xref: /openbmc/linux/fs/exec.c (revision a13144e2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72 
73 #include <trace/events/task.h>
74 #include "internal.h"
75 
76 #include <trace/events/sched.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	/*
145 	 * may_open() has already checked for this, so it should be
146 	 * impossible to trip now. But we need to be extra cautious
147 	 * and check again at the very end too.
148 	 */
149 	error = -EACCES;
150 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 			 path_noexec(&file->f_path)))
152 		goto exit;
153 
154 	fsnotify_open(file);
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175 	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	int ret;
203 	unsigned int gup_flags = 0;
204 
205 #ifdef CONFIG_STACK_GROWSUP
206 	if (write) {
207 		ret = expand_downwards(bprm->vma, pos);
208 		if (ret < 0)
209 			return NULL;
210 	}
211 #endif
212 
213 	if (write)
214 		gup_flags |= FOLL_WRITE;
215 
216 	/*
217 	 * We are doing an exec().  'current' is the process
218 	 * doing the exec and bprm->mm is the new process's mm.
219 	 */
220 	mmap_read_lock(bprm->mm);
221 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 			&page, NULL, NULL);
223 	mmap_read_unlock(bprm->mm);
224 	if (ret <= 0)
225 		return NULL;
226 
227 	if (write)
228 		acct_arg_size(bprm, vma_pages(bprm->vma));
229 
230 	return page;
231 }
232 
233 static void put_arg_page(struct page *page)
234 {
235 	put_page(page);
236 }
237 
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241 
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 		struct page *page)
244 {
245 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247 
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 	int err;
251 	struct vm_area_struct *vma = NULL;
252 	struct mm_struct *mm = bprm->mm;
253 
254 	bprm->vma = vma = vm_area_alloc(mm);
255 	if (!vma)
256 		return -ENOMEM;
257 	vma_set_anonymous(vma);
258 
259 	if (mmap_write_lock_killable(mm)) {
260 		err = -EINTR;
261 		goto err_free;
262 	}
263 
264 	/*
265 	 * Place the stack at the largest stack address the architecture
266 	 * supports. Later, we'll move this to an appropriate place. We don't
267 	 * use STACK_TOP because that can depend on attributes which aren't
268 	 * configured yet.
269 	 */
270 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271 	vma->vm_end = STACK_TOP_MAX;
272 	vma->vm_start = vma->vm_end - PAGE_SIZE;
273 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275 
276 	err = insert_vm_struct(mm, vma);
277 	if (err)
278 		goto err;
279 
280 	mm->stack_vm = mm->total_vm = 1;
281 	mmap_write_unlock(mm);
282 	bprm->p = vma->vm_end - sizeof(void *);
283 	return 0;
284 err:
285 	mmap_write_unlock(mm);
286 err_free:
287 	bprm->vma = NULL;
288 	vm_area_free(vma);
289 	return err;
290 }
291 
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294 	return len <= MAX_ARG_STRLEN;
295 }
296 
297 #else
298 
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302 
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 		int write)
305 {
306 	struct page *page;
307 
308 	page = bprm->page[pos / PAGE_SIZE];
309 	if (!page && write) {
310 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311 		if (!page)
312 			return NULL;
313 		bprm->page[pos / PAGE_SIZE] = page;
314 	}
315 
316 	return page;
317 }
318 
319 static void put_arg_page(struct page *page)
320 {
321 }
322 
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325 	if (bprm->page[i]) {
326 		__free_page(bprm->page[i]);
327 		bprm->page[i] = NULL;
328 	}
329 }
330 
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333 	int i;
334 
335 	for (i = 0; i < MAX_ARG_PAGES; i++)
336 		free_arg_page(bprm, i);
337 }
338 
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 		struct page *page)
341 {
342 }
343 
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347 	return 0;
348 }
349 
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352 	return len <= bprm->p;
353 }
354 
355 #endif /* CONFIG_MMU */
356 
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365 	int err;
366 	struct mm_struct *mm = NULL;
367 
368 	bprm->mm = mm = mm_alloc();
369 	err = -ENOMEM;
370 	if (!mm)
371 		goto err;
372 
373 	/* Save current stack limit for all calculations made during exec. */
374 	task_lock(current->group_leader);
375 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376 	task_unlock(current->group_leader);
377 
378 	err = __bprm_mm_init(bprm);
379 	if (err)
380 		goto err;
381 
382 	return 0;
383 
384 err:
385 	if (mm) {
386 		bprm->mm = NULL;
387 		mmdrop(mm);
388 	}
389 
390 	return err;
391 }
392 
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395 	bool is_compat;
396 #endif
397 	union {
398 		const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400 		const compat_uptr_t __user *compat;
401 #endif
402 	} ptr;
403 };
404 
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407 	const char __user *native;
408 
409 #ifdef CONFIG_COMPAT
410 	if (unlikely(argv.is_compat)) {
411 		compat_uptr_t compat;
412 
413 		if (get_user(compat, argv.ptr.compat + nr))
414 			return ERR_PTR(-EFAULT);
415 
416 		return compat_ptr(compat);
417 	}
418 #endif
419 
420 	if (get_user(native, argv.ptr.native + nr))
421 		return ERR_PTR(-EFAULT);
422 
423 	return native;
424 }
425 
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431 	int i = 0;
432 
433 	if (argv.ptr.native != NULL) {
434 		for (;;) {
435 			const char __user *p = get_user_arg_ptr(argv, i);
436 
437 			if (!p)
438 				break;
439 
440 			if (IS_ERR(p))
441 				return -EFAULT;
442 
443 			if (i >= max)
444 				return -E2BIG;
445 			++i;
446 
447 			if (fatal_signal_pending(current))
448 				return -ERESTARTNOHAND;
449 			cond_resched();
450 		}
451 	}
452 	return i;
453 }
454 
455 static int count_strings_kernel(const char *const *argv)
456 {
457 	int i;
458 
459 	if (!argv)
460 		return 0;
461 
462 	for (i = 0; argv[i]; ++i) {
463 		if (i >= MAX_ARG_STRINGS)
464 			return -E2BIG;
465 		if (fatal_signal_pending(current))
466 			return -ERESTARTNOHAND;
467 		cond_resched();
468 	}
469 	return i;
470 }
471 
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474 	unsigned long limit, ptr_size;
475 
476 	/*
477 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 	 * (whichever is smaller) for the argv+env strings.
479 	 * This ensures that:
480 	 *  - the remaining binfmt code will not run out of stack space,
481 	 *  - the program will have a reasonable amount of stack left
482 	 *    to work from.
483 	 */
484 	limit = _STK_LIM / 4 * 3;
485 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486 	/*
487 	 * We've historically supported up to 32 pages (ARG_MAX)
488 	 * of argument strings even with small stacks
489 	 */
490 	limit = max_t(unsigned long, limit, ARG_MAX);
491 	/*
492 	 * We must account for the size of all the argv and envp pointers to
493 	 * the argv and envp strings, since they will also take up space in
494 	 * the stack. They aren't stored until much later when we can't
495 	 * signal to the parent that the child has run out of stack space.
496 	 * Instead, calculate it here so it's possible to fail gracefully.
497 	 *
498 	 * In the case of argc = 0, make sure there is space for adding a
499 	 * empty string (which will bump argc to 1), to ensure confused
500 	 * userspace programs don't start processing from argv[1], thinking
501 	 * argc can never be 0, to keep them from walking envp by accident.
502 	 * See do_execveat_common().
