
1313 	arch_pick_mmap_layout(current->mm);
1314 
1315 	/* This is the point of no return */
1316 	current->sas_ss_sp = current->sas_ss_size = 0;
1317 
1318 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1319 		set_dumpable(current->mm, SUID_DUMP_USER);
1320 	else
1321 		set_dumpable(current->mm, suid_dumpable);
1322 
1323 	arch_setup_new_exec();
1324 	perf_event_exec();
1325 	__set_task_comm(current, kbasename(bprm->filename), true);
1326 
1327 	/* Set the new mm task size. We have to do that late because it may
1328 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1329 	 * some architectures like powerpc
1330 	 */
1331 	current->mm->task_size = TASK_SIZE;
1332 
1333 	/* install the new credentials */
1334 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1335 	    !gid_eq(bprm->cred->gid, current_egid())) {
1336 		current->pdeath_signal = 0;
1337 	} else {
1338 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1339 			set_dumpable(current->mm, suid_dumpable);
1340 	}
1341 
1342 	/* An exec changes our domain. We are no longer part of the thread
1343 	   group */
1344 	current->self_exec_id++;
1345 	flush_signal_handlers(current, 0);
1346 }
1347 EXPORT_SYMBOL(setup_new_exec);
1348 
1349 /*
1350  * Prepare credentials and lock ->cred_guard_mutex.
1351  * install_exec_creds() commits the new creds and drops the lock.
1352  * Or, if exec fails before, free_bprm() should release ->cred and
1353  * and unlock.
1354  */
1355 int prepare_bprm_creds(struct linux_binprm *bprm)
1356 {
1357 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1358 		return -ERESTARTNOINTR;
1359 
1360 	bprm->cred = prepare_exec_creds();
1361 	if (likely(bprm->cred))
1362 		return 0;
1363 
1364 	mutex_unlock(&current->signal->cred_guard_mutex);
1365 	return -ENOMEM;
1366 }
1367 
1368 static void free_bprm(struct linux_binprm *bprm)
1369 {
1370 	free_arg_pages(bprm);
1371 	if (bprm->cred) {
1372 		mutex_unlock(&current->signal->cred_guard_mutex);
1373 		abort_creds(bprm->cred);
1374 	}
1375 	if (bprm->file) {
1376 		allow_write_access(bprm->file);
1377 		fput(bprm->file);
1378 	}
1379 	/* If a binfmt changed the interp, free it. */
1380 	if (bprm->interp != bprm->filename)
1381 		kfree(bprm->interp);
1382 	kfree(bprm);
1383 }
1384 
1385 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1386 {
1387 	/* If a binfmt changed the interp, free it first. */
1388 	if (bprm->interp != bprm->filename)
1389 		kfree(bprm->interp);
1390 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1391 	if (!bprm->interp)
1392 		return -ENOMEM;
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL(bprm_change_interp);
1396 
1397 /*
1398  * install the new credentials for this executable
1399  */
1400 void install_exec_creds(struct linux_binprm *bprm)
1401 {
1402 	security_bprm_committing_creds(bprm);
1403 
1404 	commit_creds(bprm->cred);
1405 	bprm->cred = NULL;
1406 
1407 	/*
1408 	 * Disable monitoring for regular users
1409 	 * when executing setuid binaries. Must
1410 	 * wait until new credentials are committed
1411 	 * by commit_creds() above
1412 	 */
1413 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1414 		perf_event_exit_task(current);
1415 	/*
1416 	 * cred_guard_mutex must be held at least to this point to prevent
1417 	 * ptrace_attach() from altering our determination of the task's
1418 	 * credentials; any time after this it may be unlocked.
