xref: /openbmc/linux/fs/exec.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 static int bprm_creds_from_file(struct linux_binprm *bprm);
76 
77 int suid_dumpable = 0;
78 
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81 
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 	BUG_ON(!fmt);
85 	if (WARN_ON(!fmt->load_binary))
86 		return;
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	error = -EINVAL;
145 	if (!S_ISREG(file_inode(file)->i_mode))
146 		goto exit;
147 
148 	error = -EACCES;
149 	if (path_noexec(&file->f_path))
150 		goto exit;
151 
152 	fsnotify_open(file);
153 
154 	error = -ENOEXEC;
155 
156 	read_lock(&binfmt_lock);
157 	list_for_each_entry(fmt, &formats, lh) {
158 		if (!fmt->load_shlib)
159 			continue;
160 		if (!try_module_get(fmt->module))
161 			continue;
162 		read_unlock(&binfmt_lock);
163 		error = fmt->load_shlib(file);
164 		read_lock(&binfmt_lock);
165 		put_binfmt(fmt);
166 		if (error != -ENOEXEC)
167 			break;
168 	}
169 	read_unlock(&binfmt_lock);
170 exit:
171 	fput(file);
172 out:
173   	return error;
174 }
175 #endif /* #ifdef CONFIG_USELIB */
176 
177 #ifdef CONFIG_MMU
178 /*
179  * The nascent bprm->mm is not visible until exec_mmap() but it can
180  * use a lot of memory, account these pages in current->mm temporary
181  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
182  * change the counter back via acct_arg_size(0).
183  */
184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
185 {
186 	struct mm_struct *mm = current->mm;
187 	long diff = (long)(pages - bprm->vma_pages);
188 
189 	if (!mm || !diff)
190 		return;
191 
192 	bprm->vma_pages = pages;
193 	add_mm_counter(mm, MM_ANONPAGES, diff);
194 }
195 
196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
197 		int write)
198 {
199 	struct page *page;
200 	int ret;
201 	unsigned int gup_flags = FOLL_FORCE;
202 
203 #ifdef CONFIG_STACK_GROWSUP
204 	if (write) {
205 		ret = expand_downwards(bprm->vma, pos);
206 		if (ret < 0)
207 			return NULL;
208 	}
209 #endif
210 
211 	if (write)
212 		gup_flags |= FOLL_WRITE;
213 
214 	/*
215 	 * We are doing an exec().  'current' is the process
216 	 * doing the exec and bprm->mm is the new process's mm.
217 	 */
218 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
219 			&page, NULL, NULL);
220 	if (ret <= 0)
221 		return NULL;
222 
223 	if (write)
224 		acct_arg_size(bprm, vma_pages(bprm->vma));
225 
226 	return page;
227 }
228 
229 static void put_arg_page(struct page *page)
230 {
231 	put_page(page);
232 }
233 
234 static void free_arg_pages(struct linux_binprm *bprm)
235 {
236 }
237 
238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
239 		struct page *page)
240 {
241 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
242 }
243 
244 static int __bprm_mm_init(struct linux_binprm *bprm)
245 {
246 	int err;
247 	struct vm_area_struct *vma = NULL;
248 	struct mm_struct *mm = bprm->mm;
249 
250 	bprm->vma = vma = vm_area_alloc(mm);
251 	if (!vma)
252 		return -ENOMEM;
253 	vma_set_anonymous(vma);
254 
255 	if (mmap_write_lock_killable(mm)) {
256 		err = -EINTR;
257 		goto err_free;
258 	}
259 
260 	/*
261 	 * Place the stack at the largest stack address the architecture
262 	 * supports. Later, we'll move this to an appropriate place. We don't
263 	 * use STACK_TOP because that can depend on attributes which aren't
264 	 * configured yet.
265 	 */
266 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267 	vma->vm_end = STACK_TOP_MAX;
268 	vma->vm_start = vma->vm_end - PAGE_SIZE;
269 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271 
272 	err = insert_vm_struct(mm, vma);
273 	if (err)
274 		goto err;
275 
276 	mm->stack_vm = mm->total_vm = 1;
277 	mmap_write_unlock(mm);
278 	bprm->p = vma->vm_end - sizeof(void *);
279 	return 0;
280 err:
281 	mmap_write_unlock(mm);
282 err_free:
283 	bprm->vma = NULL;
284 	vm_area_free(vma);
285 	return err;
286 }
287 
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290 	return len <= MAX_ARG_STRLEN;
291 }
292 
293 #else
294 
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298 
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 		int write)
301 {
302 	struct page *page;
303 
304 	page = bprm->page[pos / PAGE_SIZE];
305 	if (!page && write) {
306 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 		if (!page)
308 			return NULL;
309 		bprm->page[pos / PAGE_SIZE] = page;
310 	}
311 
312 	return page;
313 }
314 
315 static void put_arg_page(struct page *page)
316 {
317 }
318 
319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321 	if (bprm->page[i]) {
322 		__free_page(bprm->page[i]);
323 		bprm->page[i] = NULL;
324 	}
325 }
326 
327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329 	int i;
330 
331 	for (i = 0; i < MAX_ARG_PAGES; i++)
332 		free_arg_page(bprm, i);
333 }
334 
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 		struct page *page)
337 {
338 }
339 
340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 	return 0;
344 }
345 
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348 	return len <= bprm->p;
349 }
350 
351 #endif /* CONFIG_MMU */
352 
353 /*
354  * Create a new mm_struct and populate it with a temporary stack
355  * vm_area_struct.  We don't have enough context at this point to set the stack
356  * flags, permissions, and offset, so we use temporary values.  We'll update
357  * them later in setup_arg_pages().
358  */
359 static int bprm_mm_init(struct linux_binprm *bprm)
360 {
361 	int err;
362 	struct mm_struct *mm = NULL;
363 
364 	bprm->mm = mm = mm_alloc();
365 	err = -ENOMEM;
366 	if (!mm)
367 		goto err;
368 
369 	/* Save current stack limit for all calculations made during exec. */
370 	task_lock(current->group_leader);
371 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 	task_unlock(current->group_leader);
373 
374 	err = __bprm_mm_init(bprm);
375 	if (err)
376 		goto err;
377 
378 	return 0;
379 
380 err:
381 	if (mm) {
382 		bprm->mm = NULL;
383 		mmdrop(mm);
384 	}
385 
386 	return err;
387 }
388 
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 	bool is_compat;
392 #endif
393 	union {
394 		const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 		const compat_uptr_t __user *compat;
397 #endif
398 	} ptr;
399 };
400 
401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403 	const char __user *native;
404 
405 #ifdef CONFIG_COMPAT
406 	if (unlikely(argv.is_compat)) {
407 		compat_uptr_t compat;
408 
409 		if (get_user(compat, argv.ptr.compat + nr))
410 			return ERR_PTR(-EFAULT);
411 
412 		return compat_ptr(compat);
413 	}
414 #endif
415 
416 	if (get_user(native, argv.ptr.native + nr))
417 		return ERR_PTR(-EFAULT);
418 
419 	return native;
420 }
421 
422 /*
423  * count() counts the number of strings in array ARGV.