503 	 */
504 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505 	if (limit <= ptr_size)
506 		return -E2BIG;
507 	limit -= ptr_size;
508 
509 	bprm->argmin = bprm->p - limit;
510 	return 0;
511 }
512 
513 /*
514  * 'copy_strings()' copies argument/environment strings from the old
515  * processes's memory to the new process's stack.  The call to get_user_pages()
516  * ensures the destination page is created and not swapped out.
517  */
518 static int copy_strings(int argc, struct user_arg_ptr argv,
519 			struct linux_binprm *bprm)
520 {
521 	struct page *kmapped_page = NULL;
522 	char *kaddr = NULL;
523 	unsigned long kpos = 0;
524 	int ret;
525 
526 	while (argc-- > 0) {
527 		const char __user *str;
528 		int len;
529 		unsigned long pos;
530 
531 		ret = -EFAULT;
532 		str = get_user_arg_ptr(argv, argc);
533 		if (IS_ERR(str))
534 			goto out;
535 
536 		len = strnlen_user(str, MAX_ARG_STRLEN);
537 		if (!len)
538 			goto out;
539 
540 		ret = -E2BIG;
541 		if (!valid_arg_len(bprm, len))
542 			goto out;
543 
544 		/* We're going to work our way backwards. */
545 		pos = bprm->p;
546 		str += len;
547 		bprm->p -= len;
548 #ifdef CONFIG_MMU
549 		if (bprm->p < bprm->argmin)
550 			goto out;
551 #endif
552 
553 		while (len > 0) {
554 			int offset, bytes_to_copy;
555 
556 			if (fatal_signal_pending(current)) {
557 				ret = -ERESTARTNOHAND;
558 				goto out;
559 			}
560 			cond_resched();
561 
562 			offset = pos % PAGE_SIZE;
563 			if (offset == 0)
564 				offset = PAGE_SIZE;
565 
566 			bytes_to_copy = offset;
567 			if (bytes_to_copy > len)
568 				bytes_to_copy = len;
569 
570 			offset -= bytes_to_copy;
571 			pos -= bytes_to_copy;
572 			str -= bytes_to_copy;
573 			len -= bytes_to_copy;
574 
575 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576 				struct page *page;
577 
578 				page = get_arg_page(bprm, pos, 1);
579 				if (!page) {
580 					ret = -E2BIG;
581 					goto out;
582 				}
583 
584 				if (kmapped_page) {
585 					flush_dcache_page(kmapped_page);
586 					kunmap_local(kaddr);
587 					put_arg_page(kmapped_page);
588 				}
589 				kmapped_page = page;
590 				kaddr = kmap_local_page(kmapped_page);
591 				kpos = pos & PAGE_MASK;
592 				flush_arg_page(bprm, kpos, kmapped_page);
593 			}
594 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595 				ret = -EFAULT;
596 				goto out;
597 			}
598 		}
599 	}
600 	ret = 0;
601 out:
602 	if (kmapped_page) {
603 		flush_dcache_page(kmapped_page);
604 		kunmap_local(kaddr);
605 		put_arg_page(kmapped_page);
606 	}
607 	return ret;
608 }
609 
610 /*
611  * Copy and argument/environment string from the kernel to the processes stack.
612  */
613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614 {
615 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616 	unsigned long pos = bprm->p;
617 
618 	if (len == 0)
619 		return -EFAULT;
620 	if (!valid_arg_len(bprm, len))
621 		return -E2BIG;
622 
623 	/* We're going to work our way backwards. */
624 	arg += len;
625 	bprm->p -= len;
626 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627 		return -E2BIG;
628 
629 	while (len > 0) {
630 		unsigned int bytes_to_copy = min_t(unsigned int, len,
631 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
632 		struct page *page;
633 
634 		pos -= bytes_to_copy;
635 		arg -= bytes_to_copy;
636 		len -= bytes_to_copy;
637 
638 		page = get_arg_page(bprm, pos, 1);
639 		if (!page)
640 			return -E2BIG;
641 		flush_arg_page(bprm, pos & PAGE_MASK, page);
642 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
643 		put_arg_page(page);
644 	}
645 
646 	return 0;
647 }
648 EXPORT_SYMBOL(copy_string_kernel);
649 
650 static int copy_strings_kernel(int argc, const char *const *argv,
651 			       struct linux_binprm *bprm)
652 {
653 	while (argc-- > 0) {
654 		int ret = copy_string_kernel(argv[argc], bprm);
655 		if (ret < 0)
656 			return ret;
657 		if (fatal_signal_pending(current))
658 			return -ERESTARTNOHAND;
659 		cond_resched();
660 	}
661 	return 0;
662 }
663 
664 #ifdef CONFIG_MMU
665 
666 /*
667  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
668  * the binfmt code determines where the new stack should reside, we shift it to
669  * its final location.  The process proceeds as follows:
670  *
671  * 1) Use shift to calculate the new vma endpoints.
672  * 2) Extend vma to cover both the old and new ranges.  This ensures the
673  *    arguments passed to subsequent functions are consistent.
674  * 3) Move vma's page tables to the new range.
675  * 4) Free up any cleared pgd range.
676  * 5) Shrink the vma to cover only the new range.
677  */
678 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
679 {
680 	struct mm_struct *mm = vma->vm_mm;
681 	unsigned long old_start = vma->vm_start;
682 	unsigned long old_end = vma->vm_end;
683 	unsigned long length = old_end - old_start;
684 	unsigned long new_start = old_start - shift;
685 	unsigned long new_end = old_end - shift;
686 	VMA_ITERATOR(vmi, mm, new_start);
687 	struct vm_area_struct *next;
688 	struct mmu_gather tlb;
689 
690 	BUG_ON(new_start > new_end);
691 
692 	/*
693 	 * ensure there are no vmas between where we want to go
694 	 * and where we are
695 	 */
696 	if (vma != vma_next(&vmi))
697 		return -EFAULT;
698 
699 	/*
700 	 * cover the whole range: [new_start, old_end)
701 	 */
702 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
703 		return -ENOMEM;
704 
705 	/*
706 	 * move the page tables downwards, on failure we rely on
707 	 * process cleanup to remove whatever mess we made.
708 	 */
709 	if (length != move_page_tables(vma, old_start,
710 				       vma, new_start, length, false))
711 		return -ENOMEM;
712 
713 	lru_add_drain();
714 	tlb_gather_mmu(&tlb, mm);
715 	next = vma_next(&vmi);
716 	if (new_end > old_start) {
717 		/*
718 		 * when the old and new regions overlap clear from new_end.
719 		 */
720 		free_pgd_range(&tlb, new_end, old_end, new_end,
721 			next ? next->vm_start : USER_PGTABLES_CEILING);
722 	} else {
723 		/*
724 		 * otherwise, clean from old_start; this is done to not touch
725 		 * the address space in [new_end, old_start) some architectures
726 		 * have constraints on va-space that make this illegal (IA64) -
727 		 * for the others its just a little faster.
728 		 */
729 		free_pgd_range(&tlb, old_start, old_end, new_end,
730 			next ? next->vm_start : USER_PGTABLES_CEILING);
731 	}
732 	tlb_finish_mmu(&tlb);
733 
734 	/*
735 	 * Shrink the vma to just the new range.  Always succeeds.
736 	 */
737 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
738 
739 	return 0;
740 }
741 
742 /*
743  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
744  * the stack is optionally relocated, and some extra space is added.
