xref: /openbmc/linux/fs/exec.c (revision a1e58bbd)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
66 
67 /* The maximal length of core_pattern is also specified in sysctl.c */
68 
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
71 
72 int register_binfmt(struct linux_binfmt * fmt)
73 {
74 	if (!fmt)
75 		return -EINVAL;
76 	write_lock(&binfmt_lock);
77 	list_add(&fmt->lh, &formats);
78 	write_unlock(&binfmt_lock);
79 	return 0;
80 }
81 
82 EXPORT_SYMBOL(register_binfmt);
83 
84 void unregister_binfmt(struct linux_binfmt * fmt)
85 {
86 	write_lock(&binfmt_lock);
87 	list_del(&fmt->lh);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(unregister_binfmt);
92 
93 static inline void put_binfmt(struct linux_binfmt * fmt)
94 {
95 	module_put(fmt->module);
96 }
97 
98 /*
99  * Note that a shared library must be both readable and executable due to
100  * security reasons.
101  *
102  * Also note that we take the address to load from from the file itself.
103  */
104 asmlinkage long sys_uselib(const char __user * library)
105 {
106 	struct file * file;
107 	struct nameidata nd;
108 	int error;
109 
110 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
111 	if (error)
112 		goto out;
113 
114 	error = -EINVAL;
115 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
116 		goto exit;
117 
118 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
119 	if (error)
120 		goto exit;
121 
122 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
123 	error = PTR_ERR(file);
124 	if (IS_ERR(file))
125 		goto out;
126 
127 	error = -ENOEXEC;
128 	if(file->f_op) {
129 		struct linux_binfmt * fmt;
130 
131 		read_lock(&binfmt_lock);
132 		list_for_each_entry(fmt, &formats, lh) {
133 			if (!fmt->load_shlib)
134 				continue;
135 			if (!try_module_get(fmt->module))
136 				continue;
137 			read_unlock(&binfmt_lock);
138 			error = fmt->load_shlib(file);
139 			read_lock(&binfmt_lock);
140 			put_binfmt(fmt);
141 			if (error != -ENOEXEC)
142 				break;
143 		}
144 		read_unlock(&binfmt_lock);
145 	}
146 	fput(file);
147 out:
148   	return error;
149 exit:
150 	release_open_intent(&nd);
151 	path_put(&nd.path);
152 	goto out;
153 }
154 
155 #ifdef CONFIG_MMU
156 
157 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
158 		int write)
159 {
160 	struct page *page;
161 	int ret;
162 
163 #ifdef CONFIG_STACK_GROWSUP
164 	if (write) {
165 		ret = expand_stack_downwards(bprm->vma, pos);
166 		if (ret < 0)
167 			return NULL;
168 	}
169 #endif
170 	ret = get_user_pages(current, bprm->mm, pos,
171 			1, write, 1, &page, NULL);
172 	if (ret <= 0)
173 		return NULL;
174 
175 	if (write) {
176 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
177 		struct rlimit *rlim;
178 
179 		/*
180 		 * We've historically supported up to 32 pages (ARG_MAX)
181 		 * of argument strings even with small stacks
182 		 */
183 		if (size <= ARG_MAX)
184 			return page;
185 
186 		/*
187 		 * Limit to 1/4-th the stack size for the argv+env strings.
188 		 * This ensures that:
189 		 *  - the remaining binfmt code will not run out of stack space,
190 		 *  - the program will have a reasonable amount of stack left
191 		 *    to work from.
192 		 */
193 		rlim = current->signal->rlim;
194 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
195 			put_page(page);
196 			return NULL;
197 		}
198 	}
199 
200 	return page;
201 }
202 
203 static void put_arg_page(struct page *page)
204 {
205 	put_page(page);
206 }
207 
208 static void free_arg_page(struct linux_binprm *bprm, int i)
209 {
210 }
211 
212 static void free_arg_pages(struct linux_binprm *bprm)
213 {
214 }
215 
216 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
217 		struct page *page)
218 {
219 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
220 }
221 
222 static int __bprm_mm_init(struct linux_binprm *bprm)
223 {
224 	int err = -ENOMEM;
225 	struct vm_area_struct *vma = NULL;
226 	struct mm_struct *mm = bprm->mm;
227 
228 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
229 	if (!vma)
230 		goto err;
231 
232 	down_write(&mm->mmap_sem);
233 	vma->vm_mm = mm;
234 
235 	/*
236 	 * Place the stack at the largest stack address the architecture
237 	 * supports. Later, we'll move this to an appropriate place. We don't
238 	 * use STACK_TOP because that can depend on attributes which aren't
239 	 * configured yet.
240 	 */
241 	vma->vm_end = STACK_TOP_MAX;
242 	vma->vm_start = vma->vm_end - PAGE_SIZE;
243 
244 	vma->vm_flags = VM_STACK_FLAGS;
245 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
246 	err = insert_vm_struct(mm, vma);
247 	if (err) {
248 		up_write(&mm->mmap_sem);
249 		goto err;
250 	}
251 
252 	mm->stack_vm = mm->total_vm = 1;
253 	up_write(&mm->mmap_sem);
254 
255 	bprm->p = vma->vm_end - sizeof(void *);
256 
257 	return 0;
258 
259 err:
260 	if (vma) {
261 		bprm->vma = NULL;
262 		kmem_cache_free(vm_area_cachep, vma);
263 	}
264 
265 	return err;
266 }
267 
268 static bool valid_arg_len(struct linux_binprm *bprm, long len)
269 {
270 	return len <= MAX_ARG_STRLEN;
271 }
272 
273 #else
274 
275 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
276 		int write)
277 {
278 	struct page *page;
279 
280 	page = bprm->page[pos / PAGE_SIZE];
281 	if (!page && write) {
282 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
283 		if (!page)
284 			return NULL;
285 		bprm->page[pos / PAGE_SIZE] = page;
286 	}
287 
288 	return page;
289 }
290 
291 static void put_arg_page(struct page *page)
292 {
293 }
294 
295 static void free_arg_page(struct linux_binprm *bprm, int i)
296 {
297 	if (bprm->page[i]) {
298 		__free_page(bprm->page[i]);
299 		bprm->page[i] = NULL;
300 	}
301 }
302 
303 static void free_arg_pages(struct linux_binprm *bprm)
304 {
305 	int i;
306 
307 	for (i = 0; i < MAX_ARG_PAGES; i++)
308 		free_arg_page(bprm, i);
309 }
310 
311 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
312 		struct page *page)
313 {
314 }
315 
316 static int __bprm_mm_init(struct linux_binprm *bprm)
317 {
318 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
319 	return 0;
320 }
321 
322 static bool valid_arg_len(struct linux_binprm *bprm, long len)
323 {
324 	return len <= bprm->p;
325 }
326 
327 #endif /* CONFIG_MMU */
328 
329 /*
330  * Create a new mm_struct and populate it with a temporary stack
331  * vm_area_struct.  We don't have enough context at this point to set the stack
332  * flags, permissions, and offset, so we use temporary values.  We'll update
333  * them later in setup_arg_pages().