1419 	 */
1420 	security_bprm_committed_creds(bprm);
1421 	mutex_unlock(&current->signal->cred_guard_mutex);
1422 }
1423 EXPORT_SYMBOL(install_exec_creds);
1424 
1425 /*
1426  * determine how safe it is to execute the proposed program
1427  * - the caller must hold ->cred_guard_mutex to protect against
1428  *   PTRACE_ATTACH or seccomp thread-sync
1429  */
1430 static void check_unsafe_exec(struct linux_binprm *bprm)
1431 {
1432 	struct task_struct *p = current, *t;
1433 	unsigned n_fs;
1434 
1435 	if (p->ptrace)
1436 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1437 
1438 	/*
1439 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1440 	 * mess up.
1441 	 */
1442 	if (task_no_new_privs(current))
1443 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1444 
1445 	t = p;
1446 	n_fs = 1;
1447 	spin_lock(&p->fs->lock);
1448 	rcu_read_lock();
1449 	while_each_thread(p, t) {
1450 		if (t->fs == p->fs)
1451 			n_fs++;
1452 	}
1453 	rcu_read_unlock();
1454 
1455 	if (p->fs->users > n_fs)
1456 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1457 	else
1458 		p->fs->in_exec = 1;
1459 	spin_unlock(&p->fs->lock);
1460 }
1461 
1462 static void bprm_fill_uid(struct linux_binprm *bprm)
1463 {
1464 	struct inode *inode;
1465 	unsigned int mode;
1466 	kuid_t uid;
1467 	kgid_t gid;
1468 
1469 	/*
1470 	 * Since this can be called multiple times (via prepare_binprm),
1471 	 * we must clear any previous work done when setting set[ug]id
1472 	 * bits from any earlier bprm->file uses (for example when run
1473 	 * first for a setuid script then again for its interpreter).
1474 	 */
1475 	bprm->cred->euid = current_euid();
1476 	bprm->cred->egid = current_egid();
1477 
1478 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1479 		return;
1480 
1481 	if (task_no_new_privs(current))
1482 		return;
1483 
1484 	inode = bprm->file->f_path.dentry->d_inode;
1485 	mode = READ_ONCE(inode->i_mode);
1486 	if (!(mode & (S_ISUID|S_ISGID)))
1487 		return;
1488 
1489 	/* Be careful if suid/sgid is set */
1490 	inode_lock(inode);
1491 
1492 	/* reload atomically mode/uid/gid now that lock held */
1493 	mode = inode->i_mode;
1494 	uid = inode->i_uid;
1495 	gid = inode->i_gid;
1496 	inode_unlock(inode);
1497 
1498 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1499 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1500 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1501 		return;
1502 
1503 	if (mode & S_ISUID) {
1504 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1505 		bprm->cred->euid = uid;
1506 	}
1507 
1508 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1509 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1510 		bprm->cred->egid = gid;
1511 	}
1512 }
1513 
1514 /*
1515  * Fill the binprm structure from the inode.
1516  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1517  *
1518  * This may be called multiple times for binary chains (scripts for example).
1519  */
1520 int prepare_binprm(struct linux_binprm *bprm)
1521 {
1522 	int retval;
1523 
1524 	bprm_fill_uid(bprm);
1525 
1526 	/* fill in binprm security blob */
1527 	retval = security_bprm_set_creds(bprm);
1528 	if (retval)
1529 		return retval;
1530 	bprm->cred_prepared = 1;
1531 
1532 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1533 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1534 }
1535 
1536 EXPORT_SYMBOL(prepare_binprm);
1537 
1538 /*
1539  * Arguments are '\0' separated strings found at the location bprm->p
1540  * points to; chop off the first by relocating brpm->p to right after
1541  * the first '\0' encountered.
