1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/swap.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/security.h> 49 #include <linux/syscalls.h> 50 #include <linux/rmap.h> 51 #include <linux/tsacct_kern.h> 52 #include <linux/cn_proc.h> 53 #include <linux/audit.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef CONFIG_KMOD 60 #include <linux/kmod.h> 61 #endif 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 int suid_dumpable = 0; 66 67 /* The maximal length of core_pattern is also specified in sysctl.c */ 68 69 static LIST_HEAD(formats); 70 static DEFINE_RWLOCK(binfmt_lock); 71 72 int register_binfmt(struct linux_binfmt * fmt) 73 { 74 if (!fmt) 75 return -EINVAL; 76 write_lock(&binfmt_lock); 77 list_add(&fmt->lh, &formats); 78 write_unlock(&binfmt_lock); 79 return 0; 80 } 81 82 EXPORT_SYMBOL(register_binfmt); 83 84 void unregister_binfmt(struct linux_binfmt * fmt) 85 { 86 write_lock(&binfmt_lock); 87 list_del(&fmt->lh); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(unregister_binfmt); 92 93 static inline void put_binfmt(struct linux_binfmt * fmt) 94 { 95 module_put(fmt->module); 96 } 97 98 /* 99 * Note that a shared library must be both readable and executable due to 100 * security reasons. 101 * 102 * Also note that we take the address to load from from the file itself. 103 */ 104 asmlinkage long sys_uselib(const char __user * library) 105 { 106 struct file * file; 107 struct nameidata nd; 108 int error; 109 110 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 111 if (error) 112 goto out; 113 114 error = -EINVAL; 115 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 116 goto exit; 117 118 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 119 if (error) 120 goto exit; 121 122 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 123 error = PTR_ERR(file); 124 if (IS_ERR(file)) 125 goto out; 126 127 error = -ENOEXEC; 128 if(file->f_op) { 129 struct linux_binfmt * fmt; 130 131 read_lock(&binfmt_lock); 132 list_for_each_entry(fmt, &formats, lh) { 133 if (!fmt->load_shlib) 134 continue; 135 if (!try_module_get(fmt->module)) 136 continue; 137 read_unlock(&binfmt_lock); 138 error = fmt->load_shlib(file); 139 read_lock(&binfmt_lock); 140 put_binfmt(fmt); 141 if (error != -ENOEXEC) 142 break; 143 } 144 read_unlock(&binfmt_lock); 145 } 146 fput(file); 147 out: 148 return error; 149 exit: 150 release_open_intent(&nd); 151 path_put(&nd.path); 152 goto out; 153 } 154 155 #ifdef CONFIG_MMU 156 157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 158 int write) 159 { 160 struct page *page; 161 int ret; 162 163 #ifdef CONFIG_STACK_GROWSUP 164 if (write) { 165 ret = expand_stack_downwards(bprm->vma, pos); 166 if (ret < 0) 167 return NULL; 168 } 169 #endif 170 ret = get_user_pages(current, bprm->mm, pos, 171 1, write, 1, &page, NULL); 172 if (ret <= 0) 173 return NULL; 174 175 if (write) { 176 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 177 struct rlimit *rlim; 178 179 /* 180 * We've historically supported up to 32 pages (ARG_MAX) 181 * of argument strings even with small stacks 182 */ 183 if (size <= ARG_MAX) 184 return page; 185 186 /* 187 * Limit to 1/4-th the stack size for the argv+env strings. 188 * This ensures that: 189 * - the remaining binfmt code will not run out of stack space, 190 * - the program will have a reasonable amount of stack left 191 * to work from. 192 */ 193 rlim = current->signal->rlim; 194 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 195 put_page(page); 196 return NULL; 197 } 198 } 199 200 return page; 201 } 202 203 static void put_arg_page(struct page *page) 204 { 205 put_page(page); 206 } 207 208 static void free_arg_page(struct linux_binprm *bprm, int i) 209 { 210 } 211 212 static void free_arg_pages(struct linux_binprm *bprm) 213 { 214 } 215 216 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 217 struct page *page) 218 { 219 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 220 } 221 222 static int __bprm_mm_init(struct linux_binprm *bprm) 223 { 224 int err = -ENOMEM; 225 struct vm_area_struct *vma = NULL; 226 struct mm_struct *mm = bprm->mm; 227 228 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 229 if (!vma) 230 goto err; 231 232 down_write(&mm->mmap_sem); 233 vma->vm_mm = mm; 234 235 /* 236 * Place the stack at the largest stack address the architecture 237 * supports. Later, we'll move this to an appropriate place. We don't 238 * use STACK_TOP because that can depend on attributes which aren't 239 * configured yet. 240 */ 241 vma->vm_end = STACK_TOP_MAX; 242 vma->vm_start = vma->vm_end - PAGE_SIZE; 243 244 vma->vm_flags = VM_STACK_FLAGS; 245 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 246 err = insert_vm_struct(mm, vma); 247 if (err) { 248 up_write(&mm->mmap_sem); 249 goto err; 250 } 251 252 mm->stack_vm = mm->total_vm = 1; 253 up_write(&mm->mmap_sem); 254 255 bprm->p = vma->vm_end - sizeof(void *); 256 257 return 0; 258 259 err: 260 if (vma) { 261 bprm->vma = NULL; 262 kmem_cache_free(vm_area_cachep, vma); 263 } 264 265 return err; 266 } 267 268 static bool valid_arg_len(struct linux_binprm *bprm, long len) 269 { 270 return len <= MAX_ARG_STRLEN; 271 } 272 273 #else 274 275 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 276 int write) 277 { 278 struct page *page; 279 280 page = bprm->page[pos / PAGE_SIZE]; 281 if (!page && write) { 282 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 283 if (!page) 284 return NULL; 285 bprm->page[pos / PAGE_SIZE] = page; 286 } 287 288 return page; 289 } 290 291 static void put_arg_page(struct page *page) 292 { 293 } 294 295 static