334  */
335 int bprm_mm_init(struct linux_binprm *bprm)
336 {
337 	int err;
338 	struct mm_struct *mm = NULL;
339 
340 	bprm->mm = mm = mm_alloc();
341 	err = -ENOMEM;
342 	if (!mm)
343 		goto err;
344 
345 	err = init_new_context(current, mm);
346 	if (err)
347 		goto err;
348 
349 	err = __bprm_mm_init(bprm);
350 	if (err)
351 		goto err;
352 
353 	return 0;
354 
355 err:
356 	if (mm) {
357 		bprm->mm = NULL;
358 		mmdrop(mm);
359 	}
360 
361 	return err;
362 }
363 
364 /*
365  * count() counts the number of strings in array ARGV.
366  */
367 static int count(char __user * __user * argv, int max)
368 {
369 	int i = 0;
370 
371 	if (argv != NULL) {
372 		for (;;) {
373 			char __user * p;
374 
375 			if (get_user(p, argv))
376 				return -EFAULT;
377 			if (!p)
378 				break;
379 			argv++;
380 			if(++i > max)
381 				return -E2BIG;
382 			cond_resched();
383 		}
384 	}
385 	return i;
386 }
387 
388 /*
389  * 'copy_strings()' copies argument/environment strings from the old
390  * processes's memory to the new process's stack.  The call to get_user_pages()
391  * ensures the destination page is created and not swapped out.
392  */
393 static int copy_strings(int argc, char __user * __user * argv,
394 			struct linux_binprm *bprm)
395 {
396 	struct page *kmapped_page = NULL;
397 	char *kaddr = NULL;
398 	unsigned long kpos = 0;
399 	int ret;
400 
401 	while (argc-- > 0) {
402 		char __user *str;
403 		int len;
404 		unsigned long pos;
405 
406 		if (get_user(str, argv+argc) ||
407 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
408 			ret = -EFAULT;
409 			goto out;
410 		}
411 
412 		if (!valid_arg_len(bprm, len)) {
413 			ret = -E2BIG;
414 			goto out;
415 		}
416 
417 		/* We're going to work our way backwords. */
418 		pos = bprm->p;
419 		str += len;
420 		bprm->p -= len;
421 
422 		while (len > 0) {
423 			int offset, bytes_to_copy;
424 
425 			offset = pos % PAGE_SIZE;
426 			if (offset == 0)
427 				offset = PAGE_SIZE;
428 
429 			bytes_to_copy = offset;
430 			if (bytes_to_copy > len)
431 				bytes_to_copy = len;
432 
433 			offset -= bytes_to_copy;
434 			pos -= bytes_to_copy;
435 			str -= bytes_to_copy;
436 			len -= bytes_to_copy;
437 
438 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
439 				struct page *page;
440 
441 				page = get_arg_page(bprm, pos, 1);
442 				if (!page) {
443 					ret = -E2BIG;
444 					goto out;
445 				}
446 
447 				if (kmapped_page) {
448 					flush_kernel_dcache_page(kmapped_page);
449 					kunmap(kmapped_page);
450 					put_arg_page(kmapped_page);
451 				}
452 				kmapped_page = page;
453 				kaddr = kmap(kmapped_page);
454 				kpos = pos & PAGE_MASK;
455 				flush_arg_page(bprm, kpos, kmapped_page);
456 			}
457 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
458 				ret = -EFAULT;
459 				goto out;
460 			}
461 		}
462 	}
463 	ret = 0;
464 out:
465 	if (kmapped_page) {
466 		flush_kernel_dcache_page(kmapped_page);
467 		kunmap(kmapped_page);
468 		put_arg_page(kmapped_page);
469 	}
470 	return ret;
471 }
472 
473 /*
474  * Like copy_strings, but get argv and its values from kernel memory.
475  */
476 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
477 {
478 	int r;
479 	mm_segment_t oldfs = get_fs();
480 	set_fs(KERNEL_DS);
481 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
482 	set_fs(oldfs);
483 	return r;
484 }
485 EXPORT_SYMBOL(copy_strings_kernel);
486 
487 #ifdef CONFIG_MMU
488 
489 /*
490  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
491  * the binfmt code determines where the new stack should reside, we shift it to
492  * its final location.  The process proceeds as follows:
493  *
494  * 1) Use shift to calculate the new vma endpoints.
495  * 2) Extend vma to cover both the old and new ranges.  This ensures the
496  *    arguments passed to subsequent functions are consistent.
497  * 3) Move vma's page tables to the new range.
498  * 4) Free up any cleared pgd range.
499  * 5) Shrink the vma to cover only the new range.
500  */
501 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
502 {
503 	struct mm_struct *mm = vma->vm_mm;
504 	unsigned long old_start = vma->vm_start;
505 	unsigned long old_end = vma->vm_end;
506 	unsigned long length = old_end - old_start;
507 	unsigned long new_start = old_start - shift;
508 	unsigned long new_end = old_end - shift;
509 	struct mmu_gather *tlb;
510 
511 	BUG_ON(new_start > new_end);
512 
513 	/*
514 	 * ensure there are no vmas between where we want to go
515 	 * and where we are
516 	 */
517 	if (vma != find_vma(mm, new_start))
518 		return -EFAULT;
519 
520 	/*
521 	 * cover the whole range: [new_start, old_end)
522 	 */
523 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
524 
525 	/*
526 	 * move the page tables downwards, on failure we rely on
527 	 * process cleanup to remove whatever mess we made.
528 	 */
529 	if (length != move_page_tables(vma, old_start,
530 				       vma, new_start, length))
531 		return -ENOMEM;
532 
533 	lru_add_drain();
534 	tlb = tlb_gather_mmu(mm, 0);
535 	if (new_end > old_start) {
536 		/*
537 		 * when the old and new regions overlap clear from new_end.
538 		 */
539 		free_pgd_range(&tlb, new_end, old_end, new_end,
540 			vma->vm_next ? vma->vm_next->vm_start : 0);
541 	} else {
542 		/*
543 		 * otherwise, clean from old_start; this is done to not touch
544 		 * the address space in [new_end, old_start) some architectures
545 		 * have constraints on va-space that make this illegal (IA64) -
546 		 * for the others its just a little faster.
547 		 */
548 		free_pgd_range(&tlb, old_start, old_end, new_end,
549 			vma->vm_next ? vma->vm_next->vm_start : 0);
550 	}
551 	tlb_finish_mmu(tlb, new_end, old_end);
552 
553 	/*
554 	 * shrink the vma to just the new range.