424  */
425 static int count(struct user_arg_ptr argv, int max)
426 {
427 	int i = 0;
428 
429 	if (argv.ptr.native != NULL) {
430 		for (;;) {
431 			const char __user *p = get_user_arg_ptr(argv, i);
432 
433 			if (!p)
434 				break;
435 
436 			if (IS_ERR(p))
437 				return -EFAULT;
438 
439 			if (i >= max)
440 				return -E2BIG;
441 			++i;
442 
443 			if (fatal_signal_pending(current))
444 				return -ERESTARTNOHAND;
445 			cond_resched();
446 		}
447 	}
448 	return i;
449 }
450 
451 static int prepare_arg_pages(struct linux_binprm *bprm,
452 			struct user_arg_ptr argv, struct user_arg_ptr envp)
453 {
454 	unsigned long limit, ptr_size;
455 
456 	bprm->argc = count(argv, MAX_ARG_STRINGS);
457 	if (bprm->argc < 0)
458 		return bprm->argc;
459 
460 	bprm->envc = count(envp, MAX_ARG_STRINGS);
461 	if (bprm->envc < 0)
462 		return bprm->envc;
463 
464 	/*
465 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
466 	 * (whichever is smaller) for the argv+env strings.
467 	 * This ensures that:
468 	 *  - the remaining binfmt code will not run out of stack space,
469 	 *  - the program will have a reasonable amount of stack left
470 	 *    to work from.
471 	 */
472 	limit = _STK_LIM / 4 * 3;
473 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
474 	/*
475 	 * We've historically supported up to 32 pages (ARG_MAX)
476 	 * of argument strings even with small stacks
477 	 */
478 	limit = max_t(unsigned long, limit, ARG_MAX);
479 	/*
480 	 * We must account for the size of all the argv and envp pointers to
481 	 * the argv and envp strings, since they will also take up space in
482 	 * the stack. They aren't stored until much later when we can't
483 	 * signal to the parent that the child has run out of stack space.
484 	 * Instead, calculate it here so it's possible to fail gracefully.
485 	 */
486 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
487 	if (limit <= ptr_size)
488 		return -E2BIG;
489 	limit -= ptr_size;
490 
491 	bprm->argmin = bprm->p - limit;
492 	return 0;
493 }
494 
495 /*
496  * 'copy_strings()' copies argument/environment strings from the old
497  * processes's memory to the new process's stack.  The call to get_user_pages()
498  * ensures the destination page is created and not swapped out.
499  */
500 static int copy_strings(int argc, struct user_arg_ptr argv,
501 			struct linux_binprm *bprm)
502 {
503 	struct page *kmapped_page = NULL;
504 	char *kaddr = NULL;
505 	unsigned long kpos = 0;
506 	int ret;
507 
508 	while (argc-- > 0) {
509 		const char __user *str;
510 		int len;
511 		unsigned long pos;
512 
513 		ret = -EFAULT;
514 		str = get_user_arg_ptr(argv, argc);
515 		if (IS_ERR(str))
516 			goto out;
517 
518 		len = strnlen_user(str, MAX_ARG_STRLEN);
519 		if (!len)
520 			goto out;
521 
522 		ret = -E2BIG;
523 		if (!valid_arg_len(bprm, len))
524 			goto out;
525 
526 		/* We're going to work our way backwords. */
527 		pos = bprm->p;
528 		str += len;
529 		bprm->p -= len;
530 #ifdef CONFIG_MMU
531 		if (bprm->p < bprm->argmin)
532 			goto out;
533 #endif
534 
535 		while (len > 0) {
536 			int offset, bytes_to_copy;
537 
538 			if (fatal_signal_pending(current)) {
539 				ret = -ERESTARTNOHAND;
540 				goto out;
541 			}
542 			cond_resched();
543 
544 			offset = pos % PAGE_SIZE;
545 			if (offset == 0)
546 				offset = PAGE_SIZE;
547 
548 			bytes_to_copy = offset;
549 			if (bytes_to_copy > len)
550 				bytes_to_copy = len;
551 
552 			offset -= bytes_to_copy;
553 			pos -= bytes_to_copy;
554 			str -= bytes_to_copy;
555 			len -= bytes_to_copy;
556 
557 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
558 				struct page *page;
559 
560 				page = get_arg_page(bprm, pos, 1);
561 				if (!page) {
562 					ret = -E2BIG;
563 					goto out;
564 				}
565 
566 				if (kmapped_page) {
567 					flush_kernel_dcache_page(kmapped_page);
568 					kunmap(kmapped_page);
569 					put_arg_page(kmapped_page);
570 				}
571 				kmapped_page = page;
572 				kaddr = kmap(kmapped_page);
573 				kpos = pos & PAGE_MASK;
574 				flush_arg_page(bprm, kpos, kmapped_page);
575 			}
576 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
577 				ret = -EFAULT;
578 				goto out;
579 			}
580 		}
581 	}
582 	ret = 0;
583 out:
584 	if (kmapped_page) {
585 		flush_kernel_dcache_page(kmapped_page);
586 		kunmap(kmapped_page);
587 		put_arg_page(kmapped_page);
588 	}
589 	return ret;
590 }
591 
592 /*
593  * Copy and argument/environment string from the kernel to the processes stack.
594  */
595 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
596 {
597 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
598 	unsigned long pos = bprm->p;
599 
600 	if (len == 0)
601 		return -EFAULT;
602 	if (!valid_arg_len(bprm, len))
603 		return -E2BIG;
604 
605 	/* We're going to work our way backwards. */
606 	arg += len;
607 	bprm->p -= len;
608 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
609 		return -E2BIG;
610 
611 	while (len > 0) {
612 		unsigned int bytes_to_copy = min_t(unsigned int, len,
613 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
614 		struct page *page;
615 		char *kaddr;
616 
617 		pos -= bytes_to_copy;
618 		arg -= bytes_to_copy;
619 		len -= bytes_to_copy;
620 
621 		page = get_arg_page(bprm, pos, 1);
622 		if (!page)
623 			return -E2BIG;
624 		kaddr = kmap_atomic(page);
625 		flush_arg_page(bprm, pos & PAGE_MASK, page);
626 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
627 		flush_kernel_dcache_page(page);
628 		kunmap_atomic(kaddr);
629 		put_arg_page(page);
630 	}
631 
632 	return 0;
633 }
634 EXPORT_SYMBOL(copy_string_kernel);
635 
636 #ifdef CONFIG_MMU
637 
638 /*
639  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
640  * the binfmt code determines where the new stack should reside, we shift it to
641  * its final location.  The process proceeds as follows:
642  *
643  * 1) Use shift to calculate the new vma endpoints.
644  * 2) Extend vma to cover both the old and new ranges.  This ensures the
645  *    arguments passed to subsequent functions are consistent.
646  * 3) Move vma's page tables to the new range.
647  * 4) Free up any cleared pgd range.
648  * 5) Shrink the vma to cover only the new range.
649  */
650 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
651 {
652 	struct mm_struct *mm = vma->vm_mm;
653 	unsigned long old_start = vma->vm_start;
654 	unsigned long old_end = vma->vm_end;
655 	unsigned long length = old_end - old_start;
656 	unsigned long new_start = old_start - shift;
657 	unsigned long new_end = old_end - shift;
658 	struct mmu_gather tlb;
659 
660 	BUG_ON(new_start > new_end);
661 
662 	/*
663 	 * ensure there are no vmas between where we want to go
664 	 * and where we are
665 	 */
666 	if (vma != find_vma(mm, new_start))
667 		return -EFAULT;
668 
669 	/*
670 	 * cover the whole range: [new_start, old_end)
671 	 */
672 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
673 		return -ENOMEM;
674 
675 	/*
676 	 * move the page tables downwards, on failure we rely on
677 	 * process cleanup to remove whatever mess we made.