745  */
746 int setup_arg_pages(struct linux_binprm *bprm,
747 		    unsigned long stack_top,
748 		    int executable_stack)
749 {
750 	unsigned long ret;
751 	unsigned long stack_shift;
752 	struct mm_struct *mm = current->mm;
753 	struct vm_area_struct *vma = bprm->vma;
754 	struct vm_area_struct *prev = NULL;
755 	unsigned long vm_flags;
756 	unsigned long stack_base;
757 	unsigned long stack_size;
758 	unsigned long stack_expand;
759 	unsigned long rlim_stack;
760 	struct mmu_gather tlb;
761 
762 #ifdef CONFIG_STACK_GROWSUP
763 	/* Limit stack size */
764 	stack_base = bprm->rlim_stack.rlim_max;
765 
766 	stack_base = calc_max_stack_size(stack_base);
767 
768 	/* Add space for stack randomization. */
769 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
770 
771 	/* Make sure we didn't let the argument array grow too large. */
772 	if (vma->vm_end - vma->vm_start > stack_base)
773 		return -ENOMEM;
774 
775 	stack_base = PAGE_ALIGN(stack_top - stack_base);
776 
777 	stack_shift = vma->vm_start - stack_base;
778 	mm->arg_start = bprm->p - stack_shift;
779 	bprm->p = vma->vm_end - stack_shift;
780 #else
781 	stack_top = arch_align_stack(stack_top);
782 	stack_top = PAGE_ALIGN(stack_top);
783 
784 	if (unlikely(stack_top < mmap_min_addr) ||
785 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
786 		return -ENOMEM;
787 
788 	stack_shift = vma->vm_end - stack_top;
789 
790 	bprm->p -= stack_shift;
791 	mm->arg_start = bprm->p;
792 #endif
793 
794 	if (bprm->loader)
795 		bprm->loader -= stack_shift;
796 	bprm->exec -= stack_shift;
797 
798 	if (mmap_write_lock_killable(mm))
799 		return -EINTR;
800 
801 	vm_flags = VM_STACK_FLAGS;
802 
803 	/*
804 	 * Adjust stack execute permissions; explicitly enable for
805 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
806 	 * (arch default) otherwise.
807 	 */
808 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
809 		vm_flags |= VM_EXEC;
810 	else if (executable_stack == EXSTACK_DISABLE_X)
811 		vm_flags &= ~VM_EXEC;
812 	vm_flags |= mm->def_flags;
813 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
814 
815 	tlb_gather_mmu(&tlb, mm);
816 	ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
817 			vm_flags);
818 	tlb_finish_mmu(&tlb);
819 
820 	if (ret)
821 		goto out_unlock;
822 	BUG_ON(prev != vma);
823 
824 	if (unlikely(vm_flags & VM_EXEC)) {
825 		pr_warn_once("process '%pD4' started with executable stack\n",
826 			     bprm->file);
827 	}
828 
829 	/* Move stack pages down in memory. */
830 	if (stack_shift) {
831 		ret = shift_arg_pages(vma, stack_shift);
832 		if (ret)
833 			goto out_unlock;
834 	}
835 
836 	/* mprotect_fixup is overkill to remove the temporary stack flags */
837 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
838 
839 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
840 	stack_size = vma->vm_end - vma->vm_start;
841 	/*
842 	 * Align this down to a page boundary as expand_stack
843 	 * will align it up.
844 	 */
845 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
846 
847 	stack_expand = min(rlim_stack, stack_size + stack_expand);
848 
849 #ifdef CONFIG_STACK_GROWSUP
850 	stack_base = vma->vm_start + stack_expand;
851 #else
852 	stack_base = vma->vm_end - stack_expand;
853 #endif
854 	current->mm->start_stack = bprm->p;
855 	ret = expand_stack(vma, stack_base);
856 	if (ret)
857 		ret = -EFAULT;
858 
859 out_unlock:
860 	mmap_write_unlock(mm);
861 	return ret;
862 }
863 EXPORT_SYMBOL(setup_arg_pages);
864 
865 #else
866 
867 /*
868  * Transfer the program arguments and environment from the holding pages
869  * onto the stack. The provided stack pointer is adjusted accordingly.
870  */
871 int transfer_args_to_stack(struct linux_binprm *bprm,
872 			   unsigned long *sp_location)
873 {
874 	unsigned long index, stop, sp;
875 	int ret = 0;
876 
877 	stop = bprm->p >> PAGE_SHIFT;
878 	sp = *sp_location;
879 
880 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
881 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
882 		char *src = kmap_local_page(bprm->page[index]) + offset;
883 		sp -= PAGE_SIZE - offset;
884 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
885 			ret = -EFAULT;
886 		kunmap_local(src);
887 		if (ret)
888 			goto out;
889 	}
890 
891 	*sp_location = sp;
892 
893 out:
894 	return ret;
895 }
896 EXPORT_SYMBOL(transfer_args_to_stack);
897 
898 #endif /* CONFIG_MMU */
899 
900 static struct file *do_open_execat(int fd, struct filename *name, int flags)
901 {
902 	struct file *file;
903 	int err;
904 	struct open_flags open_exec_flags = {
905 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
906 		.acc_mode = MAY_EXEC,
907 		.intent = LOOKUP_OPEN,
908 		.lookup_flags = LOOKUP_FOLLOW,
909 	};
910 
911 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
912 		return ERR_PTR(-EINVAL);
913 	if (flags & AT_SYMLINK_NOFOLLOW)
914 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
915 	if (flags & AT_EMPTY_PATH)
916 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
917 
918 	file = do_filp_open(fd, name, &open_exec_flags);
919 	if (IS_ERR(file))
920 		goto out;
921 
922 	/*
923 	 * may_open() has already checked for this, so it should be
924 	 * impossible to trip now. But we need to be extra cautious
925 	 * and check again at the very end too.
926 	 */
927 	err = -EACCES;
928 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
929 			 path_noexec(&file->f_path)))
930 		goto exit;
931 
932 	err = deny_write_access(file);
933 	if (err)
934 		goto exit;
935 
936 	if (name->name[0] != '\0')
937 		fsnotify_open(file);
938 
939 out:
940 	return file;
941 
942 exit:
943 	fput(file);
944 	return ERR_PTR(err);
945 }
946 
947 struct file *open_exec(const char *name)
948 {
949 	struct filename *filename = getname_kernel(name);
950 	struct file *f = ERR_CAST(filename);
951 
952 	if (!IS_ERR(filename)) {
953 		f = do_open_execat(AT_FDCWD, filename, 0);
954 		putname(filename);
955 	}
956 	return f;
957 }
958 EXPORT_SYMBOL(open_exec);
959 
960 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
961 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
962 {
963 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
964 	if (res > 0)
965 		flush_icache_user_range(addr, addr + len);
966 	return res;
967 }
968 EXPORT_SYMBOL(read_code);
969 #endif
970 
971 /*
972  * Maps the mm_struct mm into the current task struct.
973  * On success, this function returns with exec_update_lock
974  * held for writing.
975  */
976 static int exec_mmap(struct mm_struct *mm)
977 {
978 	struct task_struct *tsk;
979 	struct mm_struct *old_mm, *active_mm;
980 	int ret;
981 
982 	/* Notify parent that we're no longer interested in the old VM */
983 	tsk = current;
984 	old_mm = current->mm;
985 	exec_mm_release(tsk, old_mm);
986 	if (old_mm)
987 		sync_mm_rss(old_mm);
988 
989 	ret = down_write_killable(&tsk->signal->exec_update_lock);
990 	if (ret)
991 		return ret;
992 
993 	if (old_mm) {
994 		/*
995 		 * If there is a pending fatal signal perhaps a signal
996 		 * whose default action is to create a coredump get
997 		 * out and die instead of going through with the exec.