void free_arg_page(struct linux_binprm *bprm, int i) 296 { 297 if (bprm->page[i]) { 298 __free_page(bprm->page[i]); 299 bprm->page[i] = NULL; 300 } 301 } 302 303 static void free_arg_pages(struct linux_binprm *bprm) 304 { 305 int i; 306 307 for (i = 0; i < MAX_ARG_PAGES; i++) 308 free_arg_page(bprm, i); 309 } 310 311 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 312 struct page *page) 313 { 314 } 315 316 static int __bprm_mm_init(struct linux_binprm *bprm) 317 { 318 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 319 return 0; 320 } 321 322 static bool valid_arg_len(struct linux_binprm *bprm, long len) 323 { 324 return len <= bprm->p; 325 } 326 327 #endif /* CONFIG_MMU */ 328 329 /* 330 * Create a new mm_struct and populate it with a temporary stack 331 * vm_area_struct. We don't have enough context at this point to set the stack 332 * flags, permissions, and offset, so we use temporary values. We'll update 333 * them later in setup_arg_pages(). 334 */ 335 int bprm_mm_init(struct linux_binprm *bprm) 336 { 337 int err; 338 struct mm_struct *mm = NULL; 339 340 bprm->mm = mm = mm_alloc(); 341 err = -ENOMEM; 342 if (!mm) 343 goto err; 344 345 err = init_new_context(current, mm); 346 if (err) 347 goto err; 348 349 err = __bprm_mm_init(bprm); 350 if (err) 351 goto err; 352 353 return 0; 354 355 err: 356 if (mm) { 357 bprm->mm = NULL; 358 mmdrop(mm); 359 } 360 361 return err; 362 } 363 364 /* 365 * count() counts the number of strings in array ARGV. 366 */ 367 static int count(char __user * __user * argv, int max) 368 { 369 int i = 0; 370 371 if (argv != NULL) { 372 for (;;) { 373 char __user * p; 374 375 if (get_user(p, argv)) 376 return -EFAULT; 377 if (!p) 378 break; 379 argv++; 380 if(++i > max) 381 return -E2BIG; 382 cond_resched(); 383 } 384 } 385 return i; 386 } 387 388 /* 389 * 'copy_strings()' copies argument/environment strings from the old 390 * processes's memory to the new process's stack. The call to get_user_pages() 391 * ensures the destination page is created and not swapped out. 392 */ 393 static int copy_strings(int argc, char __user * __user * argv, 394 struct linux_binprm *bprm) 395 { 396 struct page *kmapped_page = NULL; 397 char *kaddr = NULL; 398 unsigned long kpos = 0; 399 int ret; 400 401 while (argc-- > 0) { 402 char __user *str; 403 int len; 404 unsigned long pos; 405 406 if (get_user(str, argv+argc) || 407 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 408 ret = -EFAULT; 409 goto out; 410 } 411 412 if (!valid_arg_len(bprm, len)) { 413 ret = -E2BIG; 414 goto out; 415 } 416 417 /* We're going to work our way backwords. */ 418 pos = bprm->p; 419 str += len; 420 bprm->p -= len; 421 422 while (len > 0) { 423 int offset, bytes_to_copy; 424 425 offset = pos % PAGE_SIZE; 426 if (offset == 0) 427 offset = PAGE_SIZE; 428 429 bytes_to_copy = offset; 430 if (bytes_to_copy > len) 431 bytes_to_copy = len; 432 433 offset -= bytes_to_copy; 434 pos -= bytes_to_copy; 435 str -= bytes_to_copy; 436 len -= bytes_to_copy; 437 438 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 439 struct page *page; 440 441 page = get_arg_page(bprm, pos, 1); 442 if (!page) { 443 ret = -E2BIG; 444 goto out; 445 } 446 447 if (kmapped_page) { 448 flush_kernel_dcache_page(kmapped_page); 449 kunmap(kmapped_page); 450 put_arg_page(kmapped_page); 451 } 452 kmapped_page = page; 453 kaddr = kmap(kmapped_page); 454 kpos = pos & PAGE_MASK; 455 flush_arg_page(bprm, kpos, kmapped_page); 456 } 457 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 458 ret = -EFAULT; 459 goto out; 460 } 461 } 462 } 463 ret = 0; 464 out: 465 if (kmapped_page) { 466 flush_kernel_dcache_page(kmapped_page); 467 kunmap(kmapped_page); 468 put_arg_page(kmapped_page); 469 } 470 return ret; 471 } 472 473 /* 474 * Like copy_strings, but get argv and its values from kernel memory. 475 */ 476 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 477 { 478 int r; 479 mm_segment_t oldfs = get_fs(); 480 set_fs(KERNEL_DS); 481 r = copy_strings(argc, (char __user * __user *)argv, bprm); 482 set_fs(oldfs); 483 return r; 484 } 485 EXPORT_SYMBOL(copy_strings_kernel); 486 487 #ifdef CONFIG_MMU 488 489 /* 490 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 491 * the binfmt code determines where the new stack should reside, we shift it to 492 * its final location. The process proceeds as follows: 493 * 494 * 1) Use shift to calculate the new vma endpoints. 495 * 2) Extend vma to cover both the old and new ranges. This ensures the 496 * arguments passed to subsequent functions are consistent. 497 * 3) Move vma's page tables to the new range. 498 * 4) Free up any cleared pgd range. 499 * 5) Shrink the vma to cover only the new range. 500 */ 501 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 502 { 503 struct mm_struct *mm = vma->vm_mm; 504 unsigned long old_start = vma->vm_start; 505 unsigned long old_end = vma->vm_end; 506 unsigned long length = old_end - old_start; 507 unsigned long new_start = old_start - shift; 508 unsigned long new_end = old_end - shift; 509 struct mmu_gather *tlb; 510 511 BUG_ON(new_start > new_end); 512 513 /* 514 * ensure there are no vmas between where we want to go 515 * and where we are 516 */ 517 if (vma != find_vma(mm, new_start)) 518 return -EFAULT; 519 520 /* 521 * cover the whole range: [new_start, old_end) 522 */ 523 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 524 525 /* 526 * move the page tables downwards, on failure we rely on 527 * process cleanup to remove whatever mess we made. 528 */ 529 if (length != move_page_tables(vma, old_start, 530 vma, new_start, length)) 531 return -ENOMEM; 532 533 lru_add_drain(); 534 tlb = tlb_gather_mmu(mm, 0); 535 if (new_end > old_start) { 536 /* 537 * when the old and new regions overlap clear from new_end. 538 */ 539 free_pgd_range(&tlb, new_end, old_end, new_end, 540 vma->vm_next ? vma->vm_next->vm_start : 0); 541 } else { 542 /* 543 * otherwise, clean from old_start; this is done to not touch 544 * the address space in [new_end, old_start) some architectures 545 * have constraints on va-space that make this illegal (IA64) - 546 * for the others its just a little faster. 