678 	 */
679 	if (length != move_page_tables(vma, old_start,
680 				       vma, new_start, length, false))
681 		return -ENOMEM;
682 
683 	lru_add_drain();
684 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
685 	if (new_end > old_start) {
686 		/*
687 		 * when the old and new regions overlap clear from new_end.
688 		 */
689 		free_pgd_range(&tlb, new_end, old_end, new_end,
690 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
691 	} else {
692 		/*
693 		 * otherwise, clean from old_start; this is done to not touch
694 		 * the address space in [new_end, old_start) some architectures
695 		 * have constraints on va-space that make this illegal (IA64) -
696 		 * for the others its just a little faster.
697 		 */
698 		free_pgd_range(&tlb, old_start, old_end, new_end,
699 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
700 	}
701 	tlb_finish_mmu(&tlb, old_start, old_end);
702 
703 	/*
704 	 * Shrink the vma to just the new range.  Always succeeds.
705 	 */
706 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
707 
708 	return 0;
709 }
710 
711 /*
712  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
713  * the stack is optionally relocated, and some extra space is added.
714  */
715 int setup_arg_pages(struct linux_binprm *bprm,
716 		    unsigned long stack_top,
717 		    int executable_stack)
718 {
719 	unsigned long ret;
720 	unsigned long stack_shift;
721 	struct mm_struct *mm = current->mm;
722 	struct vm_area_struct *vma = bprm->vma;
723 	struct vm_area_struct *prev = NULL;
724 	unsigned long vm_flags;
725 	unsigned long stack_base;
726 	unsigned long stack_size;
727 	unsigned long stack_expand;
728 	unsigned long rlim_stack;
729 
730 #ifdef CONFIG_STACK_GROWSUP
731 	/* Limit stack size */
732 	stack_base = bprm->rlim_stack.rlim_max;
733 	if (stack_base > STACK_SIZE_MAX)
734 		stack_base = STACK_SIZE_MAX;
735 
736 	/* Add space for stack randomization. */
737 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
738 
739 	/* Make sure we didn't let the argument array grow too large. */
740 	if (vma->vm_end - vma->vm_start > stack_base)
741 		return -ENOMEM;
742 
743 	stack_base = PAGE_ALIGN(stack_top - stack_base);
744 
745 	stack_shift = vma->vm_start - stack_base;
746 	mm->arg_start = bprm->p - stack_shift;
747 	bprm->p = vma->vm_end - stack_shift;
748 #else
749 	stack_top = arch_align_stack(stack_top);
750 	stack_top = PAGE_ALIGN(stack_top);
751 
752 	if (unlikely(stack_top < mmap_min_addr) ||
753 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
754 		return -ENOMEM;
755 
756 	stack_shift = vma->vm_end - stack_top;
757 
758 	bprm->p -= stack_shift;
759 	mm->arg_start = bprm->p;
760 #endif
761 
762 	if (bprm->loader)
763 		bprm->loader -= stack_shift;
764 	bprm->exec -= stack_shift;
765 
766 	if (mmap_write_lock_killable(mm))
767 		return -EINTR;
768 
769 	vm_flags = VM_STACK_FLAGS;
770 
771 	/*
772 	 * Adjust stack execute permissions; explicitly enable for
773 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
774 	 * (arch default) otherwise.
775 	 */
776 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
777 		vm_flags |= VM_EXEC;
778 	else if (executable_stack == EXSTACK_DISABLE_X)
779 		vm_flags &= ~VM_EXEC;
780 	vm_flags |= mm->def_flags;
781 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
782 
783 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
784 			vm_flags);
785 	if (ret)
786 		goto out_unlock;
787 	BUG_ON(prev != vma);
788 
789 	if (unlikely(vm_flags & VM_EXEC)) {
790 		pr_warn_once("process '%pD4' started with executable stack\n",
791 			     bprm->file);
792 	}
793 
794 	/* Move stack pages down in memory. */
795 	if (stack_shift) {
796 		ret = shift_arg_pages(vma, stack_shift);
797 		if (ret)
798 			goto out_unlock;
799 	}
800 
801 	/* mprotect_fixup is overkill to remove the temporary stack flags */
802 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
803 
804 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
805 	stack_size = vma->vm_end - vma->vm_start;
806 	/*
807 	 * Align this down to a page boundary as expand_stack
808 	 * will align it up.
809 	 */
810 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
811 #ifdef CONFIG_STACK_GROWSUP
812 	if (stack_size + stack_expand > rlim_stack)
813 		stack_base = vma->vm_start + rlim_stack;
814 	else
815 		stack_base = vma->vm_end + stack_expand;
816 #else
817 	if (stack_size + stack_expand > rlim_stack)
818 		stack_base = vma->vm_end - rlim_stack;
819 	else
820 		stack_base = vma->vm_start - stack_expand;
821 #endif
822 	current->mm->start_stack = bprm->p;
823 	ret = expand_stack(vma, stack_base);
824 	if (ret)
825 		ret = -EFAULT;
826 
827 out_unlock:
828 	mmap_write_unlock(mm);
829 	return ret;
830 }
831 EXPORT_SYMBOL(setup_arg_pages);
832 
833 #else
834 
835 /*
836  * Transfer the program arguments and environment from the holding pages
837  * onto the stack. The provided stack pointer is adjusted accordingly.
838  */
839 int transfer_args_to_stack(struct linux_binprm *bprm,
840 			   unsigned long *sp_location)
841 {
842 	unsigned long index, stop, sp;
843 	int ret = 0;
844 
845 	stop = bprm->p >> PAGE_SHIFT;
846 	sp = *sp_location;
847 
848 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
849 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
850 		char *src = kmap(bprm->page[index]) + offset;
851 		sp -= PAGE_SIZE - offset;
852 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
853 			ret = -EFAULT;
854 		kunmap(bprm->page[index]);
855 		if (ret)
856 			goto out;
857 	}
858 
859 	*sp_location = sp;
860 
861 out:
862 	return ret;
863 }
864 EXPORT_SYMBOL(transfer_args_to_stack);
865 
866 #endif /* CONFIG_MMU */
867 
868 static struct file *do_open_execat(int fd, struct filename *name, int flags)
869 {
870 	struct file *file;
871 	int err;
872 	struct open_flags open_exec_flags = {
873 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
874 		.acc_mode = MAY_EXEC,
875 		.intent = LOOKUP_OPEN,
876 		.lookup_flags = LOOKUP_FOLLOW,
877 	};
878 
879 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
880 		return ERR_PTR(-EINVAL);
881 	if (flags & AT_SYMLINK_NOFOLLOW)
882 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
883 	if (flags & AT_EMPTY_PATH)
884 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
885 
886 	file = do_filp_open(fd, name, &open_exec_flags);
887 	if (IS_ERR(file))
888 		goto out;
889 
890 	err = -EACCES;
891 	if (!S_ISREG(file_inode(file)->i_mode))
892 		goto exit;
893 
894 	if (path_noexec(&file->f_path))
895 		goto exit;
896 
897 	err = deny_write_access(file);
898 	if (err)
899 		goto exit;
900 
901 	if (name->name[0] != '\0')
902 		fsnotify_open(file);
903 
904 out:
905 	return file;
906 
907 exit:
908 	fput(file);
909 	return ERR_PTR(err);
910 }
911 
912 struct file *open_exec(const char *name)
913 {
914 	struct filename *filename = getname_kernel(name);
915 	struct file *f = ERR_CAST(filename);
916 
917 	if (!IS_ERR(filename)) {
918 		f = do_open_execat(AT_FDCWD, filename, 0);
919 		putname(filename);
920 	}
921 	return f;
922 }
923 EXPORT_SYMBOL(open_exec);