998 		 */
999 		ret = mmap_read_lock_killable(old_mm);
1000 		if (ret) {
1001 			up_write(&tsk->signal->exec_update_lock);
1002 			return ret;
1003 		}
1004 	}
1005 
1006 	task_lock(tsk);
1007 	membarrier_exec_mmap(mm);
1008 
1009 	local_irq_disable();
1010 	active_mm = tsk->active_mm;
1011 	tsk->active_mm = mm;
1012 	tsk->mm = mm;
1013 	/*
1014 	 * This prevents preemption while active_mm is being loaded and
1015 	 * it and mm are being updated, which could cause problems for
1016 	 * lazy tlb mm refcounting when these are updated by context
1017 	 * switches. Not all architectures can handle irqs off over
1018 	 * activate_mm yet.
1019 	 */
1020 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1021 		local_irq_enable();
1022 	activate_mm(active_mm, mm);
1023 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1024 		local_irq_enable();
1025 	lru_gen_add_mm(mm);
1026 	task_unlock(tsk);
1027 	lru_gen_use_mm(mm);
1028 	if (old_mm) {
1029 		mmap_read_unlock(old_mm);
1030 		BUG_ON(active_mm != old_mm);
1031 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1032 		mm_update_next_owner(old_mm);
1033 		mmput(old_mm);
1034 		return 0;
1035 	}
1036 	mmdrop(active_mm);
1037 	return 0;
1038 }
1039 
1040 static int de_thread(struct task_struct *tsk)
1041 {
1042 	struct signal_struct *sig = tsk->signal;
1043 	struct sighand_struct *oldsighand = tsk->sighand;
1044 	spinlock_t *lock = &oldsighand->siglock;
1045 
1046 	if (thread_group_empty(tsk))
1047 		goto no_thread_group;
1048 
1049 	/*
1050 	 * Kill all other threads in the thread group.
1051 	 */
1052 	spin_lock_irq(lock);
1053 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1054 		/*
1055 		 * Another group action in progress, just
1056 		 * return so that the signal is processed.
1057 		 */
1058 		spin_unlock_irq(lock);
1059 		return -EAGAIN;
1060 	}
1061 
1062 	sig->group_exec_task = tsk;
1063 	sig->notify_count = zap_other_threads(tsk);
1064 	if (!thread_group_leader(tsk))
1065 		sig->notify_count--;
1066 
1067 	while (sig->notify_count) {
1068 		__set_current_state(TASK_KILLABLE);
1069 		spin_unlock_irq(lock);
1070 		schedule();
1071 		if (__fatal_signal_pending(tsk))
1072 			goto killed;
1073 		spin_lock_irq(lock);
1074 	}
1075 	spin_unlock_irq(lock);
1076 
1077 	/*
1078 	 * At this point all other threads have exited, all we have to
1079 	 * do is to wait for the thread group leader to become inactive,
1080 	 * and to assume its PID:
1081 	 */
1082 	if (!thread_group_leader(tsk)) {
1083 		struct task_struct *leader = tsk->group_leader;
1084 
1085 		for (;;) {
1086 			cgroup_threadgroup_change_begin(tsk);
1087 			write_lock_irq(&tasklist_lock);
1088 			/*
1089 			 * Do this under tasklist_lock to ensure that
1090 			 * exit_notify() can't miss ->group_exec_task
1091 			 */
1092 			sig->notify_count = -1;
1093 			if (likely(leader->exit_state))
1094 				break;
1095 			__set_current_state(TASK_KILLABLE);
1096 			write_unlock_irq(&tasklist_lock);
1097 			cgroup_threadgroup_change_end(tsk);
1098 			schedule();
1099 			if (__fatal_signal_pending(tsk))
1100 				goto killed;
1101 		}
1102 
1103 		/*
1104 		 * The only record we have of the real-time age of a
1105 		 * process, regardless of execs it's done, is start_time.
1106 		 * All the past CPU time is accumulated in signal_struct
1107 		 * from sister threads now dead.  But in this non-leader
1108 		 * exec, nothing survives from the original leader thread,
1109 		 * whose birth marks the true age of this process now.
1110 		 * When we take on its identity by switching to its PID, we
1111 		 * also take its birthdate (always earlier than our own).
1112 		 */
1113 		tsk->start_time = leader->start_time;
1114 		tsk->start_boottime = leader->start_boottime;
1115 
1116 		BUG_ON(!same_thread_group(leader, tsk));
1117 		/*
1118 		 * An exec() starts a new thread group with the
1119 		 * TGID of the previous thread group. Rehash the
1120 		 * two threads with a switched PID, and release
1121 		 * the former thread group leader:
1122 		 */
1123 
1124 		/* Become a process group leader with the old leader's pid.
1125 		 * The old leader becomes a thread of the this thread group.
1126 		 */
1127 		exchange_tids(tsk, leader);
1128 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1129 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1130 		transfer_pid(leader, tsk, PIDTYPE_SID);
1131 
1132 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1133 		list_replace_init(&leader->sibling, &tsk->sibling);
1134 
1135 		tsk->group_leader = tsk;
1136 		leader->group_leader = tsk;
1137 
1138 		tsk->exit_signal = SIGCHLD;
1139 		leader->exit_signal = -1;
1140 
1141 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1142 		leader->exit_state = EXIT_DEAD;
1143 
1144 		/*
1145 		 * We are going to release_task()->ptrace_unlink() silently,
1146 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1147 		 * the tracer won't block again waiting for this thread.
1148 		 */
1149 		if (unlikely(leader->ptrace))
1150 			__wake_up_parent(leader, leader->parent);
1151 		write_unlock_irq(&tasklist_lock);
1152 		cgroup_threadgroup_change_end(tsk);
1153 
1154 		release_task(leader);
1155 	}
1156 
1157 	sig->group_exec_task = NULL;
1158 	sig->notify_count = 0;
1159 
1160 no_thread_group:
1161 	/* we have changed execution domain */
1162 	tsk->exit_signal = SIGCHLD;
1163 
1164 	BUG_ON(!thread_group_leader(tsk));
1165 	return 0;
1166 
1167 killed:
1168 	/* protects against exit_notify() and __exit_signal() */
1169 	read_lock(&tasklist_lock);
1170 	sig->group_exec_task = NULL;
1171 	sig->notify_count = 0;
1172 	read_unlock(&tasklist_lock);
1173 	return -EAGAIN;
1174 }
1175 
1176 
1177 /*
1178  * This function makes sure the current process has its own signal table,
1179  * so that flush_signal_handlers can later reset the handlers without
1180  * disturbing other processes.  (Other processes might share the signal
1181  * table via the CLONE_SIGHAND option to clone().)
1182  */
1183 static int unshare_sighand(struct task_struct *me)
1184 {
1185 	struct sighand_struct *oldsighand = me->sighand;
1186 
1187 	if (refcount_read(&oldsighand->count) != 1) {
1188 		struct sighand_struct *newsighand;
1189 		/*
1190 		 * This ->sighand is shared with the CLONE_SIGHAND
1191 		 * but not CLONE_THREAD task, switch to the new one.