547 */ 548 free_pgd_range(&tlb, old_start, old_end, new_end, 549 vma->vm_next ? vma->vm_next->vm_start : 0); 550 } 551 tlb_finish_mmu(tlb, new_end, old_end); 552 553 /* 554 * shrink the vma to just the new range. 555 */ 556 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 557 558 return 0; 559 } 560 561 #define EXTRA_STACK_VM_PAGES 20 /* random */ 562 563 /* 564 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 565 * the stack is optionally relocated, and some extra space is added. 566 */ 567 int setup_arg_pages(struct linux_binprm *bprm, 568 unsigned long stack_top, 569 int executable_stack) 570 { 571 unsigned long ret; 572 unsigned long stack_shift; 573 struct mm_struct *mm = current->mm; 574 struct vm_area_struct *vma = bprm->vma; 575 struct vm_area_struct *prev = NULL; 576 unsigned long vm_flags; 577 unsigned long stack_base; 578 579 #ifdef CONFIG_STACK_GROWSUP 580 /* Limit stack size to 1GB */ 581 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 582 if (stack_base > (1 << 30)) 583 stack_base = 1 << 30; 584 585 /* Make sure we didn't let the argument array grow too large. */ 586 if (vma->vm_end - vma->vm_start > stack_base) 587 return -ENOMEM; 588 589 stack_base = PAGE_ALIGN(stack_top - stack_base); 590 591 stack_shift = vma->vm_start - stack_base; 592 mm->arg_start = bprm->p - stack_shift; 593 bprm->p = vma->vm_end - stack_shift; 594 #else 595 stack_top = arch_align_stack(stack_top); 596 stack_top = PAGE_ALIGN(stack_top); 597 stack_shift = vma->vm_end - stack_top; 598 599 bprm->p -= stack_shift; 600 mm->arg_start = bprm->p; 601 #endif 602 603 if (bprm->loader) 604 bprm->loader -= stack_shift; 605 bprm->exec -= stack_shift; 606 607 down_write(&mm->mmap_sem); 608 vm_flags = vma->vm_flags; 609 610 /* 611 * Adjust stack execute permissions; explicitly enable for 612 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 613 * (arch default) otherwise. 614 */ 615 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 616 vm_flags |= VM_EXEC; 617 else if (executable_stack == EXSTACK_DISABLE_X) 618 vm_flags &= ~VM_EXEC; 619 vm_flags |= mm->def_flags; 620 621 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 622 vm_flags); 623 if (ret) 624 goto out_unlock; 625 BUG_ON(prev != vma); 626 627 /* Move stack pages down in memory. */ 628 if (stack_shift) { 629 ret = shift_arg_pages(vma, stack_shift); 630 if (ret) { 631 up_write(&mm->mmap_sem); 632 return ret; 633 } 634 } 635 636 #ifdef CONFIG_STACK_GROWSUP 637 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 638 #else 639 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 640 #endif 641 ret = expand_stack(vma, stack_base); 642 if (ret) 643 ret = -EFAULT; 644 645 out_unlock: 646 up_write(&mm->mmap_sem); 647 return 0; 648 } 649 EXPORT_SYMBOL(setup_arg_pages); 650 651 #endif /* CONFIG_MMU */ 652 653 struct file *open_exec(const char *name) 654 { 655 struct nameidata nd; 656 int err; 657 struct file *file; 658 659 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 660 file = ERR_PTR(err); 661 662 if (!err) { 663 struct inode *inode = nd.path.dentry->d_inode; 664 file = ERR_PTR(-EACCES); 665 if (S_ISREG(inode->i_mode)) { 666 int err = vfs_permission(&nd, MAY_EXEC); 667 file = ERR_PTR(err); 668 if (!err) { 669 file = nameidata_to_filp(&nd, 670 O_RDONLY|O_LARGEFILE); 671 if (!IS_ERR(file)) { 672 err = deny_write_access(file); 673 if (err) { 674 fput(file); 675 file = ERR_PTR(err); 676 } 677 } 678 out: 679 return file; 680 } 681 } 682 release_open_intent(&nd); 683 path_put(&nd.path); 684 } 685 goto out; 686 } 687 688 EXPORT_SYMBOL(open_exec); 689 690 int kernel_read(struct file *file, unsigned long offset, 691 char *addr, unsigned long count) 692 { 693 mm_segment_t old_fs; 694 loff_t pos = offset; 695 int result; 696 697 old_fs = get_fs(); 698 set_fs(get_ds()); 699 /* The cast to a user pointer is valid due to the set_fs() */ 700 result = vfs_read(file, (void __user *)addr, count, &pos); 701 set_fs(old_fs); 702 return result; 703 } 704 705 EXPORT_SYMBOL(kernel_read); 706 707 static int exec_mmap(struct mm_struct *mm) 708 { 709 struct task_struct *tsk; 710 struct mm_struct * old_mm, *active_mm; 711 712 /* Notify parent that we're no longer interested in the old VM */ 713 tsk = current; 714 old_mm = current->mm; 715 mm_release(tsk, old_mm); 716 717 if (old_mm) { 718 /* 719 * Make sure that if there is a core dump in progress 720 * for the old mm, we get out and die instead of going 721 * through with the exec. We must hold mmap_sem around 722 * checking core_waiters and changing tsk->mm. The 723 * core-inducing thread will increment core_waiters for 724 * each thread whose ->mm == old_mm. 725 */ 726 down_read(&old_mm->mmap_sem); 727 if (unlikely(old_mm->core_waiters)) { 728 up_read(&old_mm->mmap_sem); 729 return -EINTR; 730 } 731 } 732 task_lock(tsk); 733 active_mm = tsk->active_mm; 734 tsk->mm = mm; 735 tsk->active_mm = mm; 736 activate_mm(active_mm, mm); 737 task_unlock(tsk); 738 arch_pick_mmap_layout(mm); 739 if (old_mm) { 740 up_read(&old_mm->mmap_sem); 741 BUG_ON(active_mm != old_mm); 742 mmput(old_mm); 743 return 0; 744 } 745 mmdrop(active_mm); 746 return 0; 747 } 748 749 /* 750 * This function makes sure the current process has its own signal table, 751 * so that flush_signal_handlers can later reset the handlers without 752 * disturbing other processes. (Other processes might share the signal 753 * table via the CLONE_SIGHAND option to clone().) 