555 	 */
556 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
557 
558 	return 0;
559 }
560 
561 #define EXTRA_STACK_VM_PAGES	20	/* random */
562 
563 /*
564  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
565  * the stack is optionally relocated, and some extra space is added.
566  */
567 int setup_arg_pages(struct linux_binprm *bprm,
568 		    unsigned long stack_top,
569 		    int executable_stack)
570 {
571 	unsigned long ret;
572 	unsigned long stack_shift;
573 	struct mm_struct *mm = current->mm;
574 	struct vm_area_struct *vma = bprm->vma;
575 	struct vm_area_struct *prev = NULL;
576 	unsigned long vm_flags;
577 	unsigned long stack_base;
578 
579 #ifdef CONFIG_STACK_GROWSUP
580 	/* Limit stack size to 1GB */
581 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
582 	if (stack_base > (1 << 30))
583 		stack_base = 1 << 30;
584 
585 	/* Make sure we didn't let the argument array grow too large. */
586 	if (vma->vm_end - vma->vm_start > stack_base)
587 		return -ENOMEM;
588 
589 	stack_base = PAGE_ALIGN(stack_top - stack_base);
590 
591 	stack_shift = vma->vm_start - stack_base;
592 	mm->arg_start = bprm->p - stack_shift;
593 	bprm->p = vma->vm_end - stack_shift;
594 #else
595 	stack_top = arch_align_stack(stack_top);
596 	stack_top = PAGE_ALIGN(stack_top);
597 	stack_shift = vma->vm_end - stack_top;
598 
599 	bprm->p -= stack_shift;
600 	mm->arg_start = bprm->p;
601 #endif
602 
603 	if (bprm->loader)
604 		bprm->loader -= stack_shift;
605 	bprm->exec -= stack_shift;
606 
607 	down_write(&mm->mmap_sem);
608 	vm_flags = vma->vm_flags;
609 
610 	/*
611 	 * Adjust stack execute permissions; explicitly enable for
612 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613 	 * (arch default) otherwise.
614 	 */
615 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
616 		vm_flags |= VM_EXEC;
617 	else if (executable_stack == EXSTACK_DISABLE_X)
618 		vm_flags &= ~VM_EXEC;
619 	vm_flags |= mm->def_flags;
620 
621 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
622 			vm_flags);
623 	if (ret)
624 		goto out_unlock;
625 	BUG_ON(prev != vma);
626 
627 	/* Move stack pages down in memory. */
628 	if (stack_shift) {
629 		ret = shift_arg_pages(vma, stack_shift);
630 		if (ret) {
631 			up_write(&mm->mmap_sem);
632 			return ret;
633 		}
634 	}
635 
636 #ifdef CONFIG_STACK_GROWSUP
637 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
638 #else
639 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
640 #endif
641 	ret = expand_stack(vma, stack_base);
642 	if (ret)
643 		ret = -EFAULT;
644 
645 out_unlock:
646 	up_write(&mm->mmap_sem);
647 	return 0;
648 }
649 EXPORT_SYMBOL(setup_arg_pages);
650 
651 #endif /* CONFIG_MMU */
652 
653 struct file *open_exec(const char *name)
654 {
655 	struct nameidata nd;
656 	int err;
657 	struct file *file;
658 
659 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
660 	file = ERR_PTR(err);
661 
662 	if (!err) {
663 		struct inode *inode = nd.path.dentry->d_inode;
664 		file = ERR_PTR(-EACCES);
665 		if (S_ISREG(inode->i_mode)) {
666 			int err = vfs_permission(&nd, MAY_EXEC);
667 			file = ERR_PTR(err);
668 			if (!err) {
669 				file = nameidata_to_filp(&nd,
670 							O_RDONLY|O_LARGEFILE);
671 				if (!IS_ERR(file)) {
672 					err = deny_write_access(file);
673 					if (err) {
674 						fput(file);
675 						file = ERR_PTR(err);
676 					}
677 				}
678 out:
679 				return file;
680 			}
681 		}
682 		release_open_intent(&nd);
683 		path_put(&nd.path);
684 	}
685 	goto out;
686 }
687 
688 EXPORT_SYMBOL(open_exec);
689 
690 int kernel_read(struct file *file, unsigned long offset,
691 	char *addr, unsigned long count)
692 {
693 	mm_segment_t old_fs;
694 	loff_t pos = offset;
695 	int result;
696 
697 	old_fs = get_fs();
698 	set_fs(get_ds());
699 	/* The cast to a user pointer is valid due to the set_fs() */
700 	result = vfs_read(file, (void __user *)addr, count, &pos);
701 	set_fs(old_fs);
702 	return result;
703 }
704 
705 EXPORT_SYMBOL(kernel_read);
706 
707 static int exec_mmap(struct mm_struct *mm)
708 {
709 	struct task_struct *tsk;
710 	struct mm_struct * old_mm, *active_mm;
711 
712 	/* Notify parent that we're no longer interested in the old VM */
713 	tsk = current;
714 	old_mm = current->mm;
715 	mm_release(tsk, old_mm);
716 
717 	if (old_mm) {
718 		/*
719 		 * Make sure that if there is a core dump in progress
720 		 * for the old mm, we get out and die instead of going
721 		 * through with the exec.  We must hold mmap_sem around
722 		 * checking core_waiters and changing tsk->mm.  The
723 		 * core-inducing thread will increment core_waiters for
724 		 * each thread whose ->mm == old_mm.
725 		 */
726 		down_read(&old_mm->mmap_sem);
727 		if (unlikely(old_mm->core_waiters)) {
728 			up_read(&old_mm->mmap_sem);
729 			return -EINTR;
730 		}
731 	}
732 	task_lock(tsk);
733 	active_mm = tsk->active_mm;
734 	tsk->mm = mm;
735 	tsk->active_mm = mm;
736 	activate_mm(active_mm, mm);
737 	task_unlock(tsk);
738 	arch_pick_mmap_layout(mm);
739 	if (old_mm) {
740 		up_read(&old_mm->mmap_sem);
741 		BUG_ON(active_mm != old_mm);
742 		mmput(old_mm);
743 		return 0;
744 	}
745 	mmdrop(active_mm);
746 	return 0;
747 }
748 
749 /*
750  * This function makes sure the current process has its own signal table,
751  * so that flush_signal_handlers can later reset the handlers without
752  * disturbing other processes.  (Other processes might share the signal
753  * table via the CLONE_SIGHAND option to clone().)
754  */
755 static int de_thread(struct task_struct *tsk)
756 {
757 	struct signal_struct *sig = tsk->signal;
758 	struct sighand_struct *oldsighand = tsk->sighand;
759 	spinlock_t *lock = &oldsighand->siglock;
760 	struct task_struct *leader = NULL;
761 	int count;
762 
763 	if (thread_group_empty(tsk))
764 		goto no_thread_group;
765 
766 	/*
767 	 * Kill all other threads in the thread group.