924 
925 int kernel_read_file(struct file *file, void **buf, loff_t *size,
926 		     loff_t max_size, enum kernel_read_file_id id)
927 {
928 	loff_t i_size, pos;
929 	ssize_t bytes = 0;
930 	int ret;
931 
932 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
933 		return -EINVAL;
934 
935 	ret = deny_write_access(file);
936 	if (ret)
937 		return ret;
938 
939 	ret = security_kernel_read_file(file, id);
940 	if (ret)
941 		goto out;
942 
943 	i_size = i_size_read(file_inode(file));
944 	if (i_size <= 0) {
945 		ret = -EINVAL;
946 		goto out;
947 	}
948 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
949 		ret = -EFBIG;
950 		goto out;
951 	}
952 
953 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
954 		*buf = vmalloc(i_size);
955 	if (!*buf) {
956 		ret = -ENOMEM;
957 		goto out;
958 	}
959 
960 	pos = 0;
961 	while (pos < i_size) {
962 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
963 		if (bytes < 0) {
964 			ret = bytes;
965 			goto out_free;
966 		}
967 
968 		if (bytes == 0)
969 			break;
970 	}
971 
972 	if (pos != i_size) {
973 		ret = -EIO;
974 		goto out_free;
975 	}
976 
977 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
978 	if (!ret)
979 		*size = pos;
980 
981 out_free:
982 	if (ret < 0) {
983 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
984 			vfree(*buf);
985 			*buf = NULL;
986 		}
987 	}
988 
989 out:
990 	allow_write_access(file);
991 	return ret;
992 }
993 EXPORT_SYMBOL_GPL(kernel_read_file);
994 
995 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
996 			       loff_t max_size, enum kernel_read_file_id id)
997 {
998 	struct file *file;
999 	int ret;
1000 
1001 	if (!path || !*path)
1002 		return -EINVAL;
1003 
1004 	file = filp_open(path, O_RDONLY, 0);
1005 	if (IS_ERR(file))
1006 		return PTR_ERR(file);
1007 
1008 	ret = kernel_read_file(file, buf, size, max_size, id);
1009 	fput(file);
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1013 
1014 int kernel_read_file_from_path_initns(const char *path, void **buf,
1015 				      loff_t *size, loff_t max_size,
1016 				      enum kernel_read_file_id id)
1017 {
1018 	struct file *file;
1019 	struct path root;
1020 	int ret;
1021 
1022 	if (!path || !*path)
1023 		return -EINVAL;
1024 
1025 	task_lock(&init_task);
1026 	get_fs_root(init_task.fs, &root);
1027 	task_unlock(&init_task);
1028 
1029 	file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1030 	path_put(&root);
1031 	if (IS_ERR(file))
1032 		return PTR_ERR(file);
1033 
1034 	ret = kernel_read_file(file, buf, size, max_size, id);
1035 	fput(file);
1036 	return ret;
1037 }
1038 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1039 
1040 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1041 			     enum kernel_read_file_id id)
1042 {
1043 	struct fd f = fdget(fd);
1044 	int ret = -EBADF;
1045 
1046 	if (!f.file)
1047 		goto out;
1048 
1049 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1050 out:
1051 	fdput(f);
1052 	return ret;
1053 }
1054 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1055 
1056 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1057     defined(CONFIG_BINFMT_ELF_FDPIC)
1058 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1059 {
1060 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1061 	if (res > 0)
1062 		flush_icache_user_range(addr, addr + len);
1063 	return res;
1064 }
1065 EXPORT_SYMBOL(read_code);
1066 #endif
1067 
1068 /*
1069  * Maps the mm_struct mm into the current task struct.
1070  * On success, this function returns with the mutex
1071  * exec_update_mutex locked.
1072  */
1073 static int exec_mmap(struct mm_struct *mm)
1074 {
1075 	struct task_struct *tsk;
1076 	struct mm_struct *old_mm, *active_mm;
1077 	int ret;
1078 
1079 	/* Notify parent that we're no longer interested in the old VM */
1080 	tsk = current;
1081 	old_mm = current->mm;
1082 	exec_mm_release(tsk, old_mm);
1083 	if (old_mm)
1084 		sync_mm_rss(old_mm);
1085 
1086 	ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1087 	if (ret)
1088 		return ret;
1089 
1090 	if (old_mm) {
1091 		/*
1092 		 * Make sure that if there is a core dump in progress
1093 		 * for the old mm, we get out and die instead of going
1094 		 * through with the exec.  We must hold mmap_lock around
1095 		 * checking core_state and changing tsk->mm.
1096 		 */
1097 		mmap_read_lock(old_mm);
1098 		if (unlikely(old_mm->core_state)) {
1099 			mmap_read_unlock(old_mm);
1100 			mutex_unlock(&tsk->signal->exec_update_mutex);
1101 			return -EINTR;
1102 		}
1103 	}
1104 
1105 	task_lock(tsk);
1106 	active_mm = tsk->active_mm;
1107 	membarrier_exec_mmap(mm);
1108 	tsk->mm = mm;
1109 	tsk->active_mm = mm;
1110 	activate_mm(active_mm, mm);
1111 	tsk->mm->vmacache_seqnum = 0;
1112 	vmacache_flush(tsk);
1113 	task_unlock(tsk);
1114 	if (old_mm) {
1115 		mmap_read_unlock(old_mm);
1116 		BUG_ON(active_mm != old_mm);
1117 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1118 		mm_update_next_owner(old_mm);
1119 		mmput(old_mm);
1120 		return 0;
1121 	}
1122 	mmdrop(active_mm);
1123 	return 0;
1124 }
1125 
1126 static int de_thread(struct task_struct *tsk)
1127 {
1128 	struct signal_struct *sig = tsk->signal;
1129 	struct sighand_struct *oldsighand = tsk->sighand;
1130 	spinlock_t *lock = &oldsighand->siglock;
1131 
1132 	if (thread_group_empty(tsk))
1133 		goto no_thread_group;
1134 
1135 	/*
1136 	 * Kill all other threads in the thread group.
1137 	 */
1138 	spin_lock_irq(lock);
1139 	if (signal_group_exit(sig)) {
1140 		/*
1141 		 * Another group action in progress, just
1142 		 * return so that the signal is processed.
1143 		 */
1144 		spin_unlock_irq(lock);
1145 		return -EAGAIN;
1146 	}
1147 
1148 	sig->group_exit_task = tsk;
1149 	sig->notify_count = zap_other_threads(tsk);
1150 	if (!thread_group_leader(tsk))
1151 		sig->notify_count--;
1152 
1153 	while (sig->notify_count) {
1154 		__set_current_state(TASK_KILLABLE);
1155 		spin_unlock_irq(lock);
1156 		schedule();
1157 		if (__fatal_signal_pending(tsk))
1158 			goto killed;
1159 		spin_lock_irq(lock);
1160 	}
1161 	spin_unlock_irq(lock);
1162 
1163 	/*
1164 	 * At this point all other threads have exited, all we have to
1165 	 * do is to wait for the thread group leader to become inactive,
1166 	 * and to assume its PID:
1167 	 */
1168 	if (!thread_group_leader(tsk)) {
1169 		struct task_struct *leader = tsk->group_leader;
1170 
1171 		for (;;) {
1172 			cgroup_threadgroup_change_begin(tsk);
1173 			write_lock_irq(&tasklist_lock);
1174 			/*
1175 			 * Do this under tasklist_lock to ensure that
1176 			 * exit_notify() can't miss ->group_exit_task
1177 			 */
1178 			sig->notify_count = -1;
1179 			if (likely(leader->exit_state))
1180 				break;
1181 			__set_current_state(TASK_KILLABLE);
1182 			write_unlock_irq(&tasklist_lock);
1183 			cgroup_threadgroup_change_end(tsk);
1184 			schedule();
1185 			if (__fatal_signal_pending(tsk))
1186 				goto killed;
1187 		}
1188 
1189 		/*
1190 		 * The only record we have of the real-time age of a
1191 		 * process, regardless of execs it's done, is start_time.