754 */ 755 static int de_thread(struct task_struct *tsk) 756 { 757 struct signal_struct *sig = tsk->signal; 758 struct sighand_struct *oldsighand = tsk->sighand; 759 spinlock_t *lock = &oldsighand->siglock; 760 struct task_struct *leader = NULL; 761 int count; 762 763 if (thread_group_empty(tsk)) 764 goto no_thread_group; 765 766 /* 767 * Kill all other threads in the thread group. 768 * We must hold tasklist_lock to call zap_other_threads. 769 */ 770 read_lock(&tasklist_lock); 771 spin_lock_irq(lock); 772 if (signal_group_exit(sig)) { 773 /* 774 * Another group action in progress, just 775 * return so that the signal is processed. 776 */ 777 spin_unlock_irq(lock); 778 read_unlock(&tasklist_lock); 779 return -EAGAIN; 780 } 781 782 /* 783 * child_reaper ignores SIGKILL, change it now. 784 * Reparenting needs write_lock on tasklist_lock, 785 * so it is safe to do it under read_lock. 786 */ 787 if (unlikely(tsk->group_leader == task_child_reaper(tsk))) 788 task_active_pid_ns(tsk)->child_reaper = tsk; 789 790 sig->group_exit_task = tsk; 791 zap_other_threads(tsk); 792 read_unlock(&tasklist_lock); 793 794 /* Account for the thread group leader hanging around: */ 795 count = thread_group_leader(tsk) ? 1 : 2; 796 sig->notify_count = count; 797 while (atomic_read(&sig->count) > count) { 798 __set_current_state(TASK_UNINTERRUPTIBLE); 799 spin_unlock_irq(lock); 800 schedule(); 801 spin_lock_irq(lock); 802 } 803 spin_unlock_irq(lock); 804 805 /* 806 * At this point all other threads have exited, all we have to 807 * do is to wait for the thread group leader to become inactive, 808 * and to assume its PID: 809 */ 810 if (!thread_group_leader(tsk)) { 811 leader = tsk->group_leader; 812 813 sig->notify_count = -1; 814 for (;;) { 815 write_lock_irq(&tasklist_lock); 816 if (likely(leader->exit_state)) 817 break; 818 __set_current_state(TASK_UNINTERRUPTIBLE); 819 write_unlock_irq(&tasklist_lock); 820 schedule(); 821 } 822 823 /* 824 * The only record we have of the real-time age of a 825 * process, regardless of execs it's done, is start_time. 826 * All the past CPU time is accumulated in signal_struct 827 * from sister threads now dead. But in this non-leader 828 * exec, nothing survives from the original leader thread, 829 * whose birth marks the true age of this process now. 830 * When we take on its identity by switching to its PID, we 831 * also take its birthdate (always earlier than our own). 832 */ 833 tsk->start_time = leader->start_time; 834 835 BUG_ON(!same_thread_group(leader, tsk)); 836 BUG_ON(has_group_leader_pid(tsk)); 837 /* 838 * An exec() starts a new thread group with the 839 * TGID of the previous thread group. Rehash the 840 * two threads with a switched PID, and release 841 * the former thread group leader: 842 */ 843 844 /* Become a process group leader with the old leader's pid. 845 * The old leader becomes a thread of the this thread group. 846 * Note: The old leader also uses this pid until release_task 847 * is called. Odd but simple and correct. 848 */ 849 detach_pid(tsk, PIDTYPE_PID); 850 tsk->pid = leader->pid; 851 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 852 transfer_pid(leader, tsk, PIDTYPE_PGID); 853 transfer_pid(leader, tsk, PIDTYPE_SID); 854 list_replace_rcu(&leader->tasks, &tsk->tasks); 855 856 tsk->group_leader = tsk; 857 leader->group_leader = tsk; 858 859 tsk->exit_signal = SIGCHLD; 860 861 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 862 leader->exit_state = EXIT_DEAD; 863 864 write_unlock_irq(&tasklist_lock); 865 } 866 867 sig->group_exit_task = NULL; 868 sig->notify_count = 0; 869 870 no_thread_group: 871 exit_itimers(sig); 872 if (leader) 873 release_task(leader); 874 875 if (atomic_read(&oldsighand->count) != 1) { 876 struct sighand_struct *newsighand; 877 /* 878 * This ->sighand is shared with the CLONE_SIGHAND 879 * but not CLONE_THREAD task, switch to the new one. 880 */ 881 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 882 if (!newsighand) 883 return -ENOMEM; 884 885 atomic_set(&newsighand->count, 1); 886 memcpy(newsighand->action, oldsighand->action, 887 sizeof(newsighand->action)); 888 889 write_lock_irq(&tasklist_lock); 890 spin_lock(&oldsighand->siglock); 891 rcu_assign_pointer(tsk->sighand, newsighand); 892 spin_unlock(&oldsighand->siglock); 893 write_unlock_irq(&tasklist_lock); 894 895 __cleanup_sighand(oldsighand); 896 } 897 898 BUG_ON(!thread_group_leader(tsk)); 899 return 0; 900 } 901 902 /* 903 * These functions flushes out all traces of the currently running executable 904 * so that a new one can be started 905 */ 906 static void flush_old_files(struct files_struct * files) 907 { 908 long j = -1; 909 struct fdtable *fdt; 910 911 spin_lock(&files->file_lock); 912 for (;;) { 913 unsigned long set, i; 914 915 j++; 916 i = j * __NFDBITS; 917 fdt = files_fdtable(files); 918 if (i >= fdt->max_fds) 919 break; 920 set = fdt->close_on_exec->fds_bits[j]; 921 if (!set) 922 continue; 923 fdt->close_on_exec->fds_bits[j] = 0; 924 spin_unlock(&files->file_lock); 925 for ( ; set ; i++,set >>= 1) { 926 if (set & 1) { 927 sys_close(i); 928 } 929 } 930 spin_lock(&files->file_lock); 931 932 } 933 spin_unlock(&files->file_lock); 934 } 935 936 char *get_task_comm(char *buf, struct task_struct *tsk) 937 { 938 /* buf must be at least sizeof(tsk->comm) in size */ 939 task_lock(tsk); 940 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 941 task_unlock(tsk); 942 return buf; 943 } 944 945 void set_task_comm(struct task_struct *tsk, char *buf) 946 { 947 task_lock(tsk); 948 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 949 task_unlock(tsk); 950 } 951 952 int flush_old_exec(struct linux_binprm * bprm) 953 { 954 char * name; 955 int i, ch, retval; 956 struct files_struct *files; 957 char tcomm[sizeof(current->comm)]; 958 959 /* 960 * Make sure we have a private signal table and that 961 * we are unassociated from the previous thread group. 