768 	 * We must hold tasklist_lock to call zap_other_threads.
769 	 */
770 	read_lock(&tasklist_lock);
771 	spin_lock_irq(lock);
772 	if (signal_group_exit(sig)) {
773 		/*
774 		 * Another group action in progress, just
775 		 * return so that the signal is processed.
776 		 */
777 		spin_unlock_irq(lock);
778 		read_unlock(&tasklist_lock);
779 		return -EAGAIN;
780 	}
781 
782 	/*
783 	 * child_reaper ignores SIGKILL, change it now.
784 	 * Reparenting needs write_lock on tasklist_lock,
785 	 * so it is safe to do it under read_lock.
786 	 */
787 	if (unlikely(tsk->group_leader == task_child_reaper(tsk)))
788 		task_active_pid_ns(tsk)->child_reaper = tsk;
789 
790 	sig->group_exit_task = tsk;
791 	zap_other_threads(tsk);
792 	read_unlock(&tasklist_lock);
793 
794 	/* Account for the thread group leader hanging around: */
795 	count = thread_group_leader(tsk) ? 1 : 2;
796 	sig->notify_count = count;
797 	while (atomic_read(&sig->count) > count) {
798 		__set_current_state(TASK_UNINTERRUPTIBLE);
799 		spin_unlock_irq(lock);
800 		schedule();
801 		spin_lock_irq(lock);
802 	}
803 	spin_unlock_irq(lock);
804 
805 	/*
806 	 * At this point all other threads have exited, all we have to
807 	 * do is to wait for the thread group leader to become inactive,
808 	 * and to assume its PID:
809 	 */
810 	if (!thread_group_leader(tsk)) {
811 		leader = tsk->group_leader;
812 
813 		sig->notify_count = -1;
814 		for (;;) {
815 			write_lock_irq(&tasklist_lock);
816 			if (likely(leader->exit_state))
817 				break;
818 			__set_current_state(TASK_UNINTERRUPTIBLE);
819 			write_unlock_irq(&tasklist_lock);
820 			schedule();
821 		}
822 
823 		/*
824 		 * The only record we have of the real-time age of a
825 		 * process, regardless of execs it's done, is start_time.
826 		 * All the past CPU time is accumulated in signal_struct
827 		 * from sister threads now dead.  But in this non-leader
828 		 * exec, nothing survives from the original leader thread,
829 		 * whose birth marks the true age of this process now.
830 		 * When we take on its identity by switching to its PID, we
831 		 * also take its birthdate (always earlier than our own).
832 		 */
833 		tsk->start_time = leader->start_time;
834 
835 		BUG_ON(!same_thread_group(leader, tsk));
836 		BUG_ON(has_group_leader_pid(tsk));
837 		/*
838 		 * An exec() starts a new thread group with the
839 		 * TGID of the previous thread group. Rehash the
840 		 * two threads with a switched PID, and release
841 		 * the former thread group leader:
842 		 */
843 
844 		/* Become a process group leader with the old leader's pid.
845 		 * The old leader becomes a thread of the this thread group.
846 		 * Note: The old leader also uses this pid until release_task
847 		 *       is called.  Odd but simple and correct.
848 		 */
849 		detach_pid(tsk, PIDTYPE_PID);
850 		tsk->pid = leader->pid;
851 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
852 		transfer_pid(leader, tsk, PIDTYPE_PGID);
853 		transfer_pid(leader, tsk, PIDTYPE_SID);
854 		list_replace_rcu(&leader->tasks, &tsk->tasks);
855 
856 		tsk->group_leader = tsk;
857 		leader->group_leader = tsk;
858 
859 		tsk->exit_signal = SIGCHLD;
860 
861 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
862 		leader->exit_state = EXIT_DEAD;
863 
864 		write_unlock_irq(&tasklist_lock);
865 	}
866 
867 	sig->group_exit_task = NULL;
868 	sig->notify_count = 0;
869 
870 no_thread_group:
871 	exit_itimers(sig);
872 	if (leader)
873 		release_task(leader);
874 
875 	if (atomic_read(&oldsighand->count) != 1) {
876 		struct sighand_struct *newsighand;
877 		/*
878 		 * This ->sighand is shared with the CLONE_SIGHAND
879 		 * but not CLONE_THREAD task, switch to the new one.
880 		 */
881 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
882 		if (!newsighand)
883 			return -ENOMEM;
884 
885 		atomic_set(&newsighand->count, 1);
886 		memcpy(newsighand->action, oldsighand->action,
887 		       sizeof(newsighand->action));
888 
889 		write_lock_irq(&tasklist_lock);
890 		spin_lock(&oldsighand->siglock);
891 		rcu_assign_pointer(tsk->sighand, newsighand);
892 		spin_unlock(&oldsighand->siglock);
893 		write_unlock_irq(&tasklist_lock);
894 
895 		__cleanup_sighand(oldsighand);
896 	}
897 
898 	BUG_ON(!thread_group_leader(tsk));
899 	return 0;
900 }
901 
902 /*
903  * These functions flushes out all traces of the currently running executable
904  * so that a new one can be started
905  */
906 static void flush_old_files(struct files_struct * files)
907 {
908 	long j = -1;
909 	struct fdtable *fdt;
910 
911 	spin_lock(&files->file_lock);
912 	for (;;) {
913 		unsigned long set, i;
914 
915 		j++;
916 		i = j * __NFDBITS;
917 		fdt = files_fdtable(files);
918 		if (i >= fdt->max_fds)
919 			break;
920 		set = fdt->close_on_exec->fds_bits[j];
921 		if (!set)
922 			continue;
923 		fdt->close_on_exec->fds_bits[j] = 0;
924 		spin_unlock(&files->file_lock);
925 		for ( ; set ; i++,set >>= 1) {
926 			if (set & 1) {
927 				sys_close(i);
928 			}
929 		}
930 		spin_lock(&files->file_lock);
931 
932 	}
933 	spin_unlock(&files->file_lock);
934 }
935 
936 char *get_task_comm(char *buf, struct task_struct *tsk)
937 {
938 	/* buf must be at least sizeof(tsk->comm) in size */
939 	task_lock(tsk);
940 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
941 	task_unlock(tsk);
942 	return buf;
943 }
944 
945 void set_task_comm(struct task_struct *tsk, char *buf)
946 {
947 	task_lock(tsk);
948 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
949 	task_unlock(tsk);
950 }
951 
952 int flush_old_exec(struct linux_binprm * bprm)
953 {
954 	char * name;
955 	int i, ch, retval;
956 	struct files_struct *files;
957 	char tcomm[sizeof(current->comm)];
958 
959 	/*
960 	 * Make sure we have a private signal table and that
961 	 * we are unassociated from the previous thread group.