1192 		 * All the past CPU time is accumulated in signal_struct
1193 		 * from sister threads now dead.  But in this non-leader
1194 		 * exec, nothing survives from the original leader thread,
1195 		 * whose birth marks the true age of this process now.
1196 		 * When we take on its identity by switching to its PID, we
1197 		 * also take its birthdate (always earlier than our own).
1198 		 */
1199 		tsk->start_time = leader->start_time;
1200 		tsk->start_boottime = leader->start_boottime;
1201 
1202 		BUG_ON(!same_thread_group(leader, tsk));
1203 		/*
1204 		 * An exec() starts a new thread group with the
1205 		 * TGID of the previous thread group. Rehash the
1206 		 * two threads with a switched PID, and release
1207 		 * the former thread group leader:
1208 		 */
1209 
1210 		/* Become a process group leader with the old leader's pid.
1211 		 * The old leader becomes a thread of the this thread group.
1212 		 */
1213 		exchange_tids(tsk, leader);
1214 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1215 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1216 		transfer_pid(leader, tsk, PIDTYPE_SID);
1217 
1218 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1219 		list_replace_init(&leader->sibling, &tsk->sibling);
1220 
1221 		tsk->group_leader = tsk;
1222 		leader->group_leader = tsk;
1223 
1224 		tsk->exit_signal = SIGCHLD;
1225 		leader->exit_signal = -1;
1226 
1227 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1228 		leader->exit_state = EXIT_DEAD;
1229 
1230 		/*
1231 		 * We are going to release_task()->ptrace_unlink() silently,
1232 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1233 		 * the tracer wont't block again waiting for this thread.
1234 		 */
1235 		if (unlikely(leader->ptrace))
1236 			__wake_up_parent(leader, leader->parent);
1237 		write_unlock_irq(&tasklist_lock);
1238 		cgroup_threadgroup_change_end(tsk);
1239 
1240 		release_task(leader);
1241 	}
1242 
1243 	sig->group_exit_task = NULL;
1244 	sig->notify_count = 0;
1245 
1246 no_thread_group:
1247 	/* we have changed execution domain */
1248 	tsk->exit_signal = SIGCHLD;
1249 
1250 	BUG_ON(!thread_group_leader(tsk));
1251 	return 0;
1252 
1253 killed:
1254 	/* protects against exit_notify() and __exit_signal() */
1255 	read_lock(&tasklist_lock);
1256 	sig->group_exit_task = NULL;
1257 	sig->notify_count = 0;
1258 	read_unlock(&tasklist_lock);
1259 	return -EAGAIN;
1260 }
1261 
1262 
1263 /*
1264  * This function makes sure the current process has its own signal table,
1265  * so that flush_signal_handlers can later reset the handlers without
1266  * disturbing other processes.  (Other processes might share the signal
1267  * table via the CLONE_SIGHAND option to clone().)
1268  */
1269 static int unshare_sighand(struct task_struct *me)
1270 {
1271 	struct sighand_struct *oldsighand = me->sighand;
1272 
1273 	if (refcount_read(&oldsighand->count) != 1) {
1274 		struct sighand_struct *newsighand;
1275 		/*
1276 		 * This ->sighand is shared with the CLONE_SIGHAND
1277 		 * but not CLONE_THREAD task, switch to the new one.
1278 		 */
1279 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1280 		if (!newsighand)
1281 			return -ENOMEM;
1282 
1283 		refcount_set(&newsighand->count, 1);
1284 		memcpy(newsighand->action, oldsighand->action,
1285 		       sizeof(newsighand->action));
1286 
1287 		write_lock_irq(&tasklist_lock);
1288 		spin_lock(&oldsighand->siglock);
1289 		rcu_assign_pointer(me->sighand, newsighand);
1290 		spin_unlock(&oldsighand->siglock);
1291 		write_unlock_irq(&tasklist_lock);
1292 
1293 		__cleanup_sighand(oldsighand);
1294 	}
1295 	return 0;
1296 }
1297 
1298 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1299 {
1300 	task_lock(tsk);
1301 	strncpy(buf, tsk->comm, buf_size);
1302 	task_unlock(tsk);
1303 	return buf;
1304 }
1305 EXPORT_SYMBOL_GPL(__get_task_comm);
1306 
1307 /*
1308  * These functions flushes out all traces of the currently running executable
1309  * so that a new one can be started
1310  */
1311 
1312 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1313 {
1314 	task_lock(tsk);
1315 	trace_task_rename(tsk, buf);
1316 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1317 	task_unlock(tsk);
1318 	perf_event_comm(tsk, exec);
1319 }
1320 
1321 /*
1322  * Calling this is the point of no return. None of the failures will be
1323  * seen by userspace since either the process is already taking a fatal
1324  * signal (via de_thread() or coredump), or will have SEGV raised
1325  * (after exec_mmap()) by search_binary_handler (see below).
1326  */
1327 int begin_new_exec(struct linux_binprm * bprm)
1328 {
1329 	struct task_struct *me = current;
1330 	int retval;
1331 
1332 	/* Once we are committed compute the creds */
1333 	retval = bprm_creds_from_file(bprm);
1334 	if (retval)
1335 		return retval;
1336 
1337 	/*
1338 	 * Ensure all future errors are fatal.
1339 	 */
1340 	bprm->point_of_no_return = true;
1341 
1342 	/*
1343 	 * Make this the only thread in the thread group.
1344 	 */
1345 	retval = de_thread(me);
1346 	if (retval)
1347 		goto out;
1348 
1349 	/*
1350 	 * Must be called _before_ exec_mmap() as bprm->mm is
1351 	 * not visibile until then. This also enables the update
1352 	 * to be lockless.
1353 	 */
1354 	set_mm_exe_file(bprm->mm, bprm->file);
1355 
1356 	/* If the binary is not readable then enforce mm->dumpable=0 */
1357 	would_dump(bprm, bprm->file);
1358 	if (bprm->have_execfd)
1359 		would_dump(bprm, bprm->executable);
1360 
1361 	/*
1362 	 * Release all of the old mmap stuff
1363 	 */
1364 	acct_arg_size(bprm, 0);
1365 	retval = exec_mmap(bprm->mm);
1366 	if (retval)
1367 		goto out;
1368 
1369 	bprm->mm = NULL;
1370 
1371 #ifdef CONFIG_POSIX_TIMERS
1372 	exit_itimers(me->signal);
1373 	flush_itimer_signals();
1374 #endif
1375 
1376 	/*
1377 	 * Make the signal table private.
1378 	 */
1379 	retval = unshare_sighand(me);
1380 	if (retval)
1381 		goto out_unlock;
1382 
1383 	set_fs(USER_DS);
1384 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1385 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1386 	flush_thread();
1387 	me->personality &= ~bprm->per_clear;
1388 
1389 	/*
1390 	 * We have to apply CLOEXEC before we change whether the process is
1391 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1392 	 * trying to access the should-be-closed file descriptors of a process
1393 	 * undergoing exec(2).