962 */ 963 retval = de_thread(current); 964 if (retval) 965 goto out; 966 967 /* 968 * Make sure we have private file handles. Ask the 969 * fork helper to do the work for us and the exit 970 * helper to do the cleanup of the old one. 971 */ 972 files = current->files; /* refcounted so safe to hold */ 973 retval = unshare_files(); 974 if (retval) 975 goto out; 976 /* 977 * Release all of the old mmap stuff 978 */ 979 retval = exec_mmap(bprm->mm); 980 if (retval) 981 goto mmap_failed; 982 983 bprm->mm = NULL; /* We're using it now */ 984 985 /* This is the point of no return */ 986 put_files_struct(files); 987 988 current->sas_ss_sp = current->sas_ss_size = 0; 989 990 if (current->euid == current->uid && current->egid == current->gid) 991 set_dumpable(current->mm, 1); 992 else 993 set_dumpable(current->mm, suid_dumpable); 994 995 name = bprm->filename; 996 997 /* Copies the binary name from after last slash */ 998 for (i=0; (ch = *(name++)) != '\0';) { 999 if (ch == '/') 1000 i = 0; /* overwrite what we wrote */ 1001 else 1002 if (i < (sizeof(tcomm) - 1)) 1003 tcomm[i++] = ch; 1004 } 1005 tcomm[i] = '\0'; 1006 set_task_comm(current, tcomm); 1007 1008 current->flags &= ~PF_RANDOMIZE; 1009 flush_thread(); 1010 1011 /* Set the new mm task size. We have to do that late because it may 1012 * depend on TIF_32BIT which is only updated in flush_thread() on 1013 * some architectures like powerpc 1014 */ 1015 current->mm->task_size = TASK_SIZE; 1016 1017 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1018 suid_keys(current); 1019 set_dumpable(current->mm, suid_dumpable); 1020 current->pdeath_signal = 0; 1021 } else if (file_permission(bprm->file, MAY_READ) || 1022 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1023 suid_keys(current); 1024 set_dumpable(current->mm, suid_dumpable); 1025 } 1026 1027 /* An exec changes our domain. We are no longer part of the thread 1028 group */ 1029 1030 current->self_exec_id++; 1031 1032 flush_signal_handlers(current, 0); 1033 flush_old_files(current->files); 1034 1035 return 0; 1036 1037 mmap_failed: 1038 reset_files_struct(current, files); 1039 out: 1040 return retval; 1041 } 1042 1043 EXPORT_SYMBOL(flush_old_exec); 1044 1045 /* 1046 * Fill the binprm structure from the inode. 1047 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1048 */ 1049 int prepare_binprm(struct linux_binprm *bprm) 1050 { 1051 int mode; 1052 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1053 int retval; 1054 1055 mode = inode->i_mode; 1056 if (bprm->file->f_op == NULL) 1057 return -EACCES; 1058 1059 bprm->e_uid = current->euid; 1060 bprm->e_gid = current->egid; 1061 1062 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1063 /* Set-uid? */ 1064 if (mode & S_ISUID) { 1065 current->personality &= ~PER_CLEAR_ON_SETID; 1066 bprm->e_uid = inode->i_uid; 1067 } 1068 1069 /* Set-gid? */ 1070 /* 1071 * If setgid is set but no group execute bit then this 1072 * is a candidate for mandatory locking, not a setgid 1073 * executable. 1074 */ 1075 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1076 current->personality &= ~PER_CLEAR_ON_SETID; 1077 bprm->e_gid = inode->i_gid; 1078 } 1079 } 1080 1081 /* fill in binprm security blob */ 1082 retval = security_bprm_set(bprm); 1083 if (retval) 1084 return retval; 1085 1086 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1087 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1088 } 1089 1090 EXPORT_SYMBOL(prepare_binprm); 1091 1092 static int unsafe_exec(struct task_struct *p) 1093 { 1094 int unsafe = 0; 1095 if (p->ptrace & PT_PTRACED) { 1096 if (p->ptrace & PT_PTRACE_CAP) 1097 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1098 else 1099 unsafe |= LSM_UNSAFE_PTRACE; 1100 } 1101 if (atomic_read(&p->fs->count) > 1 || 1102 atomic_read(&p->files->count) > 1 || 1103 atomic_read(&p->sighand->count) > 1) 1104 unsafe |= LSM_UNSAFE_SHARE; 1105 1106 return unsafe; 1107 } 1108 1109 void compute_creds(struct linux_binprm *bprm) 1110 { 1111 int unsafe; 1112 1113 if (bprm->e_uid != current->uid) { 1114 suid_keys(current); 1115 current->pdeath_signal = 0; 1116 } 1117 exec_keys(current); 1118 1119 task_lock(current); 1120 unsafe = unsafe_exec(current); 1121 security_bprm_apply_creds(bprm, unsafe); 1122 task_unlock(current); 1123 security_bprm_post_apply_creds(bprm); 1124 } 1125 EXPORT_SYMBOL(compute_creds); 1126 1127 /* 1128 * Arguments are '\0' separated strings found at the location bprm->p 1129 * points to; chop off the first by relocating brpm->p to right after 1130 * the first '\0' encountered. 