1192 		 */
1193 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1194 		if (!newsighand)
1195 			return -ENOMEM;
1196 
1197 		refcount_set(&newsighand->count, 1);
1198 
1199 		write_lock_irq(&tasklist_lock);
1200 		spin_lock(&oldsighand->siglock);
1201 		memcpy(newsighand->action, oldsighand->action,
1202 		       sizeof(newsighand->action));
1203 		rcu_assign_pointer(me->sighand, newsighand);
1204 		spin_unlock(&oldsighand->siglock);
1205 		write_unlock_irq(&tasklist_lock);
1206 
1207 		__cleanup_sighand(oldsighand);
1208 	}
1209 	return 0;
1210 }
1211 
1212 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1213 {
1214 	task_lock(tsk);
1215 	/* Always NUL terminated and zero-padded */
1216 	strscpy_pad(buf, tsk->comm, buf_size);
1217 	task_unlock(tsk);
1218 	return buf;
1219 }
1220 EXPORT_SYMBOL_GPL(__get_task_comm);
1221 
1222 /*
1223  * These functions flushes out all traces of the currently running executable
1224  * so that a new one can be started
1225  */
1226 
1227 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1228 {
1229 	task_lock(tsk);
1230 	trace_task_rename(tsk, buf);
1231 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1232 	task_unlock(tsk);
1233 	perf_event_comm(tsk, exec);
1234 }
1235 
1236 /*
1237  * Calling this is the point of no return. None of the failures will be
1238  * seen by userspace since either the process is already taking a fatal
1239  * signal (via de_thread() or coredump), or will have SEGV raised
1240  * (after exec_mmap()) by search_binary_handler (see below).
1241  */
1242 int begin_new_exec(struct linux_binprm * bprm)
1243 {
1244 	struct task_struct *me = current;
1245 	int retval;
1246 
1247 	/* Once we are committed compute the creds */
1248 	retval = bprm_creds_from_file(bprm);
1249 	if (retval)
1250 		return retval;
1251 
1252 	/*
1253 	 * Ensure all future errors are fatal.
1254 	 */
1255 	bprm->point_of_no_return = true;
1256 
1257 	/*
1258 	 * Make this the only thread in the thread group.
1259 	 */
1260 	retval = de_thread(me);
1261 	if (retval)
1262 		goto out;
1263 
1264 	/*
1265 	 * Cancel any io_uring activity across execve
1266 	 */
1267 	io_uring_task_cancel();
1268 
1269 	/* Ensure the files table is not shared. */
1270 	retval = unshare_files();
1271 	if (retval)
1272 		goto out;
1273 
1274 	/*
1275 	 * Must be called _before_ exec_mmap() as bprm->mm is
1276 	 * not visible until then. This also enables the update
1277 	 * to be lockless.
1278 	 */
1279 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1280 	if (retval)
1281 		goto out;
1282 
1283 	/* If the binary is not readable then enforce mm->dumpable=0 */
1284 	would_dump(bprm, bprm->file);
1285 	if (bprm->have_execfd)
1286 		would_dump(bprm, bprm->executable);
1287 
1288 	/*
1289 	 * Release all of the old mmap stuff
1290 	 */
1291 	acct_arg_size(bprm, 0);
1292 	retval = exec_mmap(bprm->mm);
1293 	if (retval)
1294 		goto out;
1295 
1296 	bprm->mm = NULL;
1297 
1298 	retval = exec_task_namespaces();
1299 	if (retval)
1300 		goto out_unlock;
1301 
1302 #ifdef CONFIG_POSIX_TIMERS
1303 	spin_lock_irq(&me->sighand->siglock);
1304 	posix_cpu_timers_exit(me);
1305 	spin_unlock_irq(&me->sighand->siglock);
1306 	exit_itimers(me);
1307 	flush_itimer_signals();
1308 #endif
1309 
1310 	/*
1311 	 * Make the signal table private.
1312 	 */
1313 	retval = unshare_sighand(me);
1314 	if (retval)
1315 		goto out_unlock;
1316 
1317 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1318 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1319 	flush_thread();
1320 	me->personality &= ~bprm->per_clear;
1321 
1322 	clear_syscall_work_syscall_user_dispatch(me);
1323 
1324 	/*
1325 	 * We have to apply CLOEXEC before we change whether the process is
1326 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1327 	 * trying to access the should-be-closed file descriptors of a process
1328 	 * undergoing exec(2).
1329 	 */
1330 	do_close_on_exec(me->files);
1331 
1332 	if (bprm->secureexec) {
1333 		/* Make sure parent cannot signal privileged process. */
1334 		me->pdeath_signal = 0;
1335 
1336 		/*
1337 		 * For secureexec, reset the stack limit to sane default to
1338 		 * avoid bad behavior from the prior rlimits. This has to
1339 		 * happen before arch_pick_mmap_layout(), which examines
1340 		 * RLIMIT_STACK, but after the point of no return to avoid
1341 		 * needing to clean up the change on failure.
1342 		 */
1343 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1344 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1345 	}
1346 
1347 	me->sas_ss_sp = me->sas_ss_size = 0;
1348 
1349 	/*
1350 	 * Figure out dumpability. Note that this checking only of current
1351 	 * is wrong, but userspace depends on it. This should be testing
1352 	 * bprm->secureexec instead.
1353 	 */
1354 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1355 	    !(uid_eq(current_euid(), current_uid()) &&
1356 	      gid_eq(current_egid(), current_gid())))
1357 		set_dumpable(current->mm, suid_dumpable);
1358 	else
1359 		set_dumpable(current->mm, SUID_DUMP_USER);
1360 
1361 	perf_event_exec();
1362 	__set_task_comm(me, kbasename(bprm->filename), true);
1363 
1364 	/* An exec changes our domain. We are no longer part of the thread
1365 	   group */
1366 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1367 	flush_signal_handlers(me, 0);
1368 
1369 	retval = set_cred_ucounts(bprm->cred);
1370 	if (retval < 0)
1371 		goto out_unlock;
1372 
1373 	/*
1374 	 * install the new credentials for this executable
1375 	 */
1376 	security_bprm_committing_creds(bprm);
1377 
1378 	commit_creds(bprm->cred);
1379 	bprm->cred = NULL;
1380 
1381 	/*
1382 	 * Disable monitoring for regular users
1383 	 * when executing setuid binaries. Must
1384 	 * wait until new credentials are committed
1385 	 * by commit_creds() above
1386 	 */
1387 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1388 		perf_event_exit_task(me);
1389 	/*
1390 	 * cred_guard_mutex must be held at least to this point to prevent
1391 	 * ptrace_attach() from altering our determination of the task's
1392 	 * credentials; any time after this it may be unlocked.
1393 	 */
1394 	security_bprm_committed_creds(bprm);
1395 
1396 	/* Pass the opened binary to the interpreter. */
1397 	if (bprm->have_execfd) {
1398 		retval = get_unused_fd_flags(0);
1399 		if (retval < 0)
1400 			goto out_unlock;
1401 		fd_install(retval, bprm->executable);
1402 		bprm->executable = NULL;
1403 		bprm->execfd = retval;
1404 	}
1405 	return 0;
1406 
1407 out_unlock:
1408 	up_write(&me->signal->exec_update_lock);
1409 out:
1410 	return retval;
1411 }
1412 EXPORT_SYMBOL(begin_new_exec);
1413 
1414 void would_dump(struct linux_binprm *bprm, struct file *file)
1415 {
1416 	struct inode *inode = file_inode(file);
1417 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1418 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1419 		struct user_namespace *old, *user_ns;
1420 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1421 
1422 		/* Ensure mm->user_ns contains the executable */
1423 		user_ns = old = bprm->mm->user_ns;
1424 		while ((user_ns != &init_user_ns) &&
1425 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1426 			user_ns = user_ns->parent;
1427 
1428 		if (old != user_ns) {
1429 			bprm->mm->user_ns = get_user_ns(user_ns);
1430 			put_user_ns(old);
1431 		}
1432 	}
1433 }
1434 EXPORT_SYMBOL(would_dump);
1435 
1436 void setup_new_exec(struct linux_binprm * bprm)
1437 {
1438 	/* Setup things that can depend upon the personality */
1439 	struct task_struct *me = current;
1440 
1441 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1442 
1443 	arch_setup_new_exec();
1444 
1445 	/* Set the new mm task size. We have to do that late because it may
1446 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1447 	 * some architectures like powerpc
1448 	 */
1449 	me->mm->task_size = TASK_SIZE;
1450 	up_write(&me->signal->exec_update_lock);
1451 	mutex_unlock(&me->signal->cred_guard_mutex);
1452 }
1453 EXPORT_SYMBOL(setup_new_exec);
1454 
1455 /* Runs immediately before start_thread() takes over. */
1456 void finalize_exec(struct linux_binprm *bprm)
1457 {
1458 	/* Store any stack rlimit changes before starting thread. */
1459 	task_lock(current->group_leader);
1460 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1461 	task_unlock(current->group_leader);
1462 }
1463 EXPORT_SYMBOL(finalize_exec);
1464 
1465 /*
1466  * Prepare credentials and lock ->cred_guard_mutex.