1542  */
1543 int remove_arg_zero(struct linux_binprm *bprm)
1544 {
1545 	int ret = 0;
1546 	unsigned long offset;
1547 	char *kaddr;
1548 	struct page *page;
1549 
1550 	if (!bprm->argc)
1551 		return 0;
1552 
1553 	do {
1554 		offset = bprm->p & ~PAGE_MASK;
1555 		page = get_arg_page(bprm, bprm->p, 0);
1556 		if (!page) {
1557 			ret = -EFAULT;
1558 			goto out;
1559 		}
1560 		kaddr = kmap_atomic(page);
1561 
1562 		for (; offset < PAGE_SIZE && kaddr[offset];
1563 				offset++, bprm->p++)
1564 			;
1565 
1566 		kunmap_atomic(kaddr);
1567 		put_arg_page(page);
1568 	} while (offset == PAGE_SIZE);
1569 
1570 	bprm->p++;
1571 	bprm->argc--;
1572 	ret = 0;
1573 
1574 out:
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL(remove_arg_zero);
1578 
1579 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1580 /*
1581  * cycle the list of binary formats handler, until one recognizes the image
1582  */
1583 int search_binary_handler(struct linux_binprm *bprm)
1584 {
1585 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1586 	struct linux_binfmt *fmt;
1587 	int retval;
1588 
1589 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1590 	if (bprm->recursion_depth > 5)
1591 		return -ELOOP;
1592 
1593 	retval = security_bprm_check(bprm);
1594 	if (retval)
1595 		return retval;
1596 
1597 	retval = -ENOENT;
1598  retry:
1599 	read_lock(&binfmt_lock);
1600 	list_for_each_entry(fmt, &formats, lh) {
1601 		if (!try_module_get(fmt->module))
1602 			continue;
1603 		read_unlock(&binfmt_lock);
1604 		bprm->recursion_depth++;
1605 		retval = fmt->load_binary(bprm);
1606 		read_lock(&binfmt_lock);
1607 		put_binfmt(fmt);
1608 		bprm->recursion_depth--;
1609 		if (retval < 0 && !bprm->mm) {
1610 			/* we got to flush_old_exec() and failed after it */
1611 			read_unlock(&binfmt_lock);
1612 			force_sigsegv(SIGSEGV, current);
1613 			return retval;
1614 		}
1615 		if (retval != -ENOEXEC || !bprm->file) {
1616 			read_unlock(&binfmt_lock);
1617 			return retval;
1618 		}
1619 	}
1620 	read_unlock(&binfmt_lock);
1621 
1622 	if (need_retry) {
1623 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1624 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1625 			return retval;
1626 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1627 			return retval;
1628 		need_retry = false;
1629 		goto retry;
1630 	}
1631 
1632 	return retval;
1633 }
1634 EXPORT_SYMBOL(search_binary_handler);
1635 
1636 static int exec_binprm(struct linux_binprm *bprm)
1637 {
1638 	pid_t old_pid, old_vpid;
1639 	int ret;
1640 
1641 	/* Need to fetch pid before load_binary changes it */
1642 	old_pid = current->pid;
1643 	rcu_read_lock();
1644 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1645 	rcu_read_unlock();
1646 
1647 	ret = search_binary_handler(bprm);
1648 	if (ret >= 0) {
1649 		audit_bprm(bprm);
1650 		trace_sched_process_exec(current, old_pid, bprm);
1651 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1652 		proc_exec_connector(current);
1653 	}
1654 
1655 	return ret;
1656 }
1657 
1658 /*
1659  * sys_execve() executes a new program.
1660  */
1661 static int do_execveat_common(int fd, struct filename *filename,
1662 			      struct user_arg_ptr argv,
1663 			      struct user_arg_ptr envp,
1664 			      int flags)
1665 {
1666 	char *pathbuf = NULL;
1667 	struct linux_binprm *bprm;
1668 	struct file *file;
1669 	struct files_struct *displaced;
1670 	int retval;
1671 
1672 	if (IS_ERR(filename))
1673 		return PTR_ERR(filename);
1674 
1675 	/*
1676 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1677 	 * set*uid() to execve() because too many poorly written programs
1678 	 * don't check setuid() return code.  Here we additionally recheck
1679 	 * whether NPROC limit is still exceeded.