1131 */ 1132 int remove_arg_zero(struct linux_binprm *bprm) 1133 { 1134 int ret = 0; 1135 unsigned long offset; 1136 char *kaddr; 1137 struct page *page; 1138 1139 if (!bprm->argc) 1140 return 0; 1141 1142 do { 1143 offset = bprm->p & ~PAGE_MASK; 1144 page = get_arg_page(bprm, bprm->p, 0); 1145 if (!page) { 1146 ret = -EFAULT; 1147 goto out; 1148 } 1149 kaddr = kmap_atomic(page, KM_USER0); 1150 1151 for (; offset < PAGE_SIZE && kaddr[offset]; 1152 offset++, bprm->p++) 1153 ; 1154 1155 kunmap_atomic(kaddr, KM_USER0); 1156 put_arg_page(page); 1157 1158 if (offset == PAGE_SIZE) 1159 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1160 } while (offset == PAGE_SIZE); 1161 1162 bprm->p++; 1163 bprm->argc--; 1164 ret = 0; 1165 1166 out: 1167 return ret; 1168 } 1169 EXPORT_SYMBOL(remove_arg_zero); 1170 1171 /* 1172 * cycle the list of binary formats handler, until one recognizes the image 1173 */ 1174 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1175 { 1176 int try,retval; 1177 struct linux_binfmt *fmt; 1178 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT) 1179 /* handle /sbin/loader.. */ 1180 { 1181 struct exec * eh = (struct exec *) bprm->buf; 1182 1183 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1184 (eh->fh.f_flags & 0x3000) == 0x3000) 1185 { 1186 struct file * file; 1187 unsigned long loader; 1188 1189 allow_write_access(bprm->file); 1190 fput(bprm->file); 1191 bprm->file = NULL; 1192 1193 loader = bprm->vma->vm_end - sizeof(void *); 1194 1195 file = open_exec("/sbin/loader"); 1196 retval = PTR_ERR(file); 1197 if (IS_ERR(file)) 1198 return retval; 1199 1200 /* Remember if the application is TASO. */ 1201 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1202 1203 bprm->file = file; 1204 bprm->loader = loader; 1205 retval = prepare_binprm(bprm); 1206 if (retval<0) 1207 return retval; 1208 /* should call search_binary_handler recursively here, 1209 but it does not matter */ 1210 } 1211 } 1212 #endif 1213 retval = security_bprm_check(bprm); 1214 if (retval) 1215 return retval; 1216 1217 /* kernel module loader fixup */ 1218 /* so we don't try to load run modprobe in kernel space. */ 1219 set_fs(USER_DS); 1220 1221 retval = audit_bprm(bprm); 1222 if (retval) 1223 return retval; 1224 1225 retval = -ENOENT; 1226 for (try=0; try<2; try++) { 1227 read_lock(&binfmt_lock); 1228 list_for_each_entry(fmt, &formats, lh) { 1229 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1230 if (!fn) 1231 continue; 1232 if (!try_module_get(fmt->module)) 1233 continue; 1234 read_unlock(&binfmt_lock); 1235 retval = fn(bprm, regs); 1236 if (retval >= 0) { 1237 put_binfmt(fmt); 1238 allow_write_access(bprm->file); 1239 if (bprm->file) 1240 fput(bprm->file); 1241 bprm->file = NULL; 1242 current->did_exec = 1; 1243 proc_exec_connector(current); 1244 return retval; 1245 } 1246 read_lock(&binfmt_lock); 1247 put_binfmt(fmt); 1248 if (retval != -ENOEXEC || bprm->mm == NULL) 1249 break; 1250 if (!bprm->file) { 1251 read_unlock(&binfmt_lock); 1252 return retval; 1253 } 1254 } 1255 read_unlock(&binfmt_lock); 1256 if (retval != -ENOEXEC || bprm->mm == NULL) { 1257 break; 1258 #ifdef CONFIG_KMOD 1259 }else{ 1260 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1261 if (printable(bprm->buf[0]) && 1262 printable(bprm->buf[1]) && 1263 printable(bprm->buf[2]) && 1264 printable(bprm->buf[3])) 1265 break; /* -ENOEXEC */ 1266 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1267 #endif 1268 } 1269 } 1270 return retval; 1271 } 1272 1273 EXPORT_SYMBOL(search_binary_handler); 1274 1275 /* 1276 * sys_execve() executes a new program. 1277 */ 1278 int do_execve(char * filename, 1279 char __user *__user *argv, 1280 char __user *__user *envp, 1281 struct pt_regs * regs) 1282 { 1283 struct linux_binprm *bprm; 1284 struct file *file; 1285 unsigned long env_p; 1286 int retval; 1287 1288 retval = -ENOMEM; 1289 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1290 if (!bprm) 1291 goto out_ret; 1292 1293 file = open_exec(filename); 1294 retval = PTR_ERR(file); 1295 if (IS_ERR(file)) 1296 goto out_kfree; 1297 1298 sched_exec(); 1299 1300 bprm->file = file; 1301 bprm->filename = filename; 1302 bprm->interp = filename; 1303 1304 retval = bprm_mm_init(bprm); 1305 if (retval) 1306 goto out_file; 1307 1308 bprm->argc = count(argv, MAX_ARG_STRINGS); 1309 if ((retval = bprm->argc) < 0) 1310 goto out_mm; 1311 1312 bprm->envc = count(envp, MAX_ARG_STRINGS); 1313 if ((retval = bprm->envc) < 0) 1314 goto out_mm; 1315 1316 retval = security_bprm_alloc(bprm); 1317 if (retval) 1318 goto out; 1319 1320 retval = prepare_binprm(bprm); 1321 if (retval < 0) 1322 goto out; 1323 1324 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1325 if (retval < 0) 1326 goto out; 1327 1328 bprm->exec = bprm->p; 1329 retval = copy_strings(bprm->envc, envp, bprm); 1330 if (retval < 0) 1331 goto out; 1332 1333 env_p = bprm->p; 1334 retval = copy_strings(bprm->argc, argv, bprm); 1335 if (retval < 0) 1336 goto out; 1337 bprm->argv_len = env_p - bprm->p; 1338 1339 retval = search_binary_handler(bprm,regs); 1340 if (retval >= 0) { 1341 /* execve success */ 1342 free_arg_pages(bprm); 1343 security_bprm_free(bprm); 1344 acct_update_integrals(current); 1345 kfree(bprm); 1346 return retval; 1347 } 1348 1349 out: 1350 free_arg_pages(bprm); 1351 if (bprm->security) 1352 security_bprm_free(bprm); 1353 1354 out_mm: 1355 if (bprm->mm) 1356 mmput (bprm->mm); 1357 1358 out_file: 1359 if (bprm->file) { 1360 allow_write_access(bprm->file); 1361 fput(bprm->file); 1362 } 1363 out_kfree: 1364 kfree(bprm); 1365 1366 out_ret: 1367 return retval; 1368 } 1369 1370 int set_binfmt(struct linux_binfmt *new) 1371 { 1372 struct linux_binfmt *old = current->binfmt; 1373 1374 if (new) { 1375 if (!try_module_get(new->module)) 1376 return -1; 1377 } 1378 current->binfmt = new; 1379 if (old) 1380 module_put(old->module); 1381 return 0; 1382 } 1383 1384 EXPORT_SYMBOL(set_binfmt); 1385 1386 /* format_corename will inspect