1394 	 */
1395 	do_close_on_exec(me->files);
1396 
1397 	if (bprm->secureexec) {
1398 		/* Make sure parent cannot signal privileged process. */
1399 		me->pdeath_signal = 0;
1400 
1401 		/*
1402 		 * For secureexec, reset the stack limit to sane default to
1403 		 * avoid bad behavior from the prior rlimits. This has to
1404 		 * happen before arch_pick_mmap_layout(), which examines
1405 		 * RLIMIT_STACK, but after the point of no return to avoid
1406 		 * needing to clean up the change on failure.
1407 		 */
1408 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1409 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1410 	}
1411 
1412 	me->sas_ss_sp = me->sas_ss_size = 0;
1413 
1414 	/*
1415 	 * Figure out dumpability. Note that this checking only of current
1416 	 * is wrong, but userspace depends on it. This should be testing
1417 	 * bprm->secureexec instead.
1418 	 */
1419 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1420 	    !(uid_eq(current_euid(), current_uid()) &&
1421 	      gid_eq(current_egid(), current_gid())))
1422 		set_dumpable(current->mm, suid_dumpable);
1423 	else
1424 		set_dumpable(current->mm, SUID_DUMP_USER);
1425 
1426 	perf_event_exec();
1427 	__set_task_comm(me, kbasename(bprm->filename), true);
1428 
1429 	/* An exec changes our domain. We are no longer part of the thread
1430 	   group */
1431 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1432 	flush_signal_handlers(me, 0);
1433 
1434 	/*
1435 	 * install the new credentials for this executable
1436 	 */
1437 	security_bprm_committing_creds(bprm);
1438 
1439 	commit_creds(bprm->cred);
1440 	bprm->cred = NULL;
1441 
1442 	/*
1443 	 * Disable monitoring for regular users
1444 	 * when executing setuid binaries. Must
1445 	 * wait until new credentials are committed
1446 	 * by commit_creds() above
1447 	 */
1448 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1449 		perf_event_exit_task(me);
1450 	/*
1451 	 * cred_guard_mutex must be held at least to this point to prevent
1452 	 * ptrace_attach() from altering our determination of the task's
1453 	 * credentials; any time after this it may be unlocked.
1454 	 */
1455 	security_bprm_committed_creds(bprm);
1456 
1457 	/* Pass the opened binary to the interpreter. */
1458 	if (bprm->have_execfd) {
1459 		retval = get_unused_fd_flags(0);
1460 		if (retval < 0)
1461 			goto out_unlock;
1462 		fd_install(retval, bprm->executable);
1463 		bprm->executable = NULL;
1464 		bprm->execfd = retval;
1465 	}
1466 	return 0;
1467 
1468 out_unlock:
1469 	mutex_unlock(&me->signal->exec_update_mutex);
1470 out:
1471 	return retval;
1472 }
1473 EXPORT_SYMBOL(begin_new_exec);
1474 
1475 void would_dump(struct linux_binprm *bprm, struct file *file)
1476 {
1477 	struct inode *inode = file_inode(file);
1478 	if (inode_permission(inode, MAY_READ) < 0) {
1479 		struct user_namespace *old, *user_ns;
1480 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1481 
1482 		/* Ensure mm->user_ns contains the executable */
1483 		user_ns = old = bprm->mm->user_ns;
1484 		while ((user_ns != &init_user_ns) &&
1485 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1486 			user_ns = user_ns->parent;
1487 
1488 		if (old != user_ns) {
1489 			bprm->mm->user_ns = get_user_ns(user_ns);
1490 			put_user_ns(old);
1491 		}
1492 	}
1493 }
1494 EXPORT_SYMBOL(would_dump);
1495 
1496 void setup_new_exec(struct linux_binprm * bprm)
1497 {
1498 	/* Setup things that can depend upon the personality */
1499 	struct task_struct *me = current;
1500 
1501 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1502 
1503 	arch_setup_new_exec();
1504 
1505 	/* Set the new mm task size. We have to do that late because it may
1506 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1507 	 * some architectures like powerpc
1508 	 */
1509 	me->mm->task_size = TASK_SIZE;
1510 	mutex_unlock(&me->signal->exec_update_mutex);
1511 	mutex_unlock(&me->signal->cred_guard_mutex);
1512 }
1513 EXPORT_SYMBOL(setup_new_exec);
1514 
1515 /* Runs immediately before start_thread() takes over. */
1516 void finalize_exec(struct linux_binprm *bprm)
1517 {
1518 	/* Store any stack rlimit changes before starting thread. */
1519 	task_lock(current->group_leader);
1520 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1521 	task_unlock(current->group_leader);
1522 }
1523 EXPORT_SYMBOL(finalize_exec);
1524 
1525 /*
1526  * Prepare credentials and lock ->cred_guard_mutex.
1527  * setup_new_exec() commits the new creds and drops the lock.
1528  * Or, if exec fails before, free_bprm() should release ->cred and
1529  * and unlock.
1530  */
1531 static int prepare_bprm_creds(struct linux_binprm *bprm)
1532 {
1533 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1534 		return -ERESTARTNOINTR;
1535 
1536 	bprm->cred = prepare_exec_creds();
1537 	if (likely(bprm->cred))
1538 		return 0;
1539 
1540 	mutex_unlock(&current->signal->cred_guard_mutex);
1541 	return -ENOMEM;
1542 }
1543 
1544 static void free_bprm(struct linux_binprm *bprm)
1545 {
1546 	free_arg_pages(bprm);
1547 	if (bprm->cred) {
1548 		mutex_unlock(&current->signal->cred_guard_mutex);
1549 		abort_creds(bprm->cred);
1550 	}
1551 	if (bprm->file) {
1552 		allow_write_access(bprm->file);
1553 		fput(bprm->file);
1554 	}
1555 	if (bprm->executable)
1556 		fput(bprm->executable);
1557 	/* If a binfmt changed the interp, free it. */
1558 	if (bprm->interp != bprm->filename)
1559 		kfree(bprm->interp);
1560 	kfree(bprm);
1561 }
1562 
1563 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1564 {
1565 	/* If a binfmt changed the interp, free it first. */
1566 	if (bprm->interp != bprm->filename)
1567 		kfree(bprm->interp);
1568 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1569 	if (!bprm->interp)
1570 		return -ENOMEM;
1571 	return 0;
1572 }
1573 EXPORT_SYMBOL(bprm_change_interp);
1574 
1575 /*
1576  * determine how safe it is to execute the proposed program
1577  * - the caller must hold ->cred_guard_mutex to protect against
1578  *   PTRACE_ATTACH or seccomp thread-sync
1579  */
1580 static void check_unsafe_exec(struct linux_binprm *bprm)
1581 {
1582 	struct task_struct *p = current, *t;
1583 	unsigned n_fs;
1584 
1585 	if (p->ptrace)
1586 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1587 
1588 	/*
1589 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1590 	 * mess up.