1680 	 */
1681 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1682 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1683 		retval = -EAGAIN;
1684 		goto out_ret;
1685 	}
1686 
1687 	/* We're below the limit (still or again), so we don't want to make
1688 	 * further execve() calls fail. */
1689 	current->flags &= ~PF_NPROC_EXCEEDED;
1690 
1691 	retval = unshare_files(&displaced);
1692 	if (retval)
1693 		goto out_ret;
1694 
1695 	retval = -ENOMEM;
1696 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1697 	if (!bprm)
1698 		goto out_files;
1699 
1700 	retval = prepare_bprm_creds(bprm);
1701 	if (retval)
1702 		goto out_free;
1703 
1704 	check_unsafe_exec(bprm);
1705 	current->in_execve = 1;
1706 
1707 	file = do_open_execat(fd, filename, flags);
1708 	retval = PTR_ERR(file);
1709 	if (IS_ERR(file))
1710 		goto out_unmark;
1711 
1712 	sched_exec();
1713 
1714 	bprm->file = file;
1715 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1716 		bprm->filename = filename->name;
1717 	} else {
1718 		if (filename->name[0] == '\0')
1719 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1720 		else
1721 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1722 					    fd, filename->name);
1723 		if (!pathbuf) {
1724 			retval = -ENOMEM;
1725 			goto out_unmark;
1726 		}
1727 		/*
1728 		 * Record that a name derived from an O_CLOEXEC fd will be
1729 		 * inaccessible after exec. Relies on having exclusive access to
1730 		 * current->files (due to unshare_files above).
1731 		 */
1732 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1733 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1734 		bprm->filename = pathbuf;
1735 	}
1736 	bprm->interp = bprm->filename;
1737 
1738 	retval = bprm_mm_init(bprm);
1739 	if (retval)
1740 		goto out_unmark;
1741 
1742 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1743 	if ((retval = bprm->argc) < 0)
1744 		goto out;
1745 
1746 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1747 	if ((retval = bprm->envc) < 0)
1748 		goto out;
1749 
1750 	retval = prepare_binprm(bprm);
1751 	if (retval < 0)
1752 		goto out;
1753 
1754 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1755 	if (retval < 0)
1756 		goto out;
1757 
1758 	bprm->exec = bprm->p;
1759 	retval = copy_strings(bprm->envc, envp, bprm);
1760 	if (retval < 0)
1761 		goto out;
1762 
1763 	retval = copy_strings(bprm->argc, argv, bprm);
1764 	if (retval < 0)
1765 		goto out;
1766 
1767 	would_dump(bprm, bprm->file);
1768 
1769 	retval = exec_binprm(bprm);
1770 	if (retval < 0)
1771 		goto out;
1772 
1773 	/* execve succeeded */
1774 	current->fs->in_exec = 0;
1775 	current->in_execve = 0;
1776 	acct_update_integrals(current);
1777 	task_numa_free(current);
1778 	free_bprm(bprm);
1779 	kfree(pathbuf);
1780 	putname(filename);
1781 	if (displaced)
1782 		put_files_struct(displaced);
1783 	return retval;
1784 
1785 out:
1786 	if (bprm->mm) {
1787 		acct_arg_size(bprm, 0);
1788 		mmput(bprm->mm);
1789 	}
1790 
1791 out_unmark:
1792 	current->fs->in_exec = 0;
1793 	current->in_execve = 0;
1794 
1795 out_free:
1796 	free_bprm(bprm);
1797 	kfree(pathbuf);
1798 
1799 out_files:
1800 	if (displaced)
1801 		reset_files_struct(displaced);
1802 out_ret:
1803 	putname(filename);
1804 	return retval;
1805 }
1806 
1807 int do_execve(struct filename *filename,
1808 	const char __user *const __user *__argv,
1809 	const char __user *const __user *__envp)
1810 {
1811 	struct user_arg_ptr argv = { .ptr.native = __argv };