the pattern parameter, and output a 1387 * name into corename, which must have space for at least 1388 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1389 */ 1390 static int format_corename(char *corename, const char *pattern, long signr) 1391 { 1392 const char *pat_ptr = pattern; 1393 char *out_ptr = corename; 1394 char *const out_end = corename + CORENAME_MAX_SIZE; 1395 int rc; 1396 int pid_in_pattern = 0; 1397 int ispipe = 0; 1398 1399 if (*pattern == '|') 1400 ispipe = 1; 1401 1402 /* Repeat as long as we have more pattern to process and more output 1403 space */ 1404 while (*pat_ptr) { 1405 if (*pat_ptr != '%') { 1406 if (out_ptr == out_end) 1407 goto out; 1408 *out_ptr++ = *pat_ptr++; 1409 } else { 1410 switch (*++pat_ptr) { 1411 case 0: 1412 goto out; 1413 /* Double percent, output one percent */ 1414 case '%': 1415 if (out_ptr == out_end) 1416 goto out; 1417 *out_ptr++ = '%'; 1418 break; 1419 /* pid */ 1420 case 'p': 1421 pid_in_pattern = 1; 1422 rc = snprintf(out_ptr, out_end - out_ptr, 1423 "%d", task_tgid_vnr(current)); 1424 if (rc > out_end - out_ptr) 1425 goto out; 1426 out_ptr += rc; 1427 break; 1428 /* uid */ 1429 case 'u': 1430 rc = snprintf(out_ptr, out_end - out_ptr, 1431 "%d", current->uid); 1432 if (rc > out_end - out_ptr) 1433 goto out; 1434 out_ptr += rc; 1435 break; 1436 /* gid */ 1437 case 'g': 1438 rc = snprintf(out_ptr, out_end - out_ptr, 1439 "%d", current->gid); 1440 if (rc > out_end - out_ptr) 1441 goto out; 1442 out_ptr += rc; 1443 break; 1444 /* signal that caused the coredump */ 1445 case 's': 1446 rc = snprintf(out_ptr, out_end - out_ptr, 1447 "%ld", signr); 1448 if (rc > out_end - out_ptr) 1449 goto out; 1450 out_ptr += rc; 1451 break; 1452 /* UNIX time of coredump */ 1453 case 't': { 1454 struct timeval tv; 1455 do_gettimeofday(&tv); 1456 rc = snprintf(out_ptr, out_end - out_ptr, 1457 "%lu", tv.tv_sec); 1458 if (rc > out_end - out_ptr) 1459 goto out; 1460 out_ptr += rc; 1461 break; 1462 } 1463 /* hostname */ 1464 case 'h': 1465 down_read(&uts_sem); 1466 rc = snprintf(out_ptr, out_end - out_ptr, 1467 "%s", utsname()->nodename); 1468 up_read(&uts_sem); 1469 if (rc > out_end - out_ptr) 1470 goto out; 1471 out_ptr += rc; 1472 break; 1473 /* executable */ 1474 case 'e': 1475 rc = snprintf(out_ptr, out_end - out_ptr, 1476 "%s", current->comm); 1477 if (rc > out_end - out_ptr) 1478 goto out; 1479 out_ptr += rc; 1480 break; 1481 /* core limit size */ 1482 case 'c': 1483 rc = snprintf(out_ptr, out_end - out_ptr, 1484 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1485 if (rc > out_end - out_ptr) 1486 goto out; 1487 out_ptr += rc; 1488 break; 1489 default: 1490 break; 1491 } 1492 ++pat_ptr; 1493 } 1494 } 1495 /* Backward compatibility with core_uses_pid: 1496 * 1497 * If core_pattern does not include a %p (as is the default) 1498 * and core_uses_pid is set, then .%pid will be appended to 1499 * the filename. Do not do this for piped commands. */ 1500 if (!ispipe && !pid_in_pattern 1501 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1502 rc = snprintf(out_ptr, out_end - out_ptr, 1503 ".%d", task_tgid_vnr(current)); 1504 if (rc > out_end - out_ptr) 1505 goto out; 1506 out_ptr += rc; 1507 } 1508 out: 1509 *out_ptr = 0; 1510 return ispipe; 1511 } 1512 1513 static void zap_process(struct task_struct *start) 1514 { 1515 struct task_struct *t; 1516 1517 start->signal->flags = SIGNAL_GROUP_EXIT; 1518 start->signal->group_stop_count = 0; 1519 1520 t = start; 1521 do { 1522 if (t != current && t->mm) { 1523 t->mm->core_waiters++; 1524 sigaddset(&t->pending.signal, SIGKILL); 1525 signal_wake_up(t, 1); 1526 } 1527 } while ((t = next_thread(t)) != start); 1528 } 1529 1530 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1531 int exit_code) 1532 { 1533 struct task_struct *g, *p; 1534 unsigned long flags; 1535 int err = -EAGAIN; 1536 1537 spin_lock_irq(&tsk->sighand->siglock); 1538 if (!signal_group_exit(tsk->signal)) { 1539 tsk->signal->group_exit_code = exit_code; 1540 zap_process(tsk); 1541 err = 0; 1542 } 1543 spin_unlock_irq(&tsk->sighand->siglock); 1544 if (err) 1545 return err; 1546 1547 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1548 goto done; 1549 1550 rcu_read_lock(); 1551 for_each_process(g) { 1552 if (g == tsk->group_leader) 1553 continue; 1554 1555 p = g; 1556 do { 1557 if (p->mm) { 1558 if (p->mm == mm) { 1559 /* 1560 * p->sighand can't disappear, but 1561 * may be changed by de_thread() 1562 */ 1563 lock_task_sighand(p, &flags); 1564 zap_process(p); 1565 unlock_task_sighand(p, &flags); 1566 } 1567 break; 1568 } 1569 } while ((p = next_thread(p)) != g); 1570 } 1571 rcu_read_unlock(); 1572 done: 1573 return mm->core_waiters; 1574 } 1575 1576 static int coredump_wait(int exit_code) 1577 { 1578 struct task_struct *tsk = current; 1579 struct mm_struct *mm = tsk->mm; 1580 struct completion startup_done; 1581 struct completion *vfork_done; 1582 int core_waiters; 1583 1584 init_completion(&mm->core_done); 1585 init_completion(&startup_done); 1586 mm->core_startup_done = &startup_done; 1587 1588 core_waiters = zap_threads(tsk, mm, exit_code); 1589 up_write(&mm->mmap_sem); 1590 1591 if (unlikely(core_waiters < 0)) 1592 goto fail; 1593 1594 /* 1595 * Make sure nobody is waiting for us to release the VM, 1596 * otherwise we can deadlock when we wait on each other 1597 */ 1598 vfork_done = tsk->vfork_done; 1599 if (vfork_done) { 1600 tsk->vfork_done = NULL; 1601 complete(vfork_done); 1602 } 1603 1604 if (core_waiters) 1605 wait_for_completion(&startup_done); 1606 fail: 1607 BUG_ON(mm->core_waiters); 1608 return core_waiters; 1609 } 1610 1611 /* 1612 * set_dumpable converts traditional three-value dumpable to two flags and 1613 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1614 * these bits are not changed atomically. So get_dumpable can observe the 1615 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1616 * return either old dumpable or new one by paying attention to the order of 1617 * modifying the bits. 1618 * 1619 * dumpable | mm->flags (binary) 1620 * old new | initial interim final 1621 * ---------+----------------------- 1622 * 0 1 | 00 01 01 1623 * 0 2 | 00 10(*) 11 1624 * 1 0 | 01 00 00 1625 * 1 2 | 01 11 11 1626 * 2 0 | 11 10(*) 00 1627 * 2 1 | 11 11 01 1628 * 1629 * (*) get_dumpable regards interim value of 10 as 11. 