962 	 */
963 	retval = de_thread(current);
964 	if (retval)
965 		goto out;
966 
967 	/*
968 	 * Make sure we have private file handles. Ask the
969 	 * fork helper to do the work for us and the exit
970 	 * helper to do the cleanup of the old one.
971 	 */
972 	files = current->files;		/* refcounted so safe to hold */
973 	retval = unshare_files();
974 	if (retval)
975 		goto out;
976 	/*
977 	 * Release all of the old mmap stuff
978 	 */
979 	retval = exec_mmap(bprm->mm);
980 	if (retval)
981 		goto mmap_failed;
982 
983 	bprm->mm = NULL;		/* We're using it now */
984 
985 	/* This is the point of no return */
986 	put_files_struct(files);
987 
988 	current->sas_ss_sp = current->sas_ss_size = 0;
989 
990 	if (current->euid == current->uid && current->egid == current->gid)
991 		set_dumpable(current->mm, 1);
992 	else
993 		set_dumpable(current->mm, suid_dumpable);
994 
995 	name = bprm->filename;
996 
997 	/* Copies the binary name from after last slash */
998 	for (i=0; (ch = *(name++)) != '\0';) {
999 		if (ch == '/')
1000 			i = 0; /* overwrite what we wrote */
1001 		else
1002 			if (i < (sizeof(tcomm) - 1))
1003 				tcomm[i++] = ch;
1004 	}
1005 	tcomm[i] = '\0';
1006 	set_task_comm(current, tcomm);
1007 
1008 	current->flags &= ~PF_RANDOMIZE;
1009 	flush_thread();
1010 
1011 	/* Set the new mm task size. We have to do that late because it may
1012 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1013 	 * some architectures like powerpc
1014 	 */
1015 	current->mm->task_size = TASK_SIZE;
1016 
1017 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1018 		suid_keys(current);
1019 		set_dumpable(current->mm, suid_dumpable);
1020 		current->pdeath_signal = 0;
1021 	} else if (file_permission(bprm->file, MAY_READ) ||
1022 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1023 		suid_keys(current);
1024 		set_dumpable(current->mm, suid_dumpable);
1025 	}
1026 
1027 	/* An exec changes our domain. We are no longer part of the thread
1028 	   group */
1029 
1030 	current->self_exec_id++;
1031 
1032 	flush_signal_handlers(current, 0);
1033 	flush_old_files(current->files);
1034 
1035 	return 0;
1036 
1037 mmap_failed:
1038 	reset_files_struct(current, files);
1039 out:
1040 	return retval;
1041 }
1042 
1043 EXPORT_SYMBOL(flush_old_exec);
1044 
1045 /*
1046  * Fill the binprm structure from the inode.
1047  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1048  */
1049 int prepare_binprm(struct linux_binprm *bprm)
1050 {
1051 	int mode;
1052 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1053 	int retval;
1054 
1055 	mode = inode->i_mode;
1056 	if (bprm->file->f_op == NULL)
1057 		return -EACCES;
1058 
1059 	bprm->e_uid = current->euid;
1060 	bprm->e_gid = current->egid;
1061 
1062 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1063 		/* Set-uid? */
1064 		if (mode & S_ISUID) {
1065 			current->personality &= ~PER_CLEAR_ON_SETID;
1066 			bprm->e_uid = inode->i_uid;
1067 		}
1068 
1069 		/* Set-gid? */
1070 		/*
1071 		 * If setgid is set but no group execute bit then this
1072 		 * is a candidate for mandatory locking, not a setgid
1073 		 * executable.
1074 		 */
1075 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1076 			current->personality &= ~PER_CLEAR_ON_SETID;
1077 			bprm->e_gid = inode->i_gid;
1078 		}
1079 	}
1080 
1081 	/* fill in binprm security blob */
1082 	retval = security_bprm_set(bprm);
1083 	if (retval)
1084 		return retval;
1085 
1086 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1087 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1088 }
1089 
1090 EXPORT_SYMBOL(prepare_binprm);
1091 
1092 static int unsafe_exec(struct task_struct *p)
1093 {
1094 	int unsafe = 0;
1095 	if (p->ptrace & PT_PTRACED) {
1096 		if (p->ptrace & PT_PTRACE_CAP)
1097 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1098 		else
1099 			unsafe |= LSM_UNSAFE_PTRACE;
1100 	}
1101 	if (atomic_read(&p->fs->count) > 1 ||
1102 	    atomic_read(&p->files->count) > 1 ||
1103 	    atomic_read(&p->sighand->count) > 1)
1104 		unsafe |= LSM_UNSAFE_SHARE;
1105 
1106 	return unsafe;
1107 }
1108 
1109 void compute_creds(struct linux_binprm *bprm)
1110 {
1111 	int unsafe;
1112 
1113 	if (bprm->e_uid != current->uid) {
1114 		suid_keys(current);
1115 		current->pdeath_signal = 0;
1116 	}
1117 	exec_keys(current);
1118 
1119 	task_lock(current);
1120 	unsafe = unsafe_exec(current);
1121 	security_bprm_apply_creds(bprm, unsafe);
1122 	task_unlock(current);
1123 	security_bprm_post_apply_creds(bprm);
1124 }
1125 EXPORT_SYMBOL(compute_creds);
1126 
1127 /*
1128  * Arguments are '\0' separated strings found at the location bprm->p
1129  * points to; chop off the first by relocating brpm->p to right after
1130  * the first '\0' encountered.