1467  * setup_new_exec() commits the new creds and drops the lock.
1468  * Or, if exec fails before, free_bprm() should release ->cred
1469  * and unlock.
1470  */
1471 static int prepare_bprm_creds(struct linux_binprm *bprm)
1472 {
1473 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1474 		return -ERESTARTNOINTR;
1475 
1476 	bprm->cred = prepare_exec_creds();
1477 	if (likely(bprm->cred))
1478 		return 0;
1479 
1480 	mutex_unlock(&current->signal->cred_guard_mutex);
1481 	return -ENOMEM;
1482 }
1483 
1484 static void free_bprm(struct linux_binprm *bprm)
1485 {
1486 	if (bprm->mm) {
1487 		acct_arg_size(bprm, 0);
1488 		mmput(bprm->mm);
1489 	}
1490 	free_arg_pages(bprm);
1491 	if (bprm->cred) {
1492 		mutex_unlock(&current->signal->cred_guard_mutex);
1493 		abort_creds(bprm->cred);
1494 	}
1495 	if (bprm->file) {
1496 		allow_write_access(bprm->file);
1497 		fput(bprm->file);
1498 	}
1499 	if (bprm->executable)
1500 		fput(bprm->executable);
1501 	/* If a binfmt changed the interp, free it. */
1502 	if (bprm->interp != bprm->filename)
1503 		kfree(bprm->interp);
1504 	kfree(bprm->fdpath);
1505 	kfree(bprm);
1506 }
1507 
1508 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1509 {
1510 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1511 	int retval = -ENOMEM;
1512 	if (!bprm)
1513 		goto out;
1514 
1515 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1516 		bprm->filename = filename->name;
1517 	} else {
1518 		if (filename->name[0] == '\0')
1519 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1520 		else
1521 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1522 						  fd, filename->name);
1523 		if (!bprm->fdpath)
1524 			goto out_free;
1525 
1526 		bprm->filename = bprm->fdpath;
1527 	}
1528 	bprm->interp = bprm->filename;
1529 
1530 	retval = bprm_mm_init(bprm);
1531 	if (retval)
1532 		goto out_free;
1533 	return bprm;
1534 
1535 out_free:
1536 	free_bprm(bprm);
1537 out:
1538 	return ERR_PTR(retval);
1539 }
1540 
1541 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1542 {
1543 	/* If a binfmt changed the interp, free it first. */
1544 	if (bprm->interp != bprm->filename)
1545 		kfree(bprm->interp);
1546 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1547 	if (!bprm->interp)
1548 		return -ENOMEM;
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL(bprm_change_interp);
1552 
1553 /*
1554  * determine how safe it is to execute the proposed program
1555  * - the caller must hold ->cred_guard_mutex to protect against
1556  *   PTRACE_ATTACH or seccomp thread-sync
1557  */
1558 static void check_unsafe_exec(struct linux_binprm *bprm)
1559 {
1560 	struct task_struct *p = current, *t;
1561 	unsigned n_fs;
1562 
1563 	if (p->ptrace)
1564 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1565 
1566 	/*
1567 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1568 	 * mess up.
1569 	 */
1570 	if (task_no_new_privs(current))
1571 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1572 
1573 	/*
1574 	 * If another task is sharing our fs, we cannot safely
1575 	 * suid exec because the differently privileged task
1576 	 * will be able to manipulate the current directory, etc.
1577 	 * It would be nice to force an unshare instead...
1578 	 */
1579 	t = p;
1580 	n_fs = 1;
1581 	spin_lock(&p->fs->lock);
1582 	rcu_read_lock();
1583 	while_each_thread(p, t) {
1584 		if (t->fs == p->fs)
1585 			n_fs++;
1586 	}
1587 	rcu_read_unlock();
1588 
1589 	if (p->fs->users > n_fs)
1590 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1591 	else
1592 		p->fs->in_exec = 1;
1593 	spin_unlock(&p->fs->lock);
1594 }
1595 
1596 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1597 {
1598 	/* Handle suid and sgid on files */
1599 	struct user_namespace *mnt_userns;
1600 	struct inode *inode = file_inode(file);
1601 	unsigned int mode;
1602 	vfsuid_t vfsuid;
1603 	vfsgid_t vfsgid;
1604 
1605 	if (!mnt_may_suid(file->f_path.mnt))
1606 		return;
1607 
1608 	if (task_no_new_privs(current))
1609 		return;
1610 
1611 	mode = READ_ONCE(inode->i_mode);
1612 	if (!(mode & (S_ISUID|S_ISGID)))
1613 		return;
1614 
1615 	mnt_userns = file_mnt_user_ns(file);
1616 
1617 	/* Be careful if suid/sgid is set */
1618 	inode_lock(inode);
1619 
1620 	/* reload atomically mode/uid/gid now that lock held */
1621 	mode = inode->i_mode;
1622 	vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
1623 	vfsgid = i_gid_into_vfsgid(mnt_userns, inode);
1624 	inode_unlock(inode);
1625 
1626 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1627 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1628 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1629 		return;
1630 
1631 	if (mode & S_ISUID) {
1632 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1633 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1634 	}
1635 
1636 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1637 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1638 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1639 	}
1640 }
1641 
1642 /*
1643  * Compute brpm->cred based upon the final binary.
1644  */
1645 static int bprm_creds_from_file(struct linux_binprm *bprm)
1646 {
1647 	/* Compute creds based on which file? */
1648 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1649 
1650 	bprm_fill_uid(bprm, file);
1651 	return security_bprm_creds_from_file(bprm, file);
1652 }
1653 
1654 /*
1655  * Fill the binprm structure from the inode.
1656  * Read the first BINPRM_BUF_SIZE bytes
1657  *
1658  * This may be called multiple times for binary chains (scripts for example).
1659  */
1660 static int prepare_binprm(struct linux_binprm *bprm)
1661 {
1662 	loff_t pos = 0;
1663 
1664 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1665 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1666 }
1667 
1668 /*
1669  * Arguments are '\0' separated strings found at the location bprm->p
1670  * points to; chop off the first by relocating brpm->p to right after
1671  * the first '\0' encountered.