1591 	 */
1592 	if (task_no_new_privs(current))
1593 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1594 
1595 	t = p;
1596 	n_fs = 1;
1597 	spin_lock(&p->fs->lock);
1598 	rcu_read_lock();
1599 	while_each_thread(p, t) {
1600 		if (t->fs == p->fs)
1601 			n_fs++;
1602 	}
1603 	rcu_read_unlock();
1604 
1605 	if (p->fs->users > n_fs)
1606 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1607 	else
1608 		p->fs->in_exec = 1;
1609 	spin_unlock(&p->fs->lock);
1610 }
1611 
1612 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1613 {
1614 	/* Handle suid and sgid on files */
1615 	struct inode *inode;
1616 	unsigned int mode;
1617 	kuid_t uid;
1618 	kgid_t gid;
1619 
1620 	if (!mnt_may_suid(file->f_path.mnt))
1621 		return;
1622 
1623 	if (task_no_new_privs(current))
1624 		return;
1625 
1626 	inode = file->f_path.dentry->d_inode;
1627 	mode = READ_ONCE(inode->i_mode);
1628 	if (!(mode & (S_ISUID|S_ISGID)))
1629 		return;
1630 
1631 	/* Be careful if suid/sgid is set */
1632 	inode_lock(inode);
1633 
1634 	/* reload atomically mode/uid/gid now that lock held */
1635 	mode = inode->i_mode;
1636 	uid = inode->i_uid;
1637 	gid = inode->i_gid;
1638 	inode_unlock(inode);
1639 
1640 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1641 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1642 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1643 		return;
1644 
1645 	if (mode & S_ISUID) {
1646 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1647 		bprm->cred->euid = uid;
1648 	}
1649 
1650 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1651 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1652 		bprm->cred->egid = gid;
1653 	}
1654 }
1655 
1656 /*
1657  * Compute brpm->cred based upon the final binary.
1658  */
1659 static int bprm_creds_from_file(struct linux_binprm *bprm)
1660 {
1661 	/* Compute creds based on which file? */
1662 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1663 
1664 	bprm_fill_uid(bprm, file);
1665 	return security_bprm_creds_from_file(bprm, file);
1666 }
1667 
1668 /*
1669  * Fill the binprm structure from the inode.
1670  * Read the first BINPRM_BUF_SIZE bytes
1671  *
1672  * This may be called multiple times for binary chains (scripts for example).
1673  */
1674 static int prepare_binprm(struct linux_binprm *bprm)
1675 {
1676 	loff_t pos = 0;
1677 
1678 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1679 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1680 }
1681 
1682 /*
1683  * Arguments are '\0' separated strings found at the location bprm->p
1684  * points to; chop off the first by relocating brpm->p to right after
1685  * the first '\0' encountered.
1686  */
1687 int remove_arg_zero(struct linux_binprm *bprm)
1688 {
1689 	int ret = 0;
1690 	unsigned long offset;
1691 	char *kaddr;
1692 	struct page *page;
1693 
1694 	if (!bprm->argc)
1695 		return 0;
1696 
1697 	do {
1698 		offset = bprm->p & ~PAGE_MASK;
1699 		page = get_arg_page(bprm, bprm->p, 0);
1700 		if (!page) {
1701 			ret = -EFAULT;
1702 			goto out;
1703 		}
1704 		kaddr = kmap_atomic(page);
1705 
1706 		for (; offset < PAGE_SIZE && kaddr[offset];
1707 				offset++, bprm->p++)
1708 			;
1709 
1710 		kunmap_atomic(kaddr);
1711 		put_arg_page(page);
1712 	} while (offset == PAGE_SIZE);
1713 
1714 	bprm->p++;
1715 	bprm->argc--;
1716 	ret = 0;
1717 
1718 out:
1719 	return ret;
1720 }
1721 EXPORT_SYMBOL(remove_arg_zero);
1722 
1723 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1724 /*
1725  * cycle the list of binary formats handler, until one recognizes the image
1726  */
1727 static int search_binary_handler(struct linux_binprm *bprm)
1728 {
1729 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1730 	struct linux_binfmt *fmt;
1731 	int retval;
1732 
1733 	retval = prepare_binprm(bprm);
1734 	if (retval < 0)
1735 		return retval;
1736 
1737 	retval = security_bprm_check(bprm);
1738 	if (retval)
1739 		return retval;
1740 
1741 	retval = -ENOENT;
1742  retry:
1743 	read_lock(&binfmt_lock);
1744 	list_for_each_entry(fmt, &formats, lh) {
1745 		if (!try_module_get(fmt->module))
1746 			continue;
1747 		read_unlock(&binfmt_lock);
1748 
1749 		retval = fmt->load_binary(bprm);
1750 
1751 		read_lock(&binfmt_lock);
1752 		put_binfmt(fmt);
1753 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1754 			read_unlock(&binfmt_lock);
1755 			return retval;
1756 		}
1757 	}
1758 	read_unlock(&binfmt_lock);
1759 
1760 	if (need_retry) {
1761 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1762 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1763 			return retval;
1764 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1765 			return retval;
1766 		need_retry = false;
1767 		goto retry;
1768 	}
1769 
1770 	return retval;
1771 }
1772 
1773 static int exec_binprm(struct linux_binprm *bprm)
1774 {
1775 	pid_t old_pid, old_vpid;
1776 	int ret, depth;
1777 
1778 	/* Need to fetch pid before load_binary changes it */
1779 	old_pid = current->pid;
1780 	rcu_read_lock();
1781 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1782 	rcu_read_unlock();
1783 
1784 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1785 	for (depth = 0;; depth++) {
1786 		struct file *exec;
1787 		if (depth > 5)
1788 			return -ELOOP;
1789 
1790 		ret = search_binary_handler(bprm);
1791 		if (ret < 0)
1792 			return ret;
1793 		if (!bprm->interpreter)
1794 			break;
1795 
1796 		exec = bprm->file;
1797 		bprm->file = bprm->interpreter;
1798 		bprm->interpreter = NULL;
1799 
1800 		allow_write_access(exec);
1801 		if (unlikely(bprm->have_execfd)) {
1802 			if (bprm->executable) {
1803 				fput(exec);
1804 				return -ENOEXEC;
1805 			}
1806 			bprm->executable = exec;
1807 		} else
1808 			fput(exec);
1809 	}
1810 
1811 	audit_bprm(bprm);
1812 	trace_sched_process_exec(current, old_pid, bprm);
1813 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1814 	proc_exec_connector(current);
1815 	return 0;
1816 }
1817 
1818 /*
1819  * sys_execve() executes a new program.
1820  */
1821 static int __do_execve_file(int fd, struct filename *filename,
1822 			    struct user_arg_ptr argv,
1823 			    struct user_arg_ptr envp,
1824 			    int flags, struct file *file)
1825 {
1826 	char *pathbuf = NULL;
1827 	struct linux_binprm *bprm;
1828 	struct files_struct *displaced;
1829 	int retval;
1830 
1831 	if (IS_ERR(filename))
1832 		return PTR_ERR(filename);
1833 
1834 	/*
1835 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1836 	 * set*uid() to execve() because too many poorly written programs
1837 	 * don't check setuid() return code.  Here we additionally recheck
1838 	 * whether NPROC limit is still exceeded.
1839 	 */
1840 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1841 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1842 		retval = -EAGAIN;
1843 		goto out_ret;
1844 	}
1845 
1846 	/* We're below the limit (still or again), so we don't want to make
1847 	 * further execve() calls fail. */
1848 	current->flags &= ~PF_NPROC_EXCEEDED;
1849 
1850 	retval = unshare_files(&displaced);
1851 	if (retval)
1852 		goto out_ret;
1853 
1854 	retval = -ENOMEM;
1855 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1856 	if (!bprm)
1857 		goto out_files;
1858 
1859 	retval = prepare_bprm_creds(bprm);
1860 	if (retval)
1861 		goto out_free;
1862 
1863 	check_unsafe_exec(bprm);
1864 	current->in_execve = 1;
1865 
1866 	if (!file)
1867 		file = do_open_execat(fd, filename, flags);
1868 	retval = PTR_ERR(file);
1869 	if (IS_ERR(file))
1870 		goto out_unmark;
1871 
1872 	sched_exec();
1873 
1874 	bprm->file = file;
1875 	if (!filename) {
1876 		bprm->filename = "none";
1877 	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1878 		bprm->filename = filename->name;
1879 	} else {
1880 		if (filename->name[0] == '\0')
1881 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1882 		else
1883 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1884 					    fd, filename->name);
1885 		if (!pathbuf) {
1886 			retval = -ENOMEM;
1887 			goto out_unmark;
1888 		}
1889 		/*
1890 		 * Record that a name derived from an O_CLOEXEC fd will be
1891 		 * inaccessible after exec. Relies on having exclusive access to
1892 		 * current->files (due to unshare_files above).