1131  */
1132 int remove_arg_zero(struct linux_binprm *bprm)
1133 {
1134 	int ret = 0;
1135 	unsigned long offset;
1136 	char *kaddr;
1137 	struct page *page;
1138 
1139 	if (!bprm->argc)
1140 		return 0;
1141 
1142 	do {
1143 		offset = bprm->p & ~PAGE_MASK;
1144 		page = get_arg_page(bprm, bprm->p, 0);
1145 		if (!page) {
1146 			ret = -EFAULT;
1147 			goto out;
1148 		}
1149 		kaddr = kmap_atomic(page, KM_USER0);
1150 
1151 		for (; offset < PAGE_SIZE && kaddr[offset];
1152 				offset++, bprm->p++)
1153 			;
1154 
1155 		kunmap_atomic(kaddr, KM_USER0);
1156 		put_arg_page(page);
1157 
1158 		if (offset == PAGE_SIZE)
1159 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1160 	} while (offset == PAGE_SIZE);
1161 
1162 	bprm->p++;
1163 	bprm->argc--;
1164 	ret = 0;
1165 
1166 out:
1167 	return ret;
1168 }
1169 EXPORT_SYMBOL(remove_arg_zero);
1170 
1171 /*
1172  * cycle the list of binary formats handler, until one recognizes the image
1173  */
1174 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1175 {
1176 	int try,retval;
1177 	struct linux_binfmt *fmt;
1178 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1179 	/* handle /sbin/loader.. */
1180 	{
1181 	    struct exec * eh = (struct exec *) bprm->buf;
1182 
1183 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1184 		(eh->fh.f_flags & 0x3000) == 0x3000)
1185 	    {
1186 		struct file * file;
1187 		unsigned long loader;
1188 
1189 		allow_write_access(bprm->file);
1190 		fput(bprm->file);
1191 		bprm->file = NULL;
1192 
1193 		loader = bprm->vma->vm_end - sizeof(void *);
1194 
1195 		file = open_exec("/sbin/loader");
1196 		retval = PTR_ERR(file);
1197 		if (IS_ERR(file))
1198 			return retval;
1199 
1200 		/* Remember if the application is TASO.  */
1201 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1202 
1203 		bprm->file = file;
1204 		bprm->loader = loader;
1205 		retval = prepare_binprm(bprm);
1206 		if (retval<0)
1207 			return retval;
1208 		/* should call search_binary_handler recursively here,
1209 		   but it does not matter */
1210 	    }
1211 	}
1212 #endif
1213 	retval = security_bprm_check(bprm);
1214 	if (retval)
1215 		return retval;
1216 
1217 	/* kernel module loader fixup */
1218 	/* so we don't try to load run modprobe in kernel space. */
1219 	set_fs(USER_DS);
1220 
1221 	retval = audit_bprm(bprm);
1222 	if (retval)
1223 		return retval;
1224 
1225 	retval = -ENOENT;
1226 	for (try=0; try<2; try++) {
1227 		read_lock(&binfmt_lock);
1228 		list_for_each_entry(fmt, &formats, lh) {
1229 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1230 			if (!fn)
1231 				continue;
1232 			if (!try_module_get(fmt->module))
1233 				continue;
1234 			read_unlock(&binfmt_lock);
1235 			retval = fn(bprm, regs);
1236 			if (retval >= 0) {
1237 				put_binfmt(fmt);
1238 				allow_write_access(bprm->file);
1239 				if (bprm->file)
1240 					fput(bprm->file);
1241 				bprm->file = NULL;
1242 				current->did_exec = 1;
1243 				proc_exec_connector(current);
1244 				return retval;
1245 			}
1246 			read_lock(&binfmt_lock);
1247 			put_binfmt(fmt);
1248 			if (retval != -ENOEXEC || bprm->mm == NULL)
1249 				break;
1250 			if (!bprm->file) {
1251 				read_unlock(&binfmt_lock);
1252 				return retval;
1253 			}
1254 		}
1255 		read_unlock(&binfmt_lock);
1256 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1257 			break;
1258 #ifdef CONFIG_KMOD
1259 		}else{
1260 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1261 			if (printable(bprm->buf[0]) &&
1262 			    printable(bprm->buf[1]) &&
1263 			    printable(bprm->buf[2]) &&
1264 			    printable(bprm->buf[3]))
1265 				break; /* -ENOEXEC */
1266 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1267 #endif
1268 		}
1269 	}
1270 	return retval;
1271 }
1272 
1273 EXPORT_SYMBOL(search_binary_handler);
1274 
1275 /*
1276  * sys_execve() executes a new program.
1277  */
1278 int do_execve(char * filename,
1279 	char __user *__user *argv,
1280 	char __user *__user *envp,
1281 	struct pt_regs * regs)
1282 {
1283 	struct linux_binprm *bprm;
1284 	struct file *file;
1285 	unsigned long env_p;
1286 	int retval;
1287 
1288 	retval = -ENOMEM;
1289 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1290 	if (!bprm)
1291 		goto out_ret;
1292 
1293 	file = open_exec(filename);
1294 	retval = PTR_ERR(file);
1295 	if (IS_ERR(file))
1296 		goto out_kfree;
1297 
1298 	sched_exec();
1299 
1300 	bprm->file = file;
1301 	bprm->filename = filename;
1302 	bprm->interp = filename;
1303 
1304 	retval = bprm_mm_init(bprm);
1305 	if (retval)
1306 		goto out_file;
1307 
1308 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1309 	if ((retval = bprm->argc) < 0)
1310 		goto out_mm;
1311 
1312 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1313 	if ((retval = bprm->envc) < 0)
1314 		goto out_mm;
1315 
1316 	retval = security_bprm_alloc(bprm);
1317 	if (retval)
1318 		goto out;
1319 
1320 	retval = prepare_binprm(bprm);
1321 	if (retval < 0)
1322 		goto out;
1323 
1324 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1325 	if (retval < 0)
1326 		goto out;
1327 
1328 	bprm->exec = bprm->p;
1329 	retval = copy_strings(bprm->envc, envp, bprm);
1330 	if (retval < 0)
1331 		goto out;
1332 
1333 	env_p = bprm->p;
1334 	retval = copy_strings(bprm->argc, argv, bprm);
1335 	if (retval < 0)
1336 		goto out;
1337 	bprm->argv_len = env_p - bprm->p;
1338 
1339 	retval = search_binary_handler(bprm,regs);
1340 	if (retval >= 0) {
1341 		/* execve success */
1342 		free_arg_pages(bprm);
1343 		security_bprm_free(bprm);
1344 		acct_update_integrals(current);
1345 		kfree(bprm);
1346 		return retval;
1347 	}
1348 
1349 out:
1350 	free_arg_pages(bprm);
1351 	if (bprm->security)
1352 		security_bprm_free(bprm);
1353 
1354 out_mm:
1355 	if (bprm->mm)
1356 		mmput (bprm->mm);
1357 
1358 out_file:
1359 	if (bprm->file) {
1360 		allow_write_access(bprm->file);
1361 		fput(bprm->file);
1362 	}
1363 out_kfree:
1364 	kfree(bprm);
1365 
1366 out_ret:
1367 	return retval;
1368 }
1369 
1370 int set_binfmt(struct linux_binfmt *new)
1371 {
1372 	struct linux_binfmt *old = current->binfmt;
1373 
1374 	if (new) {
1375 		if (!try_module_get(new->module))
1376 			return -1;
1377 	}
1378 	current->binfmt = new;
1379 	if (old)
1380 		module_put(old->module);
1381 	return 0;
1382 }
1383 
1384 EXPORT_SYMBOL(set_binfmt);
1385 
1386 /* format_corename will inspect the pattern parameter, and output a
1387  * name into corename, which must have space for at least