1672  */
1673 int remove_arg_zero(struct linux_binprm *bprm)
1674 {
1675 	int ret = 0;
1676 	unsigned long offset;
1677 	char *kaddr;
1678 	struct page *page;
1679 
1680 	if (!bprm->argc)
1681 		return 0;
1682 
1683 	do {
1684 		offset = bprm->p & ~PAGE_MASK;
1685 		page = get_arg_page(bprm, bprm->p, 0);
1686 		if (!page) {
1687 			ret = -EFAULT;
1688 			goto out;
1689 		}
1690 		kaddr = kmap_local_page(page);
1691 
1692 		for (; offset < PAGE_SIZE && kaddr[offset];
1693 				offset++, bprm->p++)
1694 			;
1695 
1696 		kunmap_local(kaddr);
1697 		put_arg_page(page);
1698 	} while (offset == PAGE_SIZE);
1699 
1700 	bprm->p++;
1701 	bprm->argc--;
1702 	ret = 0;
1703 
1704 out:
1705 	return ret;
1706 }
1707 EXPORT_SYMBOL(remove_arg_zero);
1708 
1709 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1710 /*
1711  * cycle the list of binary formats handler, until one recognizes the image
1712  */
1713 static int search_binary_handler(struct linux_binprm *bprm)
1714 {
1715 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1716 	struct linux_binfmt *fmt;
1717 	int retval;
1718 
1719 	retval = prepare_binprm(bprm);
1720 	if (retval < 0)
1721 		return retval;
1722 
1723 	retval = security_bprm_check(bprm);
1724 	if (retval)
1725 		return retval;
1726 
1727 	retval = -ENOENT;
1728  retry:
1729 	read_lock(&binfmt_lock);
1730 	list_for_each_entry(fmt, &formats, lh) {
1731 		if (!try_module_get(fmt->module))
1732 			continue;
1733 		read_unlock(&binfmt_lock);
1734 
1735 		retval = fmt->load_binary(bprm);
1736 
1737 		read_lock(&binfmt_lock);
1738 		put_binfmt(fmt);
1739 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1740 			read_unlock(&binfmt_lock);
1741 			return retval;
1742 		}
1743 	}
1744 	read_unlock(&binfmt_lock);
1745 
1746 	if (need_retry) {
1747 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1748 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1749 			return retval;
1750 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1751 			return retval;
1752 		need_retry = false;
1753 		goto retry;
1754 	}
1755 
1756 	return retval;
1757 }
1758 
1759 /* binfmt handlers will call back into begin_new_exec() on success. */
1760 static int exec_binprm(struct linux_binprm *bprm)
1761 {
1762 	pid_t old_pid, old_vpid;
1763 	int ret, depth;
1764 
1765 	/* Need to fetch pid before load_binary changes it */
1766 	old_pid = current->pid;
1767 	rcu_read_lock();
1768 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1769 	rcu_read_unlock();
1770 
1771 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1772 	for (depth = 0;; depth++) {
1773 		struct file *exec;
1774 		if (depth > 5)
1775 			return -ELOOP;
1776 
1777 		ret = search_binary_handler(bprm);
1778 		if (ret < 0)
1779 			return ret;
1780 		if (!bprm->interpreter)
1781 			break;
1782 
1783 		exec = bprm->file;
1784 		bprm->file = bprm->interpreter;
1785 		bprm->interpreter = NULL;
1786 
1787 		allow_write_access(exec);
1788 		if (unlikely(bprm->have_execfd)) {
1789 			if (bprm->executable) {
1790 				fput(exec);
1791 				return -ENOEXEC;
1792 			}
1793 			bprm->executable = exec;
1794 		} else
1795 			fput(exec);
1796 	}
1797 
1798 	audit_bprm(bprm);
1799 	trace_sched_process_exec(current, old_pid, bprm);
1800 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1801 	proc_exec_connector(current);
1802 	return 0;
1803 }
1804 
1805 /*
1806  * sys_execve() executes a new program.
1807  */
1808 static int bprm_execve(struct linux_binprm *bprm,
1809 		       int fd, struct filename *filename, int flags)
1810 {
1811 	struct file *file;
1812 	int retval;
1813 
1814 	retval = prepare_bprm_creds(bprm);
1815 	if (retval)
1816 		return retval;
1817 
1818 	/*
1819 	 * Check for unsafe execution states before exec_binprm(), which
1820 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1821 	 * where setuid-ness is evaluated.
1822 	 */
1823 	check_unsafe_exec(bprm);
1824 	current->in_execve = 1;
1825 
1826 	file = do_open_execat(fd, filename, flags);
1827 	retval = PTR_ERR(file);
1828 	if (IS_ERR(file))
1829 		goto out_unmark;
1830 
1831 	sched_exec();
1832 
1833 	bprm->file = file;
1834 	/*
1835 	 * Record that a name derived from an O_CLOEXEC fd will be
1836 	 * inaccessible after exec.  This allows the code in exec to
1837 	 * choose to fail when the executable is not mmaped into the
1838 	 * interpreter and an open file descriptor is not passed to
1839 	 * the interpreter.  This makes for a better user experience
1840 	 * than having the interpreter start and then immediately fail
1841 	 * when it finds the executable is inaccessible.
1842 	 */
1843 	if (bprm->fdpath && get_close_on_exec(fd))
1844 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1845 
1846 	/* Set the unchanging part of bprm->cred */
1847 	retval = security_bprm_creds_for_exec(bprm);
1848 	if (retval)
1849 		goto out;
1850 
1851 	retval = exec_binprm(bprm);
1852 	if (retval < 0)
1853 		goto out;
1854 
1855 	/* execve succeeded */
1856 	current->fs->in_exec = 0;
1857 	current->in_execve = 0;
1858 	rseq_execve(current);
1859 	acct_update_integrals(current);
1860 	task_numa_free(current, false);
1861 	return retval;
1862 
1863 out:
1864 	/*
1865 	 * If past the point of no return ensure the code never
1866 	 * returns to the userspace process.  Use an existing fatal
1867 	 * signal if present otherwise terminate the process with
1868 	 * SIGSEGV.
1869 	 */
1870 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1871 		force_fatal_sig(SIGSEGV);
1872 
1873 out_unmark:
1874 	current->fs->in_exec = 0;
1875 	current->in_execve = 0;
1876 
1877 	return retval;
1878 }
1879 
1880 static int do_execveat_common(int fd, struct filename *filename,
1881 			      struct user_arg_ptr argv,
1882 			      struct user_arg_ptr envp,
1883 			      int flags)
1884 {
1885 	struct linux_binprm *bprm;
1886 	int retval;
1887 
1888 	if (IS_ERR(filename))
1889 		return PTR_ERR(filename);
1890 
1891 	/*
1892 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1893 	 * set*uid() to execve() because too many poorly written programs
1894 	 * don't check setuid() return code.  Here we additionally recheck
1895 	 * whether NPROC limit is still exceeded.
1896 	 */
1897 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1898 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1899 		retval = -EAGAIN;
1900 		goto out_ret;
1901 	}
1902 
1903 	/* We're below the limit (still or again), so we don't want to make
1904 	 * further execve() calls fail. */
1905 	current->flags &= ~PF_NPROC_EXCEEDED;
1906 
1907 	bprm = alloc_bprm(fd, filename);
1908 	if (IS_ERR(bprm)) {
1909 		retval = PTR_ERR(bprm);
1910 		goto out_ret;
1911 	}
1912 
1913 	retval = count(argv, MAX_ARG_STRINGS);
1914 	if (retval == 0)
1915 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1916 			     current->comm, bprm->filename);
1917 	if (retval < 0)
1918 		goto out_free;
1919 	bprm->argc = retval;
1920 
1921 	retval = count(envp, MAX_ARG_STRINGS);
1922 	if (retval < 0)
1923 		goto out_free;
1924 	bprm->envc = retval;
1925 
1926 	retval = bprm_stack_limits(bprm);
1927 	if (retval < 0)
1928 		goto out_free;
1929 
1930 	retval = copy_string_kernel(bprm->filename, bprm);
1931 	if (retval < 0)
1932 		goto out_free;
1933 	bprm->exec = bprm->p;
1934 
1935 	retval = copy_strings(bprm->envc, envp, bprm);
1936 	if (retval < 0)
1937 		goto out_free;
1938 
1939 	retval = copy_strings(bprm->argc, argv, bprm);
1940 	if (retval < 0)
1941 		goto out_free;
1942 
1943 	/*
1944 	 * When argv is empty, add an empty string ("") as argv[0] to
1945 	 * ensure confused userspace programs that start processing
1946 	 * from argv[1] won't end up walking envp. See also
1947 	 * bprm_stack_limits().