1812 	struct user_arg_ptr envp = { .ptr.native = __envp };
1813 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1814 }
1815 
1816 int do_execveat(int fd, struct filename *filename,
1817 		const char __user *const __user *__argv,
1818 		const char __user *const __user *__envp,
1819 		int flags)
1820 {
1821 	struct user_arg_ptr argv = { .ptr.native = __argv };
1822 	struct user_arg_ptr envp = { .ptr.native = __envp };
1823 
1824 	return do_execveat_common(fd, filename, argv, envp, flags);
1825 }
1826 
1827 #ifdef CONFIG_COMPAT
1828 static int compat_do_execve(struct filename *filename,
1829 	const compat_uptr_t __user *__argv,
1830 	const compat_uptr_t __user *__envp)
1831 {
1832 	struct user_arg_ptr argv = {
1833 		.is_compat = true,
1834 		.ptr.compat = __argv,
1835 	};
1836 	struct user_arg_ptr envp = {
1837 		.is_compat = true,
1838 		.ptr.compat = __envp,
1839 	};
1840 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1841 }
1842 
1843 static int compat_do_execveat(int fd, struct filename *filename,
1844 			      const compat_uptr_t __user *__argv,
1845 			      const compat_uptr_t __user *__envp,
1846 			      int flags)
1847 {
1848 	struct user_arg_ptr argv = {
1849 		.is_compat = true,
1850 		.ptr.compat = __argv,
1851 	};
1852 	struct user_arg_ptr envp = {
1853 		.is_compat = true,
1854 		.ptr.compat = __envp,
1855 	};
1856 	return do_execveat_common(fd, filename, argv, envp, flags);
1857 }
1858 #endif
1859 
1860 void set_binfmt(struct linux_binfmt *new)
1861 {
1862 	struct mm_struct *mm = current->mm;
1863 
1864 	if (mm->binfmt)
1865 		module_put(mm->binfmt->module);
1866 
1867 	mm->binfmt = new;
1868 	if (new)
1869 		__module_get(new->module);
1870 }
1871 EXPORT_SYMBOL(set_binfmt);
1872 
1873 /*
1874  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1875  */
1876 void set_dumpable(struct mm_struct *mm, int value)
1877 {
1878 	unsigned long old, new;
1879 
1880 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1881 		return;
1882 
1883 	do {
1884 		old = ACCESS_ONCE(mm->flags);
1885 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1886 	} while (cmpxchg(&mm->flags, old, new) != old);
1887 }
1888 
1889 SYSCALL_DEFINE3(execve,
1890 		const char __user *, filename,
1891 		const char __user *const __user *, argv,
1892 		const char __user *const __user *, envp)
1893 {
1894 	return do_execve(getname(filename), argv, envp);
1895 }
1896 
1897 SYSCALL_DEFINE5(execveat,
1898 		int, fd, const char __user *, filename,
1899 		const char __user *const __user *, argv,
1900 		const char __user *const __user *, envp,
1901 		int, flags)
1902 {
1903 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1904 
1905 	return do_execveat(fd,
1906 			   getname_flags(filename, lookup_flags, NULL),
1907 			   argv, envp, flags);
1908 }
1909 
1910 #ifdef CONFIG_COMPAT
1911 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1912 	const compat_uptr_t __user *, argv,
1913 	const compat_uptr_t __user *, envp)
1914 {
1915 	return compat_do_execve(getname(filename), argv, envp);
1916 }
1917 
1918 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1919 		       const char __user *, filename,
1920 		       const compat_uptr_t __user *, argv,
1921 		       const compat_uptr_t __user *, envp,
1922 		       int,  flags)
1923 {
1924 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1925 
1926 	return compat_do_execveat(fd,
1927 				  getname_flags(filename, lookup_flags, NULL),
1928 				  argv, envp, flags);
1929 }
1930 #endif
1931