1388  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1389  */
1390 static int format_corename(char *corename, const char *pattern, long signr)
1391 {
1392 	const char *pat_ptr = pattern;
1393 	char *out_ptr = corename;
1394 	char *const out_end = corename + CORENAME_MAX_SIZE;
1395 	int rc;
1396 	int pid_in_pattern = 0;
1397 	int ispipe = 0;
1398 
1399 	if (*pattern == '|')
1400 		ispipe = 1;
1401 
1402 	/* Repeat as long as we have more pattern to process and more output
1403 	   space */
1404 	while (*pat_ptr) {
1405 		if (*pat_ptr != '%') {
1406 			if (out_ptr == out_end)
1407 				goto out;
1408 			*out_ptr++ = *pat_ptr++;
1409 		} else {
1410 			switch (*++pat_ptr) {
1411 			case 0:
1412 				goto out;
1413 			/* Double percent, output one percent */
1414 			case '%':
1415 				if (out_ptr == out_end)
1416 					goto out;
1417 				*out_ptr++ = '%';
1418 				break;
1419 			/* pid */
1420 			case 'p':
1421 				pid_in_pattern = 1;
1422 				rc = snprintf(out_ptr, out_end - out_ptr,
1423 					      "%d", task_tgid_vnr(current));
1424 				if (rc > out_end - out_ptr)
1425 					goto out;
1426 				out_ptr += rc;
1427 				break;
1428 			/* uid */
1429 			case 'u':
1430 				rc = snprintf(out_ptr, out_end - out_ptr,
1431 					      "%d", current->uid);
1432 				if (rc > out_end - out_ptr)
1433 					goto out;
1434 				out_ptr += rc;
1435 				break;
1436 			/* gid */
1437 			case 'g':
1438 				rc = snprintf(out_ptr, out_end - out_ptr,
1439 					      "%d", current->gid);
1440 				if (rc > out_end - out_ptr)
1441 					goto out;
1442 				out_ptr += rc;
1443 				break;
1444 			/* signal that caused the coredump */
1445 			case 's':
1446 				rc = snprintf(out_ptr, out_end - out_ptr,
1447 					      "%ld", signr);
1448 				if (rc > out_end - out_ptr)
1449 					goto out;
1450 				out_ptr += rc;
1451 				break;
1452 			/* UNIX time of coredump */
1453 			case 't': {
1454 				struct timeval tv;
1455 				do_gettimeofday(&tv);
1456 				rc = snprintf(out_ptr, out_end - out_ptr,
1457 					      "%lu", tv.tv_sec);
1458 				if (rc > out_end - out_ptr)
1459 					goto out;
1460 				out_ptr += rc;
1461 				break;
1462 			}
1463 			/* hostname */
1464 			case 'h':
1465 				down_read(&uts_sem);
1466 				rc = snprintf(out_ptr, out_end - out_ptr,
1467 					      "%s", utsname()->nodename);
1468 				up_read(&uts_sem);
1469 				if (rc > out_end - out_ptr)
1470 					goto out;
1471 				out_ptr += rc;
1472 				break;
1473 			/* executable */
1474 			case 'e':
1475 				rc = snprintf(out_ptr, out_end - out_ptr,
1476 					      "%s", current->comm);
1477 				if (rc > out_end - out_ptr)
1478 					goto out;
1479 				out_ptr += rc;
1480 				break;
1481 			/* core limit size */
1482 			case 'c':
1483 				rc = snprintf(out_ptr, out_end - out_ptr,
1484 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1485 				if (rc > out_end - out_ptr)
1486 					goto out;
1487 				out_ptr += rc;
1488 				break;
1489 			default:
1490 				break;
1491 			}
1492 			++pat_ptr;
1493 		}
1494 	}
1495 	/* Backward compatibility with core_uses_pid:
1496 	 *
1497 	 * If core_pattern does not include a %p (as is the default)
1498 	 * and core_uses_pid is set, then .%pid will be appended to
1499 	 * the filename. Do not do this for piped commands. */
1500 	if (!ispipe && !pid_in_pattern
1501             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1502 		rc = snprintf(out_ptr, out_end - out_ptr,
1503 			      ".%d", task_tgid_vnr(current));
1504 		if (rc > out_end - out_ptr)
1505 			goto out;
1506 		out_ptr += rc;
1507 	}
1508 out:
1509 	*out_ptr = 0;
1510 	return ispipe;
1511 }
1512 
1513 static void zap_process(struct task_struct *start)
1514 {
1515 	struct task_struct *t;
1516 
1517 	start->signal->flags = SIGNAL_GROUP_EXIT;
1518 	start->signal->group_stop_count = 0;
1519 
1520 	t = start;
1521 	do {
1522 		if (t != current && t->mm) {
1523 			t->mm->core_waiters++;
1524 			sigaddset(&t->pending.signal, SIGKILL);
1525 			signal_wake_up(t, 1);
1526 		}
1527 	} while ((t = next_thread(t)) != start);
1528 }
1529 
1530 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1531 				int exit_code)
1532 {
1533 	struct task_struct *g, *p;
1534 	unsigned long flags;
1535 	int err = -EAGAIN;
1536 
1537 	spin_lock_irq(&tsk->sighand->siglock);
1538 	if (!signal_group_exit(tsk->signal)) {
1539 		tsk->signal->group_exit_code = exit_code;
1540 		zap_process(tsk);
1541 		err = 0;
1542 	}
1543 	spin_unlock_irq(&tsk->sighand->siglock);
1544 	if (err)
1545 		return err;
1546 
1547 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1548 		goto done;
1549 
1550 	rcu_read_lock();
1551 	for_each_process(g) {
1552 		if (g == tsk->group_leader)
1553 			continue;
1554 
1555 		p = g;
1556 		do {
1557 			if (p->mm) {
1558 				if (p->mm == mm) {
1559 					/*
1560 					 * p->sighand can't disappear, but
1561 					 * may be changed by de_thread()
1562 					 */
1563 					lock_task_sighand(p, &flags);
1564 					zap_process(p);
1565 					unlock_task_sighand(p, &flags);
1566 				}
1567 				break;
1568 			}
1569 		} while ((p = next_thread(p)) != g);
1570 	}
1571 	rcu_read_unlock();
1572 done:
1573 	return mm->core_waiters;
1574 }
1575 
1576 static int coredump_wait(int exit_code)
1577 {
1578 	struct task_struct *tsk = current;
1579 	struct mm_struct *mm = tsk->mm;
1580 	struct completion startup_done;
1581 	struct completion *vfork_done;
1582 	int core_waiters;
1583 
1584 	init_completion(&mm->core_done);
1585 	init_completion(&startup_done);
1586 	mm->core_startup_done = &startup_done;
1587 
1588 	core_waiters = zap_threads(tsk, mm, exit_code);
1589 	up_write(&mm->mmap_sem);
1590 
1591 	if (unlikely(core_waiters < 0))
1592 		goto fail;
1593 
1594 	/*
1595 	 * Make sure nobody is waiting for us to release the VM,
1596 	 * otherwise we can deadlock when we wait on each other
1597 	 */
1598 	vfork_done = tsk->vfork_done;
1599 	if (vfork_done) {
1600 		tsk->vfork_done = NULL;
1601 		complete(vfork_done);
1602 	}
1603 
1604 	if (core_waiters)
1605 		wait_for_completion(&startup_done);
1606 fail:
1607 	BUG_ON(mm->core_waiters);
1608 	return core_waiters;
1609 }
1610 
1611 /*
1612  * set_dumpable converts traditional three-value dumpable to two flags and
1613  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1614  * these bits are not changed atomically.  So get_dumpable can observe the
1615  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1616  * return either old dumpable or new one by paying attention to the order of
1617  * modifying the bits.