1948 	 */
1949 	if (bprm->argc == 0) {
1950 		retval = copy_string_kernel("", bprm);
1951 		if (retval < 0)
1952 			goto out_free;
1953 		bprm->argc = 1;
1954 	}
1955 
1956 	retval = bprm_execve(bprm, fd, filename, flags);
1957 out_free:
1958 	free_bprm(bprm);
1959 
1960 out_ret:
1961 	putname(filename);
1962 	return retval;
1963 }
1964 
1965 int kernel_execve(const char *kernel_filename,
1966 		  const char *const *argv, const char *const *envp)
1967 {
1968 	struct filename *filename;
1969 	struct linux_binprm *bprm;
1970 	int fd = AT_FDCWD;
1971 	int retval;
1972 
1973 	/* It is non-sense for kernel threads to call execve */
1974 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1975 		return -EINVAL;
1976 
1977 	filename = getname_kernel(kernel_filename);
1978 	if (IS_ERR(filename))
1979 		return PTR_ERR(filename);
1980 
1981 	bprm = alloc_bprm(fd, filename);
1982 	if (IS_ERR(bprm)) {
1983 		retval = PTR_ERR(bprm);
1984 		goto out_ret;
1985 	}
1986 
1987 	retval = count_strings_kernel(argv);
1988 	if (WARN_ON_ONCE(retval == 0))
1989 		retval = -EINVAL;
1990 	if (retval < 0)
1991 		goto out_free;
1992 	bprm->argc = retval;
1993 
1994 	retval = count_strings_kernel(envp);
1995 	if (retval < 0)
1996 		goto out_free;
1997 	bprm->envc = retval;
1998 
1999 	retval = bprm_stack_limits(bprm);
2000 	if (retval < 0)
2001 		goto out_free;
2002 
2003 	retval = copy_string_kernel(bprm->filename, bprm);
2004 	if (retval < 0)
2005 		goto out_free;
2006 	bprm->exec = bprm->p;
2007 
2008 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2009 	if (retval < 0)
2010 		goto out_free;
2011 
2012 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2013 	if (retval < 0)
2014 		goto out_free;
2015 
2016 	retval = bprm_execve(bprm, fd, filename, 0);
2017 out_free:
2018 	free_bprm(bprm);
2019 out_ret:
2020 	putname(filename);
2021 	return retval;
2022 }
2023 
2024 static int do_execve(struct filename *filename,
2025 	const char __user *const __user *__argv,
2026 	const char __user *const __user *__envp)
2027 {
2028 	struct user_arg_ptr argv = { .ptr.native = __argv };
2029 	struct user_arg_ptr envp = { .ptr.native = __envp };
2030 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2031 }
2032 
2033 static int do_execveat(int fd, struct filename *filename,
2034 		const char __user *const __user *__argv,
2035 		const char __user *const __user *__envp,
2036 		int flags)
2037 {
2038 	struct user_arg_ptr argv = { .ptr.native = __argv };
2039 	struct user_arg_ptr envp = { .ptr.native = __envp };
2040 
2041 	return do_execveat_common(fd, filename, argv, envp, flags);
2042 }
2043 
2044 #ifdef CONFIG_COMPAT
2045 static int compat_do_execve(struct filename *filename,
2046 	const compat_uptr_t __user *__argv,
2047 	const compat_uptr_t __user *__envp)
2048 {
2049 	struct user_arg_ptr argv = {
2050 		.is_compat = true,
2051 		.ptr.compat = __argv,
2052 	};
2053 	struct user_arg_ptr envp = {
2054 		.is_compat = true,
2055 		.ptr.compat = __envp,
2056 	};
2057 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2058 }
2059 
2060 static int compat_do_execveat(int fd, struct filename *filename,
2061 			      const compat_uptr_t __user *__argv,
2062 			      const compat_uptr_t __user *__envp,
2063 			      int flags)
2064 {
2065 	struct user_arg_ptr argv = {
2066 		.is_compat = true,
2067 		.ptr.compat = __argv,
2068 	};
2069 	struct user_arg_ptr envp = {
2070 		.is_compat = true,
2071 		.ptr.compat = __envp,
2072 	};
2073 	return do_execveat_common(fd, filename, argv, envp, flags);
2074 }
2075 #endif
2076 
2077 void set_binfmt(struct linux_binfmt *new)
2078 {
2079 	struct mm_struct *mm = current->mm;
2080 
2081 	if (mm->binfmt)
2082 		module_put(mm->binfmt->module);
2083 
2084 	mm->binfmt = new;
2085 	if (new)
2086 		__module_get(new->module);
2087 }
2088 EXPORT_SYMBOL(set_binfmt);
2089 
2090 /*
2091  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2092  */
2093 void set_dumpable(struct mm_struct *mm, int value)
2094 {
2095 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2096 		return;
2097 
2098 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2099 }
2100 
2101 SYSCALL_DEFINE3(execve,
2102 		const char __user *, filename,
2103 		const char __user *const __user *, argv,
2104 		const char __user *const __user *, envp)
2105 {
2106 	return do_execve(getname(filename), argv, envp);
2107 }
2108 
2109 SYSCALL_DEFINE5(execveat,
2110 		int, fd, const char __user *, filename,
2111 		const char __user *const __user *, argv,
2112 		const char __user *const __user *, envp,
2113 		int, flags)
2114 {
2115 	return do_execveat(fd,
2116 			   getname_uflags(filename, flags),
2117 			   argv, envp, flags);
2118 }
2119 
2120 #ifdef CONFIG_COMPAT
2121 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2122 	const compat_uptr_t __user *, argv,
2123 	const compat_uptr_t __user *, envp)
2124 {
2125 	return compat_do_execve(getname(filename), argv, envp);
2126 }
2127 
2128 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2129 		       const char __user *, filename,
2130 		       const compat_uptr_t __user *, argv,
2131 		       const compat_uptr_t __user *, envp,
2132 		       int,  flags)
2133 {
2134 	return compat_do_execveat(fd,
2135 				  getname_uflags(filename, flags),
2136 				  argv, envp, flags);
2137 }
2138 #endif
2139 
2140 #ifdef CONFIG_SYSCTL
2141 
2142 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2143 		void *buffer, size_t *lenp, loff_t *ppos)
2144 {
2145 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2146 
2147 	if (!error)
2148 		validate_coredump_safety();
2149 	return error;
2150 }
2151 
2152 static struct ctl_table fs_exec_sysctls[] = {
2153 	{
2154 		.procname	= "suid_dumpable",
2155 		.data		= &suid_dumpable,
2156 		.maxlen		= sizeof(int),
2157 		.mode		= 0644,
2158 		.proc_handler	= proc_dointvec_minmax_coredump,
2159 		.extra1		= SYSCTL_ZERO,
2160 		.extra2		= SYSCTL_TWO,
2161 	},
2162 	{ }
2163 };
2164 
2165 static int __init init_fs_exec_sysctls(void)
2166 {
2167 	register_sysctl_init("fs", fs_exec_sysctls);
2168 	return 0;
2169 }
2170 
2171 fs_initcall(init_fs_exec_sysctls);
2172 #endif /* CONFIG_SYSCTL */
2173