1630 */ 1631 void set_dumpable(struct mm_struct *mm, int value) 1632 { 1633 switch (value) { 1634 case 0: 1635 clear_bit(MMF_DUMPABLE, &mm->flags); 1636 smp_wmb(); 1637 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1638 break; 1639 case 1: 1640 set_bit(MMF_DUMPABLE, &mm->flags); 1641 smp_wmb(); 1642 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1643 break; 1644 case 2: 1645 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1646 smp_wmb(); 1647 set_bit(MMF_DUMPABLE, &mm->flags); 1648 break; 1649 } 1650 } 1651 1652 int get_dumpable(struct mm_struct *mm) 1653 { 1654 int ret; 1655 1656 ret = mm->flags & 0x3; 1657 return (ret >= 2) ? 2 : ret; 1658 } 1659 1660 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1661 { 1662 char corename[CORENAME_MAX_SIZE + 1]; 1663 struct mm_struct *mm = current->mm; 1664 struct linux_binfmt * binfmt; 1665 struct inode * inode; 1666 struct file * file; 1667 int retval = 0; 1668 int fsuid = current->fsuid; 1669 int flag = 0; 1670 int ispipe = 0; 1671 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1672 char **helper_argv = NULL; 1673 int helper_argc = 0; 1674 char *delimit; 1675 1676 audit_core_dumps(signr); 1677 1678 binfmt = current->binfmt; 1679 if (!binfmt || !binfmt->core_dump) 1680 goto fail; 1681 down_write(&mm->mmap_sem); 1682 /* 1683 * If another thread got here first, or we are not dumpable, bail out. 1684 */ 1685 if (mm->core_waiters || !get_dumpable(mm)) { 1686 up_write(&mm->mmap_sem); 1687 goto fail; 1688 } 1689 1690 /* 1691 * We cannot trust fsuid as being the "true" uid of the 1692 * process nor do we know its entire history. We only know it 1693 * was tainted so we dump it as root in mode 2. 1694 */ 1695 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1696 flag = O_EXCL; /* Stop rewrite attacks */ 1697 current->fsuid = 0; /* Dump root private */ 1698 } 1699 1700 retval = coredump_wait(exit_code); 1701 if (retval < 0) 1702 goto fail; 1703 1704 /* 1705 * Clear any false indication of pending signals that might 1706 * be seen by the filesystem code called to write the core file. 1707 */ 1708 clear_thread_flag(TIF_SIGPENDING); 1709 1710 /* 1711 * lock_kernel() because format_corename() is controlled by sysctl, which 1712 * uses lock_kernel() 1713 */ 1714 lock_kernel(); 1715 ispipe = format_corename(corename, core_pattern, signr); 1716 unlock_kernel(); 1717 /* 1718 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1719 * to a pipe. Since we're not writing directly to the filesystem 1720 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1721 * created unless the pipe reader choses to write out the core file 1722 * at which point file size limits and permissions will be imposed 1723 * as it does with any other process 1724 */ 1725 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1726 goto fail_unlock; 1727 1728 if (ispipe) { 1729 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1730 /* Terminate the string before the first option */ 1731 delimit = strchr(corename, ' '); 1732 if (delimit) 1733 *delimit = '\0'; 1734 delimit = strrchr(helper_argv[0], '/'); 1735 if (delimit) 1736 delimit++; 1737 else 1738 delimit = helper_argv[0]; 1739 if (!strcmp(delimit, current->comm)) { 1740 printk(KERN_NOTICE "Recursive core dump detected, " 1741 "aborting\n"); 1742 goto fail_unlock; 1743 } 1744 1745 core_limit = RLIM_INFINITY; 1746 1747 /* SIGPIPE can happen, but it's just never processed */ 1748 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1749 &file)) { 1750 printk(KERN_INFO "Core dump to %s pipe failed\n", 1751 corename); 1752 goto fail_unlock; 1753 } 1754 } else 1755 file = filp_open(corename, 1756 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1757 0600); 1758 if (IS_ERR(file)) 1759 goto fail_unlock; 1760 inode = file->f_path.dentry->d_inode; 1761 if (inode->i_nlink > 1) 1762 goto close_fail; /* multiple links - don't dump */ 1763 if (!ispipe && d_unhashed(file->f_path.dentry)) 1764 goto close_fail; 1765 1766 /* AK: actually i see no reason to not allow this for named pipes etc., 1767 but keep the previous behaviour for now. */ 1768 if (!ispipe && !S_ISREG(inode->i_mode)) 1769 goto close_fail; 1770 /* 1771 * Dont allow local users get cute and trick others to coredump 1772 * into their pre-created files: 1773 */ 1774 if (inode->i_uid != current->fsuid) 1775 goto close_fail; 1776 if (!file->f_op) 1777 goto close_fail; 1778 if (!file->f_op->write) 1779 goto close_fail; 1780 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1781 goto close_fail; 1782 1783 retval = binfmt->core_dump(signr, regs, file, core_limit); 1784 1785 if (retval) 1786 current->signal->group_exit_code |= 0x80; 1787 close_fail: 1788 filp_close(file, NULL); 1789 fail_unlock: 1790 if (helper_argv) 1791 argv_free(helper_argv); 1792 1793 current->fsuid = fsuid; 1794 complete_all(&mm->core_done); 1795 fail: 1796 return retval; 1797 } 1798