1618  *
1619  * dumpable |   mm->flags (binary)
1620  * old  new | initial interim  final
1621  * ---------+-----------------------
1622  *  0    1  |   00      01      01
1623  *  0    2  |   00      10(*)   11
1624  *  1    0  |   01      00      00
1625  *  1    2  |   01      11      11
1626  *  2    0  |   11      10(*)   00
1627  *  2    1  |   11      11      01
1628  *
1629  * (*) get_dumpable regards interim value of 10 as 11.
1630  */
1631 void set_dumpable(struct mm_struct *mm, int value)
1632 {
1633 	switch (value) {
1634 	case 0:
1635 		clear_bit(MMF_DUMPABLE, &mm->flags);
1636 		smp_wmb();
1637 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1638 		break;
1639 	case 1:
1640 		set_bit(MMF_DUMPABLE, &mm->flags);
1641 		smp_wmb();
1642 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1643 		break;
1644 	case 2:
1645 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1646 		smp_wmb();
1647 		set_bit(MMF_DUMPABLE, &mm->flags);
1648 		break;
1649 	}
1650 }
1651 
1652 int get_dumpable(struct mm_struct *mm)
1653 {
1654 	int ret;
1655 
1656 	ret = mm->flags & 0x3;
1657 	return (ret >= 2) ? 2 : ret;
1658 }
1659 
1660 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1661 {
1662 	char corename[CORENAME_MAX_SIZE + 1];
1663 	struct mm_struct *mm = current->mm;
1664 	struct linux_binfmt * binfmt;
1665 	struct inode * inode;
1666 	struct file * file;
1667 	int retval = 0;
1668 	int fsuid = current->fsuid;
1669 	int flag = 0;
1670 	int ispipe = 0;
1671 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1672 	char **helper_argv = NULL;
1673 	int helper_argc = 0;
1674 	char *delimit;
1675 
1676 	audit_core_dumps(signr);
1677 
1678 	binfmt = current->binfmt;
1679 	if (!binfmt || !binfmt->core_dump)
1680 		goto fail;
1681 	down_write(&mm->mmap_sem);
1682 	/*
1683 	 * If another thread got here first, or we are not dumpable, bail out.
1684 	 */
1685 	if (mm->core_waiters || !get_dumpable(mm)) {
1686 		up_write(&mm->mmap_sem);
1687 		goto fail;
1688 	}
1689 
1690 	/*
1691 	 *	We cannot trust fsuid as being the "true" uid of the
1692 	 *	process nor do we know its entire history. We only know it
1693 	 *	was tainted so we dump it as root in mode 2.
1694 	 */
1695 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1696 		flag = O_EXCL;		/* Stop rewrite attacks */
1697 		current->fsuid = 0;	/* Dump root private */
1698 	}
1699 
1700 	retval = coredump_wait(exit_code);
1701 	if (retval < 0)
1702 		goto fail;
1703 
1704 	/*
1705 	 * Clear any false indication of pending signals that might
1706 	 * be seen by the filesystem code called to write the core file.
1707 	 */
1708 	clear_thread_flag(TIF_SIGPENDING);
1709 
1710 	/*
1711 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1712 	 * uses lock_kernel()
1713 	 */
1714  	lock_kernel();
1715 	ispipe = format_corename(corename, core_pattern, signr);
1716 	unlock_kernel();
1717 	/*
1718 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1719 	 * to a pipe.  Since we're not writing directly to the filesystem
1720 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1721 	 * created unless the pipe reader choses to write out the core file
1722 	 * at which point file size limits and permissions will be imposed
1723 	 * as it does with any other process
1724 	 */
1725 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1726 		goto fail_unlock;
1727 
1728  	if (ispipe) {
1729 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1730 		/* Terminate the string before the first option */
1731 		delimit = strchr(corename, ' ');
1732 		if (delimit)
1733 			*delimit = '\0';
1734 		delimit = strrchr(helper_argv[0], '/');
1735 		if (delimit)
1736 			delimit++;
1737 		else
1738 			delimit = helper_argv[0];
1739 		if (!strcmp(delimit, current->comm)) {
1740 			printk(KERN_NOTICE "Recursive core dump detected, "
1741 					"aborting\n");
1742 			goto fail_unlock;
1743 		}
1744 
1745 		core_limit = RLIM_INFINITY;
1746 
1747 		/* SIGPIPE can happen, but it's just never processed */
1748  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1749 				&file)) {
1750  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1751 			       corename);
1752  			goto fail_unlock;
1753  		}
1754  	} else
1755  		file = filp_open(corename,
1756 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1757 				 0600);
1758 	if (IS_ERR(file))
1759 		goto fail_unlock;
1760 	inode = file->f_path.dentry->d_inode;
1761 	if (inode->i_nlink > 1)
1762 		goto close_fail;	/* multiple links - don't dump */
1763 	if (!ispipe && d_unhashed(file->f_path.dentry))
1764 		goto close_fail;
1765 
1766 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1767 	   but keep the previous behaviour for now. */
1768 	if (!ispipe && !S_ISREG(inode->i_mode))
1769 		goto close_fail;
1770 	/*
1771 	 * Dont allow local users get cute and trick others to coredump
1772 	 * into their pre-created files:
1773 	 */
1774 	if (inode->i_uid != current->fsuid)
1775 		goto close_fail;
1776 	if (!file->f_op)
1777 		goto close_fail;
1778 	if (!file->f_op->write)
1779 		goto close_fail;
1780 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1781 		goto close_fail;
1782 
1783 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1784 
1785 	if (retval)
1786 		current->signal->group_exit_code |= 0x80;
1787 close_fail:
1788 	filp_close(file, NULL);
1789 fail_unlock:
1790 	if (helper_argv)
1791 		argv_free(helper_argv);
1792 
1793 	current->fsuid = fsuid;
1794 	complete_all(&mm->core_done);
1795 fail:
1796 	return retval;
1797 }
1798