1893 		 */
1894 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1895 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1896 		bprm->filename = pathbuf;
1897 	}
1898 	bprm->interp = bprm->filename;
1899 
1900 	retval = bprm_mm_init(bprm);
1901 	if (retval)
1902 		goto out_unmark;
1903 
1904 	retval = prepare_arg_pages(bprm, argv, envp);
1905 	if (retval < 0)
1906 		goto out;
1907 
1908 	/* Set the unchanging part of bprm->cred */
1909 	retval = security_bprm_creds_for_exec(bprm);
1910 	if (retval)
1911 		goto out;
1912 
1913 	retval = copy_string_kernel(bprm->filename, bprm);
1914 	if (retval < 0)
1915 		goto out;
1916 
1917 	bprm->exec = bprm->p;
1918 	retval = copy_strings(bprm->envc, envp, bprm);
1919 	if (retval < 0)
1920 		goto out;
1921 
1922 	retval = copy_strings(bprm->argc, argv, bprm);
1923 	if (retval < 0)
1924 		goto out;
1925 
1926 	retval = exec_binprm(bprm);
1927 	if (retval < 0)
1928 		goto out;
1929 
1930 	/* execve succeeded */
1931 	current->fs->in_exec = 0;
1932 	current->in_execve = 0;
1933 	rseq_execve(current);
1934 	acct_update_integrals(current);
1935 	task_numa_free(current, false);
1936 	free_bprm(bprm);
1937 	kfree(pathbuf);
1938 	if (filename)
1939 		putname(filename);
1940 	if (displaced)
1941 		put_files_struct(displaced);
1942 	return retval;
1943 
1944 out:
1945 	/*
1946 	 * If past the point of no return ensure the the code never
1947 	 * returns to the userspace process.  Use an existing fatal
1948 	 * signal if present otherwise terminate the process with
1949 	 * SIGSEGV.
1950 	 */
1951 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1952 		force_sigsegv(SIGSEGV);
1953 	if (bprm->mm) {
1954 		acct_arg_size(bprm, 0);
1955 		mmput(bprm->mm);
1956 	}
1957 
1958 out_unmark:
1959 	current->fs->in_exec = 0;
1960 	current->in_execve = 0;
1961 
1962 out_free:
1963 	free_bprm(bprm);
1964 	kfree(pathbuf);
1965 
1966 out_files:
1967 	if (displaced)
1968 		reset_files_struct(displaced);
1969 out_ret:
1970 	if (filename)
1971 		putname(filename);
1972 	return retval;
1973 }
1974 
1975 static int do_execveat_common(int fd, struct filename *filename,
1976 			      struct user_arg_ptr argv,
1977 			      struct user_arg_ptr envp,
1978 			      int flags)
1979 {
1980 	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1981 }
1982 
1983 int do_execve_file(struct file *file, void *__argv, void *__envp)
1984 {
1985 	struct user_arg_ptr argv = { .ptr.native = __argv };
1986 	struct user_arg_ptr envp = { .ptr.native = __envp };
1987 
1988 	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1989 }
1990 
1991 int do_execve(struct filename *filename,
1992 	const char __user *const __user *__argv,
1993 	const char __user *const __user *__envp)
1994 {
1995 	struct user_arg_ptr argv = { .ptr.native = __argv };
1996 	struct user_arg_ptr envp = { .ptr.native = __envp };
1997 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1998 }
1999 
2000 int do_execveat(int fd, struct filename *filename,
2001 		const char __user *const __user *__argv,
2002 		const char __user *const __user *__envp,
2003 		int flags)
2004 {
2005 	struct user_arg_ptr argv = { .ptr.native = __argv };
2006 	struct user_arg_ptr envp = { .ptr.native = __envp };
2007 
2008 	return do_execveat_common(fd, filename, argv, envp, flags);
2009 }
2010 
2011 #ifdef CONFIG_COMPAT
2012 static int compat_do_execve(struct filename *filename,
2013 	const compat_uptr_t __user *__argv,
2014 	const compat_uptr_t __user *__envp)
2015 {
2016 	struct user_arg_ptr argv = {
2017 		.is_compat = true,
2018 		.ptr.compat = __argv,
2019 	};
2020 	struct user_arg_ptr envp = {
2021 		.is_compat = true,
2022 		.ptr.compat = __envp,
2023 	};
2024 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2025 }
2026 
2027 static int compat_do_execveat(int fd, struct filename *filename,
2028 			      const compat_uptr_t __user *__argv,
2029 			      const compat_uptr_t __user *__envp,
2030 			      int flags)
2031 {
2032 	struct user_arg_ptr argv = {
2033 		.is_compat = true,
2034 		.ptr.compat = __argv,
2035 	};
2036 	struct user_arg_ptr envp = {
2037 		.is_compat = true,
2038 		.ptr.compat = __envp,
2039 	};
2040 	return do_execveat_common(fd, filename, argv, envp, flags);
2041 }
2042 #endif
2043 
2044 void set_binfmt(struct linux_binfmt *new)
2045 {
2046 	struct mm_struct *mm = current->mm;
2047 
2048 	if (mm->binfmt)
2049 		module_put(mm->binfmt->module);
2050 
2051 	mm->binfmt = new;
2052 	if (new)
2053 		__module_get(new->module);
2054 }
2055 EXPORT_SYMBOL(set_binfmt);
2056 
2057 /*
2058  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2059  */
2060 void set_dumpable(struct mm_struct *mm, int value)
2061 {
2062 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2063 		return;
2064 
2065 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2066 }
2067 
2068 SYSCALL_DEFINE3(execve,
2069 		const char __user *, filename,
2070 		const char __user *const __user *, argv,
2071 		const char __user *const __user *, envp)
2072 {
2073 	return do_execve(getname(filename), argv, envp);
2074 }
2075 
2076 SYSCALL_DEFINE5(execveat,
2077 		int, fd, const char __user *, filename,
2078 		const char __user *const __user *, argv,
2079 		const char __user *const __user *, envp,
2080 		int, flags)
2081 {
2082 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2083 
2084 	return do_execveat(fd,
2085 			   getname_flags(filename, lookup_flags, NULL),
2086 			   argv, envp, flags);
2087 }
2088 
2089 #ifdef CONFIG_COMPAT
2090 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2091 	const compat_uptr_t __user *, argv,
2092 	const compat_uptr_t __user *, envp)
2093 {
2094 	return compat_do_execve(getname(filename), argv, envp);
2095 }
2096 
2097 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2098 		       const char __user *, filename,
2099 		       const compat_uptr_t __user *, argv,
2100 		       const compat_uptr_t __user *, envp,
2101 		       int,  flags)
2102 {
2103 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2104 
2105 	return compat_do_execveat(fd,
2106 				  getname_flags(filename, lookup_flags, NULL),
2107 				  argv, envp, flags);
2108 }
2109 #endif
2110